yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2017-2022 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright 2015-2016 Cryptography Research, Inc. |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | * |
| 10 | * Originally written by Mike Hamburg |
| 11 | */ |
| 12 | #include <openssl/crypto.h> |
| 13 | #include "word.h" |
| 14 | #include "field.h" |
| 15 | |
| 16 | #include "point_448.h" |
| 17 | #include "ed448.h" |
| 18 | #include "curve448_local.h" |
| 19 | |
| 20 | #define COFACTOR 4 |
| 21 | |
| 22 | #define C448_WNAF_FIXED_TABLE_BITS 5 |
| 23 | #define C448_WNAF_VAR_TABLE_BITS 3 |
| 24 | |
| 25 | #define EDWARDS_D (-39081) |
| 26 | |
| 27 | static const curve448_scalar_t precomputed_scalarmul_adjustment = { |
| 28 | { |
| 29 | { |
| 30 | SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL), |
| 31 | SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL) |
| 32 | } |
| 33 | } |
| 34 | }; |
| 35 | |
| 36 | #define TWISTED_D (EDWARDS_D - 1) |
| 37 | |
| 38 | #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */ |
| 39 | |
| 40 | /* Inverse. */ |
| 41 | static void gf_invert(gf y, const gf x, int assert_nonzero) |
| 42 | { |
| 43 | mask_t ret; |
| 44 | gf t1, t2; |
| 45 | |
| 46 | gf_sqr(t1, x); /* o^2 */ |
| 47 | ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */ |
| 48 | (void)ret; |
| 49 | if (assert_nonzero) |
| 50 | assert(ret); |
| 51 | gf_sqr(t1, t2); |
| 52 | gf_mul(t2, t1, x); /* not direct to y in case of alias. */ |
| 53 | gf_copy(y, t2); |
| 54 | } |
| 55 | |
| 56 | /** identity = (0,1) */ |
| 57 | const curve448_point_t curve448_point_identity = |
| 58 | { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} }; |
| 59 | |
| 60 | static void point_double_internal(curve448_point_t p, const curve448_point_t q, |
| 61 | int before_double) |
| 62 | { |
| 63 | gf a, b, c, d; |
| 64 | |
| 65 | gf_sqr(c, q->x); |
| 66 | gf_sqr(a, q->y); |
| 67 | gf_add_nr(d, c, a); /* 2+e */ |
| 68 | gf_add_nr(p->t, q->y, q->x); /* 2+e */ |
| 69 | gf_sqr(b, p->t); |
| 70 | gf_subx_nr(b, b, d, 3); /* 4+e */ |
| 71 | gf_sub_nr(p->t, a, c); /* 3+e */ |
| 72 | gf_sqr(p->x, q->z); |
| 73 | gf_add_nr(p->z, p->x, p->x); /* 2+e */ |
| 74 | gf_subx_nr(a, p->z, p->t, 4); /* 6+e */ |
| 75 | if (GF_HEADROOM == 5) |
| 76 | gf_weak_reduce(a); /* or 1+e */ |
| 77 | gf_mul(p->x, a, b); |
| 78 | gf_mul(p->z, p->t, a); |
| 79 | gf_mul(p->y, p->t, d); |
| 80 | if (!before_double) |
| 81 | gf_mul(p->t, b, d); |
| 82 | } |
| 83 | |
| 84 | void curve448_point_double(curve448_point_t p, const curve448_point_t q) |
| 85 | { |
| 86 | point_double_internal(p, q, 0); |
| 87 | } |
| 88 | |
| 89 | /* Operations on [p]niels */ |
| 90 | static ossl_inline void cond_neg_niels(niels_t n, mask_t neg) |
| 91 | { |
| 92 | gf_cond_swap(n->a, n->b, neg); |
| 93 | gf_cond_neg(n->c, neg); |
| 94 | } |
| 95 | |
| 96 | static void pt_to_pniels(pniels_t b, const curve448_point_t a) |
| 97 | { |
| 98 | gf_sub(b->n->a, a->y, a->x); |
