yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <openssl/opensslconf.h> |
| 11 | #include <openssl/crypto.h> |
| 12 | #include <openssl/evp.h> |
| 13 | #include <openssl/err.h> |
| 14 | #include <string.h> |
| 15 | #include <assert.h> |
| 16 | #include <openssl/aes.h> |
| 17 | #include "crypto/evp.h" |
| 18 | #include "modes_local.h" |
| 19 | #include <openssl/rand.h> |
| 20 | #include "evp_local.h" |
| 21 | |
| 22 | typedef struct { |
| 23 | union { |
| 24 | double align; |
| 25 | AES_KEY ks; |
| 26 | } ks; |
| 27 | block128_f block; |
| 28 | union { |
| 29 | cbc128_f cbc; |
| 30 | ctr128_f ctr; |
| 31 | } stream; |
| 32 | } EVP_AES_KEY; |
| 33 | |
| 34 | typedef struct { |
| 35 | union { |
| 36 | double align; |
| 37 | AES_KEY ks; |
| 38 | } ks; /* AES key schedule to use */ |
| 39 | int key_set; /* Set if key initialised */ |
| 40 | int iv_set; /* Set if an iv is set */ |
| 41 | GCM128_CONTEXT gcm; |
| 42 | unsigned char *iv; /* Temporary IV store */ |
| 43 | int ivlen; /* IV length */ |
| 44 | int taglen; |
| 45 | int iv_gen; /* It is OK to generate IVs */ |
| 46 | int tls_aad_len; /* TLS AAD length */ |
| 47 | ctr128_f ctr; |
| 48 | } EVP_AES_GCM_CTX; |
| 49 | |
| 50 | typedef struct { |
| 51 | union { |
| 52 | double align; |
| 53 | AES_KEY ks; |
| 54 | } ks1, ks2; /* AES key schedules to use */ |
| 55 | XTS128_CONTEXT xts; |
| 56 | void (*stream) (const unsigned char *in, |
| 57 | unsigned char *out, size_t length, |
| 58 | const AES_KEY *key1, const AES_KEY *key2, |
| 59 | const unsigned char iv[16]); |
| 60 | } EVP_AES_XTS_CTX; |
| 61 | |
| 62 | typedef struct { |
| 63 | union { |
| 64 | double align; |
| 65 | AES_KEY ks; |
| 66 | } ks; /* AES key schedule to use */ |
| 67 | int key_set; /* Set if key initialised */ |
| 68 | int iv_set; /* Set if an iv is set */ |
| 69 | int tag_set; /* Set if tag is valid */ |
| 70 | int len_set; /* Set if message length set */ |
| 71 | int L, M; /* L and M parameters from RFC3610 */ |
| 72 | int tls_aad_len; /* TLS AAD length */ |
| 73 | CCM128_CONTEXT ccm; |
| 74 | ccm128_f str; |
| 75 | } EVP_AES_CCM_CTX; |
| 76 | |
| 77 | #ifndef OPENSSL_NO_OCB |
| 78 | typedef struct { |
| 79 | union { |
| 80 | double align; |
| 81 | AES_KEY ks; |
| 82 | } ksenc; /* AES key schedule to use for encryption */ |
| 83 | union { |
| 84 | double align; |
| 85 | AES_KEY ks; |
| 86 | } ksdec; /* AES key schedule to use for decryption */ |
| 87 | int key_set; /* Set if key initialised */ |
| 88 | int iv_set; /* Set if an iv is set */ |
| 89 | OCB128_CONTEXT ocb; |
| 90 | unsigned char *iv; /* Temporary IV store */ |
| 91 | unsigned char tag[16]; |
| 92 | unsigned char data_buf[16]; /* Store partial data blocks */ |
| 93 | unsigned char aad_buf[16]; /* Store partial AAD blocks */ |
| 94 | int data_buf_len; |
| 95 | int aad_buf_len; |
| 96 | int ivlen; /* IV length */ |
| 97 | int taglen; |
| 98 | } EVP_AES_OCB_CTX; |
| 99 | #endif |
| 100 | |
| 101 | #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) |
| 102 | |
| 103 | #ifdef VPAES_ASM |
| 104 | int vpaes_set_encrypt_key(const unsigned char *userKey, int bits, |
| 105 | AES_KEY *key); |
| 106 | int vpaes_set_decrypt_key(const unsigned char *userKey, int bits, |
| 107 | AES_KEY *key); |
| 108 | |
| 109 | void vpaes_encrypt(const unsigned char *in, unsigned char *out, |
| 110 | const AES_KEY *key); |
| 111 | void vpaes_decrypt(const unsigned char *in, unsigned char *out, |
| 112 | const AES_KEY *key); |
| 113 | |
| 114 | void vpaes_cbc_encrypt(const unsigned char *in, |
| 115 | unsigned char *out, |
| 116 | size_t length, |
| 117 | const AES_KEY *key, unsigned char *ivec, int enc); |
| 118 | #endif |
| 119 | #ifdef BSAES_ASM |
| 120 | void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| 121 | size_t length, const AES_KEY *key, |
| 122 | unsigned char ivec[16], int enc); |
| 123 | void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, |
| 124 | size_t len, const AES_KEY *key, |
| 125 | const unsigned char ivec[16]); |
| 126 | void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out, |
| 127 | size_t len, const AES_KEY *key1, |
| 128 | const AES_KEY *key2, const unsigned char iv[16]); |
| 129 | void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out, |
| 130 | size_t len, const AES_KEY *key1, |
| 131 | const AES_KEY *key2, const unsigned char iv[16]); |
| 132 | #endif |
| 133 | #ifdef AES_CTR_ASM |
| 134 | void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| 135 | size_t blocks, const AES_KEY *key, |
| 136 | const unsigned char ivec[AES_BLOCK_SIZE]); |
| 137 | #endif |
| 138 | #ifdef AES_XTS_ASM |
| 139 | void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len, |
| 140 | const AES_KEY *key1, const AES_KEY *key2, |
| 141 | const unsigned char iv[16]); |
| 142 | void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len, |
| 143 | const AES_KEY *key1, const AES_KEY *key2, |
| 144 | const unsigned char iv[16]); |
| 145 | #endif |
| 146 | |
| 147 | /* increment counter (64-bit int) by 1 */ |
| 148 | static void ctr64_inc(unsigned char *counter) |
| 149 | { |
| 150 | int n = 8; |
| 151 | unsigned char c; |
| 152 | |
| 153 | do { |
| 154 | --n; |
| 155 | c = counter[n]; |
| 156 | ++c; |
| 157 | counter[n] = c; |
| 158 | if (c) |
| 159 | return; |
| 160 | } while (n); |
| 161 | } |
| 162 | |
| 163 | #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) |
| 164 | # include "ppc_arch.h" |
| 165 | # ifdef VPAES_ASM |
| 166 | # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC) |
| 167 | # endif |
| 168 | # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207) |
| 169 | # define HWAES_set_encrypt_key aes_p8_set_encrypt_key |
| 170 | # define HWAES_set_decrypt_key aes_p8_set_decrypt_key |
| 171 | # define HWAES_encrypt aes_p8_encrypt |
| 172 | # define HWAES_decrypt aes_p8_decrypt |
| 173 | # define HWAES_cbc_encrypt aes_p8_cbc_encrypt |
| 174 | # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks |
| 175 | # define HWAES_xts_encrypt aes_p8_xts_encrypt |
| 176 | # define HWAES_xts_decrypt aes_p8_xts_decrypt |
| 177 | #endif |
| 178 | |
| 179 | #if defined(OPENSSL_CPUID_OBJ) && ( \ |
| 180 | ((defined(__i386) || defined(__i386__) || \ |
| 181 | defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \ |
| 182 | defined(__x86_64) || defined(__x86_64__) || \ |
| 183 | defined(_M_AMD64) || defined(_M_X64) ) |
| 184 | |
| 185 | extern unsigned int OPENSSL_ia32cap_P[]; |
| 186 | |
| 187 | # ifdef VPAES_ASM |
| 188 | # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) |
| 189 | # endif |
| 190 | # ifdef BSAES_ASM |
| 191 | # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32))) |
| 192 | # endif |
| 193 | /* |
| 194 | * AES-NI section |
| 195 | */ |
| 196 | # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32))) |
| 197 | |
| 198 | int aesni_set_encrypt_key(const unsigned char *userKey, int bits, |
| 199 | AES_KEY *key); |
| 200 | int aesni_set_decrypt_key(const unsigned char *userKey, int bits, |
| 201 | AES_KEY *key); |
| 202 | |
| 203 | void aesni_encrypt(const unsigned char *in, unsigned char *out, |
| 204 | const AES_KEY *key); |
| 205 | void aesni_decrypt(const unsigned char *in, unsigned char *out, |
| 206 | const AES_KEY *key); |
| 207 | |
| 208 | void aesni_ecb_encrypt(const unsigned char *in, |
| 209 | unsigned char *out, |
| 210 | size_t length, const AES_KEY *key, int enc); |
| 211 | void aesni_cbc_encrypt(const unsigned char *in, |
| 212 | unsigned char *out, |
| 213 | size_t length, |
| 214 | const AES_KEY *key, unsigned char *ivec, int enc); |
| 215 | |
| 216 | void aesni_ctr32_encrypt_blocks(const unsigned char *in, |
| 217 | unsigned char *out, |
| 218 | size_t blocks, |
| 219 | const void *key, const unsigned char *ivec); |
| 220 | |
| 221 | void aesni_xts_encrypt(const unsigned char *in, |
| 222 | unsigned char *out, |
| 223 | size_t length, |
| 224 | const AES_KEY *key1, const AES_KEY *key2, |
| 225 | const unsigned char iv[16]); |
| 226 | |
| 227 | void aesni_xts_decrypt(const unsigned char *in, |
| 228 | unsigned char *out, |
| 229 | size_t length, |
| 230 | const AES_KEY *key1, const AES_KEY *key2, |
| 231 | const unsigned char iv[16]); |
| 232 | |
| 233 | void aesni_ccm64_encrypt_blocks(const unsigned char *in, |
| 234 | unsigned char *out, |
| 235 | size_t blocks, |
| 236 | const void *key, |
| 237 | const unsigned char ivec[16], |
| 238 | unsigned char cmac[16]); |
| 239 | |
| 240 | void aesni_ccm64_decrypt_blocks(const unsigned char *in, |
| 241 | unsigned char *out, |
| 242 | size_t blocks, |
| 243 | const void *key, |
| 244 | const unsigned char ivec[16], |
| 245 | unsigned char cmac[16]); |
| 246 | |
| 247 | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) |
| 248 | size_t aesni_gcm_encrypt(const unsigned char *in, |
| 249 | unsigned char *out, |
| 250 | size_t len, |
| 251 | const void *key, unsigned char ivec[16], u64 *Xi); |
| 252 | # define AES_gcm_encrypt aesni_gcm_encrypt |
| 253 | size_t aesni_gcm_decrypt(const unsigned char *in, |
| 254 | unsigned char *out, |
| 255 | size_t len, |
| 256 | const void *key, unsigned char ivec[16], u64 *Xi); |
| 257 | # define AES_gcm_decrypt aesni_gcm_decrypt |
| 258 | void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in, |
| 259 | size_t len); |
| 260 | # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \ |
| 261 | gctx->gcm.ghash==gcm_ghash_avx) |
| 262 | # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ |
| 263 | gctx->gcm.ghash==gcm_ghash_avx) |
| 264 | # undef AES_GCM_ASM2 /* minor size optimization */ |
| 265 | # endif |
| 266 | |
| 267 | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 268 | const unsigned char *iv, int enc) |
| 269 | { |
| 270 | int ret, mode; |
| 271 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 272 | |
| 273 | mode = EVP_CIPHER_CTX_mode(ctx); |
| 274 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 275 | && !enc) { |
| 276 | ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 277 | &dat->ks.ks); |
| 278 | dat->block = (block128_f) aesni_decrypt; |
| 279 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 280 | (cbc128_f) aesni_cbc_encrypt : NULL; |
| 281 | } else { |
| 282 | ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 283 | &dat->ks.ks); |
| 284 | dat->block = (block128_f) aesni_encrypt; |
| 285 | if (mode == EVP_CIPH_CBC_MODE) |
| 286 | dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; |
| 287 | else if (mode == EVP_CIPH_CTR_MODE) |
| 288 | dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; |
| 289 | else |
| 290 | dat->stream.cbc = NULL; |
| 291 | } |
| 292 | |
| 293 | if (ret < 0) { |
| 294 | EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | return 1; |
| 299 | } |
| 300 | |
| 301 | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 302 | const unsigned char *in, size_t len) |
| 303 | { |
| 304 | aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, |
| 305 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 306 | EVP_CIPHER_CTX_encrypting(ctx)); |
| 307 | |
| 308 | return 1; |
| 309 | } |
| 310 | |
| 311 | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 312 | const unsigned char *in, size_t len) |
| 313 | { |
| 314 | size_t bl = EVP_CIPHER_CTX_block_size(ctx); |
| 315 | |
| 316 | if (len < bl) |
| 317 | return 1; |
| 318 | |
| 319 | aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, |
| 320 | EVP_CIPHER_CTX_encrypting(ctx)); |
| 321 | |
| 322 | return 1; |
| 323 | } |
| 324 | |
| 325 | # define aesni_ofb_cipher aes_ofb_cipher |
| 326 | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 327 | const unsigned char *in, size_t len); |
| 328 | |
| 329 | # define aesni_cfb_cipher aes_cfb_cipher |
| 330 | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 331 | const unsigned char *in, size_t len); |
| 332 | |
| 333 | # define aesni_cfb8_cipher aes_cfb8_cipher |
| 334 | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 335 | const unsigned char *in, size_t len); |
| 336 | |
| 337 | # define aesni_cfb1_cipher aes_cfb1_cipher |
| 338 | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 339 | const unsigned char *in, size_t len); |
| 340 | |
| 341 | # define aesni_ctr_cipher aes_ctr_cipher |
| 342 | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 343 | const unsigned char *in, size_t len); |
| 344 | |
| 345 | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 346 | const unsigned char *iv, int enc) |
| 347 | { |
| 348 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 349 | if (!iv && !key) |
| 350 | return 1; |
| 351 | if (key) { |
| 352 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 353 | &gctx->ks.ks); |
| 354 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); |
| 355 | gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; |
| 356 | /* |
| 357 | * If we have an iv can set it directly, otherwise use saved IV. |
| 358 | */ |
| 359 | if (iv == NULL && gctx->iv_set) |
| 360 | iv = gctx->iv; |
| 361 | if (iv) { |
| 362 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 363 | gctx->iv_set = 1; |
| 364 | } |
| 365 | gctx->key_set = 1; |
| 366 | } else { |
| 367 | /* If key set use IV, otherwise copy */ |
| 368 | if (gctx->key_set) |
| 369 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 370 | else |
| 371 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 372 | gctx->iv_set = 1; |
| 373 | gctx->iv_gen = 0; |
| 374 | } |
| 375 | return 1; |
| 376 | } |
| 377 | |
| 378 | # define aesni_gcm_cipher aes_gcm_cipher |
| 379 | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 380 | const unsigned char *in, size_t len); |
| 381 | |
| 382 | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 383 | const unsigned char *iv, int enc) |
| 384 | { |
| 385 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 386 | |
| 387 | if (!iv && !key) |
| 388 | return 1; |
| 389 | |
| 390 | if (key) { |
| 391 | /* The key is two half length keys in reality */ |
| 392 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 393 | |
| 394 | /* |
| 395 | * Verify that the two keys are different. |
| 396 | * |
| 397 | * This addresses Rogaway's vulnerability. |
| 398 | * See comment in aes_xts_init_key() below. |
| 399 | */ |
| 400 | if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
| 401 | EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | /* key_len is two AES keys */ |
| 406 | if (enc) { |
| 407 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 408 | &xctx->ks1.ks); |
| 409 | xctx->xts.block1 = (block128_f) aesni_encrypt; |
| 410 | xctx->stream = aesni_xts_encrypt; |
| 411 | } else { |
| 412 | aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 413 | &xctx->ks1.ks); |
| 414 | xctx->xts.block1 = (block128_f) aesni_decrypt; |
| 415 | xctx->stream = aesni_xts_decrypt; |
| 416 | } |
| 417 | |
| 418 | aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, |
| 419 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 420 | &xctx->ks2.ks); |
| 421 | xctx->xts.block2 = (block128_f) aesni_encrypt; |
| 422 | |
| 423 | xctx->xts.key1 = &xctx->ks1; |
| 424 | } |
| 425 | |
| 426 | if (iv) { |
| 427 | xctx->xts.key2 = &xctx->ks2; |
| 428 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); |
| 429 | } |
| 430 | |
| 431 | return 1; |
| 432 | } |
| 433 | |
| 434 | # define aesni_xts_cipher aes_xts_cipher |
| 435 | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 436 | const unsigned char *in, size_t len); |
| 437 | |
| 438 | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 439 | const unsigned char *iv, int enc) |
| 440 | { |
| 441 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 442 | if (!iv && !key) |
| 443 | return 1; |
| 444 | if (key) { |
| 445 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 446 | &cctx->ks.ks); |
| 447 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 448 | &cctx->ks, (block128_f) aesni_encrypt); |
| 449 | cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : |
| 450 | (ccm128_f) aesni_ccm64_decrypt_blocks; |
| 451 | cctx->key_set = 1; |
| 452 | } |
| 453 | if (iv) { |
| 454 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); |
| 455 | cctx->iv_set = 1; |
| 456 | } |
| 457 | return 1; |
| 458 | } |
| 459 | |
| 460 | # define aesni_ccm_cipher aes_ccm_cipher |
| 461 | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 462 | const unsigned char *in, size_t len); |
| 463 | |
| 464 | # ifndef OPENSSL_NO_OCB |
| 465 | void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out, |
| 466 | size_t blocks, const void *key, |
| 467 | size_t start_block_num, |
