yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #ifndef OSSL_CRYPTO_BN_LOCAL_H |
| 11 | # define OSSL_CRYPTO_BN_LOCAL_H |
| 12 | |
| 13 | /* |
| 14 | * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or |
| 15 | * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our |
| 16 | * Configure script and needs to support both 32-bit and 64-bit. |
| 17 | */ |
| 18 | # include <openssl/opensslconf.h> |
| 19 | |
| 20 | # if !defined(OPENSSL_SYS_UEFI) |
| 21 | # include "crypto/bn_conf.h" |
| 22 | # endif |
| 23 | |
| 24 | # include "crypto/bn.h" |
| 25 | |
| 26 | /* |
| 27 | * These preprocessor symbols control various aspects of the bignum headers |
| 28 | * and library code. They're not defined by any "normal" configuration, as |
| 29 | * they are intended for development and testing purposes. NB: defining all |
| 30 | * three can be useful for debugging application code as well as openssl |
| 31 | * itself. BN_DEBUG - turn on various debugging alterations to the bignum |
| 32 | * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up |
| 33 | * mismanagement of bignum internals. You must also define BN_DEBUG. |
| 34 | */ |
| 35 | /* #define BN_DEBUG */ |
| 36 | /* #define BN_DEBUG_RAND */ |
| 37 | |
| 38 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 39 | # define BN_MUL_COMBA |
| 40 | # define BN_SQR_COMBA |
| 41 | # define BN_RECURSION |
| 42 | # endif |
| 43 | |
| 44 | /* |
| 45 | * This next option uses the C libraries (2 word)/(1 word) function. If it is |
| 46 | * not defined, I use my C version (which is slower). The reason for this |
| 47 | * flag is that when the particular C compiler library routine is used, and |
| 48 | * the library is linked with a different compiler, the library is missing. |
| 49 | * This mostly happens when the library is built with gcc and then linked |
| 50 | * using normal cc. This would be a common occurrence because gcc normally |
| 51 | * produces code that is 2 times faster than system compilers for the big |
| 52 | * number stuff. For machines with only one compiler (or shared libraries), |
| 53 | * this should be on. Again this in only really a problem on machines using |
| 54 | * "long long's", are 32bit, and are not using my assembler code. |
| 55 | */ |
| 56 | # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ |
| 57 | defined(OPENSSL_SYS_WIN32) || defined(linux) |
| 58 | # define BN_DIV2W |
| 59 | # endif |
| 60 | |
| 61 | /* |
| 62 | * 64-bit processor with LP64 ABI |
| 63 | */ |
| 64 | # ifdef SIXTY_FOUR_BIT_LONG |
| 65 | # define BN_ULLONG unsigned long long |
| 66 | # define BN_BITS4 32 |
| 67 | # define BN_MASK2 (0xffffffffffffffffL) |
| 68 | # define BN_MASK2l (0xffffffffL) |
| 69 | # define BN_MASK2h (0xffffffff00000000L) |
| 70 | # define BN_MASK2h1 (0xffffffff80000000L) |
| 71 | # define BN_DEC_CONV (10000000000000000000UL) |
| 72 | # define BN_DEC_NUM 19 |
| 73 | # define BN_DEC_FMT1 "%lu" |
| 74 | # define BN_DEC_FMT2 "%019lu" |
| 75 | # endif |
| 76 | |
| 77 | /* |
| 78 | * 64-bit processor other than LP64 ABI |
| 79 | */ |
| 80 | # ifdef SIXTY_FOUR_BIT |
| 81 | # undef BN_LLONG |
| 82 | # undef BN_ULLONG |
| 83 | # define BN_BITS4 32 |
| 84 | # define BN_MASK2 (0xffffffffffffffffLL) |
| 85 | # define BN_MASK2l (0xffffffffL) |
| 86 | # define BN_MASK2h (0xffffffff00000000LL) |
| 87 | # define BN_MASK2h1 (0xffffffff80000000LL) |
| 88 | # define BN_DEC_CONV (10000000000000000000ULL) |
| 89 | # define BN_DEC_NUM 19 |
| 90 | # define BN_DEC_FMT1 "%llu" |
| 91 | # define BN_DEC_FMT2 "%019llu" |
| 92 | # endif |
| 93 | |
| 94 | # ifdef THIRTY_TWO_BIT |
| 95 | # ifdef BN_LLONG |
| 96 | # if defined(_WIN32) && !defined(__GNUC__) |
| 97 | # define BN_ULLONG unsigned __int64 |
