yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* Copyright 2011 Google Inc. |
| 11 | * |
| 12 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 13 | * |
| 14 | * you may not use this file except in compliance with the License. |
| 15 | * You may obtain a copy of the License at |
| 16 | * |
| 17 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 18 | * |
| 19 | * Unless required by applicable law or agreed to in writing, software |
| 20 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 21 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 22 | * See the License for the specific language governing permissions and |
| 23 | * limitations under the License. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication |
| 28 | * |
| 29 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. |
| 30 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 |
| 31 | * work which got its smarts from Daniel J. Bernstein's work on the same. |
| 32 | */ |
| 33 | |
| 34 | #include <openssl/e_os2.h> |
| 35 | #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 36 | NON_EMPTY_TRANSLATION_UNIT |
| 37 | #else |
| 38 | |
| 39 | # include <string.h> |
| 40 | # include <openssl/err.h> |
| 41 | # include "ec_local.h" |
| 42 | |
| 43 | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 |
| 44 | /* even with gcc, the typedef won't work for 32-bit platforms */ |
| 45 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit |
| 46 | * platforms */ |
| 47 | # else |
| 48 | # error "Your compiler doesn't appear to support 128-bit integer types" |
| 49 | # endif |
| 50 | |
| 51 | typedef uint8_t u8; |
| 52 | typedef uint64_t u64; |
| 53 | |
| 54 | /* |
| 55 | * The underlying field. P521 operates over GF(2^521-1). We can serialise an |
| 56 | * element of this field into 66 bytes where the most significant byte |
| 57 | * contains only a single bit. We call this an felem_bytearray. |
| 58 | */ |
| 59 | |
| 60 | typedef u8 felem_bytearray[66]; |
| 61 | |
| 62 | /* |
| 63 | * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. |
| 64 | * These values are big-endian. |
| 65 | */ |
| 66 | static const felem_bytearray nistp521_curve_params[5] = { |
| 67 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ |
| 68 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 69 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 70 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 71 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 72 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 74 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 75 | 0xff, 0xff}, |
| 76 | {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ |
| 77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 78 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 79 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 80 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 81 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 82 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 83 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, |
| 84 | 0xff, 0xfc}, |
| 85 | {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ |
| 86 | 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, |
| 87 | 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, |
| 88 | 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, |
| 89 | 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, |
| 90 | 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, |
| 91 | 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, |
| 92 | 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, |
| 93 | 0x3f, 0x00}, |
| 94 | {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ |
| 95 | 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, |
| 96 | 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, |
| 97 | 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, |
| 98 | 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, |
| 99 | 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, |
| 100 | 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, |
| 101 | 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, |
| 102 | 0xbd, 0x66}, |
| 103 | {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ |
| 104 | 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, |
| 105 | 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, |
| 106 | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, |
| 107 | 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, |
| 108 | 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, |
| 109 | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, |
| 110 | 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, |
| 111 | 0x66, 0x50} |
| 112 | }; |
| 113 | |
| 114 | /*- |
| 115 | * The representation of field elements. |
| 116 | * ------------------------------------ |
| 117 | * |
| 118 | * We represent field elements with nine values. These values are either 64 or |
| 119 | * 128 bits and the field element represented is: |
| 120 | * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) |
| 121 | * Each of the nine values is called a 'limb'. Since the limbs are spaced only |
| 122 | * 58 bits apart, but are greater than 58 bits in length, the most significant |
| 123 | * bits of each limb overlap with the least significant bits of the next. |
| 124 | * |
| 125 | * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a |
| 126 | * 'largefelem' */ |
| 127 | |
| 128 | # define NLIMBS 9 |
| 129 | |
| 130 | typedef uint64_t limb; |
| 131 | typedef limb limb_aX __attribute((__aligned__(1))); |
| 132 | typedef limb felem[NLIMBS]; |
| 133 | typedef uint128_t largefelem[NLIMBS]; |
| 134 | |
| 135 | static const limb bottom57bits = 0x1ffffffffffffff; |
| 136 | static const limb bottom58bits = 0x3ffffffffffffff; |
| 137 | |
| 138 | /* |
| 139 | * bin66_to_felem takes a little-endian byte array and converts it into felem |
| 140 | * form. This assumes that the CPU is little-endian. |
| 141 | */ |
| 142 | static void bin66_to_felem(felem out, const u8 in[66]) |
| 143 | { |
| 144 | out[0] = (*((limb *) & in[0])) & bottom58bits; |
| 145 | out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits; |
| 146 | out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits; |
| 147 | out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits; |
| 148 | out[4] = (*((limb_aX *) & in[29])) & bottom58bits; |
| 149 | out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits; |
| 150 | out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits; |
| 151 | out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits; |
| 152 | out[8] = (*((limb_aX *) & in[58])) & bottom57bits; |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte |
| 157 | * array. This assumes that the CPU is little-endian. |
| 158 | */ |
| 159 | static void felem_to_bin66(u8 out[66], const felem in) |
| 160 | { |
| 161 | memset(out, 0, 66); |
| 162 | (*((limb *) & out[0])) = in[0]; |
| 163 | (*((limb_aX *) & out[7])) |= in[1] << 2; |
| 164 | (*((limb_aX *) & out[14])) |= in[2] << 4; |
| 165 | (*((limb_aX *) & out[21])) |= in[3] << 6; |
| 166 | (*((limb_aX *) & out[29])) = in[4]; |
| 167 | (*((limb_aX *) & out[36])) |= in[5] << 2; |
| 168 | (*((limb_aX *) & out[43])) |= in[6] << 4; |
| 169 | (*((limb_aX *) & out[50])) |= in[7] << 6; |
| 170 | (*((limb_aX *) & out[58])) = in[8]; |
| 171 | } |
| 172 | |
| 173 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ |
| 174 | static int BN_to_felem(felem out, const BIGNUM *bn) |
| 175 | { |
| 176 | felem_bytearray b_out; |
| 177 | int num_bytes; |
| 178 | |
| 179 | if (BN_is_negative(bn)) { |
| 180 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| 181 | return 0; |
| 182 | } |
| 183 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); |
| 184 | if (num_bytes < 0) { |
| 185 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| 186 | return 0; |
| 187 | } |
| 188 | bin66_to_felem(out, b_out); |
| 189 | return 1; |
| 190 | } |
| 191 | |
| 192 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ |
| 193 | static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) |
| 194 | { |
| 195 | felem_bytearray b_out; |
| 196 | felem_to_bin66(b_out, in); |
| 197 | return BN_lebin2bn(b_out, sizeof(b_out), out); |
| 198 | } |
| 199 | |
| 200 | /*- |
| 201 | * Field operations |
| 202 | * ---------------- |
| 203 | */ |
| 204 | |
| 205 | static void felem_one(felem out) |
| 206 | { |
| 207 | out[0] = 1; |
| 208 | out[1] = 0; |
| 209 | out[2] = 0; |
| 210 | out[3] = 0; |
| 211 | out[4] = 0; |
| 212 | out[5] = 0; |
| 213 | out[6] = 0; |
| 214 | out[7] = 0; |
| 215 | out[8] = 0; |
| 216 | } |
| 217 | |
| 218 | static void felem_assign(felem out, const felem in) |
| 219 | { |
| 220 | out[0] = in[0]; |
| 221 | out[1] = in[1]; |
| 222 | out[2] = in[2]; |
| 223 | out[3] = in[3]; |
| 224 | out[4] = in[4]; |
| 225 | out[5] = in[5]; |
| 226 | out[6] = in[6]; |
| 227 | out[7] = in[7]; |
| 228 | out[8] = in[8]; |
| 229 | } |
| 230 | |
| 231 | /* felem_sum64 sets out = out + in. */ |
| 232 | static void felem_sum64(felem out, const felem in) |
| 233 | { |
| 234 | out[0] += in[0]; |
| 235 | out[1] += in[1]; |
| 236 | out[2] += in[2]; |
| 237 | out[3] += in[3]; |
| 238 | out[4] += in[4]; |
| 239 | out[5] += in[5]; |
| 240 | out[6] += in[6]; |
| 241 | out[7] += in[7]; |
| 242 | out[8] += in[8]; |
| 243 | } |
| 244 | |
| 245 | /* felem_scalar sets out = in * scalar */ |
| 246 | static void felem_scalar(felem out, const felem in, limb scalar) |
| 247 | { |
| 248 | out[0] = in[0] * scalar; |
| 249 | out[1] = in[1] * scalar; |
| 250 | out[2] = in[2] * scalar; |
| 251 | out[3] = in[3] * scalar; |
| 252 | out[4] = in[4] * scalar; |
| 253 | out[5] = in[5] * scalar; |
| 254 | out[6] = in[6] * scalar; |
| 255 | out[7] = in[7] * scalar; |
| 256 | out[8] = in[8] * scalar; |
| 257 | } |
| 258 | |
| 259 | /* felem_scalar64 sets out = out * scalar */ |
| 260 | static void felem_scalar64(felem out, limb scalar) |
| 261 | { |
| 262 | out[0] *= scalar; |
| 263 | out[1] *= scalar; |
| 264 | out[2] *= scalar; |
| 265 | out[3] *= scalar; |
| 266 | out[4] *= scalar; |
| 267 | out[5] *= scalar; |
| 268 | out[6] *= scalar; |
| 269 | out[7] *= scalar; |
| 270 | out[8] *= scalar; |
| 271 | } |
| 272 | |
| 273 | /* felem_scalar128 sets out = out * scalar */ |
| 274 | static void felem_scalar128(largefelem out, limb scalar) |
| 275 | { |
| 276 | out[0] *= scalar; |
