yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /*- |
| 11 | * This is an implementation of the ASN1 Time structure which is: |
| 12 | * Time ::= CHOICE { |
| 13 | * utcTime UTCTime, |
| 14 | * generalTime GeneralizedTime } |
| 15 | */ |
| 16 | |
| 17 | #include <stdio.h> |
| 18 | #include <time.h> |
| 19 | #include "crypto/ctype.h" |
| 20 | #include "internal/cryptlib.h" |
| 21 | #include <openssl/asn1t.h> |
| 22 | #include "asn1_local.h" |
| 23 | |
| 24 | IMPLEMENT_ASN1_MSTRING(ASN1_TIME, B_ASN1_TIME) |
| 25 | |
| 26 | IMPLEMENT_ASN1_FUNCTIONS(ASN1_TIME) |
| 27 | |
| 28 | static int is_utc(const int year) |
| 29 | { |
| 30 | if (50 <= year && year <= 149) |
| 31 | return 1; |
| 32 | return 0; |
| 33 | } |
| 34 | |
| 35 | static int leap_year(const int year) |
| 36 | { |
| 37 | if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 0)) |
| 38 | return 1; |
| 39 | return 0; |
| 40 | } |
| 41 | |
| 42 | /* |
| 43 | * Compute the day of the week and the day of the year from the year, month |
| 44 | * and day. The day of the year is straightforward, the day of the week uses |
| 45 | * a form of Zeller's congruence. For this months start with March and are |
| 46 | * numbered 4 through 15. |
| 47 | */ |
| 48 | static void determine_days(struct tm *tm) |
| 49 | { |
| 50 | static const int ydays[12] = { |
| 51 | 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 |
| 52 | }; |
| 53 | int y = tm->tm_year + 1900; |
| 54 | int m = tm->tm_mon; |
| 55 | int d = tm->tm_mday; |
| 56 | int c; |
| 57 | |
| 58 | tm->tm_yday = ydays[m] + d - 1; |
| 59 | if (m >= 2) { |
| 60 | /* March and onwards can be one day further into the year */ |
| 61 | tm->tm_yday += leap_year(y); |
| 62 | m += 2; |
| 63 | } else { |
| 64 | /* Treat January and February as part of the previous year */ |
| 65 | m += 14; |
| 66 | y--; |
| 67 | } |
| 68 | c = y / 100; |
| 69 | y %= 100; |
| 70 | /* Zeller's congruence */ |
| 71 | tm->tm_wday = (d + (13 * m) / 5 + y + y / 4 + c / 4 + 5 * c + 6) % 7; |
| 72 | } |
| 73 | |
| 74 | int asn1_time_to_tm(struct tm *tm, const ASN1_TIME *d) |
| 75 | { |
| 76 | static const int min[9] = { 0, 0, 1, 1, 0, 0, 0, 0, 0 }; |
| 77 | static const int max[9] = { 99, 99, 12, 31, 23, 59, 59, 12, 59 }; |
| 78 | static const int mdays[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; |
| 79 | char *a; |
| 80 | int n, i, i2, l, o, min_l = 11, strict = 0, end = 6, btz = 5, md; |
| 81 | struct tm tmp; |
| 82 | #if defined(CHARSET_EBCDIC) |
| 83 | const char upper_z = 0x5A, num_zero = 0x30, period = 0x2E, minus = 0x2D, plus = 0x2B; |
| 84 | #else |
| 85 | const char upper_z = 'Z', num_zero = '0', period = '.', minus = '-', plus = '+'; |
| 86 | #endif |
| 87 | /* |
| 88 | * ASN1_STRING_FLAG_X509_TIME is used to enforce RFC 5280 |
| 89 | * time string format, in which: |
| 90 | * |