| 98 | # else |
| 99 | # define BN_ULLONG unsigned long long |
| 100 | # endif |
| 101 | # endif |
| 102 | # define BN_BITS4 16 |
| 103 | # define BN_MASK2 (0xffffffffL) |
| 104 | # define BN_MASK2l (0xffff) |
| 105 | # define BN_MASK2h1 (0xffff8000L) |
| 106 | # define BN_MASK2h (0xffff0000L) |
| 107 | # define BN_DEC_CONV (1000000000L) |
| 108 | # define BN_DEC_NUM 9 |
| 109 | # define BN_DEC_FMT1 "%u" |
| 110 | # define BN_DEC_FMT2 "%09u" |
| 111 | # endif |
| 112 | |
| 113 | |
| 114 | /*- |
| 115 | * Bignum consistency macros |
| 116 | * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from |
| 117 | * bignum data after direct manipulations on the data. There is also an |
| 118 | * "internal" macro, bn_check_top(), for verifying that there are no leading |
| 119 | * zeroes. Unfortunately, some auditing is required due to the fact that |
| 120 | * bn_fix_top() has become an overabused duct-tape because bignum data is |
| 121 | * occasionally passed around in an inconsistent state. So the following |
| 122 | * changes have been made to sort this out; |
| 123 | * - bn_fix_top()s implementation has been moved to bn_correct_top() |
| 124 | * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and |
| 125 | * bn_check_top() is as before. |
| 126 | * - if BN_DEBUG *is* defined; |
| 127 | * - bn_check_top() tries to pollute unused words even if the bignum 'top' is |
| 128 | * consistent. (ed: only if BN_DEBUG_RAND is defined) |
| 129 | * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. |
| 130 | * The idea is to have debug builds flag up inconsistent bignums when they |
| 131 | * occur. If that occurs in a bn_fix_top(), we examine the code in question; if |
| 132 | * the use of bn_fix_top() was appropriate (ie. it follows directly after code |
| 133 | * that manipulates the bignum) it is converted to bn_correct_top(), and if it |
| 134 | * was not appropriate, we convert it permanently to bn_check_top() and track |
| 135 | * down the cause of the bug. Eventually, no internal code should be using the |
| 136 | * bn_fix_top() macro. External applications and libraries should try this with |
| 137 | * their own code too, both in terms of building against the openssl headers |
| 138 | * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it |
| 139 | * defined. This not only improves external code, it provides more test |
| 140 | * coverage for openssl's own code. |
| 141 | */ |
| 142 | |
| 143 | # ifdef BN_DEBUG |
| 144 | /* |
| 145 | * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with |
| 146 | * bn_correct_top, in other words such vectors are permitted to have zeros |
| 147 | * in most significant limbs. Such vectors are used internally to achieve |
| 148 | * execution time invariance for critical operations with private keys. |
| 149 | * It's BN_DEBUG-only flag, because user application is not supposed to |
| 150 | * observe it anyway. Moreover, optimizing compiler would actually remove |
| 151 | * all operations manipulating the bit in question in non-BN_DEBUG build. |
| 152 | */ |
| 153 | # define BN_FLG_FIXED_TOP 0x10000 |
| 154 | # ifdef BN_DEBUG_RAND |
| 155 | # define bn_pollute(a) \ |
| 156 | do { \ |
| 157 | const BIGNUM *_bnum1 = (a); \ |
| 158 | if (_bnum1->top < _bnum1->dmax) { \ |
| 159 | unsigned char _tmp_char; \ |
| 160 | /* We cast away const without the compiler knowing, any \ |
| 161 | * *genuinely* constant variables that aren't mutable \ |
| 162 | * wouldn't be constructed with top!=dmax. */ \ |
| 163 | BN_ULONG *_not_const; \ |
| 164 | memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \ |
| 165 | RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\ |
| 166 | memset(_not_const + _bnum1->top, _tmp_char, \ |