| 99 | gf_add(b->n->b, a->x, a->y); |
| 100 | gf_mulw(b->n->c, a->t, 2 * TWISTED_D); |
| 101 | gf_add(b->z, a->z, a->z); |
| 102 | } |
| 103 | |
| 104 | static void pniels_to_pt(curve448_point_t e, const pniels_t d) |
| 105 | { |
| 106 | gf eu; |
| 107 | |
| 108 | gf_add(eu, d->n->b, d->n->a); |
| 109 | gf_sub(e->y, d->n->b, d->n->a); |
| 110 | gf_mul(e->t, e->y, eu); |
| 111 | gf_mul(e->x, d->z, e->y); |
| 112 | gf_mul(e->y, d->z, eu); |
| 113 | gf_sqr(e->z, d->z); |
| 114 | } |
| 115 | |
| 116 | static void niels_to_pt(curve448_point_t e, const niels_t n) |
| 117 | { |
| 118 | gf_add(e->y, n->b, n->a); |
| 119 | gf_sub(e->x, n->b, n->a); |
| 120 | gf_mul(e->t, e->y, e->x); |
| 121 | gf_copy(e->z, ONE); |
| 122 | } |
| 123 | |
| 124 | static void add_niels_to_pt(curve448_point_t d, const niels_t e, |
| 125 | int before_double) |
| 126 | { |
| 127 | gf a, b, c; |
| 128 | |
| 129 | gf_sub_nr(b, d->y, d->x); /* 3+e */ |
| 130 | gf_mul(a, e->a, b); |
| 131 | gf_add_nr(b, d->x, d->y); /* 2+e */ |
| 132 | gf_mul(d->y, e->b, b); |
| 133 | gf_mul(d->x, e->c, d->t); |
| 134 | gf_add_nr(c, a, d->y); /* 2+e */ |
| 135 | gf_sub_nr(b, d->y, a); /* 3+e */ |
| 136 | gf_sub_nr(d->y, d->z, d->x); /* 3+e */ |
| 137 | gf_add_nr(a, d->x, d->z); /* 2+e */ |
| 138 | gf_mul(d->z, a, d->y); |
| 139 | gf_mul(d->x, d->y, b); |
| 140 | gf_mul(d->y, a, c); |
| 141 | if (!before_double) |
| 142 | gf_mul(d->t, b, c); |
| 143 | } |
| 144 | |
| 145 | static void sub_niels_from_pt(curve448_point_t d, const niels_t e, |
| 146 | int before_double) |
| 147 | { |
| 148 | gf a, b, c; |
| 149 | |
| 150 | gf_sub_nr(b, d->y, d->x); /* 3+e */ |
| 151 | gf_mul(a, e->b, b); |
| 152 | gf_add_nr(b, d->x, d->y); /* 2+e */ |
| 153 | gf_mul(d->y, e->a, b); |
| 154 | gf_mul(d->x, e->c, d->t); |
| 155 | gf_add_nr(c, a, d->y); /* 2+e */ |
| 156 | gf_sub_nr(b, d->y, a); /* 3+e */ |
| 157 | gf_add_nr(d->y, d->z, d->x); /* 2+e */ |
| 158 | gf_sub_nr(a, d->z, d->x); /* 3+e */ |
| 159 | gf_mul(d->z, a, d->y); |
| 160 | gf_mul(d->x, d->y, b); |
| 161 | gf_mul(d->y, a, c); |
| 162 | if (!before_double) |
| 163 | gf_mul(d->t, b, c); |
| 164 | } |
| 165 | |
| 166 | static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn, |
| 167 | int before_double) |
| 168 | { |
| 169 | gf L0; |
| 170 | |
| 171 | gf_mul(L0, p->z, pn->z); |
| 172 | gf_copy(p->z, L0); |
| 173 | add_niels_to_pt(p, pn->n, before_double); |
| 174 | } |
| 175 | |
| 176 | static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn, |
| 177 | int before_double) |
| 178 | { |
| 179 | gf L0; |
| 180 | |
| 181 | gf_mul(L0, p->z, pn->z); |
| 182 | gf_copy(p->z, L0); |
| 183 | sub_niels_from_pt(p, pn->n, before_double); |
| 184 | } |
| 185 | |
| 186 | c448_bool_t curve448_point_eq(const curve448_point_t p, |
| 187 | const curve448_point_t q) |
| 188 | { |
| 189 | mask_t succ; |
| 190 | gf a, b; |
| 191 | |
| 192 | /* equality mod 2-torsion compares x/y */ |
| 193 | gf_mul(a, p->y, q->x); |
| 194 | gf_mul(b, q->y, p->x); |