| 91 | * 1. "seconds" is a 'MUST' |
| 92 | * 2. "Zulu" timezone is a 'MUST' |
| 93 | * 3. "+|-" is not allowed to indicate a time zone |
| 94 | */ |
| 95 | if (d->type == V_ASN1_UTCTIME) { |
| 96 | if (d->flags & ASN1_STRING_FLAG_X509_TIME) { |
| 97 | min_l = 13; |
| 98 | strict = 1; |
| 99 | } |
| 100 | } else if (d->type == V_ASN1_GENERALIZEDTIME) { |
| 101 | end = 7; |
| 102 | btz = 6; |
| 103 | if (d->flags & ASN1_STRING_FLAG_X509_TIME) { |
| 104 | min_l = 15; |
| 105 | strict = 1; |
| 106 | } else { |
| 107 | min_l = 13; |
| 108 | } |
| 109 | } else { |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | l = d->length; |
| 114 | a = (char *)d->data; |
| 115 | o = 0; |
| 116 | memset(&tmp, 0, sizeof(tmp)); |
| 117 | |
| 118 | /* |
| 119 | * GENERALIZEDTIME is similar to UTCTIME except the year is represented |
| 120 | * as YYYY. This stuff treats everything as a two digit field so make |
| 121 | * first two fields 00 to 99 |
| 122 | */ |
| 123 | |
| 124 | if (l < min_l) |
| 125 | goto err; |
| 126 | for (i = 0; i < end; i++) { |
| 127 | if (!strict && (i == btz) && ((a[o] == upper_z) || (a[o] == plus) || (a[o] == minus))) { |
| 128 | i++; |
| 129 | break; |
| 130 | } |
| 131 | if (!ascii_isdigit(a[o])) |
| 132 | goto err; |
| 133 | n = a[o] - num_zero; |
| 134 | /* incomplete 2-digital number */ |
| 135 | if (++o == l) |
| 136 | goto err; |
| 137 | |
| 138 | if (!ascii_isdigit(a[o])) |
| 139 | goto err; |
| 140 | n = (n * 10) + a[o] - num_zero; |
| 141 | /* no more bytes to read, but we haven't seen time-zone yet */ |
| 142 | if (++o == l) |
| 143 | goto err; |
| 144 | |
| 145 | i2 = (d->type == V_ASN1_UTCTIME) ? i + 1 : i; |
| 146 | |
| 147 | if ((n < min[i2]) || (n > max[i2])) |
| 148 | goto err; |
| 149 | switch (i2) { |
| 150 | case 0: |
| 151 | /* UTC will never be here */ |
| 152 | tmp.tm_year = n * 100 - 1900; |
| 153 | break; |
| 154 | case 1: |
| 155 | if (d->type == V_ASN1_UTCTIME) |
| 156 | tmp.tm_year = n < 50 ? n + 100 : n; |
| 157 | else |
| 158 | tmp.tm_year += n; |
| 159 | break; |
| 160 | case 2: |
| 161 | tmp.tm_mon = n - 1; |
| 162 | break; |
| 163 | case 3: |
| 164 | /* check if tm_mday is valid in tm_mon */ |
| 165 | if (tmp.tm_mon == 1) { |
| 166 | /* it's February */ |
| 167 | md = mdays[1] + leap_year(tmp.tm_year + 1900); |
| 168 | } else { |
| 169 | md = mdays[tmp.tm_mon]; |
| 170 | } |
| 171 | if (n > md) |
| 172 | goto err; |
| 173 | tmp.tm_mday = n; |
| 174 | determine_days(&tmp); |
| 175 | break; |
| 176 | case 4: |
| 177 | tmp.tm_hour = n; |
| 178 | break; |
| 179 | case 5: |
| 180 | tmp.tm_min = n; |
| 181 | break; |
| 182 | case 6: |
| 183 | tmp.tm_sec = n; |
| 184 | break; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | /* |
| 189 | * Optional fractional seconds: decimal point followed by one or more |
| 190 | * digits. |
| 191 | */ |