| 167 | sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \ |
| 168 | } \ |
| 169 | } while(0) |
| 170 | # else |
| 171 | # define bn_pollute(a) |
| 172 | # endif |
| 173 | # define bn_check_top(a) \ |
| 174 | do { \ |
| 175 | const BIGNUM *_bnum2 = (a); \ |
| 176 | if (_bnum2 != NULL) { \ |
| 177 | int _top = _bnum2->top; \ |
| 178 | (void)ossl_assert((_top == 0 && !_bnum2->neg) || \ |
| 179 | (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \ |
| 180 | || _bnum2->d[_top - 1] != 0))); \ |
| 181 | bn_pollute(_bnum2); \ |
| 182 | } \ |
| 183 | } while(0) |
| 184 | |
| 185 | # define bn_fix_top(a) bn_check_top(a) |
| 186 | |
| 187 | # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) |
| 188 | # define bn_wcheck_size(bn, words) \ |
| 189 | do { \ |
| 190 | const BIGNUM *_bnum2 = (bn); \ |
| 191 | assert((words) <= (_bnum2)->dmax && \ |
| 192 | (words) >= (_bnum2)->top); \ |
| 193 | /* avoid unused variable warning with NDEBUG */ \ |
| 194 | (void)(_bnum2); \ |
| 195 | } while(0) |
| 196 | |
| 197 | # else /* !BN_DEBUG */ |
| 198 | |
| 199 | # define BN_FLG_FIXED_TOP 0 |
| 200 | # define bn_pollute(a) |
| 201 | # define bn_check_top(a) |
| 202 | # define bn_fix_top(a) bn_correct_top(a) |
| 203 | # define bn_check_size(bn, bits) |
| 204 | # define bn_wcheck_size(bn, words) |
| 205 | |
| 206 | # endif |
| 207 | |
| 208 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, |
| 209 | BN_ULONG w); |
| 210 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); |
| 211 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); |
| 212 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); |
| 213 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 214 | int num); |
| 215 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 216 | int num); |
| 217 | |
| 218 | struct bignum_st { |
| 219 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit |
| 220 | * chunks. */ |
| 221 | int top; /* Index of last used d +1. */ |
| 222 | /* The next are internal book keeping for bn_expand. */ |
| 223 | int dmax; /* Size of the d array. */ |
| 224 | int neg; /* one if the number is negative */ |
| 225 | int flags; |
| 226 | }; |
| 227 | |
| 228 | /* Used for montgomery multiplication */ |
| 229 | struct bn_mont_ctx_st { |
| 230 | int ri; /* number of bits in R */ |
| 231 | BIGNUM RR; /* used to convert to montgomery form, |
| 232 | possibly zero-padded */ |
| 233 | BIGNUM N; /* The modulus */ |
| 234 | BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only |
| 235 | * stored for bignum algorithm) */ |
| 236 | BN_ULONG n0[2]; /* least significant word(s) of Ni; (type |
| 237 | * changed with 0.9.9, was "BN_ULONG n0;" |
| 238 | * before) */ |
| 239 | int flags; |
| 240 | }; |
| 241 | |
| 242 | /* |
| 243 | * Used for reciprocal division/mod functions It cannot be shared between |
| 244 | * threads |
| 245 | */ |
| 246 | struct bn_recp_ctx_st { |
| 247 | BIGNUM N; /* the divisor */ |
| 248 | BIGNUM Nr; /* the reciprocal */ |
| 249 | int num_bits; |
| 250 | int shift; |
| 251 | int flags; |
| 252 | }; |
| 253 | |
| 254 | /* Used for slow "generation" functions. */ |
| 255 | struct bn_gencb_st { |
| 256 | unsigned int ver; /* To handle binary (in)compatibility */ |
| 257 | void *arg; /* callback-specific data */ |
| 258 | union { |
| 259 | /* if (ver==1) - handles old style callbacks */ |
| 260 | void (*cb_1) (int, int, void *); |
| 261 | /* if (ver==2) - new callback style */ |
| 262 | int (*cb_2) (int, int, BN_GENCB *); |
| 263 | } cb; |
| 264 | }; |
| 265 | |
| 266 | /*- |
| 267 | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions |
| 268 | * |
| 269 | * |
| 270 | * For window size 'w' (w >= 2) and a random 'b' bits exponent, |