| 468 | unsigned char offset_i[16], |
| 469 | const unsigned char L_[][16], |
| 470 | unsigned char checksum[16]); |
| 471 | void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out, |
| 472 | size_t blocks, const void *key, |
| 473 | size_t start_block_num, |
| 474 | unsigned char offset_i[16], |
| 475 | const unsigned char L_[][16], |
| 476 | unsigned char checksum[16]); |
| 477 | |
| 478 | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 479 | const unsigned char *iv, int enc) |
| 480 | { |
| 481 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 482 | if (!iv && !key) |
| 483 | return 1; |
| 484 | if (key) { |
| 485 | do { |
| 486 | /* |
| 487 | * We set both the encrypt and decrypt key here because decrypt |
| 488 | * needs both. We could possibly optimise to remove setting the |
| 489 | * decrypt for an encryption operation. |
| 490 | */ |
| 491 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 492 | &octx->ksenc.ks); |
| 493 | aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 494 | &octx->ksdec.ks); |
| 495 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 496 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 497 | (block128_f) aesni_encrypt, |
| 498 | (block128_f) aesni_decrypt, |
| 499 | enc ? aesni_ocb_encrypt |
| 500 | : aesni_ocb_decrypt)) |
| 501 | return 0; |
| 502 | } |
| 503 | while (0); |
| 504 | |
| 505 | /* |
| 506 | * If we have an iv we can set it directly, otherwise use saved IV. |
| 507 | */ |
| 508 | if (iv == NULL && octx->iv_set) |
| 509 | iv = octx->iv; |
| 510 | if (iv) { |
| 511 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| 512 | != 1) |
| 513 | return 0; |
| 514 | octx->iv_set = 1; |
| 515 | } |
| 516 | octx->key_set = 1; |
| 517 | } else { |
| 518 | /* If key set use IV, otherwise copy */ |
| 519 | if (octx->key_set) |
| 520 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| 521 | else |
| 522 | memcpy(octx->iv, iv, octx->ivlen); |
| 523 | octx->iv_set = 1; |
| 524 | } |
| 525 | return 1; |
| 526 | } |
| 527 | |
| 528 | # define aesni_ocb_cipher aes_ocb_cipher |
| 529 | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 530 | const unsigned char *in, size_t len); |
| 531 | # endif /* OPENSSL_NO_OCB */ |
| 532 | |
| 533 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| 534 | static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
| 535 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| 536 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 537 | aesni_init_key, \ |
| 538 | aesni_##mode##_cipher, \ |
| 539 | NULL, \ |
| 540 | sizeof(EVP_AES_KEY), \ |
| 541 | NULL,NULL,NULL,NULL }; \ |
| 542 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 543 | nid##_##keylen##_##nmode,blocksize, \ |
| 544 | keylen/8,ivlen, \ |
| 545 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 546 | aes_init_key, \ |
| 547 | aes_##mode##_cipher, \ |
| 548 | NULL, \ |
| 549 | sizeof(EVP_AES_KEY), \ |
| 550 | NULL,NULL,NULL,NULL }; \ |
| 551 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 552 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 553 | |
| 554 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| 555 | static const EVP_CIPHER aesni_##keylen##_##mode = { \ |
| 556 | nid##_##keylen##_##mode,blocksize, \ |
| 557 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| 558 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 559 | aesni_##mode##_init_key, \ |
| 560 | aesni_##mode##_cipher, \ |
| 561 | aes_##mode##_cleanup, \ |
| 562 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 563 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 564 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 565 | nid##_##keylen##_##mode,blocksize, \ |
| 566 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| 567 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 568 | aes_##mode##_init_key, \ |
| 569 | aes_##mode##_cipher, \ |
| 570 | aes_##mode##_cleanup, \ |
| 571 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 572 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 573 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 574 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 575 | |
| 576 | #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__)) |
| 577 | |
| 578 | # include "sparc_arch.h" |
| 579 | |
| 580 | extern unsigned int OPENSSL_sparcv9cap_P[]; |
| 581 | |
| 582 | /* |
| 583 | * Initial Fujitsu SPARC64 X support |
| 584 | */ |
| 585 | # define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX) |
| 586 | # define HWAES_set_encrypt_key aes_fx_set_encrypt_key |
| 587 | # define HWAES_set_decrypt_key aes_fx_set_decrypt_key |
| 588 | # define HWAES_encrypt aes_fx_encrypt |
| 589 | # define HWAES_decrypt aes_fx_decrypt |
| 590 | # define HWAES_cbc_encrypt aes_fx_cbc_encrypt |
| 591 | # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks |
| 592 | |
| 593 | # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES) |
| 594 | |
| 595 | void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks); |
| 596 | void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks); |
| 597 | void aes_t4_encrypt(const unsigned char *in, unsigned char *out, |
| 598 | const AES_KEY *key); |
| 599 | void aes_t4_decrypt(const unsigned char *in, unsigned char *out, |
| 600 | const AES_KEY *key); |
| 601 | /* |
| 602 | * Key-length specific subroutines were chosen for following reason. |
| 603 | * Each SPARC T4 core can execute up to 8 threads which share core's |
| 604 | * resources. Loading as much key material to registers allows to |
| 605 | * minimize references to shared memory interface, as well as amount |
| 606 | * of instructions in inner loops [much needed on T4]. But then having |
| 607 | * non-key-length specific routines would require conditional branches |
| 608 | * either in inner loops or on subroutines' entries. Former is hardly |
| 609 | * acceptable, while latter means code size increase to size occupied |
| 610 | * by multiple key-length specific subroutines, so why fight? |
| 611 | */ |
| 612 | void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| 613 | size_t len, const AES_KEY *key, |
| 614 | unsigned char *ivec, int /*unused*/); |
| 615 | void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, |
| 616 | size_t len, const AES_KEY *key, |
| 617 | unsigned char *ivec, int /*unused*/); |
| 618 | void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| 619 | size_t len, const AES_KEY *key, |
| 620 | unsigned char *ivec, int /*unused*/); |
| 621 | void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, |
| 622 | size_t len, const AES_KEY *key, |
| 623 | unsigned char *ivec, int /*unused*/); |
| 624 | void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| 625 | size_t len, const AES_KEY *key, |
| 626 | unsigned char *ivec, int /*unused*/); |
| 627 | void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out, |
| 628 | size_t len, const AES_KEY *key, |
| 629 | unsigned char *ivec, int /*unused*/); |
| 630 | void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| 631 | size_t blocks, const AES_KEY *key, |
| 632 | unsigned char *ivec); |
| 633 | void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| 634 | size_t blocks, const AES_KEY *key, |
| 635 | unsigned char *ivec); |
| 636 | void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out, |
| 637 | size_t blocks, const AES_KEY *key, |
| 638 | unsigned char *ivec); |
| 639 | void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out, |
| 640 | size_t blocks, const AES_KEY *key1, |
| 641 | const AES_KEY *key2, const unsigned char *ivec); |
| 642 | void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out, |
| 643 | size_t blocks, const AES_KEY *key1, |
| 644 | const AES_KEY *key2, const unsigned char *ivec); |
| 645 | void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out, |
| 646 | size_t blocks, const AES_KEY *key1, |
| 647 | const AES_KEY *key2, const unsigned char *ivec); |
| 648 | void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out, |
| 649 | size_t blocks, const AES_KEY *key1, |
| 650 | const AES_KEY *key2, const unsigned char *ivec); |
| 651 | |
| 652 | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 653 | const unsigned char *iv, int enc) |
| 654 | { |
| 655 | int ret, mode, bits; |
| 656 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 657 | |
| 658 | mode = EVP_CIPHER_CTX_mode(ctx); |
| 659 | bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 660 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 661 | && !enc) { |
| 662 | ret = 0; |
| 663 | aes_t4_set_decrypt_key(key, bits, &dat->ks.ks); |
| 664 | dat->block = (block128_f) aes_t4_decrypt; |
| 665 | switch (bits) { |
| 666 | case 128: |
| 667 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 668 | (cbc128_f) aes128_t4_cbc_decrypt : NULL; |
| 669 | break; |
| 670 | case 192: |
| 671 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 672 | (cbc128_f) aes192_t4_cbc_decrypt : NULL; |
| 673 | break; |
| 674 | case 256: |
| 675 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 676 | (cbc128_f) aes256_t4_cbc_decrypt : NULL; |
| 677 | break; |
| 678 | default: |
| 679 | ret = -1; |
| 680 | } |
| 681 | } else { |
| 682 | ret = 0; |
| 683 | aes_t4_set_encrypt_key(key, bits, &dat->ks.ks); |
| 684 | dat->block = (block128_f) aes_t4_encrypt; |
| 685 | switch (bits) { |
| 686 | case 128: |
| 687 | if (mode == EVP_CIPH_CBC_MODE) |
| 688 | dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; |
| 689 | else if (mode == EVP_CIPH_CTR_MODE) |
| 690 | dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; |
| 691 | else |
| 692 | dat->stream.cbc = NULL; |
| 693 | break; |
| 694 | case 192: |
| 695 | if (mode == EVP_CIPH_CBC_MODE) |
| 696 | dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; |
| 697 | else if (mode == EVP_CIPH_CTR_MODE) |
| 698 | dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; |
| 699 | else |
| 700 | dat->stream.cbc = NULL; |
| 701 | break; |
| 702 | case 256: |
| 703 | if (mode == EVP_CIPH_CBC_MODE) |
| 704 | dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; |
| 705 | else if (mode == EVP_CIPH_CTR_MODE) |
| 706 | dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; |
| 707 | else |
| 708 | dat->stream.cbc = NULL; |
| 709 | break; |
| 710 | default: |
| 711 | ret = -1; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | if (ret < 0) { |
| 716 | EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | return 1; |
| 721 | } |
| 722 | |
| 723 | # define aes_t4_cbc_cipher aes_cbc_cipher |
| 724 | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 725 | const unsigned char *in, size_t len); |
| 726 | |
| 727 | # define aes_t4_ecb_cipher aes_ecb_cipher |
| 728 | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 729 | const unsigned char *in, size_t len); |
| 730 | |
| 731 | # define aes_t4_ofb_cipher aes_ofb_cipher |
| 732 | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 733 | const unsigned char *in, size_t len); |
| 734 | |
| 735 | # define aes_t4_cfb_cipher aes_cfb_cipher |
| 736 | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 737 | const unsigned char *in, size_t len); |
| 738 | |
| 739 | # define aes_t4_cfb8_cipher aes_cfb8_cipher |
| 740 | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 741 | const unsigned char *in, size_t len); |
| 742 | |
| 743 | # define aes_t4_cfb1_cipher aes_cfb1_cipher |
| 744 | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 745 | const unsigned char *in, size_t len); |
| 746 | |
| 747 | # define aes_t4_ctr_cipher aes_ctr_cipher |
| 748 | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 749 | const unsigned char *in, size_t len); |
| 750 | |
| 751 | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 752 | const unsigned char *iv, int enc) |
| 753 | { |
| 754 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 755 | if (!iv && !key) |
| 756 | return 1; |
| 757 | if (key) { |
| 758 | int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 759 | aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); |
| 760 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 761 | (block128_f) aes_t4_encrypt); |
| 762 | switch (bits) { |
| 763 | case 128: |
| 764 | gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; |
| 765 | break; |
| 766 | case 192: |
| 767 | gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; |
| 768 | break; |
| 769 | case 256: |
| 770 | gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; |
| 771 | break; |
| 772 | default: |
| 773 | return 0; |
| 774 | } |
| 775 | /* |
| 776 | * If we have an iv can set it directly, otherwise use saved IV. |
| 777 | */ |
| 778 | if (iv == NULL && gctx->iv_set) |
| 779 | iv = gctx->iv; |
| 780 | if (iv) { |
| 781 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 782 | gctx->iv_set = 1; |
| 783 | } |
| 784 | gctx->key_set = 1; |
| 785 | } else { |
| 786 | /* If key set use IV, otherwise copy */ |
| 787 | if (gctx->key_set) |
| 788 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 789 | else |
| 790 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 791 | gctx->iv_set = 1; |
| 792 | gctx->iv_gen = 0; |
| 793 | } |
| 794 | return 1; |
| 795 | } |
| 796 | |
| 797 | # define aes_t4_gcm_cipher aes_gcm_cipher |
| 798 | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 799 | const unsigned char *in, size_t len); |
| 800 | |
| 801 | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 802 | const unsigned char *iv, int enc) |
| 803 | { |
| 804 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 805 | |
| 806 | if (!iv && !key) |
| 807 | return 1; |
| 808 | |
| 809 | if (key) { |
| 810 | /* The key is two half length keys in reality */ |
| 811 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 812 | const int bits = bytes * 8; |
| 813 | |
| 814 | /* |
| 815 | * Verify that the two keys are different. |
| 816 | * |
| 817 | * This addresses Rogaway's vulnerability. |
| 818 | * See comment in aes_xts_init_key() below. |
| 819 | */ |
| 820 | if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
| 821 | EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); |
| 822 | return 0; |
| 823 | } |
| 824 | |
| 825 | xctx->stream = NULL; |
| 826 | /* key_len is two AES keys */ |
| 827 | if (enc) { |
| 828 | aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); |
| 829 | xctx->xts.block1 = (block128_f) aes_t4_encrypt; |
| 830 | switch (bits) { |
| 831 | case 128: |
| 832 | xctx->stream = aes128_t4_xts_encrypt; |
| 833 | break; |
| 834 | case 256: |
| 835 | xctx->stream = aes256_t4_xts_encrypt; |
| 836 | break; |
| 837 | default: |
| 838 | return 0; |
| 839 | } |
| 840 | } else { |
| 841 | aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 842 | &xctx->ks1.ks); |
| 843 | xctx->xts.block1 = (block128_f) aes_t4_decrypt; |
| 844 | switch (bits) { |
| 845 | case 128: |
| 846 | xctx->stream = aes128_t4_xts_decrypt; |
| 847 | break; |
| 848 | case 256: |
| 849 | xctx->stream = aes256_t4_xts_decrypt; |
| 850 | break; |
| 851 | default: |
| 852 | return 0; |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, |
| 857 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 858 | &xctx->ks2.ks); |
| 859 | xctx->xts.block2 = (block128_f) aes_t4_encrypt; |
| 860 | |
| 861 | xctx->xts.key1 = &xctx->ks1; |
| 862 | } |
| 863 | |
| 864 | if (iv) { |
| 865 | xctx->xts.key2 = &xctx->ks2; |
| 866 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); |
| 867 | } |
| 868 | |
| 869 | return 1; |
| 870 | } |
| 871 | |
| 872 | # define aes_t4_xts_cipher aes_xts_cipher |
| 873 | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 874 | const unsigned char *in, size_t len); |
| 875 | |
| 876 | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 877 | const unsigned char *iv, int enc) |
| 878 | { |
| 879 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 880 | if (!iv && !key) |
| 881 | return 1; |
| 882 | if (key) { |
| 883 | int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; |
| 884 | aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); |
| 885 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 886 | &cctx->ks, (block128_f) aes_t4_encrypt); |
| 887 | cctx->str = NULL; |
| 888 | cctx->key_set = 1; |
| 889 | } |
| 890 | if (iv) { |
| 891 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); |
| 892 | cctx->iv_set = 1; |
| 893 | } |
| 894 | return 1; |
| 895 | } |
| 896 | |
| 897 | # define aes_t4_ccm_cipher aes_ccm_cipher |
| 898 | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 899 | const unsigned char *in, size_t len); |