| 195 | succ = gf_eq(a, b); |
| 196 | |
| 197 | return mask_to_bool(succ); |
| 198 | } |
| 199 | |
| 200 | c448_bool_t curve448_point_valid(const curve448_point_t p) |
| 201 | { |
| 202 | mask_t out; |
| 203 | gf a, b, c; |
| 204 | |
| 205 | gf_mul(a, p->x, p->y); |
| 206 | gf_mul(b, p->z, p->t); |
| 207 | out = gf_eq(a, b); |
| 208 | gf_sqr(a, p->x); |
| 209 | gf_sqr(b, p->y); |
| 210 | gf_sub(a, b, a); |
| 211 | gf_sqr(b, p->t); |
| 212 | gf_mulw(c, b, TWISTED_D); |
| 213 | gf_sqr(b, p->z); |
| 214 | gf_add(b, b, c); |
| 215 | out &= gf_eq(a, b); |
| 216 | out &= ~gf_eq(p->z, ZERO); |
| 217 | return mask_to_bool(out); |
| 218 | } |
| 219 | |
| 220 | static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni, |
| 221 | const niels_t * table, |
| 222 | int nelts, int idx) |
| 223 | { |
| 224 | constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx); |
| 225 | } |
| 226 | |
| 227 | void curve448_precomputed_scalarmul(curve448_point_t out, |
| 228 | const curve448_precomputed_s * table, |
| 229 | const curve448_scalar_t scalar) |
| 230 | { |
| 231 | unsigned int i, j, k; |
| 232 | const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S; |
| 233 | niels_t ni; |
| 234 | curve448_scalar_t scalar1x; |
| 235 | |
| 236 | curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment); |
| 237 | curve448_scalar_halve(scalar1x, scalar1x); |
| 238 | |
| 239 | for (i = s; i > 0; i--) { |
| 240 | if (i != s) |
| 241 | point_double_internal(out, out, 0); |
| 242 | |
| 243 | for (j = 0; j < n; j++) { |
| 244 | int tab = 0; |
| 245 | mask_t invert; |
| 246 | |
| 247 | for (k = 0; k < t; k++) { |
| 248 | unsigned int bit = (i - 1) + s * (k + j * t); |
| 249 | |
| 250 | if (bit < C448_SCALAR_BITS) |
| 251 | tab |= |
| 252 | (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k; |
| 253 | } |
| 254 | |
| 255 | invert = (tab >> (t - 1)) - 1; |
| 256 | tab ^= invert; |
| 257 | tab &= (1 << (t - 1)) - 1; |
| 258 | |
| 259 | constant_time_lookup_niels(ni, &table->table[j << (t - 1)], |
| 260 | 1 << (t - 1), tab); |
| 261 | |
| 262 | cond_neg_niels(ni, invert); |
| 263 | if ((i != s) || j != 0) |
| 264 | add_niels_to_pt(out, ni, j == n - 1 && i != 1); |
| 265 | else |
| 266 | niels_to_pt(out, ni); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | OPENSSL_cleanse(ni, sizeof(ni)); |
| 271 | OPENSSL_cleanse(scalar1x, sizeof(scalar1x)); |
| 272 | } |
| 273 | |
| 274 | void curve448_point_mul_by_ratio_and_encode_like_eddsa( |
| 275 | uint8_t enc[EDDSA_448_PUBLIC_BYTES], |
| 276 | const curve448_point_t p) |
| 277 | { |
| 278 | gf x, y, z, t; |
| 279 | curve448_point_t q; |
| 280 | |
| 281 | /* The point is now on the twisted curve. Move it to untwisted. */ |
| 282 | curve448_point_copy(q, p); |
| 283 | |
| 284 | { |
| 285 | /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */ |
| 286 | gf u; |
| 287 | |
| 288 | gf_sqr(x, q->x); |
| 289 | gf_sqr(t, q->y); |
| 290 | gf_add(u, x, t); |
| 291 | gf_add(z, q->y, q->x); |
| 292 | gf_sqr(y, z); |