| 271 | * the number of multiplications is a constant plus on average |
| 272 | * |
| 273 | * 2^(w-1) + (b-w)/(w+1); |
| 274 | * |
| 275 | * here 2^(w-1) is for precomputing the table (we actually need |
| 276 | * entries only for windows that have the lowest bit set), and |
| 277 | * (b-w)/(w+1) is an approximation for the expected number of |
| 278 | * w-bit windows, not counting the first one. |
| 279 | * |
| 280 | * Thus we should use |
| 281 | * |
| 282 | * w >= 6 if b > 671 |
| 283 | * w = 5 if 671 > b > 239 |
| 284 | * w = 4 if 239 > b > 79 |
| 285 | * w = 3 if 79 > b > 23 |
| 286 | * w <= 2 if 23 > b |
| 287 | * |
| 288 | * (with draws in between). Very small exponents are often selected |
| 289 | * with low Hamming weight, so we use w = 1 for b <= 23. |
| 290 | */ |
| 291 | # define BN_window_bits_for_exponent_size(b) \ |
| 292 | ((b) > 671 ? 6 : \ |
| 293 | (b) > 239 ? 5 : \ |
| 294 | (b) > 79 ? 4 : \ |
| 295 | (b) > 23 ? 3 : 1) |
| 296 | |
| 297 | /* |
| 298 | * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache |
| 299 | * line width of the target processor is at least the following value. |
| 300 | */ |
| 301 | # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) |
| 302 | # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
| 303 | |
| 304 | /* |
| 305 | * Window sizes optimized for fixed window size modular exponentiation |
| 306 | * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of |
| 307 | * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed |
| 308 | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are |
| 309 | * defined for cache line sizes of 32 and 64, cache line sizes where |
| 310 | * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be |
| 311 | * used on processors that have a 128 byte or greater cache line size. |
| 312 | */ |
| 313 | # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
| 314 | |
| 315 | # define BN_window_bits_for_ctime_exponent_size(b) \ |
| 316 | ((b) > 937 ? 6 : \ |
| 317 | (b) > 306 ? 5 : \ |
| 318 | (b) > 89 ? 4 : \ |
| 319 | (b) > 22 ? 3 : 1) |
| 320 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
| 321 | |
| 322 | # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
| 323 | |
| 324 | # define BN_window_bits_for_ctime_exponent_size(b) \ |
| 325 | ((b) > 306 ? 5 : \ |
| 326 | (b) > 89 ? 4 : \ |
| 327 | (b) > 22 ? 3 : 1) |
| 328 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
| 329 | |
| 330 | # endif |
| 331 | |
| 332 | /* Pentium pro 16,16,16,32,64 */ |
| 333 | /* Alpha 16,16,16,16.64 */ |
| 334 | # define BN_MULL_SIZE_NORMAL (16)/* 32 */ |
| 335 | # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */ |
| 336 | # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */ |
| 337 | # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */ |
| 338 | # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */ |
| 339 | |
| 340 | /* |
| 341 | * 2011-02-22 SMS. In various places, a size_t variable or a type cast to |
| 342 | * size_t was used to perform integer-only operations on pointers. This |
| 343 | * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t |
| 344 | * is still only 32 bits. What's needed in these cases is an integer type |
| 345 | * with the same size as a pointer, which size_t is not certain to be. The |
| 346 | * only fix here is VMS-specific. |
| 347 | */ |
| 348 | # if defined(OPENSSL_SYS_VMS) |
| 349 | # if __INITIAL_POINTER_SIZE == 64 |
| 350 | # define PTR_SIZE_INT long long |
| 351 | # else /* __INITIAL_POINTER_SIZE == 64 */ |
| 352 | # define PTR_SIZE_INT int |
| 353 | # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ |
| 354 | # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */ |
| 355 | # define PTR_SIZE_INT size_t |