| 277 | out[1] *= scalar; |
| 278 | out[2] *= scalar; |
| 279 | out[3] *= scalar; |
| 280 | out[4] *= scalar; |
| 281 | out[5] *= scalar; |
| 282 | out[6] *= scalar; |
| 283 | out[7] *= scalar; |
| 284 | out[8] *= scalar; |
| 285 | } |
| 286 | |
| 287 | /*- |
| 288 | * felem_neg sets |out| to |-in| |
| 289 | * On entry: |
| 290 | * in[i] < 2^59 + 2^14 |
| 291 | * On exit: |
| 292 | * out[i] < 2^62 |
| 293 | */ |
| 294 | static void felem_neg(felem out, const felem in) |
| 295 | { |
| 296 | /* In order to prevent underflow, we subtract from 0 mod p. */ |
| 297 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); |
| 298 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); |
| 299 | |
| 300 | out[0] = two62m3 - in[0]; |
| 301 | out[1] = two62m2 - in[1]; |
| 302 | out[2] = two62m2 - in[2]; |
| 303 | out[3] = two62m2 - in[3]; |
| 304 | out[4] = two62m2 - in[4]; |
| 305 | out[5] = two62m2 - in[5]; |
| 306 | out[6] = two62m2 - in[6]; |
| 307 | out[7] = two62m2 - in[7]; |
| 308 | out[8] = two62m2 - in[8]; |
| 309 | } |
| 310 | |
| 311 | /*- |
| 312 | * felem_diff64 subtracts |in| from |out| |
| 313 | * On entry: |
| 314 | * in[i] < 2^59 + 2^14 |
| 315 | * On exit: |
| 316 | * out[i] < out[i] + 2^62 |
| 317 | */ |
| 318 | static void felem_diff64(felem out, const felem in) |
| 319 | { |
| 320 | /* |
| 321 | * In order to prevent underflow, we add 0 mod p before subtracting. |
| 322 | */ |
| 323 | static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); |
| 324 | static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); |
| 325 | |
| 326 | out[0] += two62m3 - in[0]; |
| 327 | out[1] += two62m2 - in[1]; |
| 328 | out[2] += two62m2 - in[2]; |
| 329 | out[3] += two62m2 - in[3]; |
| 330 | out[4] += two62m2 - in[4]; |
| 331 | out[5] += two62m2 - in[5]; |
| 332 | out[6] += two62m2 - in[6]; |
| 333 | out[7] += two62m2 - in[7]; |
| 334 | out[8] += two62m2 - in[8]; |
| 335 | } |
| 336 | |
| 337 | /*- |
| 338 | * felem_diff_128_64 subtracts |in| from |out| |
| 339 | * On entry: |
| 340 | * in[i] < 2^62 + 2^17 |
| 341 | * On exit: |
| 342 | * out[i] < out[i] + 2^63 |
| 343 | */ |
| 344 | static void felem_diff_128_64(largefelem out, const felem in) |
| 345 | { |
| 346 | /* |
| 347 | * In order to prevent underflow, we add 64p mod p (which is equivalent |
| 348 | * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521 |
| 349 | * digit number with all bits set to 1. See "The representation of field |
| 350 | * elements" comment above for a description of how limbs are used to |
| 351 | * represent a number. 64p is represented with 8 limbs containing a number |
| 352 | * with 58 bits set and one limb with a number with 57 bits set. |
| 353 | */ |
| 354 | static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6); |
| 355 | static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5); |
| 356 | |
| 357 | out[0] += two63m6 - in[0]; |
| 358 | out[1] += two63m5 - in[1]; |
| 359 | out[2] += two63m5 - in[2]; |
| 360 | out[3] += two63m5 - in[3]; |
| 361 | out[4] += two63m5 - in[4]; |
| 362 | out[5] += two63m5 - in[5]; |
| 363 | out[6] += two63m5 - in[6]; |
| 364 | out[7] += two63m5 - in[7]; |
| 365 | out[8] += two63m5 - in[8]; |
| 366 | } |
| 367 | |
| 368 | /*- |
| 369 | * felem_diff_128_64 subtracts |in| from |out| |
| 370 | * On entry: |
| 371 | * in[i] < 2^126 |
| 372 | * On exit: |
| 373 | * out[i] < out[i] + 2^127 - 2^69 |
| 374 | */ |
| 375 | static void felem_diff128(largefelem out, const largefelem in) |
| 376 | { |
| 377 | /* |
| 378 | * In order to prevent underflow, we add 0 mod p before subtracting. |
| 379 | */ |
| 380 | static const uint128_t two127m70 = |
| 381 | (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); |
| 382 | static const uint128_t two127m69 = |
| 383 | (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); |
| 384 | |
| 385 | out[0] += (two127m70 - in[0]); |
| 386 | out[1] += (two127m69 - in[1]); |
| 387 | out[2] += (two127m69 - in[2]); |
| 388 | out[3] += (two127m69 - in[3]); |
| 389 | out[4] += (two127m69 - in[4]); |
| 390 | out[5] += (two127m69 - in[5]); |
| 391 | out[6] += (two127m69 - in[6]); |
| 392 | out[7] += (two127m69 - in[7]); |
| 393 | out[8] += (two127m69 - in[8]); |
| 394 | } |
| 395 | |
| 396 | /*- |
| 397 | * felem_square sets |out| = |in|^2 |
| 398 | * On entry: |
| 399 | * in[i] < 2^62 |
| 400 | * On exit: |
| 401 | * out[i] < 17 * max(in[i]) * max(in[i]) |
| 402 | */ |
| 403 | static void felem_square(largefelem out, const felem in) |
| 404 | { |
| 405 | felem inx2, inx4; |
| 406 | felem_scalar(inx2, in, 2); |
| 407 | felem_scalar(inx4, in, 4); |
| 408 | |
| 409 | /*- |
| 410 | * We have many cases were we want to do |
| 411 | * in[x] * in[y] + |
| 412 | * in[y] * in[x] |
| 413 | * This is obviously just |
| 414 | * 2 * in[x] * in[y] |
| 415 | * However, rather than do the doubling on the 128 bit result, we |
| 416 | * double one of the inputs to the multiplication by reading from |
| 417 | * |inx2| |
| 418 | */ |
| 419 | |
| 420 | out[0] = ((uint128_t) in[0]) * in[0]; |
| 421 | out[1] = ((uint128_t) in[0]) * inx2[1]; |
| 422 | out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1]; |
| 423 | out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2]; |
| 424 | out[4] = ((uint128_t) in[0]) * inx2[4] + |
| 425 | ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2]; |
| 426 | out[5] = ((uint128_t) in[0]) * inx2[5] + |
| 427 | ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3]; |
| 428 | out[6] = ((uint128_t) in[0]) * inx2[6] + |
| 429 | ((uint128_t) in[1]) * inx2[5] + |
| 430 | ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3]; |
| 431 | out[7] = ((uint128_t) in[0]) * inx2[7] + |
| 432 | ((uint128_t) in[1]) * inx2[6] + |
| 433 | ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4]; |
| 434 | out[8] = ((uint128_t) in[0]) * inx2[8] + |
| 435 | ((uint128_t) in[1]) * inx2[7] + |
| 436 | ((uint128_t) in[2]) * inx2[6] + |
| 437 | ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4]; |
| 438 | |
| 439 | /* |
| 440 | * The remaining limbs fall above 2^521, with the first falling at 2^522. |
| 441 | * They correspond to locations one bit up from the limbs produced above |
| 442 | * so we would have to multiply by two to align them. Again, rather than |
| 443 | * operate on the 128-bit result, we double one of the inputs to the |
| 444 | * multiplication. If we want to double for both this reason, and the |
| 445 | * reason above, then we end up multiplying by four. |
| 446 | */ |
| 447 | |
| 448 | /* 9 */ |
| 449 | out[0] += ((uint128_t) in[1]) * inx4[8] + |
| 450 | ((uint128_t) in[2]) * inx4[7] + |
| 451 | ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5]; |
| 452 | |
| 453 | /* 10 */ |
| 454 | out[1] += ((uint128_t) in[2]) * inx4[8] + |
| 455 | ((uint128_t) in[3]) * inx4[7] + |
| 456 | ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5]; |
| 457 | |
| 458 | /* 11 */ |
| 459 | out[2] += ((uint128_t) in[3]) * inx4[8] + |
| 460 | ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6]; |
| 461 | |
| 462 | /* 12 */ |
| 463 | out[3] += ((uint128_t) in[4]) * inx4[8] + |
| 464 | ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6]; |
| 465 | |
| 466 | /* 13 */ |
| 467 | out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7]; |
| 468 | |
| 469 | /* 14 */ |
| 470 | out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7]; |
| 471 | |
| 472 | /* 15 */ |
| 473 | out[6] += ((uint128_t) in[7]) * inx4[8]; |
| 474 | |
| 475 | /* 16 */ |
| 476 | out[7] += ((uint128_t) in[8]) * inx2[8]; |
| 477 | } |
| 478 | |
| 479 | /*- |
| 480 | * felem_mul sets |out| = |in1| * |in2| |
| 481 | * On entry: |
| 482 | * in1[i] < 2^64 |
| 483 | * in2[i] < 2^63 |
| 484 | * On exit: |
| 485 | * out[i] < 17 * max(in1[i]) * max(in2[i]) |
| 486 | */ |
| 487 | static void felem_mul(largefelem out, const felem in1, const felem in2) |
| 488 | { |
| 489 | felem in2x2; |
| 490 | felem_scalar(in2x2, in2, 2); |
| 491 | |
| 492 | out[0] = ((uint128_t) in1[0]) * in2[0]; |
| 493 | |
| 494 | out[1] = ((uint128_t) in1[0]) * in2[1] + |
| 495 | ((uint128_t) in1[1]) * in2[0]; |
| 496 | |
| 497 | out[2] = ((uint128_t) in1[0]) * in2[2] + |
| 498 | ((uint128_t) in1[1]) * in2[1] + |
| 499 | ((uint128_t) in1[2]) * in2[0]; |
| 500 | |
| 501 | out[3] = ((uint128_t) in1[0]) * in2[3] + |
| 502 | ((uint128_t) in1[1]) * in2[2] + |
| 503 | ((uint128_t) in1[2]) * in2[1] + |
| 504 | ((uint128_t) in1[3]) * in2[0]; |
| 505 | |
| 506 | out[4] = ((uint128_t) in1[0]) * in2[4] + |
| 507 | ((uint128_t) in1[1]) * in2[3] + |
| 508 | ((uint128_t) in1[2]) * in2[2] + |
| 509 | ((uint128_t) in1[3]) * in2[1] + |
| 510 | ((uint128_t) in1[4]) * in2[0]; |
| 511 | |
| 512 | out[5] = ((uint128_t) in1[0]) * in2[5] + |
| 513 | ((uint128_t) in1[1]) * in2[4] + |
| 514 | ((uint128_t) in1[2]) * in2[3] + |
| 515 | ((uint128_t) in1[3]) * in2[2] + |
| 516 | ((uint128_t) in1[4]) * in2[1] + |
| 517 | ((uint128_t) in1[5]) * in2[0]; |
| 518 | |
| 519 | out[6] = ((uint128_t) in1[0]) * in2[6] + |
| 520 | ((uint128_t) in1[1]) * in2[5] + |
| 521 | ((uint128_t) in1[2]) * in2[4] + |
| 522 | ((uint128_t) in1[3]) * in2[3] + |
| 523 | ((uint128_t) in1[4]) * in2[2] + |
| 524 | ((uint128_t) in1[5]) * in2[1] + |
| 525 | ((uint128_t) in1[6]) * in2[0]; |
| 526 | |
| 527 | out[7] = ((uint128_t) in1[0]) * in2[7] + |
| 528 | ((uint128_t) in1[1]) * in2[6] + |
| 529 | ((uint128_t) in1[2]) * in2[5] + |
| 530 | ((uint128_t) in1[3]) * in2[4] + |
| 531 | ((uint128_t) in1[4]) * in2[3] + |
| 532 | ((uint128_t) in1[5]) * in2[2] + |
| 533 | ((uint128_t) in1[6]) * in2[1] + |
| 534 | ((uint128_t) in1[7]) * in2[0]; |
| 535 | |
| 536 | out[8] = ((uint128_t) in1[0]) * in2[8] + |
| 537 | ((uint128_t) in1[1]) * in2[7] + |
| 538 | ((uint128_t) in1[2]) * in2[6] + |
| 539 | ((uint128_t) in1[3]) * in2[5] + |
| 540 | ((uint128_t) in1[4]) * in2[4] + |
| 541 | ((uint128_t) in1[5]) * in2[3] + |
| 542 | ((uint128_t) in1[6]) * in2[2] + |
| 543 | ((uint128_t) in1[7]) * in2[1] + |
| 544 | ((uint128_t) in1[8]) * in2[0]; |
| 545 | |
| 546 | /* See comment in felem_square about the use of in2x2 here */ |
| 547 | |
| 548 | out[0] += ((uint128_t) in1[1]) * in2x2[8] + |
| 549 | ((uint128_t) in1[2]) * in2x2[7] + |
| 550 | ((uint128_t) in1[3]) * in2x2[6] + |
| 551 | ((uint128_t) in1[4]) * in2x2[5] + |
| 552 | ((uint128_t) in1[5]) * in2x2[4] + |
| 553 | ((uint128_t) in1[6]) * in2x2[3] + |
| 554 | ((uint128_t) in1[7]) * in2x2[2] + |