| 900 | |
| 901 | # ifndef OPENSSL_NO_OCB |
| 902 | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 903 | const unsigned char *iv, int enc) |
| 904 | { |
| 905 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 906 | if (!iv && !key) |
| 907 | return 1; |
| 908 | if (key) { |
| 909 | do { |
| 910 | /* |
| 911 | * We set both the encrypt and decrypt key here because decrypt |
| 912 | * needs both. We could possibly optimise to remove setting the |
| 913 | * decrypt for an encryption operation. |
| 914 | */ |
| 915 | aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 916 | &octx->ksenc.ks); |
| 917 | aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 918 | &octx->ksdec.ks); |
| 919 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 920 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 921 | (block128_f) aes_t4_encrypt, |
| 922 | (block128_f) aes_t4_decrypt, |
| 923 | NULL)) |
| 924 | return 0; |
| 925 | } |
| 926 | while (0); |
| 927 | |
| 928 | /* |
| 929 | * If we have an iv we can set it directly, otherwise use saved IV. |
| 930 | */ |
| 931 | if (iv == NULL && octx->iv_set) |
| 932 | iv = octx->iv; |
| 933 | if (iv) { |
| 934 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| 935 | != 1) |
| 936 | return 0; |
| 937 | octx->iv_set = 1; |
| 938 | } |
| 939 | octx->key_set = 1; |
| 940 | } else { |
| 941 | /* If key set use IV, otherwise copy */ |
| 942 | if (octx->key_set) |
| 943 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| 944 | else |
| 945 | memcpy(octx->iv, iv, octx->ivlen); |
| 946 | octx->iv_set = 1; |
| 947 | } |
| 948 | return 1; |
| 949 | } |
| 950 | |
| 951 | # define aes_t4_ocb_cipher aes_ocb_cipher |
| 952 | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 953 | const unsigned char *in, size_t len); |
| 954 | # endif /* OPENSSL_NO_OCB */ |
| 955 | |
| 956 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| 957 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
| 958 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| 959 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 960 | aes_t4_init_key, \ |
| 961 | aes_t4_##mode##_cipher, \ |
| 962 | NULL, \ |
| 963 | sizeof(EVP_AES_KEY), \ |
| 964 | NULL,NULL,NULL,NULL }; \ |
| 965 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 966 | nid##_##keylen##_##nmode,blocksize, \ |
| 967 | keylen/8,ivlen, \ |
| 968 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 969 | aes_init_key, \ |
| 970 | aes_##mode##_cipher, \ |
| 971 | NULL, \ |
| 972 | sizeof(EVP_AES_KEY), \ |
| 973 | NULL,NULL,NULL,NULL }; \ |
| 974 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 975 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 976 | |
| 977 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| 978 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ |
| 979 | nid##_##keylen##_##mode,blocksize, \ |
| 980 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| 981 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 982 | aes_t4_##mode##_init_key, \ |
| 983 | aes_t4_##mode##_cipher, \ |
| 984 | aes_##mode##_cleanup, \ |
| 985 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 986 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 987 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 988 | nid##_##keylen##_##mode,blocksize, \ |
| 989 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| 990 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 991 | aes_##mode##_init_key, \ |
| 992 | aes_##mode##_cipher, \ |
| 993 | aes_##mode##_cleanup, \ |
| 994 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 995 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 996 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 997 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } |
| 998 | |
| 999 | #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__) |
| 1000 | /* |
| 1001 | * IBM S390X support |
| 1002 | */ |
| 1003 | # include "s390x_arch.h" |
| 1004 | |
| 1005 | typedef struct { |
| 1006 | union { |
| 1007 | double align; |
| 1008 | /*- |
| 1009 | * KM-AES parameter block - begin |
| 1010 | * (see z/Architecture Principles of Operation >= SA22-7832-06) |
| 1011 | */ |
| 1012 | struct { |
| 1013 | unsigned char k[32]; |
| 1014 | } param; |
| 1015 | /* KM-AES parameter block - end */ |
| 1016 | } km; |
| 1017 | unsigned int fc; |
| 1018 | } S390X_AES_ECB_CTX; |
| 1019 | |
| 1020 | typedef struct { |
| 1021 | union { |
| 1022 | double align; |
| 1023 | /*- |
| 1024 | * KMO-AES parameter block - begin |
| 1025 | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
| 1026 | */ |
| 1027 | struct { |
| 1028 | unsigned char cv[16]; |
| 1029 | unsigned char k[32]; |
| 1030 | } param; |
| 1031 | /* KMO-AES parameter block - end */ |
| 1032 | } kmo; |
| 1033 | unsigned int fc; |
| 1034 | |
| 1035 | int res; |
| 1036 | } S390X_AES_OFB_CTX; |
| 1037 | |
| 1038 | typedef struct { |
| 1039 | union { |
| 1040 | double align; |
| 1041 | /*- |
| 1042 | * KMF-AES parameter block - begin |
| 1043 | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
| 1044 | */ |
| 1045 | struct { |
| 1046 | unsigned char cv[16]; |
| 1047 | unsigned char k[32]; |
| 1048 | } param; |
| 1049 | /* KMF-AES parameter block - end */ |
| 1050 | } kmf; |
| 1051 | unsigned int fc; |
| 1052 | |
| 1053 | int res; |
| 1054 | } S390X_AES_CFB_CTX; |
| 1055 | |
| 1056 | typedef struct { |
| 1057 | union { |
| 1058 | double align; |
| 1059 | /*- |
| 1060 | * KMA-GCM-AES parameter block - begin |
| 1061 | * (see z/Architecture Principles of Operation >= SA22-7832-11) |
| 1062 | */ |
| 1063 | struct { |
| 1064 | unsigned char reserved[12]; |
| 1065 | union { |
| 1066 | unsigned int w; |
| 1067 | unsigned char b[4]; |
| 1068 | } cv; |
| 1069 | union { |
| 1070 | unsigned long long g[2]; |
| 1071 | unsigned char b[16]; |
| 1072 | } t; |
| 1073 | unsigned char h[16]; |
| 1074 | unsigned long long taadl; |
| 1075 | unsigned long long tpcl; |
| 1076 | union { |
| 1077 | unsigned long long g[2]; |
| 1078 | unsigned int w[4]; |
| 1079 | } j0; |
| 1080 | unsigned char k[32]; |
| 1081 | } param; |
| 1082 | /* KMA-GCM-AES parameter block - end */ |
| 1083 | } kma; |
| 1084 | unsigned int fc; |
| 1085 | int key_set; |
| 1086 | |
| 1087 | unsigned char *iv; |
| 1088 | int ivlen; |
| 1089 | int iv_set; |
| 1090 | int iv_gen; |
| 1091 | |
| 1092 | int taglen; |
| 1093 | |
| 1094 | unsigned char ares[16]; |
| 1095 | unsigned char mres[16]; |
| 1096 | unsigned char kres[16]; |
| 1097 | int areslen; |
| 1098 | int mreslen; |
| 1099 | int kreslen; |
| 1100 | |
| 1101 | int tls_aad_len; |
| 1102 | } S390X_AES_GCM_CTX; |
| 1103 | |
| 1104 | typedef struct { |
| 1105 | union { |
| 1106 | double align; |
| 1107 | /*- |
| 1108 | * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and |
| 1109 | * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's |
| 1110 | * rounds field is used to store the function code and that the key |
| 1111 | * schedule is not stored (if aes hardware support is detected). |
| 1112 | */ |
| 1113 | struct { |
| 1114 | unsigned char pad[16]; |
| 1115 | AES_KEY k; |
| 1116 | } key; |
| 1117 | |
| 1118 | struct { |
| 1119 | /*- |
| 1120 | * KMAC-AES parameter block - begin |
| 1121 | * (see z/Architecture Principles of Operation >= SA22-7832-08) |
| 1122 | */ |
| 1123 | struct { |
| 1124 | union { |
| 1125 | unsigned long long g[2]; |
| 1126 | unsigned char b[16]; |
| 1127 | } icv; |
| 1128 | unsigned char k[32]; |
| 1129 | } kmac_param; |
| 1130 | /* KMAC-AES parameter block - end */ |
| 1131 | |
| 1132 | union { |
| 1133 | unsigned long long g[2]; |
| 1134 | unsigned char b[16]; |
| 1135 | } nonce; |
| 1136 | union { |
| 1137 | unsigned long long g[2]; |
| 1138 | unsigned char b[16]; |
| 1139 | } buf; |
| 1140 | |
| 1141 | unsigned long long blocks; |
| 1142 | int l; |
| 1143 | int m; |
| 1144 | int tls_aad_len; |
| 1145 | int iv_set; |
| 1146 | int tag_set; |
| 1147 | int len_set; |
| 1148 | int key_set; |
| 1149 | |
| 1150 | unsigned char pad[140]; |
| 1151 | unsigned int fc; |
| 1152 | } ccm; |
| 1153 | } aes; |
| 1154 | } S390X_AES_CCM_CTX; |
| 1155 | |
| 1156 | /* Convert key size to function code: [16,24,32] -> [18,19,20]. */ |
| 1157 | # define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6)) |
| 1158 | |
| 1159 | /* Most modes of operation need km for partial block processing. */ |
| 1160 | # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \ |
| 1161 | S390X_CAPBIT(S390X_AES_128)) |
| 1162 | # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \ |
| 1163 | S390X_CAPBIT(S390X_AES_192)) |
| 1164 | # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \ |
| 1165 | S390X_CAPBIT(S390X_AES_256)) |
| 1166 | |
| 1167 | # define s390x_aes_init_key aes_init_key |
| 1168 | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 1169 | const unsigned char *iv, int enc); |
| 1170 | |
| 1171 | # define S390X_aes_128_cbc_CAPABLE 0 /* checked by callee */ |
| 1172 | # define S390X_aes_192_cbc_CAPABLE 0 |
| 1173 | # define S390X_aes_256_cbc_CAPABLE 0 |
| 1174 | # define S390X_AES_CBC_CTX EVP_AES_KEY |
| 1175 | |
| 1176 | # define s390x_aes_cbc_init_key aes_init_key |
| 1177 | |
| 1178 | # define s390x_aes_cbc_cipher aes_cbc_cipher |
| 1179 | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1180 | const unsigned char *in, size_t len); |
| 1181 | |
| 1182 | # define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE |
| 1183 | # define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE |
| 1184 | # define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE |
| 1185 | |
| 1186 | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx, |
| 1187 | const unsigned char *key, |
| 1188 | const unsigned char *iv, int enc) |
| 1189 | { |
| 1190 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); |
| 1191 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1192 | |
| 1193 | cctx->fc = S390X_AES_FC(keylen) | (enc ? 0 : S390X_DECRYPT); |
| 1194 | |
| 1195 | if (key != NULL) |
| 1196 | memcpy(cctx->km.param.k, key, keylen); |
| 1197 | |
| 1198 | return 1; |
| 1199 | } |
| 1200 | |
| 1201 | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1202 | const unsigned char *in, size_t len) |
| 1203 | { |
| 1204 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); |
| 1205 | |
| 1206 | s390x_km(in, len, out, cctx->fc, &cctx->km.param); |
| 1207 | return 1; |
| 1208 | } |
| 1209 | |
| 1210 | # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \ |
| 1211 | (OPENSSL_s390xcap_P.kmo[0] & \ |
| 1212 | S390X_CAPBIT(S390X_AES_128))) |
| 1213 | # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \ |
| 1214 | (OPENSSL_s390xcap_P.kmo[0] & \ |
| 1215 | S390X_CAPBIT(S390X_AES_192))) |
| 1216 | # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \ |
| 1217 | (OPENSSL_s390xcap_P.kmo[0] & \ |
| 1218 | S390X_CAPBIT(S390X_AES_256))) |
| 1219 | |
| 1220 | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx, |
| 1221 | const unsigned char *key, |
| 1222 | const unsigned char *ivec, int enc) |
| 1223 | { |
| 1224 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); |
| 1225 | const unsigned char *oiv = EVP_CIPHER_CTX_original_iv(ctx); |
| 1226 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1227 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1228 | |
| 1229 | cctx->fc = S390X_AES_FC(keylen); |
| 1230 | |
| 1231 | if (key != NULL) |
| 1232 | memcpy(cctx->kmo.param.k, key, keylen); |
| 1233 | |
| 1234 | cctx->res = 0; |
| 1235 | memcpy(cctx->kmo.param.cv, oiv, ivlen); |
| 1236 | return 1; |
| 1237 | } |
| 1238 | |
| 1239 | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1240 | const unsigned char *in, size_t len) |
| 1241 | { |
| 1242 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); |
| 1243 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1244 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 1245 | int n = cctx->res; |
| 1246 | int rem; |
| 1247 | |
| 1248 | memcpy(cctx->kmo.param.cv, iv, ivlen); |
| 1249 | while (n && len) { |
| 1250 | *out = *in ^ cctx->kmo.param.cv[n]; |
| 1251 | n = (n + 1) & 0xf; |
| 1252 | --len; |
| 1253 | ++in; |
| 1254 | ++out; |
| 1255 | } |
| 1256 | |
| 1257 | rem = len & 0xf; |
| 1258 | |
| 1259 | len &= ~(size_t)0xf; |
| 1260 | if (len) { |
| 1261 | s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param); |
| 1262 | |
| 1263 | out += len; |
| 1264 | in += len; |
| 1265 | } |
| 1266 | |
| 1267 | if (rem) { |
| 1268 | s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc, |
| 1269 | cctx->kmo.param.k); |
| 1270 | |
| 1271 | while (rem--) { |
| 1272 | out[n] = in[n] ^ cctx->kmo.param.cv[n]; |
| 1273 | ++n; |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | memcpy(iv, cctx->kmo.param.cv, ivlen); |
| 1278 | cctx->res = n; |
| 1279 | return 1; |
| 1280 | } |
| 1281 | |
| 1282 | # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \ |
| 1283 | (OPENSSL_s390xcap_P.kmf[0] & \ |
| 1284 | S390X_CAPBIT(S390X_AES_128))) |
| 1285 | # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \ |
| 1286 | (OPENSSL_s390xcap_P.kmf[0] & \ |
| 1287 | S390X_CAPBIT(S390X_AES_192))) |
| 1288 | # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \ |
| 1289 | (OPENSSL_s390xcap_P.kmf[0] & \ |
| 1290 | S390X_CAPBIT(S390X_AES_256))) |
| 1291 | |
| 1292 | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx, |
| 1293 | const unsigned char *key, |
| 1294 | const unsigned char *ivec, int enc) |
| 1295 | { |
| 1296 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1297 | const unsigned char *oiv = EVP_CIPHER_CTX_original_iv(ctx); |
| 1298 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1299 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1300 | |
| 1301 | cctx->fc = S390X_AES_FC(keylen) | (enc ? 0 : S390X_DECRYPT) |
| 1302 | | (16 << 24); /* 16 bytes cipher feedback */ |
| 1303 | |
| 1304 | if (key != NULL) |
| 1305 | memcpy(cctx->kmf.param.k, key, keylen); |
| 1306 | |
| 1307 | cctx->res = 0; |
| 1308 | memcpy(cctx->kmf.param.cv, oiv, ivlen); |
| 1309 | return 1; |
| 1310 | } |
| 1311 | |
| 1312 | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1313 | const unsigned char *in, size_t len) |
| 1314 | { |
| 1315 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1316 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1317 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1318 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1319 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 1320 | int n = cctx->res; |
| 1321 | int rem; |
| 1322 | unsigned char tmp; |
| 1323 | |
| 1324 | memcpy(cctx->kmf.param.cv, iv, ivlen); |
| 1325 | while (n && len) { |
| 1326 | tmp = *in; |
| 1327 | *out = cctx->kmf.param.cv[n] ^ tmp; |
| 1328 | cctx->kmf.param.cv[n] = enc ? *out : tmp; |
| 1329 | n = (n + 1) & 0xf; |
| 1330 | --len; |
| 1331 | ++in; |
| 1332 | ++out; |
| 1333 | } |
| 1334 | |
| 1335 | rem = len & 0xf; |
| 1336 | |
| 1337 | len &= ~(size_t)0xf; |
| 1338 | if (len) { |
| 1339 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); |
| 1340 | |
| 1341 | out += len; |
| 1342 | in += len; |
| 1343 | } |
| 1344 | |
| 1345 | if (rem) { |
| 1346 | s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv, |
| 1347 | S390X_AES_FC(keylen), cctx->kmf.param.k); |
| 1348 | |
| 1349 | while (rem--) { |
| 1350 | tmp = in[n]; |
| 1351 | out[n] = cctx->kmf.param.cv[n] ^ tmp; |
| 1352 | cctx->kmf.param.cv[n] = enc ? out[n] : tmp; |
| 1353 | ++n; |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | memcpy(iv, cctx->kmf.param.cv, ivlen); |
| 1358 | cctx->res = n; |
| 1359 | return 1; |
| 1360 | } |
| 1361 | |
| 1362 | # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \ |
| 1363 | S390X_CAPBIT(S390X_AES_128)) |
| 1364 | # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \ |
| 1365 | S390X_CAPBIT(S390X_AES_192)) |
| 1366 | # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \ |
| 1367 | S390X_CAPBIT(S390X_AES_256)) |
| 1368 | |
| 1369 | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx, |
| 1370 | const unsigned char *key, |
| 1371 | const unsigned char *ivec, int enc) |
| 1372 | { |
| 1373 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1374 | const unsigned char *oiv = EVP_CIPHER_CTX_original_iv(ctx); |
| 1375 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1376 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1377 | |
| 1378 | cctx->fc = S390X_AES_FC(keylen) | (enc ? 0 : S390X_DECRYPT) |
| 1379 | | (1 << 24); /* 1 byte cipher feedback flag */ |
| 1380 | |
| 1381 | if (key != NULL) |