| 293 | gf_sub(y, y, u); |
| 294 | gf_sub(z, t, x); |
| 295 | gf_sqr(x, q->z); |
| 296 | gf_add(t, x, x); |
| 297 | gf_sub(t, t, z); |
| 298 | gf_mul(x, t, y); |
| 299 | gf_mul(y, z, u); |
| 300 | gf_mul(z, u, t); |
| 301 | OPENSSL_cleanse(u, sizeof(u)); |
| 302 | } |
| 303 | |
| 304 | /* Affinize */ |
| 305 | gf_invert(z, z, 1); |
| 306 | gf_mul(t, x, z); |
| 307 | gf_mul(x, y, z); |
| 308 | |
| 309 | /* Encode */ |
| 310 | enc[EDDSA_448_PRIVATE_BYTES - 1] = 0; |
| 311 | gf_serialize(enc, x, 1); |
| 312 | enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t); |
| 313 | |
| 314 | OPENSSL_cleanse(x, sizeof(x)); |
| 315 | OPENSSL_cleanse(y, sizeof(y)); |
| 316 | OPENSSL_cleanse(z, sizeof(z)); |
| 317 | OPENSSL_cleanse(t, sizeof(t)); |
| 318 | curve448_point_destroy(q); |
| 319 | } |
| 320 | |
| 321 | c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio( |
| 322 | curve448_point_t p, |
| 323 | const uint8_t enc[EDDSA_448_PUBLIC_BYTES]) |
| 324 | { |
| 325 | uint8_t enc2[EDDSA_448_PUBLIC_BYTES]; |
| 326 | mask_t low; |
| 327 | mask_t succ; |
| 328 | |
| 329 | memcpy(enc2, enc, sizeof(enc2)); |
| 330 | |
| 331 | low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80); |
| 332 | enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80; |
| 333 | |
| 334 | succ = gf_deserialize(p->y, enc2, 1, 0); |
| 335 | succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]); |
| 336 | |
| 337 | gf_sqr(p->x, p->y); |
| 338 | gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */ |
| 339 | gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */ |
| 340 | gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */ |
| 341 | |
| 342 | gf_mul(p->x, p->z, p->t); |
| 343 | succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */ |
| 344 | |
| 345 | gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */ |
| 346 | gf_cond_neg(p->x, gf_lobit(p->x) ^ low); |
| 347 | gf_copy(p->z, ONE); |
| 348 | |
| 349 | { |
| 350 | gf a, b, c, d; |
| 351 | |
| 352 | /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */ |
| 353 | gf_sqr(c, p->x); |
| 354 | gf_sqr(a, p->y); |
| 355 | gf_add(d, c, a); |
| 356 | gf_add(p->t, p->y, p->x); |
| 357 | gf_sqr(b, p->t); |
| 358 | gf_sub(b, b, d); |
| 359 | gf_sub(p->t, a, c); |
| 360 | gf_sqr(p->x, p->z); |
| 361 | gf_add(p->z, p->x, p->x); |
| 362 | gf_sub(a, p->z, d); |
| 363 | gf_mul(p->x, a, b); |
| 364 | gf_mul(p->z, p->t, a); |
| 365 | gf_mul(p->y, p->t, d); |
| 366 | gf_mul(p->t, b, d); |
| 367 | OPENSSL_cleanse(a, sizeof(a)); |
| 368 | OPENSSL_cleanse(b, sizeof(b)); |
| 369 | OPENSSL_cleanse(c, sizeof(c)); |
| 370 | OPENSSL_cleanse(d, sizeof(d)); |
| 371 | } |
| 372 | |
| 373 | OPENSSL_cleanse(enc2, sizeof(enc2)); |
| 374 | assert(curve448_point_valid(p) || ~succ); |
| 375 | |
| 376 | return c448_succeed_if(mask_to_bool(succ)); |
| 377 | } |
| 378 | |
| 379 | c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES], |
| 380 | const uint8_t base[X_PUBLIC_BYTES], |