| 555 | ((uint128_t) in1[8]) * in2x2[1]; |
| 556 | |
| 557 | out[1] += ((uint128_t) in1[2]) * in2x2[8] + |
| 558 | ((uint128_t) in1[3]) * in2x2[7] + |
| 559 | ((uint128_t) in1[4]) * in2x2[6] + |
| 560 | ((uint128_t) in1[5]) * in2x2[5] + |
| 561 | ((uint128_t) in1[6]) * in2x2[4] + |
| 562 | ((uint128_t) in1[7]) * in2x2[3] + |
| 563 | ((uint128_t) in1[8]) * in2x2[2]; |
| 564 | |
| 565 | out[2] += ((uint128_t) in1[3]) * in2x2[8] + |
| 566 | ((uint128_t) in1[4]) * in2x2[7] + |
| 567 | ((uint128_t) in1[5]) * in2x2[6] + |
| 568 | ((uint128_t) in1[6]) * in2x2[5] + |
| 569 | ((uint128_t) in1[7]) * in2x2[4] + |
| 570 | ((uint128_t) in1[8]) * in2x2[3]; |
| 571 | |
| 572 | out[3] += ((uint128_t) in1[4]) * in2x2[8] + |
| 573 | ((uint128_t) in1[5]) * in2x2[7] + |
| 574 | ((uint128_t) in1[6]) * in2x2[6] + |
| 575 | ((uint128_t) in1[7]) * in2x2[5] + |
| 576 | ((uint128_t) in1[8]) * in2x2[4]; |
| 577 | |
| 578 | out[4] += ((uint128_t) in1[5]) * in2x2[8] + |
| 579 | ((uint128_t) in1[6]) * in2x2[7] + |
| 580 | ((uint128_t) in1[7]) * in2x2[6] + |
| 581 | ((uint128_t) in1[8]) * in2x2[5]; |
| 582 | |
| 583 | out[5] += ((uint128_t) in1[6]) * in2x2[8] + |
| 584 | ((uint128_t) in1[7]) * in2x2[7] + |
| 585 | ((uint128_t) in1[8]) * in2x2[6]; |
| 586 | |
| 587 | out[6] += ((uint128_t) in1[7]) * in2x2[8] + |
| 588 | ((uint128_t) in1[8]) * in2x2[7]; |
| 589 | |
| 590 | out[7] += ((uint128_t) in1[8]) * in2x2[8]; |
| 591 | } |
| 592 | |
| 593 | static const limb bottom52bits = 0xfffffffffffff; |
| 594 | |
| 595 | /*- |
| 596 | * felem_reduce converts a largefelem to an felem. |
| 597 | * On entry: |
| 598 | * in[i] < 2^128 |
| 599 | * On exit: |
| 600 | * out[i] < 2^59 + 2^14 |
| 601 | */ |
| 602 | static void felem_reduce(felem out, const largefelem in) |
| 603 | { |
| 604 | u64 overflow1, overflow2; |
| 605 | |
| 606 | out[0] = ((limb) in[0]) & bottom58bits; |
| 607 | out[1] = ((limb) in[1]) & bottom58bits; |
| 608 | out[2] = ((limb) in[2]) & bottom58bits; |
| 609 | out[3] = ((limb) in[3]) & bottom58bits; |
| 610 | out[4] = ((limb) in[4]) & bottom58bits; |
| 611 | out[5] = ((limb) in[5]) & bottom58bits; |
| 612 | out[6] = ((limb) in[6]) & bottom58bits; |
| 613 | out[7] = ((limb) in[7]) & bottom58bits; |
| 614 | out[8] = ((limb) in[8]) & bottom58bits; |
| 615 | |
| 616 | /* out[i] < 2^58 */ |
| 617 | |
| 618 | out[1] += ((limb) in[0]) >> 58; |
| 619 | out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; |
| 620 | /*- |
| 621 | * out[1] < 2^58 + 2^6 + 2^58 |
| 622 | * = 2^59 + 2^6 |
| 623 | */ |
| 624 | out[2] += ((limb) (in[0] >> 64)) >> 52; |
| 625 | |
| 626 | out[2] += ((limb) in[1]) >> 58; |
| 627 | out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; |
| 628 | out[3] += ((limb) (in[1] >> 64)) >> 52; |
| 629 | |
| 630 | out[3] += ((limb) in[2]) >> 58; |
| 631 | out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; |
| 632 | out[4] += ((limb) (in[2] >> 64)) >> 52; |
| 633 | |
| 634 | out[4] += ((limb) in[3]) >> 58; |
| 635 | out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; |
| 636 | out[5] += ((limb) (in[3] >> 64)) >> 52; |
| 637 | |
| 638 | out[5] += ((limb) in[4]) >> 58; |
| 639 | out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; |
| 640 | out[6] += ((limb) (in[4] >> 64)) >> 52; |
| 641 | |
| 642 | out[6] += ((limb) in[5]) >> 58; |
| 643 | out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; |
| 644 | out[7] += ((limb) (in[5] >> 64)) >> 52; |
| 645 | |
| 646 | out[7] += ((limb) in[6]) >> 58; |
| 647 | out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; |
| 648 | out[8] += ((limb) (in[6] >> 64)) >> 52; |
| 649 | |
| 650 | out[8] += ((limb) in[7]) >> 58; |
| 651 | out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; |
| 652 | /*- |
| 653 | * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 |
| 654 | * < 2^59 + 2^13 |
| 655 | */ |
| 656 | overflow1 = ((limb) (in[7] >> 64)) >> 52; |
| 657 | |
| 658 | overflow1 += ((limb) in[8]) >> 58; |
| 659 | overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; |
| 660 | overflow2 = ((limb) (in[8] >> 64)) >> 52; |
| 661 | |
| 662 | overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ |
| 663 | overflow2 <<= 1; /* overflow2 < 2^13 */ |
| 664 | |
| 665 | out[0] += overflow1; /* out[0] < 2^60 */ |
| 666 | out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ |
| 667 | |
| 668 | out[1] += out[0] >> 58; |
| 669 | out[0] &= bottom58bits; |
| 670 | /*- |
| 671 | * out[0] < 2^58 |
| 672 | * out[1] < 2^59 + 2^6 + 2^13 + 2^2 |
| 673 | * < 2^59 + 2^14 |
| 674 | */ |
| 675 | } |
| 676 | |
| 677 | static void felem_square_reduce(felem out, const felem in) |
| 678 | { |
| 679 | largefelem tmp; |
| 680 | felem_square(tmp, in); |
| 681 | felem_reduce(out, tmp); |
| 682 | } |
| 683 | |
| 684 | static void felem_mul_reduce(felem out, const felem in1, const felem in2) |
| 685 | { |
| 686 | largefelem tmp; |
| 687 | felem_mul(tmp, in1, in2); |
| 688 | felem_reduce(out, tmp); |
| 689 | } |
| 690 | |
| 691 | /*- |
| 692 | * felem_inv calculates |out| = |in|^{-1} |
| 693 | * |
| 694 | * Based on Fermat's Little Theorem: |
| 695 | * a^p = a (mod p) |
| 696 | * a^{p-1} = 1 (mod p) |
| 697 | * a^{p-2} = a^{-1} (mod p) |
| 698 | */ |
| 699 | static void felem_inv(felem out, const felem in) |
| 700 | { |
| 701 | felem ftmp, ftmp2, ftmp3, ftmp4; |
| 702 | largefelem tmp; |
| 703 | unsigned i; |
| 704 | |
| 705 | felem_square(tmp, in); |
| 706 | felem_reduce(ftmp, tmp); /* 2^1 */ |
| 707 | felem_mul(tmp, in, ftmp); |
| 708 | felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ |
| 709 | felem_assign(ftmp2, ftmp); |
| 710 | felem_square(tmp, ftmp); |
| 711 | felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ |
| 712 | felem_mul(tmp, in, ftmp); |
| 713 | felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */ |
| 714 | felem_square(tmp, ftmp); |
| 715 | felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */ |
| 716 | |
| 717 | felem_square(tmp, ftmp2); |
| 718 | felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ |
| 719 | felem_square(tmp, ftmp3); |
| 720 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ |
| 721 | felem_mul(tmp, ftmp3, ftmp2); |
| 722 | felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ |
| 723 | |
| 724 | felem_assign(ftmp2, ftmp3); |
| 725 | felem_square(tmp, ftmp3); |
| 726 | felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ |
| 727 | felem_square(tmp, ftmp3); |
| 728 | felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ |
| 729 | felem_square(tmp, ftmp3); |
| 730 | felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ |
| 731 | felem_square(tmp, ftmp3); |
| 732 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ |
| 733 | felem_assign(ftmp4, ftmp3); |
| 734 | felem_mul(tmp, ftmp3, ftmp); |
| 735 | felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ |
| 736 | felem_square(tmp, ftmp4); |
| 737 | felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ |
| 738 | felem_mul(tmp, ftmp3, ftmp2); |
| 739 | felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ |
| 740 | felem_assign(ftmp2, ftmp3); |
| 741 | |
| 742 | for (i = 0; i < 8; i++) { |
| 743 | felem_square(tmp, ftmp3); |
| 744 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ |
| 745 | } |
| 746 | felem_mul(tmp, ftmp3, ftmp2); |
| 747 | felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ |
| 748 | felem_assign(ftmp2, ftmp3); |
| 749 | |
| 750 | for (i = 0; i < 16; i++) { |
| 751 | felem_square(tmp, ftmp3); |
| 752 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ |
| 753 | } |
| 754 | felem_mul(tmp, ftmp3, ftmp2); |
| 755 | felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ |
| 756 | felem_assign(ftmp2, ftmp3); |
| 757 | |
| 758 | for (i = 0; i < 32; i++) { |
| 759 | felem_square(tmp, ftmp3); |
| 760 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ |
| 761 | } |
| 762 | felem_mul(tmp, ftmp3, ftmp2); |
| 763 | felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ |
| 764 | felem_assign(ftmp2, ftmp3); |
| 765 | |
| 766 | for (i = 0; i < 64; i++) { |
| 767 | felem_square(tmp, ftmp3); |
| 768 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ |
| 769 | } |
| 770 | felem_mul(tmp, ftmp3, ftmp2); |
| 771 | felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ |
| 772 | felem_assign(ftmp2, ftmp3); |
| 773 | |
| 774 | for (i = 0; i < 128; i++) { |
| 775 | felem_square(tmp, ftmp3); |
| 776 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ |
| 777 | } |
| 778 | felem_mul(tmp, ftmp3, ftmp2); |
| 779 | felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ |
| 780 | felem_assign(ftmp2, ftmp3); |
| 781 | |
| 782 | for (i = 0; i < 256; i++) { |
| 783 | felem_square(tmp, ftmp3); |
| 784 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ |
| 785 | } |
| 786 | felem_mul(tmp, ftmp3, ftmp2); |
| 787 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ |
| 788 | |
| 789 | for (i = 0; i < 9; i++) { |
| 790 | felem_square(tmp, ftmp3); |
| 791 | felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ |
| 792 | } |
| 793 | felem_mul(tmp, ftmp3, ftmp4); |
| 794 | felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ |
| 795 | felem_mul(tmp, ftmp3, in); |
| 796 | felem_reduce(out, tmp); /* 2^512 - 3 */ |
| 797 | } |
| 798 | |
| 799 | /* This is 2^521-1, expressed as an felem */ |
| 800 | static const felem kPrime = { |
| 801 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, |
| 802 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, |
| 803 | 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff |
| 804 | }; |
| 805 | |
| 806 | /*- |
| 807 | * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 |
| 808 | * otherwise. |
| 809 | * On entry: |
| 810 | * in[i] < 2^59 + 2^14 |
| 811 | */ |
| 812 | static limb felem_is_zero(const felem in) |
| 813 | { |
| 814 | felem ftmp; |
| 815 | limb is_zero, is_p; |
| 816 | felem_assign(ftmp, in); |
| 817 | |
| 818 | ftmp[0] += ftmp[8] >> 57; |
| 819 | ftmp[8] &= bottom57bits; |
| 820 | /* ftmp[8] < 2^57 */ |
| 821 | ftmp[1] += ftmp[0] >> 58; |
| 822 | ftmp[0] &= bottom58bits; |
| 823 | ftmp[2] += ftmp[1] >> 58; |
| 824 | ftmp[1] &= bottom58bits; |
| 825 | ftmp[3] += ftmp[2] >> 58; |
| 826 | ftmp[2] &= bottom58bits; |
| 827 | ftmp[4] += ftmp[3] >> 58; |
| 828 | ftmp[3] &= bottom58bits; |
| 829 | ftmp[5] += ftmp[4] >> 58; |
| 830 | ftmp[4] &= bottom58bits; |
| 831 | ftmp[6] += ftmp[5] >> 58; |
| 832 | ftmp[5] &= bottom58bits; |
| 833 | ftmp[7] += ftmp[6] >> 58; |