| 192 | if (d->type == V_ASN1_GENERALIZEDTIME && a[o] == period) { |
| 193 | if (strict) |
| 194 | /* RFC 5280 forbids fractional seconds */ |
| 195 | goto err; |
| 196 | if (++o == l) |
| 197 | goto err; |
| 198 | i = o; |
| 199 | while ((o < l) && ascii_isdigit(a[o])) |
| 200 | o++; |
| 201 | /* Must have at least one digit after decimal point */ |
| 202 | if (i == o) |
| 203 | goto err; |
| 204 | /* no more bytes to read, but we haven't seen time-zone yet */ |
| 205 | if (o == l) |
| 206 | goto err; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * 'o' will never point to '\0' at this point, the only chance |
| 211 | * 'o' can point to '\0' is either the subsequent if or the first |
| 212 | * else if is true. |
| 213 | */ |
| 214 | if (a[o] == upper_z) { |
| 215 | o++; |
| 216 | } else if (!strict && ((a[o] == plus) || (a[o] == minus))) { |
| 217 | int offsign = a[o] == minus ? 1 : -1; |
| 218 | int offset = 0; |
| 219 | |
| 220 | o++; |
| 221 | /* |
| 222 | * if not equal, no need to do subsequent checks |
| 223 | * since the following for-loop will add 'o' by 4 |
| 224 | * and the final return statement will check if 'l' |
| 225 | * and 'o' are equal. |
| 226 | */ |
| 227 | if (o + 4 != l) |
| 228 | goto err; |
| 229 | for (i = end; i < end + 2; i++) { |
| 230 | if (!ascii_isdigit(a[o])) |
| 231 | goto err; |
| 232 | n = a[o] - num_zero; |
| 233 | o++; |
| 234 | if (!ascii_isdigit(a[o])) |
| 235 | goto err; |
| 236 | n = (n * 10) + a[o] - num_zero; |
| 237 | i2 = (d->type == V_ASN1_UTCTIME) ? i + 1 : i; |
| 238 | if ((n < min[i2]) || (n > max[i2])) |
| 239 | goto err; |
| 240 | /* if tm is NULL, no need to adjust */ |
| 241 | if (tm != NULL) { |
| 242 | if (i == end) |
| 243 | offset = n * 3600; |
| 244 | else if (i == end + 1) |
| 245 | offset += n * 60; |
| 246 | } |
| 247 | o++; |
| 248 | } |
| 249 | if (offset && !OPENSSL_gmtime_adj(&tmp, 0, offset * offsign)) |
| 250 | goto err; |
| 251 | } else { |
| 252 | /* not Z, or not +/- in non-strict mode */ |
| 253 | goto err; |
| 254 | } |
| 255 | if (o == l) { |
| 256 | /* success, check if tm should be filled */ |
| 257 | if (tm != NULL) |
| 258 | *tm = tmp; |
| 259 | return 1; |
| 260 | } |
| 261 | err: |
| 262 | return 0; |
| 263 | } |
| 264 | |
| 265 | ASN1_TIME *asn1_time_from_tm(ASN1_TIME *s, struct tm *ts, int type) |
| 266 | { |
| 267 | char* p; |
| 268 | ASN1_TIME *tmps = NULL; |
| 269 | const size_t len = 20; |
| 270 | |
| 271 | if (type == V_ASN1_UNDEF) { |
| 272 | if (is_utc(ts->tm_year)) |
| 273 | type = V_ASN1_UTCTIME; |
| 274 | else |
| 275 | type = V_ASN1_GENERALIZEDTIME; |
| 276 | } else if (type == V_ASN1_UTCTIME) { |
| 277 | if (!is_utc(ts->tm_year)) |
| 278 | goto err; |
| 279 | } else if (type != V_ASN1_GENERALIZEDTIME) { |
| 280 | goto err; |
| 281 | } |
| 282 | |
| 283 | if (s == NULL) |
| 284 | tmps = ASN1_STRING_new(); |