| 381 | const uint8_t scalar[X_PRIVATE_BYTES]) |
| 382 | { |
| 383 | gf x1, x2, z2, x3, z3, t1, t2; |
| 384 | int t; |
| 385 | mask_t swap = 0; |
| 386 | mask_t nz; |
| 387 | |
| 388 | (void)gf_deserialize(x1, base, 1, 0); |
| 389 | gf_copy(x2, ONE); |
| 390 | gf_copy(z2, ZERO); |
| 391 | gf_copy(x3, x1); |
| 392 | gf_copy(z3, ONE); |
| 393 | |
| 394 | for (t = X_PRIVATE_BITS - 1; t >= 0; t--) { |
| 395 | uint8_t sb = scalar[t / 8]; |
| 396 | mask_t k_t; |
| 397 | |
| 398 | /* Scalar conditioning */ |
| 399 | if (t / 8 == 0) |
| 400 | sb &= -(uint8_t)COFACTOR; |
| 401 | else if (t == X_PRIVATE_BITS - 1) |
| 402 | sb = -1; |
| 403 | |
| 404 | k_t = (sb >> (t % 8)) & 1; |
| 405 | k_t = 0 - k_t; /* set to all 0s or all 1s */ |
| 406 | |
| 407 | swap ^= k_t; |
| 408 | gf_cond_swap(x2, x3, swap); |
| 409 | gf_cond_swap(z2, z3, swap); |
| 410 | swap = k_t; |
| 411 | |
| 412 | /* |
| 413 | * The "_nr" below skips coefficient reduction. In the following |
| 414 | * comments, "2+e" is saying that the coefficients are at most 2+epsilon |
| 415 | * times the reduction limit. |
| 416 | */ |
| 417 | gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */ |
| 418 | gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */ |
| 419 | gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */ |
| 420 | gf_mul(x2, t1, z2); /* DA */ |
| 421 | gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */ |
| 422 | gf_mul(x3, t2, z2); /* CB */ |
| 423 | gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */ |
| 424 | gf_sqr(z2, z3); /* (DA-CB)^2 */ |
| 425 | gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */ |
| 426 | gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */ |
| 427 | gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */ |
| 428 | |
| 429 | gf_sqr(z2, t1); /* AA = A^2 */ |
| 430 | gf_sqr(t1, t2); /* BB = B^2 */ |
| 431 | gf_mul(x2, z2, t1); /* x2 = AA*BB */ |
| 432 | gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */ |
| 433 | |
| 434 | gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */ |
| 435 | gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */ |
| 436 | gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */ |
| 437 | } |
| 438 | |
| 439 | /* Finish */ |
| 440 | gf_cond_swap(x2, x3, swap); |
| 441 | gf_cond_swap(z2, z3, swap); |
| 442 | gf_invert(z2, z2, 0); |
| 443 | gf_mul(x1, x2, z2); |
| 444 | gf_serialize(out, x1, 1); |
| 445 | nz = ~gf_eq(x1, ZERO); |
| 446 | |
| 447 | OPENSSL_cleanse(x1, sizeof(x1)); |
| 448 | OPENSSL_cleanse(x2, sizeof(x2)); |
| 449 | OPENSSL_cleanse(z2, sizeof(z2)); |
| 450 | OPENSSL_cleanse(x3, sizeof(x3)); |
| 451 | OPENSSL_cleanse(z3, sizeof(z3)); |
| 452 | OPENSSL_cleanse(t1, sizeof(t1)); |
| 453 | OPENSSL_cleanse(t2, sizeof(t2)); |
| 454 | |
| 455 | return c448_succeed_if(mask_to_bool(nz)); |
| 456 | } |
| 457 | |
| 458 | void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t |
| 459 | out[X_PUBLIC_BYTES], |
| 460 | const curve448_point_t p) |
| 461 | { |
| 462 | curve448_point_t q; |