| 834 | ftmp[6] &= bottom58bits; |
| 835 | ftmp[8] += ftmp[7] >> 58; |
| 836 | ftmp[7] &= bottom58bits; |
| 837 | /* ftmp[8] < 2^57 + 4 */ |
| 838 | |
| 839 | /* |
| 840 | * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater |
| 841 | * than our bound for ftmp[8]. Therefore we only have to check if the |
| 842 | * zero is zero or 2^521-1. |
| 843 | */ |
| 844 | |
| 845 | is_zero = 0; |
| 846 | is_zero |= ftmp[0]; |
| 847 | is_zero |= ftmp[1]; |
| 848 | is_zero |= ftmp[2]; |
| 849 | is_zero |= ftmp[3]; |
| 850 | is_zero |= ftmp[4]; |
| 851 | is_zero |= ftmp[5]; |
| 852 | is_zero |= ftmp[6]; |
| 853 | is_zero |= ftmp[7]; |
| 854 | is_zero |= ftmp[8]; |
| 855 | |
| 856 | is_zero--; |
| 857 | /* |
| 858 | * We know that ftmp[i] < 2^63, therefore the only way that the top bit |
| 859 | * can be set is if is_zero was 0 before the decrement. |
| 860 | */ |
| 861 | is_zero = 0 - (is_zero >> 63); |
| 862 | |
| 863 | is_p = ftmp[0] ^ kPrime[0]; |
| 864 | is_p |= ftmp[1] ^ kPrime[1]; |
| 865 | is_p |= ftmp[2] ^ kPrime[2]; |
| 866 | is_p |= ftmp[3] ^ kPrime[3]; |
| 867 | is_p |= ftmp[4] ^ kPrime[4]; |
| 868 | is_p |= ftmp[5] ^ kPrime[5]; |
| 869 | is_p |= ftmp[6] ^ kPrime[6]; |
| 870 | is_p |= ftmp[7] ^ kPrime[7]; |
| 871 | is_p |= ftmp[8] ^ kPrime[8]; |
| 872 | |
| 873 | is_p--; |
| 874 | is_p = 0 - (is_p >> 63); |
| 875 | |
| 876 | is_zero |= is_p; |
| 877 | return is_zero; |
| 878 | } |
| 879 | |
| 880 | static int felem_is_zero_int(const void *in) |
| 881 | { |
| 882 | return (int)(felem_is_zero(in) & ((limb) 1)); |
| 883 | } |
| 884 | |
| 885 | /*- |
| 886 | * felem_contract converts |in| to its unique, minimal representation. |
| 887 | * On entry: |
| 888 | * in[i] < 2^59 + 2^14 |
| 889 | */ |
| 890 | static void felem_contract(felem out, const felem in) |
| 891 | { |
| 892 | limb is_p, is_greater, sign; |
| 893 | static const limb two58 = ((limb) 1) << 58; |
| 894 | |
| 895 | felem_assign(out, in); |
| 896 | |
| 897 | out[0] += out[8] >> 57; |
| 898 | out[8] &= bottom57bits; |
| 899 | /* out[8] < 2^57 */ |
| 900 | out[1] += out[0] >> 58; |
| 901 | out[0] &= bottom58bits; |
| 902 | out[2] += out[1] >> 58; |
| 903 | out[1] &= bottom58bits; |
| 904 | out[3] += out[2] >> 58; |
| 905 | out[2] &= bottom58bits; |
| 906 | out[4] += out[3] >> 58; |
| 907 | out[3] &= bottom58bits; |
| 908 | out[5] += out[4] >> 58; |
| 909 | out[4] &= bottom58bits; |
| 910 | out[6] += out[5] >> 58; |
| 911 | out[5] &= bottom58bits; |
| 912 | out[7] += out[6] >> 58; |
| 913 | out[6] &= bottom58bits; |
| 914 | out[8] += out[7] >> 58; |
| 915 | out[7] &= bottom58bits; |
| 916 | /* out[8] < 2^57 + 4 */ |
| 917 | |
| 918 | /* |
| 919 | * If the value is greater than 2^521-1 then we have to subtract 2^521-1 |
| 920 | * out. See the comments in felem_is_zero regarding why we don't test for |
| 921 | * other multiples of the prime. |
| 922 | */ |
| 923 | |
| 924 | /* |
| 925 | * First, if |out| is equal to 2^521-1, we subtract it out to get zero. |
| 926 | */ |
| 927 | |
| 928 | is_p = out[0] ^ kPrime[0]; |
| 929 | is_p |= out[1] ^ kPrime[1]; |
| 930 | is_p |= out[2] ^ kPrime[2]; |
| 931 | is_p |= out[3] ^ kPrime[3]; |
| 932 | is_p |= out[4] ^ kPrime[4]; |
| 933 | is_p |= out[5] ^ kPrime[5]; |
| 934 | is_p |= out[6] ^ kPrime[6]; |
| 935 | is_p |= out[7] ^ kPrime[7]; |
| 936 | is_p |= out[8] ^ kPrime[8]; |
| 937 | |
| 938 | is_p--; |
| 939 | is_p &= is_p << 32; |
| 940 | is_p &= is_p << 16; |
| 941 | is_p &= is_p << 8; |
| 942 | is_p &= is_p << 4; |
| 943 | is_p &= is_p << 2; |
| 944 | is_p &= is_p << 1; |
| 945 | is_p = 0 - (is_p >> 63); |
| 946 | is_p = ~is_p; |
| 947 | |
| 948 | /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ |
| 949 | |
| 950 | out[0] &= is_p; |
| 951 | out[1] &= is_p; |
| 952 | out[2] &= is_p; |
| 953 | out[3] &= is_p; |
| 954 | out[4] &= is_p; |
| 955 | out[5] &= is_p; |
| 956 | out[6] &= is_p; |
| 957 | out[7] &= is_p; |
| 958 | out[8] &= is_p; |
| 959 | |
| 960 | /* |
| 961 | * In order to test that |out| >= 2^521-1 we need only test if out[8] >> |
| 962 | * 57 is greater than zero as (2^521-1) + x >= 2^522 |
| 963 | */ |
| 964 | is_greater = out[8] >> 57; |
| 965 | is_greater |= is_greater << 32; |
| 966 | is_greater |= is_greater << 16; |
| 967 | is_greater |= is_greater << 8; |
| 968 | is_greater |= is_greater << 4; |
| 969 | is_greater |= is_greater << 2; |
| 970 | is_greater |= is_greater << 1; |
| 971 | is_greater = 0 - (is_greater >> 63); |
| 972 | |
| 973 | out[0] -= kPrime[0] & is_greater; |
| 974 | out[1] -= kPrime[1] & is_greater; |
| 975 | out[2] -= kPrime[2] & is_greater; |
| 976 | out[3] -= kPrime[3] & is_greater; |
| 977 | out[4] -= kPrime[4] & is_greater; |
| 978 | out[5] -= kPrime[5] & is_greater; |
| 979 | out[6] -= kPrime[6] & is_greater; |
| 980 | out[7] -= kPrime[7] & is_greater; |
| 981 | out[8] -= kPrime[8] & is_greater; |
| 982 | |
| 983 | /* Eliminate negative coefficients */ |
| 984 | sign = -(out[0] >> 63); |
| 985 | out[0] += (two58 & sign); |
| 986 | out[1] -= (1 & sign); |
| 987 | sign = -(out[1] >> 63); |
| 988 | out[1] += (two58 & sign); |
| 989 | out[2] -= (1 & sign); |
| 990 | sign = -(out[2] >> 63); |
| 991 | out[2] += (two58 & sign); |
| 992 | out[3] -= (1 & sign); |
| 993 | sign = -(out[3] >> 63); |
| 994 | out[3] += (two58 & sign); |
| 995 | out[4] -= (1 & sign); |
| 996 | sign = -(out[4] >> 63); |
| 997 | out[4] += (two58 & sign); |
| 998 | out[5] -= (1 & sign); |
| 999 | sign = -(out[0] >> 63); |
| 1000 | out[5] += (two58 & sign); |
| 1001 | out[6] -= (1 & sign); |
| 1002 | sign = -(out[6] >> 63); |
| 1003 | out[6] += (two58 & sign); |
| 1004 | out[7] -= (1 & sign); |
| 1005 | sign = -(out[7] >> 63); |
| 1006 | out[7] += (two58 & sign); |
| 1007 | out[8] -= (1 & sign); |
| 1008 | sign = -(out[5] >> 63); |
| 1009 | out[5] += (two58 & sign); |
| 1010 | out[6] -= (1 & sign); |
| 1011 | sign = -(out[6] >> 63); |
| 1012 | out[6] += (two58 & sign); |
| 1013 | out[7] -= (1 & sign); |
| 1014 | sign = -(out[7] >> 63); |
| 1015 | out[7] += (two58 & sign); |
| 1016 | out[8] -= (1 & sign); |
| 1017 | } |
| 1018 | |
| 1019 | /*- |
| 1020 | * Group operations |
| 1021 | * ---------------- |
| 1022 | * |
| 1023 | * Building on top of the field operations we have the operations on the |
| 1024 | * elliptic curve group itself. Points on the curve are represented in Jacobian |
| 1025 | * coordinates */ |
| 1026 | |
| 1027 | /*- |
| 1028 | * point_double calculates 2*(x_in, y_in, z_in) |
| 1029 | * |
| 1030 | * The method is taken from: |
| 1031 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| 1032 | * |
| 1033 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. |
| 1034 | * while x_out == y_in is not (maybe this works, but it's not tested). */ |
| 1035 | static void |
| 1036 | point_double(felem x_out, felem y_out, felem z_out, |
| 1037 | const felem x_in, const felem y_in, const felem z_in) |
| 1038 | { |
| 1039 | largefelem tmp, tmp2; |
| 1040 | felem delta, gamma, beta, alpha, ftmp, ftmp2; |
| 1041 | |
| 1042 | felem_assign(ftmp, x_in); |
| 1043 | felem_assign(ftmp2, x_in); |
| 1044 | |
| 1045 | /* delta = z^2 */ |
| 1046 | felem_square(tmp, z_in); |
| 1047 | felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ |
| 1048 | |
| 1049 | /* gamma = y^2 */ |
| 1050 | felem_square(tmp, y_in); |
| 1051 | felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ |
| 1052 | |
| 1053 | /* beta = x*gamma */ |
| 1054 | felem_mul(tmp, x_in, gamma); |
| 1055 | felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */ |
| 1056 | |
| 1057 | /* alpha = 3*(x-delta)*(x+delta) */ |
| 1058 | felem_diff64(ftmp, delta); |
| 1059 | /* ftmp[i] < 2^61 */ |
| 1060 | felem_sum64(ftmp2, delta); |
| 1061 | /* ftmp2[i] < 2^60 + 2^15 */ |
| 1062 | felem_scalar64(ftmp2, 3); |
| 1063 | /* ftmp2[i] < 3*2^60 + 3*2^15 */ |
| 1064 | felem_mul(tmp, ftmp, ftmp2); |
| 1065 | /*- |
| 1066 | * tmp[i] < 17(3*2^121 + 3*2^76) |
| 1067 | * = 61*2^121 + 61*2^76 |
| 1068 | * < 64*2^121 + 64*2^76 |
| 1069 | * = 2^127 + 2^82 |
| 1070 | * < 2^128 |
| 1071 | */ |
| 1072 | felem_reduce(alpha, tmp); |
| 1073 | |
| 1074 | /* x' = alpha^2 - 8*beta */ |
| 1075 | felem_square(tmp, alpha); |
| 1076 | /* |
| 1077 | * tmp[i] < 17*2^120 < 2^125 |
| 1078 | */ |
| 1079 | felem_assign(ftmp, beta); |
| 1080 | felem_scalar64(ftmp, 8); |
| 1081 | /* ftmp[i] < 2^62 + 2^17 */ |
| 1082 | felem_diff_128_64(tmp, ftmp); |
| 1083 | /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ |
| 1084 | felem_reduce(x_out, tmp); |
| 1085 | |
| 1086 | /* z' = (y + z)^2 - gamma - delta */ |
| 1087 | felem_sum64(delta, gamma); |
| 1088 | /* delta[i] < 2^60 + 2^15 */ |
| 1089 | felem_assign(ftmp, y_in); |
| 1090 | felem_sum64(ftmp, z_in); |
| 1091 | /* ftmp[i] < 2^60 + 2^15 */ |
| 1092 | felem_square(tmp, ftmp); |
| 1093 | /* |
| 1094 | * tmp[i] < 17(2^122) < 2^127 |
| 1095 | */ |
| 1096 | felem_diff_128_64(tmp, delta); |
| 1097 | /* tmp[i] < 2^127 + 2^63 */ |
| 1098 | felem_reduce(z_out, tmp); |
| 1099 | |
| 1100 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
| 1101 | felem_scalar64(beta, 4); |
| 1102 | /* beta[i] < 2^61 + 2^16 */ |
| 1103 | felem_diff64(beta, x_out); |
| 1104 | /* beta[i] < 2^61 + 2^60 + 2^16 */ |
| 1105 | felem_mul(tmp, alpha, beta); |
| 1106 | /*- |
| 1107 | * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) |
| 1108 | * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) |
| 1109 | * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30) |
| 1110 | * < 2^128 |
| 1111 | */ |
| 1112 | felem_square(tmp2, gamma); |
| 1113 | /*- |
| 1114 | * tmp2[i] < 17*(2^59 + 2^14)^2 |
| 1115 | * = 17*(2^118 + 2^74 + 2^28) |
| 1116 | */ |
| 1117 | felem_scalar128(tmp2, 8); |
| 1118 | /*- |
| 1119 | * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) |
| 1120 | * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31 |
| 1121 | * < 2^126 |
| 1122 | */ |
| 1123 | felem_diff128(tmp, tmp2); |
| 1124 | /*- |
| 1125 | * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) |
| 1126 | * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + |
| 1127 | * 2^74 + 2^69 + 2^34 + 2^30 |
| 1128 | * < 2^128 |
| 1129 | */ |
| 1130 | felem_reduce(y_out, tmp); |
| 1131 | } |
| 1132 | |
| 1133 | /* copy_conditional copies in to out iff mask is all ones. */ |
| 1134 | static void copy_conditional(felem out, const felem in, limb mask) |
| 1135 | { |
| 1136 | unsigned i; |
| 1137 | for (i = 0; i < NLIMBS; ++i) { |
| 1138 | const limb tmp = mask & (in[i] ^ out[i]); |