| 1382 | memcpy(cctx->kmf.param.k, key, keylen); |
| 1383 | |
| 1384 | cctx->res = 0; |
| 1385 | memcpy(cctx->kmf.param.cv, oiv, ivlen); |
| 1386 | return 1; |
| 1387 | } |
| 1388 | |
| 1389 | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1390 | const unsigned char *in, size_t len) |
| 1391 | { |
| 1392 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); |
| 1393 | const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); |
| 1394 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 1395 | |
| 1396 | memcpy(cctx->kmf.param.cv, iv, ivlen); |
| 1397 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); |
| 1398 | memcpy(iv, cctx->kmf.param.cv, ivlen); |
| 1399 | return 1; |
| 1400 | } |
| 1401 | |
| 1402 | # define S390X_aes_128_cfb1_CAPABLE 0 |
| 1403 | # define S390X_aes_192_cfb1_CAPABLE 0 |
| 1404 | # define S390X_aes_256_cfb1_CAPABLE 0 |
| 1405 | |
| 1406 | # define s390x_aes_cfb1_init_key aes_init_key |
| 1407 | |
| 1408 | # define s390x_aes_cfb1_cipher aes_cfb1_cipher |
| 1409 | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1410 | const unsigned char *in, size_t len); |
| 1411 | |
| 1412 | # define S390X_aes_128_ctr_CAPABLE 0 /* checked by callee */ |
| 1413 | # define S390X_aes_192_ctr_CAPABLE 0 |
| 1414 | # define S390X_aes_256_ctr_CAPABLE 0 |
| 1415 | # define S390X_AES_CTR_CTX EVP_AES_KEY |
| 1416 | |
| 1417 | # define s390x_aes_ctr_init_key aes_init_key |
| 1418 | |
| 1419 | # define s390x_aes_ctr_cipher aes_ctr_cipher |
| 1420 | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1421 | const unsigned char *in, size_t len); |
| 1422 | |
| 1423 | # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \ |
| 1424 | (OPENSSL_s390xcap_P.kma[0] & \ |
| 1425 | S390X_CAPBIT(S390X_AES_128))) |
| 1426 | # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \ |
| 1427 | (OPENSSL_s390xcap_P.kma[0] & \ |
| 1428 | S390X_CAPBIT(S390X_AES_192))) |
| 1429 | # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \ |
| 1430 | (OPENSSL_s390xcap_P.kma[0] & \ |
| 1431 | S390X_CAPBIT(S390X_AES_256))) |
| 1432 | |
| 1433 | /* iv + padding length for iv lengths != 12 */ |
| 1434 | # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16) |
| 1435 | |
| 1436 | /*- |
| 1437 | * Process additional authenticated data. Returns 0 on success. Code is |
| 1438 | * big-endian. |
| 1439 | */ |
| 1440 | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad, |
| 1441 | size_t len) |
| 1442 | { |
| 1443 | unsigned long long alen; |
| 1444 | int n, rem; |
| 1445 | |
| 1446 | if (ctx->kma.param.tpcl) |
| 1447 | return -2; |
| 1448 | |
| 1449 | alen = ctx->kma.param.taadl + len; |
| 1450 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) |
| 1451 | return -1; |
| 1452 | ctx->kma.param.taadl = alen; |
| 1453 | |
| 1454 | n = ctx->areslen; |
| 1455 | if (n) { |
| 1456 | while (n && len) { |
| 1457 | ctx->ares[n] = *aad; |
| 1458 | n = (n + 1) & 0xf; |
| 1459 | ++aad; |
| 1460 | --len; |
| 1461 | } |
| 1462 | /* ctx->ares contains a complete block if offset has wrapped around */ |
| 1463 | if (!n) { |
| 1464 | s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param); |
| 1465 | ctx->fc |= S390X_KMA_HS; |
| 1466 | } |
| 1467 | ctx->areslen = n; |
| 1468 | } |
| 1469 | |
| 1470 | rem = len & 0xf; |
| 1471 | |
| 1472 | len &= ~(size_t)0xf; |
| 1473 | if (len) { |
| 1474 | s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param); |
| 1475 | aad += len; |
| 1476 | ctx->fc |= S390X_KMA_HS; |
| 1477 | } |
| 1478 | |
| 1479 | if (rem) { |
| 1480 | ctx->areslen = rem; |
| 1481 | |
| 1482 | do { |
| 1483 | --rem; |
| 1484 | ctx->ares[rem] = aad[rem]; |
| 1485 | } while (rem); |
| 1486 | } |
| 1487 | return 0; |
| 1488 | } |
| 1489 | |
| 1490 | /*- |
| 1491 | * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for |
| 1492 | * success. Code is big-endian. |
| 1493 | */ |
| 1494 | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in, |
| 1495 | unsigned char *out, size_t len) |
| 1496 | { |
| 1497 | const unsigned char *inptr; |
| 1498 | unsigned long long mlen; |
| 1499 | union { |
| 1500 | unsigned int w[4]; |
| 1501 | unsigned char b[16]; |
| 1502 | } buf; |
| 1503 | size_t inlen; |
| 1504 | int n, rem, i; |
| 1505 | |
| 1506 | mlen = ctx->kma.param.tpcl + len; |
| 1507 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) |
| 1508 | return -1; |
| 1509 | ctx->kma.param.tpcl = mlen; |
| 1510 | |
| 1511 | n = ctx->mreslen; |
| 1512 | if (n) { |
| 1513 | inptr = in; |
| 1514 | inlen = len; |
| 1515 | while (n && inlen) { |
| 1516 | ctx->mres[n] = *inptr; |
| 1517 | n = (n + 1) & 0xf; |
| 1518 | ++inptr; |
| 1519 | --inlen; |
| 1520 | } |
| 1521 | /* ctx->mres contains a complete block if offset has wrapped around */ |
| 1522 | if (!n) { |
| 1523 | s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b, |
| 1524 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); |
| 1525 | ctx->fc |= S390X_KMA_HS; |
| 1526 | ctx->areslen = 0; |
| 1527 | |
| 1528 | /* previous call already encrypted/decrypted its remainder, |
| 1529 | * see comment below */ |
| 1530 | n = ctx->mreslen; |
| 1531 | while (n) { |
| 1532 | *out = buf.b[n]; |
| 1533 | n = (n + 1) & 0xf; |
| 1534 | ++out; |
| 1535 | ++in; |
| 1536 | --len; |
| 1537 | } |
| 1538 | ctx->mreslen = 0; |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | rem = len & 0xf; |
| 1543 | |
| 1544 | len &= ~(size_t)0xf; |
| 1545 | if (len) { |
| 1546 | s390x_kma(ctx->ares, ctx->areslen, in, len, out, |
| 1547 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); |
| 1548 | in += len; |
| 1549 | out += len; |
| 1550 | ctx->fc |= S390X_KMA_HS; |
| 1551 | ctx->areslen = 0; |
| 1552 | } |
| 1553 | |
| 1554 | /*- |
| 1555 | * If there is a remainder, it has to be saved such that it can be |
| 1556 | * processed by kma later. However, we also have to do the for-now |
| 1557 | * unauthenticated encryption/decryption part here and now... |
| 1558 | */ |
| 1559 | if (rem) { |
| 1560 | if (!ctx->mreslen) { |
| 1561 | buf.w[0] = ctx->kma.param.j0.w[0]; |
| 1562 | buf.w[1] = ctx->kma.param.j0.w[1]; |
| 1563 | buf.w[2] = ctx->kma.param.j0.w[2]; |
| 1564 | buf.w[3] = ctx->kma.param.cv.w + 1; |
| 1565 | s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k); |
| 1566 | } |
| 1567 | |
| 1568 | n = ctx->mreslen; |
| 1569 | for (i = 0; i < rem; i++) { |
| 1570 | ctx->mres[n + i] = in[i]; |
| 1571 | out[i] = in[i] ^ ctx->kres[n + i]; |
| 1572 | } |
| 1573 | |
| 1574 | ctx->mreslen += rem; |
| 1575 | } |
| 1576 | return 0; |
| 1577 | } |
| 1578 | |
| 1579 | /*- |
| 1580 | * Initialize context structure. Code is big-endian. |
| 1581 | */ |
| 1582 | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx) |
| 1583 | { |
| 1584 | ctx->kma.param.t.g[0] = 0; |
| 1585 | ctx->kma.param.t.g[1] = 0; |
| 1586 | ctx->kma.param.tpcl = 0; |
| 1587 | ctx->kma.param.taadl = 0; |
| 1588 | ctx->mreslen = 0; |
| 1589 | ctx->areslen = 0; |
| 1590 | ctx->kreslen = 0; |
| 1591 | |
| 1592 | if (ctx->ivlen == 12) { |
| 1593 | memcpy(&ctx->kma.param.j0, ctx->iv, ctx->ivlen); |
| 1594 | ctx->kma.param.j0.w[3] = 1; |
| 1595 | ctx->kma.param.cv.w = 1; |
| 1596 | } else { |
| 1597 | /* ctx->iv has the right size and is already padded. */ |
| 1598 | s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL, |
| 1599 | ctx->fc, &ctx->kma.param); |
| 1600 | ctx->fc |= S390X_KMA_HS; |
| 1601 | |
| 1602 | ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0]; |
| 1603 | ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1]; |
| 1604 | ctx->kma.param.cv.w = ctx->kma.param.j0.w[3]; |
| 1605 | ctx->kma.param.t.g[0] = 0; |
| 1606 | ctx->kma.param.t.g[1] = 0; |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | /*- |
| 1611 | * Performs various operations on the context structure depending on control |
| 1612 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type. |
| 1613 | * Code is big-endian. |
| 1614 | */ |
| 1615 | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 1616 | { |
| 1617 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); |
| 1618 | S390X_AES_GCM_CTX *gctx_out; |
| 1619 | EVP_CIPHER_CTX *out; |
| 1620 | unsigned char *buf, *iv; |
| 1621 | int ivlen, enc, len; |
| 1622 | |
| 1623 | switch (type) { |
| 1624 | case EVP_CTRL_INIT: |
| 1625 | ivlen = EVP_CIPHER_iv_length(c->cipher); |
| 1626 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 1627 | gctx->key_set = 0; |
| 1628 | gctx->iv_set = 0; |
| 1629 | gctx->ivlen = ivlen; |
| 1630 | gctx->iv = iv; |
| 1631 | gctx->taglen = -1; |
| 1632 | gctx->iv_gen = 0; |
| 1633 | gctx->tls_aad_len = -1; |
| 1634 | return 1; |
| 1635 | |
| 1636 | case EVP_CTRL_GET_IVLEN: |
| 1637 | *(int *)ptr = gctx->ivlen; |
| 1638 | return 1; |
| 1639 | |
| 1640 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 1641 | if (arg <= 0) |
| 1642 | return 0; |
| 1643 | |
| 1644 | if (arg != 12) { |
| 1645 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 1646 | len = S390X_gcm_ivpadlen(arg); |
| 1647 | |
| 1648 | /* Allocate memory for iv if needed. */ |
| 1649 | if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { |
| 1650 | if (gctx->iv != iv) |
| 1651 | OPENSSL_free(gctx->iv); |
| 1652 | |
| 1653 | if ((gctx->iv = OPENSSL_malloc(len)) == NULL) { |
| 1654 | EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 1655 | return 0; |
| 1656 | } |
| 1657 | } |
| 1658 | /* Add padding. */ |
| 1659 | memset(gctx->iv + arg, 0, len - arg - 8); |
| 1660 | *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3; |
| 1661 | } |
| 1662 | gctx->ivlen = arg; |
| 1663 | return 1; |
| 1664 | |
| 1665 | case EVP_CTRL_AEAD_SET_TAG: |
| 1666 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 1667 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1668 | if (arg <= 0 || arg > 16 || enc) |
| 1669 | return 0; |
| 1670 | |
| 1671 | memcpy(buf, ptr, arg); |
| 1672 | gctx->taglen = arg; |
| 1673 | return 1; |
| 1674 | |
| 1675 | case EVP_CTRL_AEAD_GET_TAG: |
| 1676 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1677 | if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0) |
| 1678 | return 0; |
| 1679 | |
| 1680 | memcpy(ptr, gctx->kma.param.t.b, arg); |
| 1681 | return 1; |
| 1682 | |
| 1683 | case EVP_CTRL_GCM_SET_IV_FIXED: |
| 1684 | /* Special case: -1 length restores whole iv */ |
| 1685 | if (arg == -1) { |
| 1686 | memcpy(gctx->iv, ptr, gctx->ivlen); |
| 1687 | gctx->iv_gen = 1; |
| 1688 | return 1; |
| 1689 | } |
| 1690 | /* |
| 1691 | * Fixed field must be at least 4 bytes and invocation field at least |
| 1692 | * 8. |
| 1693 | */ |
| 1694 | if ((arg < 4) || (gctx->ivlen - arg) < 8) |
| 1695 | return 0; |
| 1696 | |
| 1697 | if (arg) |
| 1698 | memcpy(gctx->iv, ptr, arg); |
| 1699 | |
| 1700 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1701 | if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
| 1702 | return 0; |
| 1703 | |
| 1704 | gctx->iv_gen = 1; |
| 1705 | return 1; |
| 1706 | |
| 1707 | case EVP_CTRL_GCM_IV_GEN: |
| 1708 | if (gctx->iv_gen == 0 || gctx->key_set == 0) |
| 1709 | return 0; |
| 1710 | |
| 1711 | s390x_aes_gcm_setiv(gctx); |
| 1712 | |
| 1713 | if (arg <= 0 || arg > gctx->ivlen) |
| 1714 | arg = gctx->ivlen; |
| 1715 | |
| 1716 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| 1717 | /* |
| 1718 | * Invocation field will be at least 8 bytes in size and so no need |
| 1719 | * to check wrap around or increment more than last 8 bytes. |
| 1720 | */ |
| 1721 | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| 1722 | gctx->iv_set = 1; |
| 1723 | return 1; |
| 1724 | |
| 1725 | case EVP_CTRL_GCM_SET_IV_INV: |
| 1726 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1727 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc) |
| 1728 | return 0; |
| 1729 | |
| 1730 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| 1731 | s390x_aes_gcm_setiv(gctx); |
| 1732 | gctx->iv_set = 1; |
| 1733 | return 1; |
| 1734 | |
| 1735 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 1736 | /* Save the aad for later use. */ |
| 1737 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 1738 | return 0; |
| 1739 | |
| 1740 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 1741 | memcpy(buf, ptr, arg); |
| 1742 | gctx->tls_aad_len = arg; |
| 1743 | |
| 1744 | len = buf[arg - 2] << 8 | buf[arg - 1]; |
| 1745 | /* Correct length for explicit iv. */ |
| 1746 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
| 1747 | return 0; |
| 1748 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1749 | |
| 1750 | /* If decrypting correct for tag too. */ |
| 1751 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 1752 | if (!enc) { |
| 1753 | if (len < EVP_GCM_TLS_TAG_LEN) |
| 1754 | return 0; |
| 1755 | len -= EVP_GCM_TLS_TAG_LEN; |
| 1756 | } |
| 1757 | buf[arg - 2] = len >> 8; |
| 1758 | buf[arg - 1] = len & 0xff; |
| 1759 | /* Extra padding: tag appended to record. */ |
| 1760 | return EVP_GCM_TLS_TAG_LEN; |
| 1761 | |
| 1762 | case EVP_CTRL_COPY: |
| 1763 | out = ptr; |
| 1764 | gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out); |
| 1765 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 1766 | |
| 1767 | if (gctx->iv == iv) { |
| 1768 | gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out); |
| 1769 | } else { |
| 1770 | len = S390X_gcm_ivpadlen(gctx->ivlen); |
| 1771 | |
| 1772 | if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) { |
| 1773 | EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 1774 | return 0; |
| 1775 | } |
| 1776 | |
| 1777 | memcpy(gctx_out->iv, gctx->iv, len); |
| 1778 | } |
| 1779 | return 1; |
| 1780 | |
| 1781 | default: |
| 1782 | return -1; |
| 1783 | } |
| 1784 | } |
| 1785 | |
| 1786 | /*- |
| 1787 | * Set key or iv or enc/dec. Returns 1 on success. Otherwise 0 is returned. |
| 1788 | */ |
| 1789 | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx, |
| 1790 | const unsigned char *key, |
| 1791 | const unsigned char *iv, int enc) |
| 1792 | { |
| 1793 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
| 1794 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 1795 | |
| 1796 | gctx->fc = S390X_AES_FC(keylen) | (enc ? 0 : S390X_DECRYPT); |
| 1797 | |
| 1798 | if (key != NULL) { |
| 1799 | gctx->fc &= ~S390X_KMA_HS; |
| 1800 | memcpy(&gctx->kma.param.k, key, keylen); |
| 1801 | gctx->key_set = 1; |
| 1802 | } |
| 1803 | |
| 1804 | if (iv != NULL) { |
| 1805 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 1806 | gctx->iv_gen = 0; |
| 1807 | gctx->iv_set = 1; |
| 1808 | } |
| 1809 | |
| 1810 | if (gctx->key_set && gctx->iv_set) |
| 1811 | s390x_aes_gcm_setiv(gctx); |
| 1812 | |
| 1813 | gctx->fc &= ~(S390X_KMA_LPC | S390X_KMA_LAAD); |
| 1814 | gctx->areslen = 0; |
| 1815 | gctx->mreslen = 0; |
| 1816 | gctx->kreslen = 0; |
| 1817 | return 1; |
| 1818 | } |
| 1819 | |
| 1820 | /*- |
| 1821 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written |
| 1822 | * if successful. Otherwise -1 is returned. Code is big-endian. |
| 1823 | */ |
| 1824 | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1825 | const unsigned char *in, size_t len) |
| 1826 | { |
| 1827 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
| 1828 | const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 1829 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1830 | int rv = -1; |
| 1831 | |
| 1832 | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
| 1833 | return -1; |
| 1834 | |
| 1835 | if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN |
| 1836 | : EVP_CTRL_GCM_SET_IV_INV, |
| 1837 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) |
| 1838 | goto err; |
| 1839 | |
| 1840 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1841 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 1842 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 1843 | |
| 1844 | gctx->kma.param.taadl = gctx->tls_aad_len << 3; |
| 1845 | gctx->kma.param.tpcl = len << 3; |
| 1846 | s390x_kma(buf, gctx->tls_aad_len, in, len, out, |
| 1847 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); |
| 1848 | |
| 1849 | if (enc) { |
| 1850 | memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN); |
| 1851 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 1852 | } else { |
| 1853 | if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len, |
| 1854 | EVP_GCM_TLS_TAG_LEN)) { |
| 1855 | OPENSSL_cleanse(out, len); |
| 1856 | goto err; |
| 1857 | } |
| 1858 | rv = len; |
| 1859 | } |
| 1860 | err: |
| 1861 | gctx->iv_set = 0; |
| 1862 | gctx->tls_aad_len = -1; |
| 1863 | return rv; |
| 1864 | } |
| 1865 | |
| 1866 | /*- |