| 463 | |
| 464 | curve448_point_copy(q, p); |
| 465 | gf_invert(q->t, q->x, 0); /* 1/x */ |
| 466 | gf_mul(q->z, q->t, q->y); /* y/x */ |
| 467 | gf_sqr(q->y, q->z); /* (y/x)^2 */ |
| 468 | gf_serialize(out, q->y, 1); |
| 469 | curve448_point_destroy(q); |
| 470 | } |
| 471 | |
| 472 | void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES], |
| 473 | const uint8_t scalar[X_PRIVATE_BYTES]) |
| 474 | { |
| 475 | /* Scalar conditioning */ |
| 476 | uint8_t scalar2[X_PRIVATE_BYTES]; |
| 477 | curve448_scalar_t the_scalar; |
| 478 | curve448_point_t p; |
| 479 | unsigned int i; |
| 480 | |
| 481 | memcpy(scalar2, scalar, sizeof(scalar2)); |
| 482 | scalar2[0] &= -(uint8_t)COFACTOR; |
| 483 | |
| 484 | scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8)); |
| 485 | scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8); |
| 486 | |
| 487 | curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2)); |
| 488 | |
| 489 | /* Compensate for the encoding ratio */ |
| 490 | for (i = 1; i < X448_ENCODE_RATIO; i <<= 1) |
| 491 | curve448_scalar_halve(the_scalar, the_scalar); |
| 492 | |
| 493 | curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar); |
| 494 | curve448_point_mul_by_ratio_and_encode_like_x448(out, p); |
| 495 | curve448_point_destroy(p); |
| 496 | } |
| 497 | |
| 498 | /* Control for variable-time scalar multiply algorithms. */ |
| 499 | struct smvt_control { |
| 500 | int power, addend; |
| 501 | }; |
| 502 | |
| 503 | #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3)) |
| 504 | # define NUMTRAILINGZEROS __builtin_ctz |
| 505 | #else |
| 506 | # define NUMTRAILINGZEROS numtrailingzeros |
| 507 | static uint32_t numtrailingzeros(uint32_t i) |
| 508 | { |
| 509 | uint32_t tmp; |
| 510 | uint32_t num = 31; |
| 511 | |
| 512 | if (i == 0) |
| 513 | return 32; |
| 514 | |
| 515 | tmp = i << 16; |
| 516 | if (tmp != 0) { |
| 517 | i = tmp; |
| 518 | num -= 16; |
| 519 | } |
| 520 | tmp = i << 8; |
| 521 | if (tmp != 0) { |
| 522 | i = tmp; |
| 523 | num -= 8; |
| 524 | } |
| 525 | tmp = i << 4; |
| 526 | if (tmp != 0) { |
| 527 | i = tmp; |
| 528 | num -= 4; |
| 529 | } |
| 530 | tmp = i << 2; |
| 531 | if (tmp != 0) { |
| 532 | i = tmp; |
| 533 | num -= 2; |
| 534 | } |
| 535 | tmp = i << 1; |
| 536 | if (tmp != 0) |
| 537 | num--; |
| 538 | |
| 539 | return num; |
| 540 | } |
| 541 | #endif |
| 542 | |
| 543 | static int recode_wnaf(struct smvt_control *control, |
| 544 | /* [nbits/(table_bits + 1) + 3] */ |
| 545 | const curve448_scalar_t scalar, |
| 546 | unsigned int table_bits) |
| 547 | { |
| 548 | unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3; |
| 549 | int position = table_size - 1; /* at the end */ |
| 550 | uint64_t current = scalar->limb[0] & 0xFFFF; |
| 551 | uint32_t mask = (1 << (table_bits + 1)) - 1; |
| 552 | unsigned int w; |
| 553 | const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2; |
| 554 | unsigned int n, i; |
| 555 | |
| 556 | /* place the end marker */ |