| 1139 | out[i] ^= tmp; |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | /*- |
| 1144 | * point_add calculates (x1, y1, z1) + (x2, y2, z2) |
| 1145 | * |
| 1146 | * The method is taken from |
| 1147 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, |
| 1148 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). |
| 1149 | * |
| 1150 | * This function includes a branch for checking whether the two input points |
| 1151 | * are equal (while not equal to the point at infinity). See comment below |
| 1152 | * on constant-time. |
| 1153 | */ |
| 1154 | static void point_add(felem x3, felem y3, felem z3, |
| 1155 | const felem x1, const felem y1, const felem z1, |
| 1156 | const int mixed, const felem x2, const felem y2, |
| 1157 | const felem z2) |
| 1158 | { |
| 1159 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; |
| 1160 | largefelem tmp, tmp2; |
| 1161 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; |
| 1162 | limb points_equal; |
| 1163 | |
| 1164 | z1_is_zero = felem_is_zero(z1); |
| 1165 | z2_is_zero = felem_is_zero(z2); |
| 1166 | |
| 1167 | /* ftmp = z1z1 = z1**2 */ |
| 1168 | felem_square(tmp, z1); |
| 1169 | felem_reduce(ftmp, tmp); |
| 1170 | |
| 1171 | if (!mixed) { |
| 1172 | /* ftmp2 = z2z2 = z2**2 */ |
| 1173 | felem_square(tmp, z2); |
| 1174 | felem_reduce(ftmp2, tmp); |
| 1175 | |
| 1176 | /* u1 = ftmp3 = x1*z2z2 */ |
| 1177 | felem_mul(tmp, x1, ftmp2); |
| 1178 | felem_reduce(ftmp3, tmp); |
| 1179 | |
| 1180 | /* ftmp5 = z1 + z2 */ |
| 1181 | felem_assign(ftmp5, z1); |
| 1182 | felem_sum64(ftmp5, z2); |
| 1183 | /* ftmp5[i] < 2^61 */ |
| 1184 | |
| 1185 | /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ |
| 1186 | felem_square(tmp, ftmp5); |
| 1187 | /* tmp[i] < 17*2^122 */ |
| 1188 | felem_diff_128_64(tmp, ftmp); |
| 1189 | /* tmp[i] < 17*2^122 + 2^63 */ |
| 1190 | felem_diff_128_64(tmp, ftmp2); |
| 1191 | /* tmp[i] < 17*2^122 + 2^64 */ |
| 1192 | felem_reduce(ftmp5, tmp); |
| 1193 | |
| 1194 | /* ftmp2 = z2 * z2z2 */ |
| 1195 | felem_mul(tmp, ftmp2, z2); |
| 1196 | felem_reduce(ftmp2, tmp); |
| 1197 | |
| 1198 | /* s1 = ftmp6 = y1 * z2**3 */ |
| 1199 | felem_mul(tmp, y1, ftmp2); |
| 1200 | felem_reduce(ftmp6, tmp); |
| 1201 | } else { |
| 1202 | /* |
| 1203 | * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
| 1204 | */ |
| 1205 | |
| 1206 | /* u1 = ftmp3 = x1*z2z2 */ |
| 1207 | felem_assign(ftmp3, x1); |
| 1208 | |
| 1209 | /* ftmp5 = 2*z1z2 */ |
| 1210 | felem_scalar(ftmp5, z1, 2); |
| 1211 | |
| 1212 | /* s1 = ftmp6 = y1 * z2**3 */ |
| 1213 | felem_assign(ftmp6, y1); |
| 1214 | } |
| 1215 | |
| 1216 | /* u2 = x2*z1z1 */ |
| 1217 | felem_mul(tmp, x2, ftmp); |
| 1218 | /* tmp[i] < 17*2^120 */ |
| 1219 | |
| 1220 | /* h = ftmp4 = u2 - u1 */ |
| 1221 | felem_diff_128_64(tmp, ftmp3); |
| 1222 | /* tmp[i] < 17*2^120 + 2^63 */ |
| 1223 | felem_reduce(ftmp4, tmp); |
| 1224 | |
| 1225 | x_equal = felem_is_zero(ftmp4); |
| 1226 | |
| 1227 | /* z_out = ftmp5 * h */ |
| 1228 | felem_mul(tmp, ftmp5, ftmp4); |
| 1229 | felem_reduce(z_out, tmp); |
| 1230 | |
| 1231 | /* ftmp = z1 * z1z1 */ |
| 1232 | felem_mul(tmp, ftmp, z1); |
| 1233 | felem_reduce(ftmp, tmp); |
| 1234 | |
| 1235 | /* s2 = tmp = y2 * z1**3 */ |
| 1236 | felem_mul(tmp, y2, ftmp); |
| 1237 | /* tmp[i] < 17*2^120 */ |
| 1238 | |
| 1239 | /* r = ftmp5 = (s2 - s1)*2 */ |
| 1240 | felem_diff_128_64(tmp, ftmp6); |
| 1241 | /* tmp[i] < 17*2^120 + 2^63 */ |
| 1242 | felem_reduce(ftmp5, tmp); |
| 1243 | y_equal = felem_is_zero(ftmp5); |
| 1244 | felem_scalar64(ftmp5, 2); |
| 1245 | /* ftmp5[i] < 2^61 */ |
| 1246 | |
| 1247 | /* |
| 1248 | * The formulae are incorrect if the points are equal, in affine coordinates |
| 1249 | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this |
| 1250 | * happens. |
| 1251 | * |
| 1252 | * We use bitwise operations to avoid potential side-channels introduced by |
| 1253 | * the short-circuiting behaviour of boolean operators. |
| 1254 | * |
| 1255 | * The special case of either point being the point at infinity (z1 and/or |
| 1256 | * z2 are zero), is handled separately later on in this function, so we |
| 1257 | * avoid jumping to point_double here in those special cases. |
| 1258 | * |
| 1259 | * Notice the comment below on the implications of this branching for timing |
| 1260 | * leaks and why it is considered practically irrelevant. |
| 1261 | */ |
| 1262 | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); |
| 1263 | |
| 1264 | if (points_equal) { |
| 1265 | /* |
| 1266 | * This is obviously not constant-time but it will almost-never happen |
| 1267 | * for ECDH / ECDSA. The case where it can happen is during scalar-mult |
| 1268 | * where the intermediate value gets very close to the group order. |
| 1269 | * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for |
| 1270 | * the scalar, it's possible for the intermediate value to be a small |
| 1271 | * negative multiple of the base point, and for the final signed digit |
| 1272 | * to be the same value. We believe that this only occurs for the scalar |
| 1273 | * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff |
| 1274 | * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb |
| 1275 | * 71e913863f7, in that case the penultimate intermediate is -9G and |
| 1276 | * the final digit is also -9G. Since this only happens for a single |
| 1277 | * scalar, the timing leak is irrelevant. (Any attacker who wanted to |
| 1278 | * check whether a secret scalar was that exact value, can already do |
| 1279 | * so.) |
| 1280 | */ |
| 1281 | point_double(x3, y3, z3, x1, y1, z1); |
| 1282 | return; |
| 1283 | } |
| 1284 | |
| 1285 | /* I = ftmp = (2h)**2 */ |
| 1286 | felem_assign(ftmp, ftmp4); |
| 1287 | felem_scalar64(ftmp, 2); |
| 1288 | /* ftmp[i] < 2^61 */ |
| 1289 | felem_square(tmp, ftmp); |
| 1290 | /* tmp[i] < 17*2^122 */ |
| 1291 | felem_reduce(ftmp, tmp); |
| 1292 | |
| 1293 | /* J = ftmp2 = h * I */ |
| 1294 | felem_mul(tmp, ftmp4, ftmp); |
| 1295 | felem_reduce(ftmp2, tmp); |
| 1296 | |
| 1297 | /* V = ftmp4 = U1 * I */ |
| 1298 | felem_mul(tmp, ftmp3, ftmp); |
| 1299 | felem_reduce(ftmp4, tmp); |
| 1300 | |
| 1301 | /* x_out = r**2 - J - 2V */ |
| 1302 | felem_square(tmp, ftmp5); |
| 1303 | /* tmp[i] < 17*2^122 */ |
| 1304 | felem_diff_128_64(tmp, ftmp2); |
| 1305 | /* tmp[i] < 17*2^122 + 2^63 */ |
| 1306 | felem_assign(ftmp3, ftmp4); |
| 1307 | felem_scalar64(ftmp4, 2); |
| 1308 | /* ftmp4[i] < 2^61 */ |
| 1309 | felem_diff_128_64(tmp, ftmp4); |
| 1310 | /* tmp[i] < 17*2^122 + 2^64 */ |
| 1311 | felem_reduce(x_out, tmp); |
| 1312 | |
| 1313 | /* y_out = r(V-x_out) - 2 * s1 * J */ |
| 1314 | felem_diff64(ftmp3, x_out); |
| 1315 | /* |
| 1316 | * ftmp3[i] < 2^60 + 2^60 = 2^61 |
| 1317 | */ |
| 1318 | felem_mul(tmp, ftmp5, ftmp3); |
| 1319 | /* tmp[i] < 17*2^122 */ |
| 1320 | felem_mul(tmp2, ftmp6, ftmp2); |
| 1321 | /* tmp2[i] < 17*2^120 */ |
| 1322 | felem_scalar128(tmp2, 2); |
| 1323 | /* tmp2[i] < 17*2^121 */ |
| 1324 | felem_diff128(tmp, tmp2); |
| 1325 | /*- |
| 1326 | * tmp[i] < 2^127 - 2^69 + 17*2^122 |
| 1327 | * = 2^126 - 2^122 - 2^6 - 2^2 - 1 |
| 1328 | * < 2^127 |
| 1329 | */ |
| 1330 | felem_reduce(y_out, tmp); |
| 1331 | |
| 1332 | copy_conditional(x_out, x2, z1_is_zero); |
| 1333 | copy_conditional(x_out, x1, z2_is_zero); |
| 1334 | copy_conditional(y_out, y2, z1_is_zero); |
| 1335 | copy_conditional(y_out, y1, z2_is_zero); |
| 1336 | copy_conditional(z_out, z2, z1_is_zero); |
| 1337 | copy_conditional(z_out, z1, z2_is_zero); |
| 1338 | felem_assign(x3, x_out); |
| 1339 | felem_assign(y3, y_out); |
| 1340 | felem_assign(z3, z_out); |
| 1341 | } |
| 1342 | |
| 1343 | /*- |
| 1344 | * Base point pre computation |
| 1345 | * -------------------------- |
| 1346 | * |
| 1347 | * Two different sorts of precomputed tables are used in the following code. |
| 1348 | * Each contain various points on the curve, where each point is three field |
| 1349 | * elements (x, y, z). |
| 1350 | * |
| 1351 | * For the base point table, z is usually 1 (0 for the point at infinity). |
| 1352 | * This table has 16 elements: |
| 1353 | * index | bits | point |
| 1354 | * ------+---------+------------------------------ |
| 1355 | * 0 | 0 0 0 0 | 0G |
| 1356 | * 1 | 0 0 0 1 | 1G |
| 1357 | * 2 | 0 0 1 0 | 2^130G |
| 1358 | * 3 | 0 0 1 1 | (2^130 + 1)G |
| 1359 | * 4 | 0 1 0 0 | 2^260G |
| 1360 | * 5 | 0 1 0 1 | (2^260 + 1)G |
| 1361 | * 6 | 0 1 1 0 | (2^260 + 2^130)G |
| 1362 | * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G |
| 1363 | * 8 | 1 0 0 0 | 2^390G |
| 1364 | * 9 | 1 0 0 1 | (2^390 + 1)G |
| 1365 | * 10 | 1 0 1 0 | (2^390 + 2^130)G |
| 1366 | * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G |
| 1367 | * 12 | 1 1 0 0 | (2^390 + 2^260)G |
| 1368 | * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G |
| 1369 | * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G |
| 1370 | * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G |
| 1371 | * |
| 1372 | * The reason for this is so that we can clock bits into four different |
| 1373 | * locations when doing simple scalar multiplies against the base point. |
| 1374 | * |
| 1375 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ |
| 1376 | |
| 1377 | /* gmul is the table of precomputed base points */ |
| 1378 | static const felem gmul[16][3] = { |
| 1379 | {{0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 1380 | {0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 1381 | {0, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1382 | {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, |
| 1383 | 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, |
| 1384 | 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, |
| 1385 | {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, |
| 1386 | 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, |
| 1387 | 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, |
| 1388 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1389 | {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, |
| 1390 | 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, |
| 1391 | 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, |
| 1392 | {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, |
| 1393 | 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, |
| 1394 | 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, |