| 1867 | * Called from EVP layer to initialize context, process additional |
| 1868 | * authenticated data, en/de-crypt plain/cipher-text and authenticate |
| 1869 | * ciphertext or process a TLS packet, depending on context. Returns bytes |
| 1870 | * written on success. Otherwise -1 is returned. Code is big-endian. |
| 1871 | */ |
| 1872 | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1873 | const unsigned char *in, size_t len) |
| 1874 | { |
| 1875 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); |
| 1876 | unsigned char *buf, tmp[16]; |
| 1877 | int enc; |
| 1878 | |
| 1879 | if (!gctx->key_set) |
| 1880 | return -1; |
| 1881 | |
| 1882 | if (gctx->tls_aad_len >= 0) |
| 1883 | return s390x_aes_gcm_tls_cipher(ctx, out, in, len); |
| 1884 | |
| 1885 | if (!gctx->iv_set) |
| 1886 | return -1; |
| 1887 | |
| 1888 | if (in != NULL) { |
| 1889 | if (out == NULL) { |
| 1890 | if (s390x_aes_gcm_aad(gctx, in, len)) |
| 1891 | return -1; |
| 1892 | } else { |
| 1893 | if (s390x_aes_gcm(gctx, in, out, len)) |
| 1894 | return -1; |
| 1895 | } |
| 1896 | return len; |
| 1897 | } else { |
| 1898 | gctx->kma.param.taadl <<= 3; |
| 1899 | gctx->kma.param.tpcl <<= 3; |
| 1900 | s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp, |
| 1901 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); |
| 1902 | /* recall that we already did en-/decrypt gctx->mres |
| 1903 | * and returned it to caller... */ |
| 1904 | OPENSSL_cleanse(tmp, gctx->mreslen); |
| 1905 | |
| 1906 | enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 1907 | if (enc) { |
| 1908 | gctx->taglen = 16; |
| 1909 | } else { |
| 1910 | if (gctx->taglen < 0) |
| 1911 | return -1; |
| 1912 | |
| 1913 | buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 1914 | if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen)) |
| 1915 | return -1; |
| 1916 | } |
| 1917 | return 0; |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
| 1922 | { |
| 1923 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); |
| 1924 | const unsigned char *iv; |
| 1925 | |
| 1926 | if (gctx == NULL) |
| 1927 | return 0; |
| 1928 | |
| 1929 | iv = EVP_CIPHER_CTX_iv(c); |
| 1930 | if (iv != gctx->iv) |
| 1931 | OPENSSL_free(gctx->iv); |
| 1932 | |
| 1933 | OPENSSL_cleanse(gctx, sizeof(*gctx)); |
| 1934 | return 1; |
| 1935 | } |
| 1936 | |
| 1937 | # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX |
| 1938 | # define S390X_aes_128_xts_CAPABLE 0 /* checked by callee */ |
| 1939 | # define S390X_aes_256_xts_CAPABLE 0 |
| 1940 | |
| 1941 | # define s390x_aes_xts_init_key aes_xts_init_key |
| 1942 | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx, |
| 1943 | const unsigned char *key, |
| 1944 | const unsigned char *iv, int enc); |
| 1945 | # define s390x_aes_xts_cipher aes_xts_cipher |
| 1946 | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 1947 | const unsigned char *in, size_t len); |
| 1948 | # define s390x_aes_xts_ctrl aes_xts_ctrl |
| 1949 | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); |
| 1950 | # define s390x_aes_xts_cleanup aes_xts_cleanup |
| 1951 | |
| 1952 | # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \ |
| 1953 | (OPENSSL_s390xcap_P.kmac[0] & \ |
| 1954 | S390X_CAPBIT(S390X_AES_128))) |
| 1955 | # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \ |
| 1956 | (OPENSSL_s390xcap_P.kmac[0] & \ |
| 1957 | S390X_CAPBIT(S390X_AES_192))) |
| 1958 | # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \ |
| 1959 | (OPENSSL_s390xcap_P.kmac[0] & \ |
| 1960 | S390X_CAPBIT(S390X_AES_256))) |
| 1961 | |
| 1962 | # define S390X_CCM_AAD_FLAG 0x40 |
| 1963 | |
| 1964 | /*- |
| 1965 | * Set nonce and length fields. Code is big-endian. |
| 1966 | */ |
| 1967 | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx, |
| 1968 | const unsigned char *nonce, |
| 1969 | size_t mlen) |
| 1970 | { |
| 1971 | ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG; |
| 1972 | ctx->aes.ccm.nonce.g[1] = mlen; |
| 1973 | memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l); |
| 1974 | } |
| 1975 | |
| 1976 | /*- |
| 1977 | * Process additional authenticated data. Code is big-endian. |
| 1978 | */ |
| 1979 | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad, |
| 1980 | size_t alen) |
| 1981 | { |
| 1982 | unsigned char *ptr; |
| 1983 | int i, rem; |
| 1984 | |
| 1985 | if (!alen) |
| 1986 | return; |
| 1987 | |
| 1988 | ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG; |
| 1989 | |
| 1990 | /* Suppress 'type-punned pointer dereference' warning. */ |
| 1991 | ptr = ctx->aes.ccm.buf.b; |
| 1992 | |
| 1993 | if (alen < ((1 << 16) - (1 << 8))) { |
| 1994 | *(uint16_t *)ptr = alen; |
| 1995 | i = 2; |
| 1996 | } else if (sizeof(alen) == 8 |
| 1997 | && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { |
| 1998 | *(uint16_t *)ptr = 0xffff; |
| 1999 | *(uint64_t *)(ptr + 2) = alen; |
| 2000 | i = 10; |
| 2001 | } else { |
| 2002 | *(uint16_t *)ptr = 0xfffe; |
| 2003 | *(uint32_t *)(ptr + 2) = alen; |
| 2004 | i = 6; |
| 2005 | } |
| 2006 | |
| 2007 | while (i < 16 && alen) { |
| 2008 | ctx->aes.ccm.buf.b[i] = *aad; |
| 2009 | ++aad; |
| 2010 | --alen; |
| 2011 | ++i; |
| 2012 | } |
| 2013 | while (i < 16) { |
| 2014 | ctx->aes.ccm.buf.b[i] = 0; |
| 2015 | ++i; |
| 2016 | } |
| 2017 | |
| 2018 | ctx->aes.ccm.kmac_param.icv.g[0] = 0; |
| 2019 | ctx->aes.ccm.kmac_param.icv.g[1] = 0; |
| 2020 | s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc, |
| 2021 | &ctx->aes.ccm.kmac_param); |
| 2022 | ctx->aes.ccm.blocks += 2; |
| 2023 | |
| 2024 | rem = alen & 0xf; |
| 2025 | alen &= ~(size_t)0xf; |
| 2026 | if (alen) { |
| 2027 | s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
| 2028 | ctx->aes.ccm.blocks += alen >> 4; |
| 2029 | aad += alen; |
| 2030 | } |
| 2031 | if (rem) { |
| 2032 | for (i = 0; i < rem; i++) |
| 2033 | ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i]; |
| 2034 | |
| 2035 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
| 2036 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
| 2037 | ctx->aes.ccm.kmac_param.k); |
| 2038 | ctx->aes.ccm.blocks++; |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | /*- |
| 2043 | * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for |
| 2044 | * success. |
| 2045 | */ |
| 2046 | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in, |
| 2047 | unsigned char *out, size_t len, int enc) |
| 2048 | { |
| 2049 | size_t n, rem; |
| 2050 | unsigned int i, l, num; |
| 2051 | unsigned char flags; |
| 2052 | |
| 2053 | flags = ctx->aes.ccm.nonce.b[0]; |
| 2054 | if (!(flags & S390X_CCM_AAD_FLAG)) { |
| 2055 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b, |
| 2056 | ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); |
| 2057 | ctx->aes.ccm.blocks++; |
| 2058 | } |
| 2059 | l = flags & 0x7; |
| 2060 | ctx->aes.ccm.nonce.b[0] = l; |
| 2061 | |
| 2062 | /*- |
| 2063 | * Reconstruct length from encoded length field |
| 2064 | * and initialize it with counter value. |
| 2065 | */ |
| 2066 | n = 0; |
| 2067 | for (i = 15 - l; i < 15; i++) { |
| 2068 | n |= ctx->aes.ccm.nonce.b[i]; |
| 2069 | ctx->aes.ccm.nonce.b[i] = 0; |
| 2070 | n <<= 8; |
| 2071 | } |
| 2072 | n |= ctx->aes.ccm.nonce.b[15]; |
| 2073 | ctx->aes.ccm.nonce.b[15] = 1; |
| 2074 | |
| 2075 | if (n != len) |
| 2076 | return -1; /* length mismatch */ |
| 2077 | |
| 2078 | if (enc) { |
| 2079 | /* Two operations per block plus one for tag encryption */ |
| 2080 | ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1; |
| 2081 | if (ctx->aes.ccm.blocks > (1ULL << 61)) |
| 2082 | return -2; /* too much data */ |
| 2083 | } |
| 2084 | |
| 2085 | num = 0; |
| 2086 | rem = len & 0xf; |
| 2087 | len &= ~(size_t)0xf; |
| 2088 | |
| 2089 | if (enc) { |
| 2090 | /* mac-then-encrypt */ |
| 2091 | if (len) |
| 2092 | s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
| 2093 | if (rem) { |
| 2094 | for (i = 0; i < rem; i++) |
| 2095 | ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i]; |
| 2096 | |
| 2097 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
| 2098 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
| 2099 | ctx->aes.ccm.kmac_param.k); |
| 2100 | } |
| 2101 | |
| 2102 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, |
| 2103 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, |
| 2104 | &num, (ctr128_f)AES_ctr32_encrypt); |
| 2105 | } else { |
| 2106 | /* decrypt-then-mac */ |
| 2107 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, |
| 2108 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, |
| 2109 | &num, (ctr128_f)AES_ctr32_encrypt); |
| 2110 | |
| 2111 | if (len) |
| 2112 | s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); |
| 2113 | if (rem) { |
| 2114 | for (i = 0; i < rem; i++) |
| 2115 | ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i]; |
| 2116 | |
| 2117 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, |
| 2118 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, |
| 2119 | ctx->aes.ccm.kmac_param.k); |
| 2120 | } |
| 2121 | } |
| 2122 | /* encrypt tag */ |
| 2123 | for (i = 15 - l; i < 16; i++) |
| 2124 | ctx->aes.ccm.nonce.b[i] = 0; |
| 2125 | |
| 2126 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc, |
| 2127 | ctx->aes.ccm.kmac_param.k); |
| 2128 | ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0]; |
| 2129 | ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1]; |
| 2130 | |
| 2131 | ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */ |
| 2132 | return 0; |
| 2133 | } |
| 2134 | |
| 2135 | /*- |
| 2136 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written |
| 2137 | * if successful. Otherwise -1 is returned. |
| 2138 | */ |
| 2139 | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2140 | const unsigned char *in, size_t len) |
| 2141 | { |
| 2142 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
| 2143 | const unsigned char *ivec = EVP_CIPHER_CTX_iv(ctx); |
| 2144 | unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 2145 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 2146 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
| 2147 | |
| 2148 | if (out != in |
| 2149 | || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m)) |
| 2150 | return -1; |
| 2151 | |
| 2152 | if (enc) { |
| 2153 | /* Set explicit iv (sequence number). */ |
| 2154 | memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 2155 | } |
| 2156 | |
| 2157 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; |
| 2158 | /*- |
| 2159 | * Get explicit iv (sequence number). We already have fixed iv |
| 2160 | * (server/client_write_iv) here. |
| 2161 | */ |
| 2162 | memcpy(iv, ivec, sizeof(iv)); |
| 2163 | memcpy(iv + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 2164 | s390x_aes_ccm_setiv(cctx, iv, len); |
| 2165 | |
| 2166 | /* Process aad (sequence number|type|version|length) */ |
| 2167 | s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len); |
| 2168 | |
| 2169 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 2170 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 2171 | |
| 2172 | if (enc) { |
| 2173 | if (s390x_aes_ccm(cctx, in, out, len, enc)) |
| 2174 | return -1; |
| 2175 | |
| 2176 | memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); |
| 2177 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; |
| 2178 | } else { |
| 2179 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) { |
| 2180 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len, |
| 2181 | cctx->aes.ccm.m)) |
| 2182 | return len; |
| 2183 | } |
| 2184 | |
| 2185 | OPENSSL_cleanse(out, len); |
| 2186 | return -1; |
| 2187 | } |
| 2188 | } |
| 2189 | |
| 2190 | /*- |
| 2191 | * Set key or iv or enc/dec. Returns 1 if successful. |
| 2192 | * Otherwise 0 is returned. |
| 2193 | */ |
| 2194 | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx, |
| 2195 | const unsigned char *key, |
| 2196 | const unsigned char *iv, int enc) |
| 2197 | { |
| 2198 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
| 2199 | const int keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 2200 | unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 2201 | |
| 2202 | cctx->aes.ccm.fc = S390X_AES_FC(keylen); |
| 2203 | |
| 2204 | if (key != NULL) { |
| 2205 | memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); |
| 2206 | cctx->aes.ccm.key_set = 1; |
| 2207 | } |
| 2208 | if (iv != NULL) { |
| 2209 | memcpy(ivec, iv, 15 - cctx->aes.ccm.l); |
| 2210 | cctx->aes.ccm.iv_set = 1; |
| 2211 | } |
| 2212 | |
| 2213 | /* Store encoded m and l. */ |
| 2214 | cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7) |
| 2215 | | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3; |
| 2216 | memset(cctx->aes.ccm.nonce.b + 1, 0, sizeof(cctx->aes.ccm.nonce.b) - 1); |
| 2217 | |
| 2218 | cctx->aes.ccm.blocks = 0; |
| 2219 | cctx->aes.ccm.len_set = 0; |
| 2220 | return 1; |
| 2221 | } |
| 2222 | |
| 2223 | /*- |
| 2224 | * Called from EVP layer to initialize context, process additional |
| 2225 | * authenticated data, en/de-crypt plain/cipher-text and authenticate |
| 2226 | * plaintext or process a TLS packet, depending on context. Returns bytes |
| 2227 | * written on success. Otherwise -1 is returned. |
| 2228 | */ |
| 2229 | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2230 | const unsigned char *in, size_t len) |
| 2231 | { |
| 2232 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); |
| 2233 | const int enc = EVP_CIPHER_CTX_encrypting(ctx); |
| 2234 | const unsigned char *ivec = EVP_CIPHER_CTX_iv(ctx); |
| 2235 | unsigned char *buf; |
| 2236 | int rv; |
| 2237 | |
| 2238 | if (!cctx->aes.ccm.key_set) |
| 2239 | return -1; |
| 2240 | |
| 2241 | if (cctx->aes.ccm.tls_aad_len >= 0) |
| 2242 | return s390x_aes_ccm_tls_cipher(ctx, out, in, len); |
| 2243 | |
| 2244 | /*- |
| 2245 | * Final(): Does not return any data. Recall that ccm is mac-then-encrypt |
| 2246 | * so integrity must be checked already at Update() i.e., before |
| 2247 | * potentially corrupted data is output. |
| 2248 | */ |
| 2249 | if (in == NULL && out != NULL) |
| 2250 | return 0; |
| 2251 | |
| 2252 | if (!cctx->aes.ccm.iv_set) |
| 2253 | return -1; |
| 2254 | |
| 2255 | if (out == NULL) { |
| 2256 | /* Update(): Pass message length. */ |
| 2257 | if (in == NULL) { |
| 2258 | s390x_aes_ccm_setiv(cctx, ivec, len); |
| 2259 | |
| 2260 | cctx->aes.ccm.len_set = 1; |
| 2261 | return len; |
| 2262 | } |
| 2263 | |
| 2264 | /* Update(): Process aad. */ |
| 2265 | if (!cctx->aes.ccm.len_set && len) |
| 2266 | return -1; |
| 2267 | |
| 2268 | s390x_aes_ccm_aad(cctx, in, len); |
| 2269 | return len; |
| 2270 | } |
| 2271 | |
| 2272 | /* The tag must be set before actually decrypting data */ |
| 2273 | if (!enc && !cctx->aes.ccm.tag_set) |
| 2274 | return -1; |
| 2275 | |
| 2276 | /* Update(): Process message. */ |
| 2277 | |
| 2278 | if (!cctx->aes.ccm.len_set) { |
| 2279 | /*- |
| 2280 | * In case message length was not previously set explicitly via |
| 2281 | * Update(), set it now. |
| 2282 | */ |
| 2283 | s390x_aes_ccm_setiv(cctx, ivec, len); |
| 2284 | |
| 2285 | cctx->aes.ccm.len_set = 1; |
| 2286 | } |
| 2287 | |
| 2288 | if (enc) { |
| 2289 | if (s390x_aes_ccm(cctx, in, out, len, enc)) |
| 2290 | return -1; |
| 2291 | |
| 2292 | cctx->aes.ccm.tag_set = 1; |
| 2293 | return len; |
| 2294 | } else { |
| 2295 | rv = -1; |
| 2296 | |
| 2297 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) { |
| 2298 | buf = EVP_CIPHER_CTX_buf_noconst(ctx); |
| 2299 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf, |
| 2300 | cctx->aes.ccm.m)) |
| 2301 | rv = len; |
| 2302 | } |
| 2303 | |
| 2304 | if (rv == -1) |
| 2305 | OPENSSL_cleanse(out, len); |
| 2306 | |
| 2307 | return rv; |
| 2308 | } |
| 2309 | } |
| 2310 | |
| 2311 | /*- |
| 2312 | * Performs various operations on the context structure depending on control |
| 2313 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type. |
| 2314 | * Code is big-endian. |
| 2315 | */ |
| 2316 | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 2317 | { |
| 2318 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c); |
| 2319 | unsigned char *buf, *iv; |
| 2320 | int enc, len; |
| 2321 | |
| 2322 | switch (type) { |
| 2323 | case EVP_CTRL_INIT: |
| 2324 | cctx->aes.ccm.key_set = 0; |
| 2325 | cctx->aes.ccm.iv_set = 0; |
| 2326 | cctx->aes.ccm.l = 8; |
| 2327 | cctx->aes.ccm.m = 12; |
| 2328 | cctx->aes.ccm.tag_set = 0; |
| 2329 | cctx->aes.ccm.len_set = 0; |
| 2330 | cctx->aes.ccm.tls_aad_len = -1; |
| 2331 | return 1; |
| 2332 | |
| 2333 | case EVP_CTRL_GET_IVLEN: |