| 285 | else |
| 286 | tmps = s; |
| 287 | if (tmps == NULL) |
| 288 | return NULL; |
| 289 | |
| 290 | if (!ASN1_STRING_set(tmps, NULL, len)) |
| 291 | goto err; |
| 292 | |
| 293 | tmps->type = type; |
| 294 | p = (char*)tmps->data; |
| 295 | |
| 296 | if (type == V_ASN1_GENERALIZEDTIME) |
| 297 | tmps->length = BIO_snprintf(p, len, "%04d%02d%02d%02d%02d%02dZ", |
| 298 | ts->tm_year + 1900, ts->tm_mon + 1, |
| 299 | ts->tm_mday, ts->tm_hour, ts->tm_min, |
| 300 | ts->tm_sec); |
| 301 | else |
| 302 | tmps->length = BIO_snprintf(p, len, "%02d%02d%02d%02d%02d%02dZ", |
| 303 | ts->tm_year % 100, ts->tm_mon + 1, |
| 304 | ts->tm_mday, ts->tm_hour, ts->tm_min, |
| 305 | ts->tm_sec); |
| 306 | |
| 307 | #ifdef CHARSET_EBCDIC |
| 308 | ebcdic2ascii(tmps->data, tmps->data, tmps->length); |
| 309 | #endif |
| 310 | return tmps; |
| 311 | err: |
| 312 | if (tmps != s) |
| 313 | ASN1_STRING_free(tmps); |
| 314 | return NULL; |
| 315 | } |
| 316 | |
| 317 | ASN1_TIME *ASN1_TIME_set(ASN1_TIME *s, time_t t) |
| 318 | { |
| 319 | return ASN1_TIME_adj(s, t, 0, 0); |
| 320 | } |
| 321 | |
| 322 | ASN1_TIME *ASN1_TIME_adj(ASN1_TIME *s, time_t t, |
| 323 | int offset_day, long offset_sec) |
| 324 | { |
| 325 | struct tm *ts; |
| 326 | struct tm data; |
| 327 | |
| 328 | ts = OPENSSL_gmtime(&t, &data); |
| 329 | if (ts == NULL) { |
| 330 | ASN1err(ASN1_F_ASN1_TIME_ADJ, ASN1_R_ERROR_GETTING_TIME); |
| 331 | return NULL; |
| 332 | } |
| 333 | if (offset_day || offset_sec) { |
| 334 | if (!OPENSSL_gmtime_adj(ts, offset_day, offset_sec)) |
| 335 | return NULL; |
| 336 | } |
| 337 | return asn1_time_from_tm(s, ts, V_ASN1_UNDEF); |
| 338 | } |
| 339 | |
| 340 | int ASN1_TIME_check(const ASN1_TIME *t) |
| 341 | { |
| 342 | if (t->type == V_ASN1_GENERALIZEDTIME) |
| 343 | return ASN1_GENERALIZEDTIME_check(t); |
| 344 | else if (t->type == V_ASN1_UTCTIME) |
| 345 | return ASN1_UTCTIME_check(t); |
| 346 | return 0; |
| 347 | } |
| 348 | |
| 349 | /* Convert an ASN1_TIME structure to GeneralizedTime */ |
| 350 | ASN1_GENERALIZEDTIME *ASN1_TIME_to_generalizedtime(const ASN1_TIME *t, |
| 351 | ASN1_GENERALIZEDTIME **out) |
| 352 | { |
| 353 | ASN1_GENERALIZEDTIME *ret = NULL; |
| 354 | struct tm tm; |
| 355 | |
| 356 | if (!ASN1_TIME_to_tm(t, &tm)) |
| 357 | return NULL; |
| 358 | |
| 359 | if (out != NULL) |
| 360 | ret = *out; |
| 361 | |
| 362 | ret = asn1_time_from_tm(ret, &tm, V_ASN1_GENERALIZEDTIME); |
| 363 | |
| 364 | if (out != NULL && ret != NULL) |
| 365 | *out = ret; |
| 366 | |
| 367 | return ret; |
| 368 | } |
| 369 | |
| 370 | int ASN1_TIME_set_string(ASN1_TIME *s, const char *str) |
| 371 | { |
| 372 | /* Try UTC, if that fails, try GENERALIZED */ |
| 373 | if (ASN1_UTCTIME_set_string(s, str)) |
| 374 | return 1; |
| 375 | return ASN1_GENERALIZEDTIME_set_string(s, str); |
| 376 | } |
| 377 | |