| 557 | control[position].power = -1; |
| 558 | control[position].addend = 0; |
| 559 | position--; |
| 560 | |
| 561 | /* |
| 562 | * PERF: Could negate scalar if it's large. But then would need more cases |
| 563 | * in the actual code that uses it, all for an expected reduction of like |
| 564 | * 1/5 op. Probably not worth it. |
| 565 | */ |
| 566 | |
| 567 | for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) { |
| 568 | if (w < (C448_SCALAR_BITS - 1) / 16 + 1) { |
| 569 | /* Refill the 16 high bits of current */ |
| 570 | current += (uint32_t)((scalar->limb[w / B_OVER_16] |
| 571 | >> (16 * (w % B_OVER_16))) << 16); |
| 572 | } |
| 573 | |
| 574 | while (current & 0xFFFF) { |
| 575 | uint32_t pos = NUMTRAILINGZEROS((uint32_t)current); |
| 576 | uint32_t odd = (uint32_t)current >> pos; |
| 577 | int32_t delta = odd & mask; |
| 578 | |
| 579 | assert(position >= 0); |
| 580 | assert(pos < 32); /* can't fail since current & 0xFFFF != 0 */ |
| 581 | if (odd & (1 << (table_bits + 1))) |
| 582 | delta -= (1 << (table_bits + 1)); |
| 583 | current -= delta * (1 << pos); |
| 584 | control[position].power = pos + 16 * (w - 1); |
| 585 | control[position].addend = delta; |
| 586 | position--; |
| 587 | } |
| 588 | current >>= 16; |
| 589 | } |
| 590 | assert(current == 0); |
| 591 | |
| 592 | position++; |
| 593 | n = table_size - position; |
| 594 | for (i = 0; i < n; i++) |
| 595 | control[i] = control[i + position]; |
| 596 | |
| 597 | return n - 1; |
| 598 | } |
| 599 | |
| 600 | static void prepare_wnaf_table(pniels_t * output, |
| 601 | const curve448_point_t working, |
| 602 | unsigned int tbits) |
| 603 | { |
| 604 | curve448_point_t tmp; |
| 605 | int i; |
| 606 | pniels_t twop; |
| 607 | |
| 608 | pt_to_pniels(output[0], working); |
| 609 | |
| 610 | if (tbits == 0) |
| 611 | return; |
| 612 | |
| 613 | curve448_point_double(tmp, working); |
| 614 | pt_to_pniels(twop, tmp); |
| 615 | |
| 616 | add_pniels_to_pt(tmp, output[0], 0); |
| 617 | pt_to_pniels(output[1], tmp); |
| 618 | |
| 619 | for (i = 2; i < 1 << tbits; i++) { |
| 620 | add_pniels_to_pt(tmp, twop, 0); |
| 621 | pt_to_pniels(output[i], tmp); |
| 622 | } |
| 623 | |
| 624 | curve448_point_destroy(tmp); |
| 625 | OPENSSL_cleanse(twop, sizeof(twop)); |
| 626 | } |
| 627 | |
| 628 | void curve448_base_double_scalarmul_non_secret(curve448_point_t combo, |
| 629 | const curve448_scalar_t scalar1, |
| 630 | const curve448_point_t base2, |
| 631 | const curve448_scalar_t scalar2) |
| 632 | { |
| 633 | const int table_bits_var = C448_WNAF_VAR_TABLE_BITS; |
| 634 | const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS; |
| 635 | struct smvt_control control_var[C448_SCALAR_BITS / |
| 636 | (C448_WNAF_VAR_TABLE_BITS + 1) + 3]; |
| 637 | struct smvt_control control_pre[C448_SCALAR_BITS / |
| 638 | (C448_WNAF_FIXED_TABLE_BITS + 1) + 3]; |
| 639 | int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre); |
| 640 | int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var); |