| 1395 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1396 | {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, |
| 1397 | 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, |
| 1398 | 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, |
| 1399 | {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, |
| 1400 | 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, |
| 1401 | 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, |
| 1402 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1403 | {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, |
| 1404 | 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, |
| 1405 | 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, |
| 1406 | {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, |
| 1407 | 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, |
| 1408 | 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, |
| 1409 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1410 | {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, |
| 1411 | 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, |
| 1412 | 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, |
| 1413 | {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, |
| 1414 | 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, |
| 1415 | 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, |
| 1416 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1417 | {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, |
| 1418 | 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, |
| 1419 | 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, |
| 1420 | {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, |
| 1421 | 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, |
| 1422 | 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, |
| 1423 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1424 | {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, |
| 1425 | 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, |
| 1426 | 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, |
| 1427 | {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, |
| 1428 | 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, |
| 1429 | 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, |
| 1430 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1431 | {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, |
| 1432 | 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, |
| 1433 | 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, |
| 1434 | {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, |
| 1435 | 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, |
| 1436 | 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, |
| 1437 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1438 | {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, |
| 1439 | 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, |
| 1440 | 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, |
| 1441 | {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, |
| 1442 | 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, |
| 1443 | 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, |
| 1444 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1445 | {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, |
| 1446 | 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, |
| 1447 | 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, |
| 1448 | {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, |
| 1449 | 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, |
| 1450 | 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, |
| 1451 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1452 | {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, |
| 1453 | 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, |
| 1454 | 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, |
| 1455 | {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, |
| 1456 | 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, |
| 1457 | 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, |
| 1458 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1459 | {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, |
| 1460 | 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, |
| 1461 | 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, |
| 1462 | {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, |
| 1463 | 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, |
| 1464 | 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, |
| 1465 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1466 | {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, |
| 1467 | 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, |
| 1468 | 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, |
| 1469 | {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, |
| 1470 | 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, |
| 1471 | 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, |
| 1472 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1473 | {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, |
| 1474 | 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, |
| 1475 | 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, |
| 1476 | {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, |
| 1477 | 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, |
| 1478 | 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, |
| 1479 | {1, 0, 0, 0, 0, 0, 0, 0, 0}}, |
| 1480 | {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, |
| 1481 | 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, |
| 1482 | 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, |
| 1483 | {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, |
| 1484 | 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, |
| 1485 | 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, |
| 1486 | {1, 0, 0, 0, 0, 0, 0, 0, 0}} |
| 1487 | }; |
| 1488 | |
| 1489 | /* |
| 1490 | * select_point selects the |idx|th point from a precomputation table and |
| 1491 | * copies it to out. |
| 1492 | */ |
| 1493 | /* pre_comp below is of the size provided in |size| */ |
| 1494 | static void select_point(const limb idx, unsigned int size, |
| 1495 | const felem pre_comp[][3], felem out[3]) |
| 1496 | { |
| 1497 | unsigned i, j; |
| 1498 | limb *outlimbs = &out[0][0]; |
| 1499 | |
| 1500 | memset(out, 0, sizeof(*out) * 3); |
| 1501 | |
| 1502 | for (i = 0; i < size; i++) { |
| 1503 | const limb *inlimbs = &pre_comp[i][0][0]; |
| 1504 | limb mask = i ^ idx; |
| 1505 | mask |= mask >> 4; |
| 1506 | mask |= mask >> 2; |
| 1507 | mask |= mask >> 1; |
| 1508 | mask &= 1; |
| 1509 | mask--; |
| 1510 | for (j = 0; j < NLIMBS * 3; j++) |
| 1511 | outlimbs[j] |= inlimbs[j] & mask; |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | /* get_bit returns the |i|th bit in |in| */ |
| 1516 | static char get_bit(const felem_bytearray in, int i) |
| 1517 | { |
| 1518 | if (i < 0) |
| 1519 | return 0; |
| 1520 | return (in[i >> 3] >> (i & 7)) & 1; |
| 1521 | } |
| 1522 | |
| 1523 | /* |
| 1524 | * Interleaved point multiplication using precomputed point multiples: The |
| 1525 | * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars |
| 1526 | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
| 1527 | * generator, using certain (large) precomputed multiples in g_pre_comp. |
| 1528 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
| 1529 | */ |
| 1530 | static void batch_mul(felem x_out, felem y_out, felem z_out, |
| 1531 | const felem_bytearray scalars[], |
| 1532 | const unsigned num_points, const u8 *g_scalar, |
| 1533 | const int mixed, const felem pre_comp[][17][3], |
| 1534 | const felem g_pre_comp[16][3]) |
| 1535 | { |
| 1536 | int i, skip; |
| 1537 | unsigned num, gen_mul = (g_scalar != NULL); |
| 1538 | felem nq[3], tmp[4]; |
| 1539 | limb bits; |
| 1540 | u8 sign, digit; |
| 1541 | |
| 1542 | /* set nq to the point at infinity */ |
| 1543 | memset(nq, 0, sizeof(nq)); |
| 1544 | |
| 1545 | /* |
| 1546 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
| 1547 | * of the generator (last quarter of rounds) and additions of other |
| 1548 | * points multiples (every 5th round). |
| 1549 | */ |
| 1550 | skip = 1; /* save two point operations in the first |
| 1551 | * round */ |
| 1552 | for (i = (num_points ? 520 : 130); i >= 0; --i) { |
| 1553 | /* double */ |
| 1554 | if (!skip) |
| 1555 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
| 1556 | |
| 1557 | /* add multiples of the generator */ |
| 1558 | if (gen_mul && (i <= 130)) { |
| 1559 | bits = get_bit(g_scalar, i + 390) << 3; |
| 1560 | if (i < 130) { |
| 1561 | bits |= get_bit(g_scalar, i + 260) << 2; |
| 1562 | bits |= get_bit(g_scalar, i + 130) << 1; |
| 1563 | bits |= get_bit(g_scalar, i); |
| 1564 | } |
| 1565 | /* select the point to add, in constant time */ |
| 1566 | select_point(bits, 16, g_pre_comp, tmp); |
| 1567 | if (!skip) { |
| 1568 | /* The 1 argument below is for "mixed" */ |
| 1569 | point_add(nq[0], nq[1], nq[2], |
| 1570 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
| 1571 | } else { |
| 1572 | memcpy(nq, tmp, 3 * sizeof(felem)); |
| 1573 | skip = 0; |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | /* do other additions every 5 doublings */ |
| 1578 | if (num_points && (i % 5 == 0)) { |
| 1579 | /* loop over all scalars */ |
| 1580 | for (num = 0; num < num_points; ++num) { |
| 1581 | bits = get_bit(scalars[num], i + 4) << 5; |
| 1582 | bits |= get_bit(scalars[num], i + 3) << 4; |
| 1583 | bits |= get_bit(scalars[num], i + 2) << 3; |
| 1584 | bits |= get_bit(scalars[num], i + 1) << 2; |
| 1585 | bits |= get_bit(scalars[num], i) << 1; |
| 1586 | bits |= get_bit(scalars[num], i - 1); |
| 1587 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
| 1588 | |
| 1589 | /* |
| 1590 | * select the point to add or subtract, in constant time |
| 1591 | */ |
| 1592 | select_point(digit, 17, pre_comp[num], tmp); |
| 1593 | felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative |
| 1594 | * point */ |
| 1595 | copy_conditional(tmp[1], tmp[3], (-(limb) sign)); |
| 1596 | |
| 1597 | if (!skip) { |
| 1598 | point_add(nq[0], nq[1], nq[2], |
| 1599 | nq[0], nq[1], nq[2], |
| 1600 | mixed, tmp[0], tmp[1], tmp[2]); |
| 1601 | } else { |
| 1602 | memcpy(nq, tmp, 3 * sizeof(felem)); |
| 1603 | skip = 0; |
| 1604 | } |