| 356 | # endif /* defined(OPENSSL_SYS_VMS) [else] */ |
| 357 | |
| 358 | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) |
| 359 | /* |
| 360 | * BN_UMULT_HIGH section. |
| 361 | * If the compiler doesn't support 2*N integer type, then you have to |
| 362 | * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some |
| 363 | * shifts and additions which unavoidably results in severe performance |
| 364 | * penalties. Of course provided that the hardware is capable of producing |
| 365 | * 2*N result... That's when you normally start considering assembler |
| 366 | * implementation. However! It should be pointed out that some CPUs (e.g., |
| 367 | * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating |
| 368 | * the upper half of the product placing the result into a general |
| 369 | * purpose register. Now *if* the compiler supports inline assembler, |
| 370 | * then it's not impossible to implement the "bignum" routines (and have |
| 371 | * the compiler optimize 'em) exhibiting "native" performance in C. That's |
| 372 | * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do |
| 373 | * support 2*64 integer type, which is also used here. |
| 374 | */ |
| 375 | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \ |
| 376 | (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
| 377 | # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) |
| 378 | # define BN_UMULT_LOHI(low,high,a,b) ({ \ |
| 379 | __uint128_t ret=(__uint128_t)(a)*(b); \ |
| 380 | (high)=ret>>64; (low)=ret; }) |
| 381 | # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
| 382 | # if defined(__DECC) |
| 383 | # include <c_asm.h> |
| 384 | # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) |
| 385 | # elif defined(__GNUC__) && __GNUC__>=2 |
| 386 | # define BN_UMULT_HIGH(a,b) ({ \ |
| 387 | register BN_ULONG ret; \ |
| 388 | asm ("umulh %1,%2,%0" \ |
| 389 | : "=r"(ret) \ |
| 390 | : "r"(a), "r"(b)); \ |
| 391 | ret; }) |
| 392 | # endif /* compiler */ |
| 393 | # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG) |
| 394 | # if defined(__GNUC__) && __GNUC__>=2 |
| 395 | # define BN_UMULT_HIGH(a,b) ({ \ |
| 396 | register BN_ULONG ret; \ |
| 397 | asm ("mulhdu %0,%1,%2" \ |
| 398 | : "=r"(ret) \ |
| 399 | : "r"(a), "r"(b)); \ |
| 400 | ret; }) |
| 401 | # endif /* compiler */ |
| 402 | # elif (defined(__x86_64) || defined(__x86_64__)) && \ |
| 403 | (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
| 404 | # if defined(__GNUC__) && __GNUC__>=2 |
| 405 | # define BN_UMULT_HIGH(a,b) ({ \ |
| 406 | register BN_ULONG ret,discard; \ |
| 407 | asm ("mulq %3" \ |
| 408 | : "=a"(discard),"=d"(ret) \ |
| 409 | : "a"(a), "g"(b) \ |
| 410 | : "cc"); \ |
| 411 | ret; }) |
| 412 | # define BN_UMULT_LOHI(low,high,a,b) \ |
| 413 | asm ("mulq %3" \ |
| 414 | : "=a"(low),"=d"(high) \ |
| 415 | : "a"(a),"g"(b) \ |
| 416 | : "cc"); |
| 417 | # endif |
| 418 | # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) |
| 419 | # if defined(_MSC_VER) && _MSC_VER>=1400 |
| 420 | unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); |
| 421 | unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, |
| 422 | unsigned __int64 *h); |
| 423 | # pragma intrinsic(__umulh,_umul128) |
| 424 | # define BN_UMULT_HIGH(a,b) __umulh((a),(b)) |
| 425 | # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) |
| 426 | # endif |
| 427 | # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
| 428 | # if defined(__GNUC__) && __GNUC__>=2 |
| 429 | # define BN_UMULT_HIGH(a,b) ({ \ |
| 430 | register BN_ULONG ret; \ |
| 431 | asm ("dmultu %1,%2" \ |
| 432 | : "=h"(ret) \ |
| 433 | : "r"(a), "r"(b) : "l"); \ |
| 434 | ret; }) |
| 435 | # define BN_UMULT_LOHI(low,high,a,b) \ |