| 2334 | *(int *)ptr = 15 - cctx->aes.ccm.l; |
| 2335 | return 1; |
| 2336 | |
| 2337 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 2338 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 2339 | return 0; |
| 2340 | |
| 2341 | /* Save the aad for later use. */ |
| 2342 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 2343 | memcpy(buf, ptr, arg); |
| 2344 | cctx->aes.ccm.tls_aad_len = arg; |
| 2345 | |
| 2346 | len = buf[arg - 2] << 8 | buf[arg - 1]; |
| 2347 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) |
| 2348 | return 0; |
| 2349 | |
| 2350 | /* Correct length for explicit iv. */ |
| 2351 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 2352 | |
| 2353 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 2354 | if (!enc) { |
| 2355 | if (len < cctx->aes.ccm.m) |
| 2356 | return 0; |
| 2357 | |
| 2358 | /* Correct length for tag. */ |
| 2359 | len -= cctx->aes.ccm.m; |
| 2360 | } |
| 2361 | |
| 2362 | buf[arg - 2] = len >> 8; |
| 2363 | buf[arg - 1] = len & 0xff; |
| 2364 | |
| 2365 | /* Extra padding: tag appended to record. */ |
| 2366 | return cctx->aes.ccm.m; |
| 2367 | |
| 2368 | case EVP_CTRL_CCM_SET_IV_FIXED: |
| 2369 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN) |
| 2370 | return 0; |
| 2371 | |
| 2372 | /* Copy to first part of the iv. */ |
| 2373 | iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 2374 | memcpy(iv, ptr, arg); |
| 2375 | return 1; |
| 2376 | |
| 2377 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 2378 | arg = 15 - arg; |
| 2379 | /* fall-through */ |
| 2380 | |
| 2381 | case EVP_CTRL_CCM_SET_L: |
| 2382 | if (arg < 2 || arg > 8) |
| 2383 | return 0; |
| 2384 | |
| 2385 | cctx->aes.ccm.l = arg; |
| 2386 | return 1; |
| 2387 | |
| 2388 | case EVP_CTRL_AEAD_SET_TAG: |
| 2389 | if ((arg & 1) || arg < 4 || arg > 16) |
| 2390 | return 0; |
| 2391 | |
| 2392 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 2393 | if (enc && ptr) |
| 2394 | return 0; |
| 2395 | |
| 2396 | if (ptr) { |
| 2397 | cctx->aes.ccm.tag_set = 1; |
| 2398 | buf = EVP_CIPHER_CTX_buf_noconst(c); |
| 2399 | memcpy(buf, ptr, arg); |
| 2400 | } |
| 2401 | |
| 2402 | cctx->aes.ccm.m = arg; |
| 2403 | return 1; |
| 2404 | |
| 2405 | case EVP_CTRL_AEAD_GET_TAG: |
| 2406 | enc = EVP_CIPHER_CTX_encrypting(c); |
| 2407 | if (!enc || !cctx->aes.ccm.tag_set) |
| 2408 | return 0; |
| 2409 | |
| 2410 | if(arg < cctx->aes.ccm.m) |
| 2411 | return 0; |
| 2412 | |
| 2413 | memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); |
| 2414 | return 1; |
| 2415 | |
| 2416 | case EVP_CTRL_COPY: |
| 2417 | return 1; |
| 2418 | |
| 2419 | default: |
| 2420 | return -1; |
| 2421 | } |
| 2422 | } |
| 2423 | |
| 2424 | # define s390x_aes_ccm_cleanup aes_ccm_cleanup |
| 2425 | |
| 2426 | # ifndef OPENSSL_NO_OCB |
| 2427 | # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX |
| 2428 | # define S390X_aes_128_ocb_CAPABLE 0 |
| 2429 | # define S390X_aes_192_ocb_CAPABLE 0 |
| 2430 | # define S390X_aes_256_ocb_CAPABLE 0 |
| 2431 | |
| 2432 | # define s390x_aes_ocb_init_key aes_ocb_init_key |
| 2433 | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 2434 | const unsigned char *iv, int enc); |
| 2435 | # define s390x_aes_ocb_cipher aes_ocb_cipher |
| 2436 | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2437 | const unsigned char *in, size_t len); |
| 2438 | # define s390x_aes_ocb_cleanup aes_ocb_cleanup |
| 2439 | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *); |
| 2440 | # define s390x_aes_ocb_ctrl aes_ocb_ctrl |
| 2441 | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); |
| 2442 | # endif |
| 2443 | |
| 2444 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \ |
| 2445 | MODE,flags) \ |
| 2446 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ |
| 2447 | nid##_##keylen##_##nmode,blocksize, \ |
| 2448 | keylen / 8, \ |
| 2449 | ivlen, \ |
| 2450 | flags | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_##MODE##_MODE, \ |
| 2451 | s390x_aes_##mode##_init_key, \ |
| 2452 | s390x_aes_##mode##_cipher, \ |
| 2453 | NULL, \ |
| 2454 | sizeof(S390X_AES_##MODE##_CTX), \ |
| 2455 | NULL, \ |
| 2456 | NULL, \ |
| 2457 | NULL, \ |
| 2458 | NULL \ |
| 2459 | }; \ |
| 2460 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2461 | nid##_##keylen##_##nmode, \ |
| 2462 | blocksize, \ |
| 2463 | keylen / 8, \ |
| 2464 | ivlen, \ |
| 2465 | flags | EVP_CIPH_##MODE##_MODE, \ |
| 2466 | aes_init_key, \ |
| 2467 | aes_##mode##_cipher, \ |
| 2468 | NULL, \ |
| 2469 | sizeof(EVP_AES_KEY), \ |
| 2470 | NULL, \ |
| 2471 | NULL, \ |
| 2472 | NULL, \ |
| 2473 | NULL \ |
| 2474 | }; \ |
| 2475 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2476 | { \ |
| 2477 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \ |
| 2478 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ |
| 2479 | } |
| 2480 | |
| 2481 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\ |
| 2482 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ |
| 2483 | nid##_##keylen##_##mode, \ |
| 2484 | blocksize, \ |
| 2485 | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \ |
| 2486 | ivlen, \ |
| 2487 | flags | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_##MODE##_MODE, \ |
| 2488 | s390x_aes_##mode##_init_key, \ |
| 2489 | s390x_aes_##mode##_cipher, \ |
| 2490 | s390x_aes_##mode##_cleanup, \ |
| 2491 | sizeof(S390X_AES_##MODE##_CTX), \ |
| 2492 | NULL, \ |
| 2493 | NULL, \ |
| 2494 | s390x_aes_##mode##_ctrl, \ |
| 2495 | NULL \ |
| 2496 | }; \ |
| 2497 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2498 | nid##_##keylen##_##mode,blocksize, \ |
| 2499 | (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \ |
| 2500 | ivlen, \ |
| 2501 | flags | EVP_CIPH_##MODE##_MODE, \ |
| 2502 | aes_##mode##_init_key, \ |
| 2503 | aes_##mode##_cipher, \ |
| 2504 | aes_##mode##_cleanup, \ |
| 2505 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 2506 | NULL, \ |
| 2507 | NULL, \ |
| 2508 | aes_##mode##_ctrl, \ |
| 2509 | NULL \ |
| 2510 | }; \ |
| 2511 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2512 | { \ |
| 2513 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \ |
| 2514 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ |
| 2515 | } |
| 2516 | |
| 2517 | #else |
| 2518 | |
| 2519 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ |
| 2520 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2521 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ |
| 2522 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 2523 | aes_init_key, \ |
| 2524 | aes_##mode##_cipher, \ |
| 2525 | NULL, \ |
| 2526 | sizeof(EVP_AES_KEY), \ |
| 2527 | NULL,NULL,NULL,NULL }; \ |
| 2528 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2529 | { return &aes_##keylen##_##mode; } |
| 2530 | |
| 2531 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ |
| 2532 | static const EVP_CIPHER aes_##keylen##_##mode = { \ |
| 2533 | nid##_##keylen##_##mode,blocksize, \ |
| 2534 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \ |
| 2535 | flags|EVP_CIPH_##MODE##_MODE, \ |
| 2536 | aes_##mode##_init_key, \ |
| 2537 | aes_##mode##_cipher, \ |
| 2538 | aes_##mode##_cleanup, \ |
| 2539 | sizeof(EVP_AES_##MODE##_CTX), \ |
| 2540 | NULL,NULL,aes_##mode##_ctrl,NULL }; \ |
| 2541 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ |
| 2542 | { return &aes_##keylen##_##mode; } |
| 2543 | |
| 2544 | #endif |
| 2545 | |
| 2546 | #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__)) |
| 2547 | # include "arm_arch.h" |
| 2548 | # if __ARM_MAX_ARCH__>=7 |
| 2549 | # if defined(BSAES_ASM) |
| 2550 | # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) |
| 2551 | # endif |
| 2552 | # if defined(VPAES_ASM) |
| 2553 | # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) |
| 2554 | # endif |
| 2555 | # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES) |
| 2556 | # define HWAES_set_encrypt_key aes_v8_set_encrypt_key |
| 2557 | # define HWAES_set_decrypt_key aes_v8_set_decrypt_key |
| 2558 | # define HWAES_encrypt aes_v8_encrypt |
| 2559 | # define HWAES_decrypt aes_v8_decrypt |
| 2560 | # define HWAES_cbc_encrypt aes_v8_cbc_encrypt |
| 2561 | # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks |
| 2562 | # endif |
| 2563 | #endif |
| 2564 | |
| 2565 | #if defined(HWAES_CAPABLE) |
| 2566 | int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits, |
| 2567 | AES_KEY *key); |
| 2568 | int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits, |
| 2569 | AES_KEY *key); |
| 2570 | void HWAES_encrypt(const unsigned char *in, unsigned char *out, |
| 2571 | const AES_KEY *key); |
| 2572 | void HWAES_decrypt(const unsigned char *in, unsigned char *out, |
| 2573 | const AES_KEY *key); |
| 2574 | void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out, |
| 2575 | size_t length, const AES_KEY *key, |
| 2576 | unsigned char *ivec, const int enc); |
| 2577 | void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out, |
| 2578 | size_t len, const AES_KEY *key, |
| 2579 | const unsigned char ivec[16]); |
| 2580 | void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out, |
| 2581 | size_t len, const AES_KEY *key1, |
| 2582 | const AES_KEY *key2, const unsigned char iv[16]); |
| 2583 | void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out, |
| 2584 | size_t len, const AES_KEY *key1, |
| 2585 | const AES_KEY *key2, const unsigned char iv[16]); |
| 2586 | #endif |
| 2587 | |
| 2588 | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ |
| 2589 | BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2590 | BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2591 | BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2592 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ |
| 2593 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ |
| 2594 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ |
| 2595 | BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) |
| 2596 | |
| 2597 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 2598 | const unsigned char *iv, int enc) |
| 2599 | { |
| 2600 | int ret, mode; |
| 2601 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2602 | |
| 2603 | mode = EVP_CIPHER_CTX_mode(ctx); |
| 2604 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) |
| 2605 | && !enc) { |
| 2606 | #ifdef HWAES_CAPABLE |
| 2607 | if (HWAES_CAPABLE) { |
| 2608 | ret = HWAES_set_decrypt_key(key, |
| 2609 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2610 | &dat->ks.ks); |
| 2611 | dat->block = (block128_f) HWAES_decrypt; |
| 2612 | dat->stream.cbc = NULL; |
| 2613 | # ifdef HWAES_cbc_encrypt |
| 2614 | if (mode == EVP_CIPH_CBC_MODE) |
| 2615 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; |
| 2616 | # endif |
| 2617 | } else |
| 2618 | #endif |
| 2619 | #ifdef BSAES_CAPABLE |
| 2620 | if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { |
| 2621 | ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2622 | &dat->ks.ks); |
| 2623 | dat->block = (block128_f) AES_decrypt; |
| 2624 | dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt; |
| 2625 | } else |
| 2626 | #endif |
| 2627 | #ifdef VPAES_CAPABLE |
| 2628 | if (VPAES_CAPABLE) { |
| 2629 | ret = vpaes_set_decrypt_key(key, |
| 2630 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2631 | &dat->ks.ks); |
| 2632 | dat->block = (block128_f) vpaes_decrypt; |
| 2633 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2634 | (cbc128_f) vpaes_cbc_encrypt : NULL; |
| 2635 | } else |
| 2636 | #endif |
| 2637 | { |
| 2638 | ret = AES_set_decrypt_key(key, |
| 2639 | EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2640 | &dat->ks.ks); |
| 2641 | dat->block = (block128_f) AES_decrypt; |
| 2642 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2643 | (cbc128_f) AES_cbc_encrypt : NULL; |
| 2644 | } |
| 2645 | } else |
| 2646 | #ifdef HWAES_CAPABLE |
| 2647 | if (HWAES_CAPABLE) { |
| 2648 | ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2649 | &dat->ks.ks); |
| 2650 | dat->block = (block128_f) HWAES_encrypt; |
| 2651 | dat->stream.cbc = NULL; |
| 2652 | # ifdef HWAES_cbc_encrypt |
| 2653 | if (mode == EVP_CIPH_CBC_MODE) |
| 2654 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; |
| 2655 | else |
| 2656 | # endif |
| 2657 | # ifdef HWAES_ctr32_encrypt_blocks |
| 2658 | if (mode == EVP_CIPH_CTR_MODE) |
| 2659 | dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; |
| 2660 | else |
| 2661 | # endif |
| 2662 | (void)0; /* terminate potentially open 'else' */ |
| 2663 | } else |
| 2664 | #endif |
| 2665 | #ifdef BSAES_CAPABLE |
| 2666 | if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { |
| 2667 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2668 | &dat->ks.ks); |
| 2669 | dat->block = (block128_f) AES_encrypt; |
| 2670 | dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; |
| 2671 | } else |
| 2672 | #endif |
| 2673 | #ifdef VPAES_CAPABLE |
| 2674 | if (VPAES_CAPABLE) { |
| 2675 | ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2676 | &dat->ks.ks); |
| 2677 | dat->block = (block128_f) vpaes_encrypt; |
| 2678 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2679 | (cbc128_f) vpaes_cbc_encrypt : NULL; |
| 2680 | } else |
| 2681 | #endif |
| 2682 | { |
| 2683 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 2684 | &dat->ks.ks); |
| 2685 | dat->block = (block128_f) AES_encrypt; |
| 2686 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? |
| 2687 | (cbc128_f) AES_cbc_encrypt : NULL; |
| 2688 | #ifdef AES_CTR_ASM |
| 2689 | if (mode == EVP_CIPH_CTR_MODE) |
| 2690 | dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; |
| 2691 | #endif |
| 2692 | } |
| 2693 | |
| 2694 | if (ret < 0) { |
| 2695 | EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); |
| 2696 | return 0; |
| 2697 | } |
| 2698 | |
| 2699 | return 1; |
| 2700 | } |
| 2701 | |
| 2702 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2703 | const unsigned char *in, size_t len) |
| 2704 | { |
| 2705 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2706 | |
| 2707 | if (dat->stream.cbc) |
| 2708 | (*dat->stream.cbc) (in, out, len, &dat->ks, |
| 2709 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 2710 | EVP_CIPHER_CTX_encrypting(ctx)); |
| 2711 | else if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 2712 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, |
| 2713 | EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); |
| 2714 | else |
| 2715 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, |
| 2716 | EVP_CIPHER_CTX_iv_noconst(ctx), dat->block); |
| 2717 | |
| 2718 | return 1; |
| 2719 | } |
| 2720 | |
| 2721 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2722 | const unsigned char *in, size_t len) |
| 2723 | { |
| 2724 | size_t bl = EVP_CIPHER_CTX_block_size(ctx); |
| 2725 | size_t i; |
| 2726 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2727 | |
| 2728 | if (len < bl) |
| 2729 | return 1; |
| 2730 | |
| 2731 | for (i = 0, len -= bl; i <= len; i += bl) |
| 2732 | (*dat->block) (in + i, out + i, &dat->ks); |
| 2733 | |
| 2734 | return 1; |
| 2735 | } |
| 2736 | |
| 2737 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2738 | const unsigned char *in, size_t len) |
| 2739 | { |
| 2740 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2741 | |
| 2742 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2743 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, |
| 2744 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block); |
| 2745 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2746 | return 1; |
| 2747 | } |
| 2748 | |
| 2749 | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2750 | const unsigned char *in, size_t len) |
| 2751 | { |
| 2752 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2753 | |
| 2754 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2755 | CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, |
| 2756 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2757 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2758 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2759 | return 1; |
| 2760 | } |
| 2761 | |
| 2762 | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2763 | const unsigned char *in, size_t len) |
| 2764 | { |
| 2765 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2766 | |
| 2767 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2768 | CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, |