| 1605 | } |
| 1606 | } |
| 1607 | } |
| 1608 | felem_assign(x_out, nq[0]); |
| 1609 | felem_assign(y_out, nq[1]); |
| 1610 | felem_assign(z_out, nq[2]); |
| 1611 | } |
| 1612 | |
| 1613 | /* Precomputation for the group generator. */ |
| 1614 | struct nistp521_pre_comp_st { |
| 1615 | felem g_pre_comp[16][3]; |
| 1616 | CRYPTO_REF_COUNT references; |
| 1617 | CRYPTO_RWLOCK *lock; |
| 1618 | }; |
| 1619 | |
| 1620 | const EC_METHOD *EC_GFp_nistp521_method(void) |
| 1621 | { |
| 1622 | static const EC_METHOD ret = { |
| 1623 | EC_FLAGS_DEFAULT_OCT, |
| 1624 | NID_X9_62_prime_field, |
| 1625 | ec_GFp_nistp521_group_init, |
| 1626 | ec_GFp_simple_group_finish, |
| 1627 | ec_GFp_simple_group_clear_finish, |
| 1628 | ec_GFp_nist_group_copy, |
| 1629 | ec_GFp_nistp521_group_set_curve, |
| 1630 | ec_GFp_simple_group_get_curve, |
| 1631 | ec_GFp_simple_group_get_degree, |
| 1632 | ec_group_simple_order_bits, |
| 1633 | ec_GFp_simple_group_check_discriminant, |
| 1634 | ec_GFp_simple_point_init, |
| 1635 | ec_GFp_simple_point_finish, |
| 1636 | ec_GFp_simple_point_clear_finish, |
| 1637 | ec_GFp_simple_point_copy, |
| 1638 | ec_GFp_simple_point_set_to_infinity, |
| 1639 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| 1640 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| 1641 | ec_GFp_simple_point_set_affine_coordinates, |
| 1642 | ec_GFp_nistp521_point_get_affine_coordinates, |
| 1643 | 0 /* point_set_compressed_coordinates */ , |
| 1644 | 0 /* point2oct */ , |
| 1645 | 0 /* oct2point */ , |
| 1646 | ec_GFp_simple_add, |
| 1647 | ec_GFp_simple_dbl, |
| 1648 | ec_GFp_simple_invert, |
| 1649 | ec_GFp_simple_is_at_infinity, |
| 1650 | ec_GFp_simple_is_on_curve, |
| 1651 | ec_GFp_simple_cmp, |
| 1652 | ec_GFp_simple_make_affine, |
| 1653 | ec_GFp_simple_points_make_affine, |
| 1654 | ec_GFp_nistp521_points_mul, |
| 1655 | ec_GFp_nistp521_precompute_mult, |
| 1656 | ec_GFp_nistp521_have_precompute_mult, |
| 1657 | ec_GFp_nist_field_mul, |
| 1658 | ec_GFp_nist_field_sqr, |
| 1659 | 0 /* field_div */ , |
| 1660 | ec_GFp_simple_field_inv, |
| 1661 | 0 /* field_encode */ , |
| 1662 | 0 /* field_decode */ , |
| 1663 | 0, /* field_set_to_one */ |
| 1664 | ec_key_simple_priv2oct, |
| 1665 | ec_key_simple_oct2priv, |
| 1666 | 0, /* set private */ |
| 1667 | ec_key_simple_generate_key, |
| 1668 | ec_key_simple_check_key, |
| 1669 | ec_key_simple_generate_public_key, |
| 1670 | 0, /* keycopy */ |
| 1671 | 0, /* keyfinish */ |
| 1672 | ecdh_simple_compute_key, |
| 1673 | 0, /* field_inverse_mod_ord */ |
| 1674 | 0, /* blind_coordinates */ |
| 1675 | 0, /* ladder_pre */ |
| 1676 | 0, /* ladder_step */ |
| 1677 | 0 /* ladder_post */ |
| 1678 | }; |
| 1679 | |
| 1680 | return &ret; |
| 1681 | } |
| 1682 | |
| 1683 | /******************************************************************************/ |
| 1684 | /* |
| 1685 | * FUNCTIONS TO MANAGE PRECOMPUTATION |
| 1686 | */ |
| 1687 | |
| 1688 | static NISTP521_PRE_COMP *nistp521_pre_comp_new(void) |
| 1689 | { |
| 1690 | NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
| 1691 | |
| 1692 | if (ret == NULL) { |
| 1693 | ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1694 | return ret; |
| 1695 | } |
| 1696 | |
| 1697 | ret->references = 1; |
| 1698 | |
| 1699 | ret->lock = CRYPTO_THREAD_lock_new(); |
| 1700 | if (ret->lock == NULL) { |
| 1701 | ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1702 | OPENSSL_free(ret); |
| 1703 | return NULL; |
| 1704 | } |
| 1705 | return ret; |
| 1706 | } |
| 1707 | |
| 1708 | NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p) |
| 1709 | { |
| 1710 | int i; |
| 1711 | if (p != NULL) |
| 1712 | CRYPTO_UP_REF(&p->references, &i, p->lock); |
| 1713 | return p; |
| 1714 | } |
| 1715 | |
| 1716 | void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p) |
| 1717 | { |
| 1718 | int i; |
| 1719 | |
| 1720 | if (p == NULL) |
| 1721 | return; |
| 1722 | |
| 1723 | CRYPTO_DOWN_REF(&p->references, &i, p->lock); |
| 1724 | REF_PRINT_COUNT("EC_nistp521", x); |
| 1725 | if (i > 0) |
| 1726 | return; |
| 1727 | REF_ASSERT_ISNT(i < 0); |
| 1728 | |
| 1729 | CRYPTO_THREAD_lock_free(p->lock); |
| 1730 | OPENSSL_free(p); |
| 1731 | } |
| 1732 | |
| 1733 | /******************************************************************************/ |
| 1734 | /* |
| 1735 | * OPENSSL EC_METHOD FUNCTIONS |
| 1736 | */ |
| 1737 | |
| 1738 | int ec_GFp_nistp521_group_init(EC_GROUP *group) |
| 1739 | { |
| 1740 | int ret; |
| 1741 | ret = ec_GFp_simple_group_init(group); |
| 1742 | group->a_is_minus3 = 1; |
| 1743 | return ret; |
| 1744 | } |
| 1745 | |
| 1746 | int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| 1747 | const BIGNUM *a, const BIGNUM *b, |
| 1748 | BN_CTX *ctx) |
| 1749 | { |
| 1750 | int ret = 0; |
| 1751 | BN_CTX *new_ctx = NULL; |
| 1752 | BIGNUM *curve_p, *curve_a, *curve_b; |
| 1753 | |
| 1754 | if (ctx == NULL) |
| 1755 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) |
| 1756 | return 0; |
| 1757 | BN_CTX_start(ctx); |
| 1758 | curve_p = BN_CTX_get(ctx); |
| 1759 | curve_a = BN_CTX_get(ctx); |
| 1760 | curve_b = BN_CTX_get(ctx); |
| 1761 | if (curve_b == NULL) |
| 1762 | goto err; |
| 1763 | BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); |
| 1764 | BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); |
| 1765 | BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); |
| 1766 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
| 1767 | ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE, |
| 1768 | EC_R_WRONG_CURVE_PARAMETERS); |
| 1769 | goto err; |
| 1770 | } |
| 1771 | group->field_mod_func = BN_nist_mod_521; |
| 1772 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
| 1773 | err: |
| 1774 | BN_CTX_end(ctx); |
| 1775 | BN_CTX_free(new_ctx); |
| 1776 | return ret; |
| 1777 | } |
| 1778 | |
| 1779 | /* |
| 1780 | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
| 1781 | * (X/Z^2, Y/Z^3) |
| 1782 | */ |
| 1783 | int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, |
| 1784 | const EC_POINT *point, |
| 1785 | BIGNUM *x, BIGNUM *y, |
| 1786 | BN_CTX *ctx) |
| 1787 | { |
| 1788 | felem z1, z2, x_in, y_in, x_out, y_out; |
| 1789 | largefelem tmp; |
| 1790 | |
| 1791 | if (EC_POINT_is_at_infinity(group, point)) { |
| 1792 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, |
| 1793 | EC_R_POINT_AT_INFINITY); |
| 1794 | return 0; |
| 1795 | } |
| 1796 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || |
| 1797 | (!BN_to_felem(z1, point->Z))) |
| 1798 | return 0; |
| 1799 | felem_inv(z2, z1); |
| 1800 | felem_square(tmp, z2); |
| 1801 | felem_reduce(z1, tmp); |
| 1802 | felem_mul(tmp, x_in, z1); |
| 1803 | felem_reduce(x_in, tmp); |
| 1804 | felem_contract(x_out, x_in); |
| 1805 | if (x != NULL) { |
| 1806 | if (!felem_to_BN(x, x_out)) { |
| 1807 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, |
| 1808 | ERR_R_BN_LIB); |
| 1809 | return 0; |
| 1810 | } |
| 1811 | } |
| 1812 | felem_mul(tmp, z1, z2); |
| 1813 | felem_reduce(z1, tmp); |
| 1814 | felem_mul(tmp, y_in, z1); |
| 1815 | felem_reduce(y_in, tmp); |
| 1816 | felem_contract(y_out, y_in); |
| 1817 | if (y != NULL) { |
| 1818 | if (!felem_to_BN(y, y_out)) { |
| 1819 | ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES, |
| 1820 | ERR_R_BN_LIB); |
| 1821 | return 0; |
| 1822 | } |
| 1823 | } |
| 1824 | return 1; |
| 1825 | } |
| 1826 | |
| 1827 | /* points below is of size |num|, and tmp_felems is of size |num+1/ */ |
| 1828 | static void make_points_affine(size_t num, felem points[][3], |
| 1829 | felem tmp_felems[]) |
| 1830 | { |
| 1831 | /* |
| 1832 | * Runs in constant time, unless an input is the point at infinity (which |
| 1833 | * normally shouldn't happen). |
| 1834 | */ |
| 1835 | ec_GFp_nistp_points_make_affine_internal(num, |
| 1836 | points, |
| 1837 | sizeof(felem), |
| 1838 | tmp_felems, |
| 1839 | (void (*)(void *))felem_one, |
| 1840 | felem_is_zero_int, |
| 1841 | (void (*)(void *, const void *)) |
| 1842 | felem_assign, |
| 1843 | (void (*)(void *, const void *)) |
| 1844 | felem_square_reduce, (void (*) |
| 1845 | (void *, |
| 1846 | const void |
| 1847 | *, |
| 1848 | const void |
| 1849 | *)) |
| 1850 | felem_mul_reduce, |
| 1851 | (void (*)(void *, const void *)) |
| 1852 | felem_inv, |
| 1853 | (void (*)(void *, const void *)) |
| 1854 | felem_contract); |
| 1855 | } |
| 1856 | |
| 1857 | /* |
| 1858 | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
| 1859 | * values Result is stored in r (r can equal one of the inputs). |
| 1860 | */ |
| 1861 | int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, |
| 1862 | const BIGNUM *scalar, size_t num, |
| 1863 | const EC_POINT *points[], |
| 1864 | const BIGNUM *scalars[], BN_CTX *ctx) |
| 1865 | { |
| 1866 | int ret = 0; |
| 1867 | int j; |
| 1868 | int mixed = 0; |
| 1869 | BIGNUM *x, *y, *z, *tmp_scalar; |
| 1870 | felem_bytearray g_secret; |
| 1871 | felem_bytearray *secrets = NULL; |
| 1872 | felem (*pre_comp)[17][3] = NULL; |
| 1873 | felem *tmp_felems = NULL; |
| 1874 | unsigned i; |
| 1875 | int num_bytes; |
| 1876 | int have_pre_comp = 0; |
| 1877 | size_t num_points = num; |
| 1878 | felem x_in, y_in, z_in, x_out, y_out, z_out; |
| 1879 | NISTP521_PRE_COMP *pre = NULL; |
| 1880 | felem(*g_pre_comp)[3] = NULL; |
| 1881 | EC_POINT *generator = NULL; |
| 1882 | const EC_POINT *p = NULL; |
| 1883 | const BIGNUM *p_scalar = NULL; |
| 1884 | |
| 1885 | BN_CTX_start(ctx); |
| 1886 | x = BN_CTX_get(ctx); |
| 1887 | y = BN_CTX_get(ctx); |
| 1888 | z = BN_CTX_get(ctx); |
| 1889 | tmp_scalar = BN_CTX_get(ctx); |
| 1890 | if (tmp_scalar == NULL) |
| 1891 | goto err; |
| 1892 | |
| 1893 | if (scalar != NULL) { |
| 1894 | pre = group->pre_comp.nistp521; |
| 1895 | if (pre) |
| 1896 | /* we have precomputation, try to use it */ |
| 1897 | g_pre_comp = &pre->g_pre_comp[0]; |
| 1898 | else |
| 1899 | /* try to use the standard precomputation */ |
| 1900 | g_pre_comp = (felem(*)[3]) gmul; |
| 1901 | generator = EC_POINT_new(group); |
| 1902 | if (generator == NULL) |
| 1903 | goto err; |
| 1904 | /* get the generator from precomputation */ |
| 1905 | if (!felem_to_BN(x, g_pre_comp[1][0]) || |
| 1906 | !felem_to_BN(y, g_pre_comp[1][1]) || |
| 1907 | !felem_to_BN(z, g_pre_comp[1][2])) { |
| 1908 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); |
| 1909 | goto err; |
| 1910 | } |
| 1911 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, |