| 436 | asm ("dmultu %2,%3" \ |
| 437 | : "=l"(low),"=h"(high) \ |
| 438 | : "r"(a), "r"(b)); |
| 439 | # endif |
| 440 | # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) |
| 441 | # if defined(__GNUC__) && __GNUC__>=2 |
| 442 | # define BN_UMULT_HIGH(a,b) ({ \ |
| 443 | register BN_ULONG ret; \ |
| 444 | asm ("umulh %0,%1,%2" \ |
| 445 | : "=r"(ret) \ |
| 446 | : "r"(a), "r"(b)); \ |
| 447 | ret; }) |
| 448 | # endif |
| 449 | # endif /* cpu */ |
| 450 | # endif /* OPENSSL_NO_ASM */ |
| 451 | |
| 452 | # ifdef BN_DEBUG_RAND |
| 453 | # define bn_clear_top2max(a) \ |
| 454 | { \ |
| 455 | int ind = (a)->dmax - (a)->top; \ |
| 456 | BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ |
| 457 | for (; ind != 0; ind--) \ |
| 458 | *(++ftl) = 0x0; \ |
| 459 | } |
| 460 | # else |
| 461 | # define bn_clear_top2max(a) |
| 462 | # endif |
| 463 | |
| 464 | # ifdef BN_LLONG |
| 465 | /******************************************************************* |
| 466 | * Using the long long type, has to be twice as wide as BN_ULONG... |
| 467 | */ |
| 468 | # define Lw(t) (((BN_ULONG)(t))&BN_MASK2) |
| 469 | # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) |
| 470 | |
| 471 | # define mul_add(r,a,w,c) { \ |
| 472 | BN_ULLONG t; \ |
| 473 | t=(BN_ULLONG)w * (a) + (r) + (c); \ |
| 474 | (r)= Lw(t); \ |
| 475 | (c)= Hw(t); \ |
| 476 | } |
| 477 | |
| 478 | # define mul(r,a,w,c) { \ |
| 479 | BN_ULLONG t; \ |
| 480 | t=(BN_ULLONG)w * (a) + (c); \ |
| 481 | (r)= Lw(t); \ |
| 482 | (c)= Hw(t); \ |
| 483 | } |
| 484 | |
| 485 | # define sqr(r0,r1,a) { \ |
| 486 | BN_ULLONG t; \ |
| 487 | t=(BN_ULLONG)(a)*(a); \ |
| 488 | (r0)=Lw(t); \ |
| 489 | (r1)=Hw(t); \ |
| 490 | } |
| 491 | |
| 492 | # elif defined(BN_UMULT_LOHI) |
| 493 | # define mul_add(r,a,w,c) { \ |
| 494 | BN_ULONG high,low,ret,tmp=(a); \ |
| 495 | ret = (r); \ |
| 496 | BN_UMULT_LOHI(low,high,w,tmp); \ |
| 497 | ret += (c); \ |
| 498 | (c) = (ret<(c))?1:0; \ |
| 499 | (c) += high; \ |
| 500 | ret += low; \ |
| 501 | (c) += (ret<low)?1:0; \ |
| 502 | (r) = ret; \ |
| 503 | } |
| 504 | |
| 505 | # define mul(r,a,w,c) { \ |
| 506 | BN_ULONG high,low,ret,ta=(a); \ |
| 507 | BN_UMULT_LOHI(low,high,w,ta); \ |
| 508 | ret = low + (c); \ |
| 509 | (c) = high; \ |
| 510 | (c) += (ret<low)?1:0; \ |
| 511 | (r) = ret; \ |
| 512 | } |
| 513 | |
| 514 | # define sqr(r0,r1,a) { \ |
| 515 | BN_ULONG tmp=(a); \ |
| 516 | BN_UMULT_LOHI(r0,r1,tmp,tmp); \ |
| 517 | } |
| 518 | |
| 519 | # elif defined(BN_UMULT_HIGH) |
| 520 | # define mul_add(r,a,w,c) { \ |
| 521 | BN_ULONG high,low,ret,tmp=(a); \ |
| 522 | ret = (r); \ |
| 523 | high= BN_UMULT_HIGH(w,tmp); \ |
| 524 | ret += (c); \ |
| 525 | low = (w) * tmp; \ |
| 526 | (c) = (ret<(c))?1:0; \ |
| 527 | (c) += high; \ |
| 528 | ret += low; \ |
| 529 | (c) += (ret<low)?1:0; \ |
| 530 | (r) = ret; \ |
| 531 | } |
| 532 | |
| 533 | # define mul(r,a,w,c) { \ |
| 534 | BN_ULONG high,low,ret,ta=(a); \ |
| 535 | low = (w) * ta; \ |
| 536 | high= BN_UMULT_HIGH(w,ta); \ |
| 537 | ret = low + (c); \ |
| 538 | (c) = high; \ |
| 539 | (c) += (ret<low)?1:0; \ |
| 540 | (r) = ret; \ |
| 541 | } |
| 542 | |
| 543 | # define sqr(r0,r1,a) { \ |
| 544 | BN_ULONG tmp=(a); \ |
| 545 | (r0) = tmp * tmp; \ |
| 546 | (r1) = BN_UMULT_HIGH(tmp,tmp); \ |
| 547 | } |
| 548 | |
| 549 | # else |
| 550 | /************************************************************* |
| 551 | * No long long type |
| 552 | */ |
| 553 | |
| 554 | # define LBITS(a) ((a)&BN_MASK2l) |
| 555 | # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) |
| 556 | # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) |
| 557 | |
| 558 | # define LLBITS(a) ((a)&BN_MASKl) |