| 378 | int ASN1_TIME_set_string_X509(ASN1_TIME *s, const char *str) |
| 379 | { |
| 380 | ASN1_TIME t; |
| 381 | struct tm tm; |
| 382 | int rv = 0; |
| 383 | |
| 384 | t.length = strlen(str); |
| 385 | t.data = (unsigned char *)str; |
| 386 | t.flags = ASN1_STRING_FLAG_X509_TIME; |
| 387 | |
| 388 | t.type = V_ASN1_UTCTIME; |
| 389 | |
| 390 | if (!ASN1_TIME_check(&t)) { |
| 391 | t.type = V_ASN1_GENERALIZEDTIME; |
| 392 | if (!ASN1_TIME_check(&t)) |
| 393 | goto out; |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | * Per RFC 5280 (section 4.1.2.5.), the valid input time |
| 398 | * strings should be encoded with the following rules: |
| 399 | * |
| 400 | * 1. UTC: YYMMDDHHMMSSZ, if YY < 50 (20YY) --> UTC: YYMMDDHHMMSSZ |
| 401 | * 2. UTC: YYMMDDHHMMSSZ, if YY >= 50 (19YY) --> UTC: YYMMDDHHMMSSZ |
| 402 | * 3. G'd: YYYYMMDDHHMMSSZ, if YYYY >= 2050 --> G'd: YYYYMMDDHHMMSSZ |
| 403 | * 4. G'd: YYYYMMDDHHMMSSZ, if YYYY < 2050 --> UTC: YYMMDDHHMMSSZ |
| 404 | * |
| 405 | * Only strings of the 4th rule should be reformatted, but since a |
| 406 | * UTC can only present [1950, 2050), so if the given time string |
| 407 | * is less than 1950 (e.g. 19230419000000Z), we do nothing... |
| 408 | */ |
| 409 | |
| 410 | if (s != NULL && t.type == V_ASN1_GENERALIZEDTIME) { |
| 411 | if (!asn1_time_to_tm(&tm, &t)) |
| 412 | goto out; |
| 413 | if (is_utc(tm.tm_year)) { |
| 414 | t.length -= 2; |
| 415 | /* |
| 416 | * it's OK to let original t.data go since that's assigned |
| 417 | * to a piece of memory allocated outside of this function. |
| 418 | * new t.data would be freed after ASN1_STRING_copy is done. |
| 419 | */ |
| 420 | t.data = OPENSSL_zalloc(t.length + 1); |
| 421 | if (t.data == NULL) |
| 422 | goto out; |
| 423 | memcpy(t.data, str + 2, t.length); |
| 424 | t.type = V_ASN1_UTCTIME; |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | if (s == NULL || ASN1_STRING_copy((ASN1_STRING *)s, (ASN1_STRING *)&t)) |
| 429 | rv = 1; |
| 430 | |
| 431 | if (t.data != (unsigned char *)str) |
| 432 | OPENSSL_free(t.data); |
| 433 | out: |
| 434 | return rv; |
| 435 | } |
| 436 | |
| 437 | int ASN1_TIME_to_tm(const ASN1_TIME *s, struct tm *tm) |
| 438 | { |
| 439 | if (s == NULL) { |
| 440 | time_t now_t; |
| 441 | |
| 442 | time(&now_t); |
| 443 | memset(tm, 0, sizeof(*tm)); |
| 444 | if (OPENSSL_gmtime(&now_t, tm) != NULL) |
| 445 | return 1; |
| 446 | return 0; |
| 447 | } |
| 448 | |
| 449 | return asn1_time_to_tm(tm, s); |
| 450 | } |
| 451 | |
| 452 | int ASN1_TIME_diff(int *pday, int *psec, |
| 453 | const ASN1_TIME *from, const ASN1_TIME *to) |
| 454 | { |
| 455 | struct tm tm_from, tm_to; |
| 456 | |
| 457 | if (!ASN1_TIME_to_tm(from, &tm_from)) |
| 458 | return 0; |
| 459 | if (!ASN1_TIME_to_tm(to, &tm_to)) |
| 460 | return 0; |
| 461 | return OPENSSL_gmtime_diff(pday, psec, &tm_from, &tm_to); |