| 641 | pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS]; |
| 642 | int contp = 0, contv = 0, i; |
| 643 | |
| 644 | prepare_wnaf_table(precmp_var, base2, table_bits_var); |
| 645 | i = control_var[0].power; |
| 646 | |
| 647 | if (i < 0) { |
| 648 | curve448_point_copy(combo, curve448_point_identity); |
| 649 | return; |
| 650 | } |
| 651 | if (i > control_pre[0].power) { |
| 652 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); |
| 653 | contv++; |
| 654 | } else if (i == control_pre[0].power && i >= 0) { |
| 655 | pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); |
| 656 | add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1], |
| 657 | i); |
| 658 | contv++; |
| 659 | contp++; |
| 660 | } else { |
| 661 | i = control_pre[0].power; |
| 662 | niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]); |
| 663 | contp++; |
| 664 | } |
| 665 | |
| 666 | for (i--; i >= 0; i--) { |
| 667 | int cv = (i == control_var[contv].power); |
| 668 | int cp = (i == control_pre[contp].power); |
| 669 | |
| 670 | point_double_internal(combo, combo, i && !(cv || cp)); |
| 671 | |
| 672 | if (cv) { |
| 673 | assert(control_var[contv].addend); |
| 674 | |
| 675 | if (control_var[contv].addend > 0) |
| 676 | add_pniels_to_pt(combo, |
| 677 | precmp_var[control_var[contv].addend >> 1], |
| 678 | i && !cp); |
| 679 | else |
| 680 | sub_pniels_from_pt(combo, |
| 681 | precmp_var[(-control_var[contv].addend) |
| 682 | >> 1], i && !cp); |
| 683 | contv++; |
| 684 | } |
| 685 | |
| 686 | if (cp) { |
| 687 | assert(control_pre[contp].addend); |
| 688 | |
| 689 | if (control_pre[contp].addend > 0) |
| 690 | add_niels_to_pt(combo, |
| 691 | curve448_wnaf_base[control_pre[contp].addend |
| 692 | >> 1], i); |
| 693 | else |
| 694 | sub_niels_from_pt(combo, |
| 695 | curve448_wnaf_base[(-control_pre |
| 696 | [contp].addend) >> 1], i); |
| 697 | contp++; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | /* This function is non-secret, but whatever this is cheap. */ |
| 702 | OPENSSL_cleanse(control_var, sizeof(control_var)); |
| 703 | OPENSSL_cleanse(control_pre, sizeof(control_pre)); |
| 704 | OPENSSL_cleanse(precmp_var, sizeof(precmp_var)); |
| 705 | |
| 706 | assert(contv == ncb_var); |
| 707 | (void)ncb_var; |
| 708 | assert(contp == ncb_pre); |
| 709 | (void)ncb_pre; |
| 710 | } |
| 711 | |
| 712 | void curve448_point_destroy(curve448_point_t point) |
| 713 | { |
| 714 | OPENSSL_cleanse(point, sizeof(curve448_point_t)); |
| 715 | } |
| 716 | |
| 717 | int X448(uint8_t out_shared_key[56], const uint8_t private_key[56], |
| 718 | const uint8_t peer_public_value[56]) |
| 719 | { |
| 720 | return x448_int(out_shared_key, peer_public_value, private_key) |
| 721 | == C448_SUCCESS; |
| 722 | } |
| 723 | |
| 724 | void X448_public_from_private(uint8_t out_public_value[56], |
| 725 | const uint8_t private_key[56]) |
| 726 | { |
| 727 | x448_derive_public_key(out_public_value, private_key); |
| 728 | } |