| 559 | # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl) |
| 560 | # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) |
| 561 | |
| 562 | # define mul64(l,h,bl,bh) \ |
| 563 | { \ |
| 564 | BN_ULONG m,m1,lt,ht; \ |
| 565 | \ |
| 566 | lt=l; \ |
| 567 | ht=h; \ |
| 568 | m =(bh)*(lt); \ |
| 569 | lt=(bl)*(lt); \ |
| 570 | m1=(bl)*(ht); \ |
| 571 | ht =(bh)*(ht); \ |
| 572 | m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ |
| 573 | ht+=HBITS(m); \ |
| 574 | m1=L2HBITS(m); \ |
| 575 | lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ |
| 576 | (l)=lt; \ |
| 577 | (h)=ht; \ |
| 578 | } |
| 579 | |
| 580 | # define sqr64(lo,ho,in) \ |
| 581 | { \ |
| 582 | BN_ULONG l,h,m; \ |
| 583 | \ |
| 584 | h=(in); \ |
| 585 | l=LBITS(h); \ |
| 586 | h=HBITS(h); \ |
| 587 | m =(l)*(h); \ |
| 588 | l*=l; \ |
| 589 | h*=h; \ |
| 590 | h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ |
| 591 | m =(m&BN_MASK2l)<<(BN_BITS4+1); \ |
| 592 | l=(l+m)&BN_MASK2; if (l < m) h++; \ |
| 593 | (lo)=l; \ |
| 594 | (ho)=h; \ |
| 595 | } |
| 596 | |
| 597 | # define mul_add(r,a,bl,bh,c) { \ |
| 598 | BN_ULONG l,h; \ |
| 599 | \ |
| 600 | h= (a); \ |
| 601 | l=LBITS(h); \ |
| 602 | h=HBITS(h); \ |
| 603 | mul64(l,h,(bl),(bh)); \ |
| 604 | \ |
| 605 | /* non-multiply part */ \ |
| 606 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
| 607 | (c)=(r); \ |
| 608 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
| 609 | (c)=h&BN_MASK2; \ |
| 610 | (r)=l; \ |
| 611 | } |
| 612 | |
| 613 | # define mul(r,a,bl,bh,c) { \ |
| 614 | BN_ULONG l,h; \ |
| 615 | \ |
| 616 | h= (a); \ |
| 617 | l=LBITS(h); \ |
| 618 | h=HBITS(h); \ |
| 619 | mul64(l,h,(bl),(bh)); \ |
| 620 | \ |
| 621 | /* non-multiply part */ \ |
| 622 | l+=(c); if ((l&BN_MASK2) < (c)) h++; \ |
| 623 | (c)=h&BN_MASK2; \ |
| 624 | (r)=l&BN_MASK2; \ |
| 625 | } |
| 626 | # endif /* !BN_LLONG */ |
| 627 | |
| 628 | void BN_RECP_CTX_init(BN_RECP_CTX *recp); |
| 629 | void BN_MONT_CTX_init(BN_MONT_CTX *ctx); |
| 630 | |
| 631 | void bn_init(BIGNUM *a); |
| 632 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); |
| 633 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
| 634 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
| 635 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); |
| 636 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); |
| 637 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); |
| 638 | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); |
| 639 | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); |
| 640 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| 641 | int dna, int dnb, BN_ULONG *t); |
| 642 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
| 643 | int n, int tna, int tnb, BN_ULONG *t); |
| 644 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); |
| 645 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
| 646 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| 647 | BN_ULONG *t); |
| 648 | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| 649 | int cl, int dl); |
| 650 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| 651 | const BN_ULONG *np, const BN_ULONG *n0, int num); |
| 652 | |
| 653 | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
| 654 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
| 655 | int *noinv); |
| 656 | |
| 657 | static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits) |
| 658 | { |
| 659 | if (bits > (INT_MAX - BN_BITS2 + 1)) |
| 660 | return NULL; |
| 661 | |
| 662 | if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax) |
| 663 | return a; |
| 664 | |
| 665 | return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2); |
| 666 | } |
| 667 | |
| 668 | #endif |