| 462 | } |
| 463 | |
| 464 | static const char _asn1_mon[12][4] = { |
| 465 | "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| 466 | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| 467 | }; |
| 468 | |
| 469 | int ASN1_TIME_print(BIO *bp, const ASN1_TIME *tm) |
| 470 | { |
| 471 | char *v; |
| 472 | int gmt = 0, l; |
| 473 | struct tm stm; |
| 474 | const char upper_z = 0x5A, period = 0x2E; |
| 475 | |
| 476 | if (!asn1_time_to_tm(&stm, tm)) { |
| 477 | /* asn1_time_to_tm will check the time type */ |
| 478 | goto err; |
| 479 | } |
| 480 | |
| 481 | l = tm->length; |
| 482 | v = (char *)tm->data; |
| 483 | if (v[l - 1] == upper_z) |
| 484 | gmt = 1; |
| 485 | |
| 486 | if (tm->type == V_ASN1_GENERALIZEDTIME) { |
| 487 | char *f = NULL; |
| 488 | int f_len = 0; |
| 489 | |
| 490 | /* |
| 491 | * Try to parse fractional seconds. '14' is the place of |
| 492 | * 'fraction point' in a GeneralizedTime string. |
| 493 | */ |
| 494 | if (tm->length > 15 && v[14] == period) { |
| 495 | f = &v[14]; |
| 496 | f_len = 1; |
| 497 | while (14 + f_len < l && ascii_isdigit(f[f_len])) |
| 498 | ++f_len; |
| 499 | } |
| 500 | |
| 501 | return BIO_printf(bp, "%s %2d %02d:%02d:%02d%.*s %d%s", |
| 502 | _asn1_mon[stm.tm_mon], stm.tm_mday, stm.tm_hour, |
| 503 | stm.tm_min, stm.tm_sec, f_len, f, stm.tm_year + 1900, |
| 504 | (gmt ? " GMT" : "")) > 0; |
| 505 | } else { |
| 506 | return BIO_printf(bp, "%s %2d %02d:%02d:%02d %d%s", |
| 507 | _asn1_mon[stm.tm_mon], stm.tm_mday, stm.tm_hour, |
| 508 | stm.tm_min, stm.tm_sec, stm.tm_year + 1900, |
| 509 | (gmt ? " GMT" : "")) > 0; |
| 510 | } |
| 511 | err: |
| 512 | BIO_write(bp, "Bad time value", 14); |
| 513 | return 0; |
| 514 | } |
| 515 | |
| 516 | int ASN1_TIME_cmp_time_t(const ASN1_TIME *s, time_t t) |
| 517 | { |
| 518 | struct tm stm, ttm; |
| 519 | int day, sec; |
| 520 | |
| 521 | if (!ASN1_TIME_to_tm(s, &stm)) |
| 522 | return -2; |
| 523 | |
| 524 | if (!OPENSSL_gmtime(&t, &ttm)) |
| 525 | return -2; |
| 526 | |
| 527 | if (!OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) |
| 528 | return -2; |
| 529 | |
| 530 | if (day > 0 || sec > 0) |
| 531 | return 1; |
| 532 | if (day < 0 || sec < 0) |
| 533 | return -1; |
| 534 | return 0; |
| 535 | } |
| 536 | |
| 537 | int ASN1_TIME_normalize(ASN1_TIME *t) |
| 538 | { |
| 539 | struct tm tm; |
| 540 | |
| 541 | if (!ASN1_TIME_to_tm(t, &tm)) |
| 542 | return 0; |
| 543 | |
| 544 | return asn1_time_from_tm(t, &tm, V_ASN1_UNDEF) != NULL; |
| 545 | } |
| 546 | |
| 547 | int ASN1_TIME_compare(const ASN1_TIME *a, const ASN1_TIME *b) |
| 548 | { |
| 549 | int day, sec; |
| 550 | |
| 551 | if (!ASN1_TIME_diff(&day, &sec, b, a)) |
| 552 | return -2; |
| 553 | if (day > 0 || sec > 0) |
| 554 | return 1; |
| 555 | if (day < 0 || sec < 0) |
| 556 | return -1; |
| 557 | return 0; |
| 558 | } |