| 2769 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2770 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2771 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2772 | return 1; |
| 2773 | } |
| 2774 | |
| 2775 | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2776 | const unsigned char *in, size_t len) |
| 2777 | { |
| 2778 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2779 | |
| 2780 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { |
| 2781 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2782 | CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, |
| 2783 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2784 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2785 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2786 | return 1; |
| 2787 | } |
| 2788 | |
| 2789 | while (len >= MAXBITCHUNK) { |
| 2790 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2791 | CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, |
| 2792 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2793 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2794 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2795 | len -= MAXBITCHUNK; |
| 2796 | out += MAXBITCHUNK; |
| 2797 | in += MAXBITCHUNK; |
| 2798 | } |
| 2799 | if (len) { |
| 2800 | int num = EVP_CIPHER_CTX_num(ctx); |
| 2801 | CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, |
| 2802 | EVP_CIPHER_CTX_iv_noconst(ctx), &num, |
| 2803 | EVP_CIPHER_CTX_encrypting(ctx), dat->block); |
| 2804 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2805 | } |
| 2806 | |
| 2807 | return 1; |
| 2808 | } |
| 2809 | |
| 2810 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 2811 | const unsigned char *in, size_t len) |
| 2812 | { |
| 2813 | unsigned int num = EVP_CIPHER_CTX_num(ctx); |
| 2814 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); |
| 2815 | |
| 2816 | if (dat->stream.ctr) |
| 2817 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, |
| 2818 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 2819 | EVP_CIPHER_CTX_buf_noconst(ctx), |
| 2820 | &num, dat->stream.ctr); |
| 2821 | else |
| 2822 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, |
| 2823 | EVP_CIPHER_CTX_iv_noconst(ctx), |
| 2824 | EVP_CIPHER_CTX_buf_noconst(ctx), &num, |
| 2825 | dat->block); |
| 2826 | EVP_CIPHER_CTX_set_num(ctx, num); |
| 2827 | return 1; |
| 2828 | } |
| 2829 | |
| 2830 | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) |
| 2831 | BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) |
| 2832 | BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) |
| 2833 | |
| 2834 | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) |
| 2835 | { |
| 2836 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); |
| 2837 | if (gctx == NULL) |
| 2838 | return 0; |
| 2839 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); |
| 2840 | if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c)) |
| 2841 | OPENSSL_free(gctx->iv); |
| 2842 | return 1; |
| 2843 | } |
| 2844 | |
| 2845 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 2846 | { |
| 2847 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); |
| 2848 | switch (type) { |
| 2849 | case EVP_CTRL_INIT: |
| 2850 | gctx->key_set = 0; |
| 2851 | gctx->iv_set = 0; |
| 2852 | gctx->ivlen = EVP_CIPHER_iv_length(c->cipher); |
| 2853 | gctx->iv = c->iv; |
| 2854 | gctx->taglen = -1; |
| 2855 | gctx->iv_gen = 0; |
| 2856 | gctx->tls_aad_len = -1; |
| 2857 | return 1; |
| 2858 | |
| 2859 | case EVP_CTRL_GET_IVLEN: |
| 2860 | *(int *)ptr = gctx->ivlen; |
| 2861 | return 1; |
| 2862 | |
| 2863 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 2864 | if (arg <= 0) |
| 2865 | return 0; |
| 2866 | /* Allocate memory for IV if needed */ |
| 2867 | if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { |
| 2868 | if (gctx->iv != c->iv) |
| 2869 | OPENSSL_free(gctx->iv); |
| 2870 | if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) { |
| 2871 | EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 2872 | return 0; |
| 2873 | } |
| 2874 | } |
| 2875 | gctx->ivlen = arg; |
| 2876 | return 1; |
| 2877 | |
| 2878 | case EVP_CTRL_AEAD_SET_TAG: |
| 2879 | if (arg <= 0 || arg > 16 || c->encrypt) |
| 2880 | return 0; |
| 2881 | memcpy(c->buf, ptr, arg); |
| 2882 | gctx->taglen = arg; |
| 2883 | return 1; |
| 2884 | |
| 2885 | case EVP_CTRL_AEAD_GET_TAG: |
| 2886 | if (arg <= 0 || arg > 16 || !c->encrypt |
| 2887 | || gctx->taglen < 0) |
| 2888 | return 0; |
| 2889 | memcpy(ptr, c->buf, arg); |
| 2890 | return 1; |
| 2891 | |
| 2892 | case EVP_CTRL_GCM_SET_IV_FIXED: |
| 2893 | /* Special case: -1 length restores whole IV */ |
| 2894 | if (arg == -1) { |
| 2895 | memcpy(gctx->iv, ptr, gctx->ivlen); |
| 2896 | gctx->iv_gen = 1; |
| 2897 | return 1; |
| 2898 | } |
| 2899 | /* |
| 2900 | * Fixed field must be at least 4 bytes and invocation field at least |
| 2901 | * 8. |
| 2902 | */ |
| 2903 | if ((arg < 4) || (gctx->ivlen - arg) < 8) |
| 2904 | return 0; |
| 2905 | if (arg) |
| 2906 | memcpy(gctx->iv, ptr, arg); |
| 2907 | if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) |
| 2908 | return 0; |
| 2909 | gctx->iv_gen = 1; |
| 2910 | return 1; |
| 2911 | |
| 2912 | case EVP_CTRL_GCM_IV_GEN: |
| 2913 | if (gctx->iv_gen == 0 || gctx->key_set == 0) |
| 2914 | return 0; |
| 2915 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| 2916 | if (arg <= 0 || arg > gctx->ivlen) |
| 2917 | arg = gctx->ivlen; |
| 2918 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); |
| 2919 | /* |
| 2920 | * Invocation field will be at least 8 bytes in size and so no need |
| 2921 | * to check wrap around or increment more than last 8 bytes. |
| 2922 | */ |
| 2923 | ctr64_inc(gctx->iv + gctx->ivlen - 8); |
| 2924 | gctx->iv_set = 1; |
| 2925 | return 1; |
| 2926 | |
| 2927 | case EVP_CTRL_GCM_SET_IV_INV: |
| 2928 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) |
| 2929 | return 0; |
| 2930 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); |
| 2931 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); |
| 2932 | gctx->iv_set = 1; |
| 2933 | return 1; |
| 2934 | |
| 2935 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 2936 | /* Save the AAD for later use */ |
| 2937 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 2938 | return 0; |
| 2939 | memcpy(c->buf, ptr, arg); |
| 2940 | gctx->tls_aad_len = arg; |
| 2941 | { |
| 2942 | unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; |
| 2943 | /* Correct length for explicit IV */ |
| 2944 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) |
| 2945 | return 0; |
| 2946 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 2947 | /* If decrypting correct for tag too */ |
| 2948 | if (!c->encrypt) { |
| 2949 | if (len < EVP_GCM_TLS_TAG_LEN) |
| 2950 | return 0; |
| 2951 | len -= EVP_GCM_TLS_TAG_LEN; |
| 2952 | } |
| 2953 | c->buf[arg - 2] = len >> 8; |
| 2954 | c->buf[arg - 1] = len & 0xff; |
| 2955 | } |
| 2956 | /* Extra padding: tag appended to record */ |
| 2957 | return EVP_GCM_TLS_TAG_LEN; |
| 2958 | |
| 2959 | case EVP_CTRL_COPY: |
| 2960 | { |
| 2961 | EVP_CIPHER_CTX *out = ptr; |
| 2962 | EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out); |
| 2963 | if (gctx->gcm.key) { |
| 2964 | if (gctx->gcm.key != &gctx->ks) |
| 2965 | return 0; |
| 2966 | gctx_out->gcm.key = &gctx_out->ks; |
| 2967 | } |
| 2968 | if (gctx->iv == c->iv) |
| 2969 | gctx_out->iv = out->iv; |
| 2970 | else { |
| 2971 | if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) { |
| 2972 | EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); |
| 2973 | return 0; |
| 2974 | } |
| 2975 | memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); |
| 2976 | } |
| 2977 | return 1; |
| 2978 | } |
| 2979 | |
| 2980 | default: |
| 2981 | return -1; |
| 2982 | |
| 2983 | } |
| 2984 | } |
| 2985 | |
| 2986 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 2987 | const unsigned char *iv, int enc) |
| 2988 | { |
| 2989 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 2990 | if (!iv && !key) |
| 2991 | return 1; |
| 2992 | if (key) { |
| 2993 | do { |
| 2994 | #ifdef HWAES_CAPABLE |
| 2995 | if (HWAES_CAPABLE) { |
| 2996 | HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 2997 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 2998 | (block128_f) HWAES_encrypt); |
| 2999 | # ifdef HWAES_ctr32_encrypt_blocks |
| 3000 | gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; |
| 3001 | # else |
| 3002 | gctx->ctr = NULL; |
| 3003 | # endif |
| 3004 | break; |
| 3005 | } else |
| 3006 | #endif |
| 3007 | #ifdef BSAES_CAPABLE |
| 3008 | if (BSAES_CAPABLE) { |
| 3009 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 3010 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 3011 | (block128_f) AES_encrypt); |
| 3012 | gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; |
| 3013 | break; |
| 3014 | } else |
| 3015 | #endif |
| 3016 | #ifdef VPAES_CAPABLE |
| 3017 | if (VPAES_CAPABLE) { |
| 3018 | vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 3019 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 3020 | (block128_f) vpaes_encrypt); |
| 3021 | gctx->ctr = NULL; |
| 3022 | break; |
| 3023 | } else |
| 3024 | #endif |
| 3025 | (void)0; /* terminate potentially open 'else' */ |
| 3026 | |
| 3027 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); |
| 3028 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, |
| 3029 | (block128_f) AES_encrypt); |
| 3030 | #ifdef AES_CTR_ASM |
| 3031 | gctx->ctr = (ctr128_f) AES_ctr32_encrypt; |
| 3032 | #else |
| 3033 | gctx->ctr = NULL; |
| 3034 | #endif |
| 3035 | } while (0); |
| 3036 | |
| 3037 | /* |
| 3038 | * If we have an iv can set it directly, otherwise use saved IV. |
| 3039 | */ |
| 3040 | if (iv == NULL && gctx->iv_set) |
| 3041 | iv = gctx->iv; |
| 3042 | if (iv) { |
| 3043 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 3044 | gctx->iv_set = 1; |
| 3045 | } |
| 3046 | gctx->key_set = 1; |
| 3047 | } else { |
| 3048 | /* If key set use IV, otherwise copy */ |
| 3049 | if (gctx->key_set) |
| 3050 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); |
| 3051 | else |
| 3052 | memcpy(gctx->iv, iv, gctx->ivlen); |
| 3053 | gctx->iv_set = 1; |
| 3054 | gctx->iv_gen = 0; |
| 3055 | } |
| 3056 | return 1; |
| 3057 | } |
| 3058 | |
| 3059 | /* |
| 3060 | * Handle TLS GCM packet format. This consists of the last portion of the IV |
| 3061 | * followed by the payload and finally the tag. On encrypt generate IV, |
| 3062 | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload |
| 3063 | * and verify tag. |
| 3064 | */ |
| 3065 | |
| 3066 | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3067 | const unsigned char *in, size_t len) |
| 3068 | { |
| 3069 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 3070 | int rv = -1; |
| 3071 | /* Encrypt/decrypt must be performed in place */ |
| 3072 | if (out != in |
| 3073 | || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) |
| 3074 | return -1; |
| 3075 | /* |
| 3076 | * Set IV from start of buffer or generate IV and write to start of |
| 3077 | * buffer. |
| 3078 | */ |
| 3079 | if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN |
| 3080 | : EVP_CTRL_GCM_SET_IV_INV, |
| 3081 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) |
| 3082 | goto err; |
| 3083 | /* Use saved AAD */ |
| 3084 | if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) |
| 3085 | goto err; |
| 3086 | /* Fix buffer and length to point to payload */ |
| 3087 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 3088 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN; |
| 3089 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 3090 | if (ctx->encrypt) { |
| 3091 | /* Encrypt payload */ |
| 3092 | if (gctx->ctr) { |
| 3093 | size_t bulk = 0; |
| 3094 | #if defined(AES_GCM_ASM) |
| 3095 | if (len >= 32 && AES_GCM_ASM(gctx)) { |
| 3096 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
| 3097 | return -1; |
| 3098 | |
| 3099 | bulk = AES_gcm_encrypt(in, out, len, |
| 3100 | gctx->gcm.key, |
| 3101 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3102 | gctx->gcm.len.u[1] += bulk; |
| 3103 | } |
| 3104 | #endif |
| 3105 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
| 3106 | in + bulk, |
| 3107 | out + bulk, |
| 3108 | len - bulk, gctx->ctr)) |
| 3109 | goto err; |
| 3110 | } else { |
| 3111 | size_t bulk = 0; |
| 3112 | #if defined(AES_GCM_ASM2) |
| 3113 | if (len >= 32 && AES_GCM_ASM2(gctx)) { |
| 3114 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) |
| 3115 | return -1; |
| 3116 | |
| 3117 | bulk = AES_gcm_encrypt(in, out, len, |
| 3118 | gctx->gcm.key, |
| 3119 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3120 | gctx->gcm.len.u[1] += bulk; |
| 3121 | } |
| 3122 | #endif |
| 3123 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
| 3124 | in + bulk, out + bulk, len - bulk)) |
| 3125 | goto err; |
| 3126 | } |
| 3127 | out += len; |
| 3128 | /* Finally write tag */ |
| 3129 | CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); |
| 3130 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; |
| 3131 | } else { |
| 3132 | /* Decrypt */ |
| 3133 | if (gctx->ctr) { |
| 3134 | size_t bulk = 0; |
| 3135 | #if defined(AES_GCM_ASM) |
| 3136 | if (len >= 16 && AES_GCM_ASM(gctx)) { |
| 3137 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
| 3138 | return -1; |
| 3139 | |
| 3140 | bulk = AES_gcm_decrypt(in, out, len, |
| 3141 | gctx->gcm.key, |
| 3142 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3143 | gctx->gcm.len.u[1] += bulk; |
| 3144 | } |
| 3145 | #endif |
| 3146 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
| 3147 | in + bulk, |
| 3148 | out + bulk, |
| 3149 | len - bulk, gctx->ctr)) |
| 3150 | goto err; |
| 3151 | } else { |
| 3152 | size_t bulk = 0; |
| 3153 | #if defined(AES_GCM_ASM2) |
| 3154 | if (len >= 16 && AES_GCM_ASM2(gctx)) { |
| 3155 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) |
| 3156 | return -1; |
| 3157 | |
| 3158 | bulk = AES_gcm_decrypt(in, out, len, |
| 3159 | gctx->gcm.key, |
| 3160 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3161 | gctx->gcm.len.u[1] += bulk; |
| 3162 | } |
| 3163 | #endif |
| 3164 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
| 3165 | in + bulk, out + bulk, len - bulk)) |
| 3166 | goto err; |
| 3167 | } |
| 3168 | /* Retrieve tag */ |
| 3169 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); |
| 3170 | /* If tag mismatch wipe buffer */ |
| 3171 | if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { |
| 3172 | OPENSSL_cleanse(out, len); |
| 3173 | goto err; |
| 3174 | } |
| 3175 | rv = len; |
| 3176 | } |
| 3177 | |
| 3178 | err: |
| 3179 | gctx->iv_set = 0; |
| 3180 | gctx->tls_aad_len = -1; |
| 3181 | return rv; |
| 3182 | } |
| 3183 | |
| 3184 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3185 | const unsigned char *in, size_t len) |
| 3186 | { |
| 3187 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); |
| 3188 | /* If not set up, return error */ |
| 3189 | if (!gctx->key_set) |
| 3190 | return -1; |
| 3191 | |
| 3192 | if (gctx->tls_aad_len >= 0) |
| 3193 | return aes_gcm_tls_cipher(ctx, out, in, len); |
| 3194 | |
| 3195 | if (!gctx->iv_set) |
| 3196 | return -1; |
| 3197 | if (in) { |
| 3198 | if (out == NULL) { |
| 3199 | if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) |
| 3200 | return -1; |
| 3201 | } else if (ctx->encrypt) { |
| 3202 | if (gctx->ctr) { |
| 3203 | size_t bulk = 0; |
| 3204 | #if defined(AES_GCM_ASM) |
| 3205 | if (len >= 32 && AES_GCM_ASM(gctx)) { |
| 3206 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 3207 | |
| 3208 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
| 3209 | return -1; |
| 3210 | |
| 3211 | bulk = AES_gcm_encrypt(in + res, |
| 3212 | out + res, len - res, |
| 3213 | gctx->gcm.key, gctx->gcm.Yi.c, |
| 3214 | gctx->gcm.Xi.u); |
| 3215 | gctx->gcm.len.u[1] += bulk; |
| 3216 | bulk += res; |
| 3217 | } |
| 3218 | #endif |
| 3219 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, |
| 3220 | in + bulk, |
| 3221 | out + bulk, |
| 3222 | len - bulk, gctx->ctr)) |
| 3223 | return -1; |
| 3224 | } else { |
| 3225 | size_t bulk = 0; |
| 3226 | #if defined(AES_GCM_ASM2) |
| 3227 | if (len >= 32 && AES_GCM_ASM2(gctx)) { |
| 3228 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 3229 | |
| 3230 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) |
| 3231 | return -1; |
| 3232 | |
| 3233 | bulk = AES_gcm_encrypt(in + res, |
| 3234 | out + res, len - res, |
| 3235 | gctx->gcm.key, gctx->gcm.Yi.c, |
| 3236 | gctx->gcm.Xi.u); |