| 1912 | generator, x, y, z, |
| 1913 | ctx)) |
| 1914 | goto err; |
| 1915 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
| 1916 | /* precomputation matches generator */ |
| 1917 | have_pre_comp = 1; |
| 1918 | else |
| 1919 | /* |
| 1920 | * we don't have valid precomputation: treat the generator as a |
| 1921 | * random point |
| 1922 | */ |
| 1923 | num_points++; |
| 1924 | } |
| 1925 | |
| 1926 | if (num_points > 0) { |
| 1927 | if (num_points >= 2) { |
| 1928 | /* |
| 1929 | * unless we precompute multiples for just one point, converting |
| 1930 | * those into affine form is time well spent |
| 1931 | */ |
| 1932 | mixed = 1; |
| 1933 | } |
| 1934 | secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); |
| 1935 | pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); |
| 1936 | if (mixed) |
| 1937 | tmp_felems = |
| 1938 | OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1)); |
| 1939 | if ((secrets == NULL) || (pre_comp == NULL) |
| 1940 | || (mixed && (tmp_felems == NULL))) { |
| 1941 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 1942 | goto err; |
| 1943 | } |
| 1944 | |
| 1945 | /* |
| 1946 | * we treat NULL scalars as 0, and NULL points as points at infinity, |
| 1947 | * i.e., they contribute nothing to the linear combination |
| 1948 | */ |
| 1949 | for (i = 0; i < num_points; ++i) { |
| 1950 | if (i == num) { |
| 1951 | /* |
| 1952 | * we didn't have a valid precomputation, so we pick the |
| 1953 | * generator |
| 1954 | */ |
| 1955 | p = EC_GROUP_get0_generator(group); |
| 1956 | p_scalar = scalar; |
| 1957 | } else { |
| 1958 | /* the i^th point */ |
| 1959 | p = points[i]; |
| 1960 | p_scalar = scalars[i]; |
| 1961 | } |
| 1962 | if ((p_scalar != NULL) && (p != NULL)) { |
| 1963 | /* reduce scalar to 0 <= scalar < 2^521 */ |
| 1964 | if ((BN_num_bits(p_scalar) > 521) |
| 1965 | || (BN_is_negative(p_scalar))) { |
| 1966 | /* |
| 1967 | * this is an unusual input, and we don't guarantee |
| 1968 | * constant-timeness |
| 1969 | */ |
| 1970 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
| 1971 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); |
| 1972 | goto err; |
| 1973 | } |
| 1974 | num_bytes = BN_bn2lebinpad(tmp_scalar, |
| 1975 | secrets[i], sizeof(secrets[i])); |
| 1976 | } else { |
| 1977 | num_bytes = BN_bn2lebinpad(p_scalar, |
| 1978 | secrets[i], sizeof(secrets[i])); |
| 1979 | } |
| 1980 | if (num_bytes < 0) { |
| 1981 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); |
| 1982 | goto err; |
| 1983 | } |
| 1984 | /* precompute multiples */ |
| 1985 | if ((!BN_to_felem(x_out, p->X)) || |
| 1986 | (!BN_to_felem(y_out, p->Y)) || |
| 1987 | (!BN_to_felem(z_out, p->Z))) |
| 1988 | goto err; |
| 1989 | memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); |
| 1990 | memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); |
| 1991 | memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); |
| 1992 | for (j = 2; j <= 16; ++j) { |
| 1993 | if (j & 1) { |
| 1994 | point_add(pre_comp[i][j][0], pre_comp[i][j][1], |
| 1995 | pre_comp[i][j][2], pre_comp[i][1][0], |
| 1996 | pre_comp[i][1][1], pre_comp[i][1][2], 0, |
| 1997 | pre_comp[i][j - 1][0], |
| 1998 | pre_comp[i][j - 1][1], |
| 1999 | pre_comp[i][j - 1][2]); |
| 2000 | } else { |
| 2001 | point_double(pre_comp[i][j][0], pre_comp[i][j][1], |
| 2002 | pre_comp[i][j][2], pre_comp[i][j / 2][0], |
| 2003 | pre_comp[i][j / 2][1], |
| 2004 | pre_comp[i][j / 2][2]); |
| 2005 | } |
| 2006 | } |
| 2007 | } |
| 2008 | } |
| 2009 | if (mixed) |
| 2010 | make_points_affine(num_points * 17, pre_comp[0], tmp_felems); |
| 2011 | } |
| 2012 | |
| 2013 | /* the scalar for the generator */ |
| 2014 | if ((scalar != NULL) && (have_pre_comp)) { |
| 2015 | memset(g_secret, 0, sizeof(g_secret)); |
| 2016 | /* reduce scalar to 0 <= scalar < 2^521 */ |
| 2017 | if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { |
| 2018 | /* |
| 2019 | * this is an unusual input, and we don't guarantee |
| 2020 | * constant-timeness |
| 2021 | */ |
| 2022 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
| 2023 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); |
| 2024 | goto err; |
| 2025 | } |
| 2026 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); |
| 2027 | } else { |
| 2028 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); |
| 2029 | } |
| 2030 | /* do the multiplication with generator precomputation */ |
| 2031 | batch_mul(x_out, y_out, z_out, |
| 2032 | (const felem_bytearray(*))secrets, num_points, |
| 2033 | g_secret, |
| 2034 | mixed, (const felem(*)[17][3])pre_comp, |
| 2035 | (const felem(*)[3])g_pre_comp); |
| 2036 | } else { |
| 2037 | /* do the multiplication without generator precomputation */ |
| 2038 | batch_mul(x_out, y_out, z_out, |
| 2039 | (const felem_bytearray(*))secrets, num_points, |
| 2040 | NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); |
| 2041 | } |
| 2042 | /* reduce the output to its unique minimal representation */ |
| 2043 | felem_contract(x_in, x_out); |
| 2044 | felem_contract(y_in, y_out); |
| 2045 | felem_contract(z_in, z_out); |
| 2046 | if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || |
| 2047 | (!felem_to_BN(z, z_in))) { |
| 2048 | ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB); |
| 2049 | goto err; |
| 2050 | } |
| 2051 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); |
| 2052 | |
| 2053 | err: |
| 2054 | BN_CTX_end(ctx); |
| 2055 | EC_POINT_free(generator); |
| 2056 | OPENSSL_free(secrets); |
| 2057 | OPENSSL_free(pre_comp); |
| 2058 | OPENSSL_free(tmp_felems); |
| 2059 | return ret; |
| 2060 | } |
| 2061 | |
| 2062 | int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| 2063 | { |
| 2064 | int ret = 0; |
| 2065 | NISTP521_PRE_COMP *pre = NULL; |
| 2066 | int i, j; |
| 2067 | BN_CTX *new_ctx = NULL; |
| 2068 | BIGNUM *x, *y; |
| 2069 | EC_POINT *generator = NULL; |
| 2070 | felem tmp_felems[16]; |
| 2071 | |
| 2072 | /* throw away old precomputation */ |
| 2073 | EC_pre_comp_free(group); |
| 2074 | if (ctx == NULL) |
| 2075 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) |
| 2076 | return 0; |
| 2077 | BN_CTX_start(ctx); |
| 2078 | x = BN_CTX_get(ctx); |
| 2079 | y = BN_CTX_get(ctx); |
| 2080 | if (y == NULL) |
| 2081 | goto err; |
| 2082 | /* get the generator */ |
| 2083 | if (group->generator == NULL) |
| 2084 | goto err; |
| 2085 | generator = EC_POINT_new(group); |
| 2086 | if (generator == NULL) |
| 2087 | goto err; |
| 2088 | BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); |
| 2089 | BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); |
| 2090 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
| 2091 | goto err; |
| 2092 | if ((pre = nistp521_pre_comp_new()) == NULL) |
| 2093 | goto err; |
| 2094 | /* |
| 2095 | * if the generator is the standard one, use built-in precomputation |
| 2096 | */ |
| 2097 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
| 2098 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
| 2099 | goto done; |
| 2100 | } |
| 2101 | if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || |
| 2102 | (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || |
| 2103 | (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z))) |
| 2104 | goto err; |
| 2105 | /* compute 2^130*G, 2^260*G, 2^390*G */ |
| 2106 | for (i = 1; i <= 4; i <<= 1) { |
| 2107 | point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], |
| 2108 | pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], |
| 2109 | pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); |
| 2110 | for (j = 0; j < 129; ++j) { |
| 2111 | point_double(pre->g_pre_comp[2 * i][0], |
| 2112 | pre->g_pre_comp[2 * i][1], |
| 2113 | pre->g_pre_comp[2 * i][2], |
| 2114 | pre->g_pre_comp[2 * i][0], |
| 2115 | pre->g_pre_comp[2 * i][1], |
| 2116 | pre->g_pre_comp[2 * i][2]); |
| 2117 | } |
| 2118 | } |
| 2119 | /* g_pre_comp[0] is the point at infinity */ |
| 2120 | memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); |
| 2121 | /* the remaining multiples */ |
| 2122 | /* 2^130*G + 2^260*G */ |
| 2123 | point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], |
| 2124 | pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], |
| 2125 | pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], |
| 2126 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| 2127 | pre->g_pre_comp[2][2]); |
| 2128 | /* 2^130*G + 2^390*G */ |
| 2129 | point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], |
| 2130 | pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], |
| 2131 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], |
| 2132 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| 2133 | pre->g_pre_comp[2][2]); |
| 2134 | /* 2^260*G + 2^390*G */ |
| 2135 | point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], |
| 2136 | pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], |
| 2137 | pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], |
| 2138 | 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], |
| 2139 | pre->g_pre_comp[4][2]); |
| 2140 | /* 2^130*G + 2^260*G + 2^390*G */ |
| 2141 | point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], |
| 2142 | pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], |
| 2143 | pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], |
| 2144 | 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], |
| 2145 | pre->g_pre_comp[2][2]); |
| 2146 | for (i = 1; i < 8; ++i) { |
| 2147 | /* odd multiples: add G */ |
| 2148 | point_add(pre->g_pre_comp[2 * i + 1][0], |
| 2149 | pre->g_pre_comp[2 * i + 1][1], |
| 2150 | pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], |
| 2151 | pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0, |
| 2152 | pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], |
| 2153 | pre->g_pre_comp[1][2]); |
| 2154 | } |
| 2155 | make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); |
| 2156 | |
| 2157 | done: |
| 2158 | SETPRECOMP(group, nistp521, pre); |
| 2159 | ret = 1; |
| 2160 | pre = NULL; |
| 2161 | err: |
| 2162 | BN_CTX_end(ctx); |
| 2163 | EC_POINT_free(generator); |
| 2164 | BN_CTX_free(new_ctx); |
| 2165 | EC_nistp521_pre_comp_free(pre); |
| 2166 | return ret; |
| 2167 | } |
| 2168 | |
| 2169 | int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) |
| 2170 | { |
| 2171 | return HAVEPRECOMP(group, nistp521); |
| 2172 | } |
| 2173 | |
| 2174 | #endif |