| 3237 | gctx->gcm.len.u[1] += bulk; |
| 3238 | bulk += res; |
| 3239 | } |
| 3240 | #endif |
| 3241 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, |
| 3242 | in + bulk, out + bulk, len - bulk)) |
| 3243 | return -1; |
| 3244 | } |
| 3245 | } else { |
| 3246 | if (gctx->ctr) { |
| 3247 | size_t bulk = 0; |
| 3248 | #if defined(AES_GCM_ASM) |
| 3249 | if (len >= 16 && AES_GCM_ASM(gctx)) { |
| 3250 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 3251 | |
| 3252 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
| 3253 | return -1; |
| 3254 | |
| 3255 | bulk = AES_gcm_decrypt(in + res, |
| 3256 | out + res, len - res, |
| 3257 | gctx->gcm.key, |
| 3258 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3259 | gctx->gcm.len.u[1] += bulk; |
| 3260 | bulk += res; |
| 3261 | } |
| 3262 | #endif |
| 3263 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, |
| 3264 | in + bulk, |
| 3265 | out + bulk, |
| 3266 | len - bulk, gctx->ctr)) |
| 3267 | return -1; |
| 3268 | } else { |
| 3269 | size_t bulk = 0; |
| 3270 | #if defined(AES_GCM_ASM2) |
| 3271 | if (len >= 16 && AES_GCM_ASM2(gctx)) { |
| 3272 | size_t res = (16 - gctx->gcm.mres) % 16; |
| 3273 | |
| 3274 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) |
| 3275 | return -1; |
| 3276 | |
| 3277 | bulk = AES_gcm_decrypt(in + res, |
| 3278 | out + res, len - res, |
| 3279 | gctx->gcm.key, |
| 3280 | gctx->gcm.Yi.c, gctx->gcm.Xi.u); |
| 3281 | gctx->gcm.len.u[1] += bulk; |
| 3282 | bulk += res; |
| 3283 | } |
| 3284 | #endif |
| 3285 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, |
| 3286 | in + bulk, out + bulk, len - bulk)) |
| 3287 | return -1; |
| 3288 | } |
| 3289 | } |
| 3290 | return len; |
| 3291 | } else { |
| 3292 | if (!ctx->encrypt) { |
| 3293 | if (gctx->taglen < 0) |
| 3294 | return -1; |
| 3295 | if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) |
| 3296 | return -1; |
| 3297 | gctx->iv_set = 0; |
| 3298 | return 0; |
| 3299 | } |
| 3300 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); |
| 3301 | gctx->taglen = 16; |
| 3302 | /* Don't reuse the IV */ |
| 3303 | gctx->iv_set = 0; |
| 3304 | return 0; |
| 3305 | } |
| 3306 | |
| 3307 | } |
| 3308 | |
| 3309 | #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ |
| 3310 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| 3311 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
| 3312 | | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH) |
| 3313 | |
| 3314 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, |
| 3315 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3316 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, |
| 3317 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3318 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, |
| 3319 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3320 | |
| 3321 | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 3322 | { |
| 3323 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c); |
| 3324 | |
| 3325 | if (type == EVP_CTRL_COPY) { |
| 3326 | EVP_CIPHER_CTX *out = ptr; |
| 3327 | EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out); |
| 3328 | |
| 3329 | if (xctx->xts.key1) { |
| 3330 | if (xctx->xts.key1 != &xctx->ks1) |
| 3331 | return 0; |
| 3332 | xctx_out->xts.key1 = &xctx_out->ks1; |
| 3333 | } |
| 3334 | if (xctx->xts.key2) { |
| 3335 | if (xctx->xts.key2 != &xctx->ks2) |
| 3336 | return 0; |
| 3337 | xctx_out->xts.key2 = &xctx_out->ks2; |
| 3338 | } |
| 3339 | return 1; |
| 3340 | } else if (type != EVP_CTRL_INIT) |
| 3341 | return -1; |
| 3342 | /* key1 and key2 are used as an indicator both key and IV are set */ |
| 3343 | xctx->xts.key1 = NULL; |
| 3344 | xctx->xts.key2 = NULL; |
| 3345 | return 1; |
| 3346 | } |
| 3347 | |
| 3348 | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3349 | const unsigned char *iv, int enc) |
| 3350 | { |
| 3351 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 3352 | |
| 3353 | if (!iv && !key) |
| 3354 | return 1; |
| 3355 | |
| 3356 | if (key) |
| 3357 | do { |
| 3358 | /* The key is two half length keys in reality */ |
| 3359 | const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; |
| 3360 | |
| 3361 | /* |
| 3362 | * Verify that the two keys are different. |
| 3363 | * |
| 3364 | * This addresses the vulnerability described in Rogaway's |
| 3365 | * September 2004 paper: |
| 3366 | * |
| 3367 | * "Efficient Instantiations of Tweakable Blockciphers and |
| 3368 | * Refinements to Modes OCB and PMAC". |
| 3369 | * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) |
| 3370 | * |
| 3371 | * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states |
| 3372 | * that: |
| 3373 | * "The check for Key_1 != Key_2 shall be done at any place |
| 3374 | * BEFORE using the keys in the XTS-AES algorithm to process |
| 3375 | * data with them." |
| 3376 | */ |
| 3377 | if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { |
| 3378 | EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); |
| 3379 | return 0; |
| 3380 | } |
| 3381 | |
| 3382 | #ifdef AES_XTS_ASM |
| 3383 | xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; |
| 3384 | #else |
| 3385 | xctx->stream = NULL; |
| 3386 | #endif |
| 3387 | /* key_len is two AES keys */ |
| 3388 | #ifdef HWAES_CAPABLE |
| 3389 | if (HWAES_CAPABLE) { |
| 3390 | if (enc) { |
| 3391 | HWAES_set_encrypt_key(key, |
| 3392 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3393 | &xctx->ks1.ks); |
| 3394 | xctx->xts.block1 = (block128_f) HWAES_encrypt; |
| 3395 | # ifdef HWAES_xts_encrypt |
| 3396 | xctx->stream = HWAES_xts_encrypt; |
| 3397 | # endif |
| 3398 | } else { |
| 3399 | HWAES_set_decrypt_key(key, |
| 3400 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3401 | &xctx->ks1.ks); |
| 3402 | xctx->xts.block1 = (block128_f) HWAES_decrypt; |
| 3403 | # ifdef HWAES_xts_decrypt |
| 3404 | xctx->stream = HWAES_xts_decrypt; |
| 3405 | #endif |
| 3406 | } |
| 3407 | |
| 3408 | HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, |
| 3409 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3410 | &xctx->ks2.ks); |
| 3411 | xctx->xts.block2 = (block128_f) HWAES_encrypt; |
| 3412 | |
| 3413 | xctx->xts.key1 = &xctx->ks1; |
| 3414 | break; |
| 3415 | } else |
| 3416 | #endif |
| 3417 | #ifdef BSAES_CAPABLE |
| 3418 | if (BSAES_CAPABLE) |
| 3419 | xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; |
| 3420 | else |
| 3421 | #endif |
| 3422 | #ifdef VPAES_CAPABLE |
| 3423 | if (VPAES_CAPABLE) { |
| 3424 | if (enc) { |
| 3425 | vpaes_set_encrypt_key(key, |
| 3426 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3427 | &xctx->ks1.ks); |
| 3428 | xctx->xts.block1 = (block128_f) vpaes_encrypt; |
| 3429 | } else { |
| 3430 | vpaes_set_decrypt_key(key, |
| 3431 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3432 | &xctx->ks1.ks); |
| 3433 | xctx->xts.block1 = (block128_f) vpaes_decrypt; |
| 3434 | } |
| 3435 | |
| 3436 | vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, |
| 3437 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3438 | &xctx->ks2.ks); |
| 3439 | xctx->xts.block2 = (block128_f) vpaes_encrypt; |
| 3440 | |
| 3441 | xctx->xts.key1 = &xctx->ks1; |
| 3442 | break; |
| 3443 | } else |
| 3444 | #endif |
| 3445 | (void)0; /* terminate potentially open 'else' */ |
| 3446 | |
| 3447 | if (enc) { |
| 3448 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3449 | &xctx->ks1.ks); |
| 3450 | xctx->xts.block1 = (block128_f) AES_encrypt; |
| 3451 | } else { |
| 3452 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3453 | &xctx->ks1.ks); |
| 3454 | xctx->xts.block1 = (block128_f) AES_decrypt; |
| 3455 | } |
| 3456 | |
| 3457 | AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2, |
| 3458 | EVP_CIPHER_CTX_key_length(ctx) * 4, |
| 3459 | &xctx->ks2.ks); |
| 3460 | xctx->xts.block2 = (block128_f) AES_encrypt; |
| 3461 | |
| 3462 | xctx->xts.key1 = &xctx->ks1; |
| 3463 | } while (0); |
| 3464 | |
| 3465 | if (iv) { |
| 3466 | xctx->xts.key2 = &xctx->ks2; |
| 3467 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16); |
| 3468 | } |
| 3469 | |
| 3470 | return 1; |
| 3471 | } |
| 3472 | |
| 3473 | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3474 | const unsigned char *in, size_t len) |
| 3475 | { |
| 3476 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); |
| 3477 | if (!xctx->xts.key1 || !xctx->xts.key2) |
| 3478 | return 0; |
| 3479 | if (!out || !in || len < AES_BLOCK_SIZE) |
| 3480 | return 0; |
| 3481 | if (xctx->stream) |
| 3482 | (*xctx->stream) (in, out, len, |
| 3483 | xctx->xts.key1, xctx->xts.key2, |
| 3484 | EVP_CIPHER_CTX_iv_noconst(ctx)); |
| 3485 | else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 3486 | in, out, len, |
| 3487 | EVP_CIPHER_CTX_encrypting(ctx))) |
| 3488 | return 0; |
| 3489 | return 1; |
| 3490 | } |
| 3491 | |
| 3492 | #define aes_xts_cleanup NULL |
| 3493 | |
| 3494 | #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ |
| 3495 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ |
| 3496 | | EVP_CIPH_CUSTOM_COPY) |
| 3497 | |
| 3498 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) |
| 3499 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) |
| 3500 | |
| 3501 | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 3502 | { |
| 3503 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c); |
| 3504 | switch (type) { |
| 3505 | case EVP_CTRL_INIT: |
| 3506 | cctx->key_set = 0; |
| 3507 | cctx->iv_set = 0; |
| 3508 | cctx->L = 8; |
| 3509 | cctx->M = 12; |
| 3510 | cctx->tag_set = 0; |
| 3511 | cctx->len_set = 0; |
| 3512 | cctx->tls_aad_len = -1; |
| 3513 | return 1; |
| 3514 | case EVP_CTRL_GET_IVLEN: |
| 3515 | *(int *)ptr = 15 - cctx->L; |
| 3516 | return 1; |
| 3517 | case EVP_CTRL_AEAD_TLS1_AAD: |
| 3518 | /* Save the AAD for later use */ |
| 3519 | if (arg != EVP_AEAD_TLS1_AAD_LEN) |
| 3520 | return 0; |
| 3521 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); |
| 3522 | cctx->tls_aad_len = arg; |
| 3523 | { |
| 3524 | uint16_t len = |
| 3525 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 |
| 3526 | | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; |
| 3527 | /* Correct length for explicit IV */ |
| 3528 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) |
| 3529 | return 0; |
| 3530 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 3531 | /* If decrypting correct for tag too */ |
| 3532 | if (!EVP_CIPHER_CTX_encrypting(c)) { |
| 3533 | if (len < cctx->M) |
| 3534 | return 0; |
| 3535 | len -= cctx->M; |
| 3536 | } |
| 3537 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; |
| 3538 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; |
| 3539 | } |
| 3540 | /* Extra padding: tag appended to record */ |
| 3541 | return cctx->M; |
| 3542 | |
| 3543 | case EVP_CTRL_CCM_SET_IV_FIXED: |
| 3544 | /* Sanity check length */ |
| 3545 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN) |
| 3546 | return 0; |
| 3547 | /* Just copy to first part of IV */ |
| 3548 | memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg); |
| 3549 | return 1; |
| 3550 | |
| 3551 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 3552 | arg = 15 - arg; |
| 3553 | /* fall thru */ |
| 3554 | case EVP_CTRL_CCM_SET_L: |
| 3555 | if (arg < 2 || arg > 8) |
| 3556 | return 0; |
| 3557 | cctx->L = arg; |
| 3558 | return 1; |
| 3559 | |
| 3560 | case EVP_CTRL_AEAD_SET_TAG: |
| 3561 | if ((arg & 1) || arg < 4 || arg > 16) |
| 3562 | return 0; |
| 3563 | if (EVP_CIPHER_CTX_encrypting(c) && ptr) |
| 3564 | return 0; |
| 3565 | if (ptr) { |
| 3566 | cctx->tag_set = 1; |
| 3567 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); |
| 3568 | } |
| 3569 | cctx->M = arg; |
| 3570 | return 1; |
| 3571 | |
| 3572 | case EVP_CTRL_AEAD_GET_TAG: |
| 3573 | if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set) |
| 3574 | return 0; |
| 3575 | if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) |
| 3576 | return 0; |
| 3577 | cctx->tag_set = 0; |
| 3578 | cctx->iv_set = 0; |
| 3579 | cctx->len_set = 0; |
| 3580 | return 1; |
| 3581 | |
| 3582 | case EVP_CTRL_COPY: |
| 3583 | { |
| 3584 | EVP_CIPHER_CTX *out = ptr; |
| 3585 | EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out); |
| 3586 | if (cctx->ccm.key) { |
| 3587 | if (cctx->ccm.key != &cctx->ks) |
| 3588 | return 0; |
| 3589 | cctx_out->ccm.key = &cctx_out->ks; |
| 3590 | } |
| 3591 | return 1; |
| 3592 | } |
| 3593 | |
| 3594 | default: |
| 3595 | return -1; |
| 3596 | |
| 3597 | } |
| 3598 | } |
| 3599 | |
| 3600 | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3601 | const unsigned char *iv, int enc) |
| 3602 | { |
| 3603 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 3604 | if (!iv && !key) |
| 3605 | return 1; |
| 3606 | if (key) |
| 3607 | do { |
| 3608 | #ifdef HWAES_CAPABLE |
| 3609 | if (HWAES_CAPABLE) { |
| 3610 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3611 | &cctx->ks.ks); |
| 3612 | |
| 3613 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 3614 | &cctx->ks, (block128_f) HWAES_encrypt); |
| 3615 | cctx->str = NULL; |
| 3616 | cctx->key_set = 1; |
| 3617 | break; |
| 3618 | } else |
| 3619 | #endif |
| 3620 | #ifdef VPAES_CAPABLE |
| 3621 | if (VPAES_CAPABLE) { |
| 3622 | vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3623 | &cctx->ks.ks); |
| 3624 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 3625 | &cctx->ks, (block128_f) vpaes_encrypt); |
| 3626 | cctx->str = NULL; |
| 3627 | cctx->key_set = 1; |
| 3628 | break; |
| 3629 | } |
| 3630 | #endif |
| 3631 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3632 | &cctx->ks.ks); |
| 3633 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, |
| 3634 | &cctx->ks, (block128_f) AES_encrypt); |
| 3635 | cctx->str = NULL; |
| 3636 | cctx->key_set = 1; |
| 3637 | } while (0); |
| 3638 | if (iv) { |
| 3639 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L); |
| 3640 | cctx->iv_set = 1; |
| 3641 | } |
| 3642 | return 1; |
| 3643 | } |
| 3644 | |
| 3645 | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3646 | const unsigned char *in, size_t len) |
| 3647 | { |
| 3648 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 3649 | CCM128_CONTEXT *ccm = &cctx->ccm; |
| 3650 | /* Encrypt/decrypt must be performed in place */ |
| 3651 | if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) |
| 3652 | return -1; |
| 3653 | /* If encrypting set explicit IV from sequence number (start of AAD) */ |
| 3654 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3655 | memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), |
| 3656 | EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 3657 | /* Get rest of IV from explicit IV */ |
| 3658 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in, |
| 3659 | EVP_CCM_TLS_EXPLICIT_IV_LEN); |
| 3660 | /* Correct length value */ |
| 3661 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; |
| 3662 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L, |
| 3663 | len)) |
| 3664 | return -1; |
| 3665 | /* Use saved AAD */ |
| 3666 | CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len); |
| 3667 | /* Fix buffer to point to payload */ |
| 3668 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 3669 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN; |
| 3670 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3671 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
| 3672 | cctx->str) : |
| 3673 | CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
| 3674 | return -1; |
| 3675 | if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) |
| 3676 | return -1; |
| 3677 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; |
| 3678 | } else { |
| 3679 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
| 3680 | cctx->str) : |
| 3681 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
| 3682 | unsigned char tag[16]; |
| 3683 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
| 3684 | if (!CRYPTO_memcmp(tag, in + len, cctx->M)) |
| 3685 | return len; |
| 3686 | } |
| 3687 | } |
| 3688 | OPENSSL_cleanse(out, len); |
| 3689 | return -1; |
| 3690 | } |
| 3691 | } |
| 3692 | |
| 3693 | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3694 | const unsigned char *in, size_t len) |
| 3695 | { |
| 3696 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); |
| 3697 | CCM128_CONTEXT *ccm = &cctx->ccm; |
| 3698 | /* If not set up, return error */ |
| 3699 | if (!cctx->key_set) |
| 3700 | return -1; |
| 3701 | |
| 3702 | if (cctx->tls_aad_len >= 0) |
| 3703 | return aes_ccm_tls_cipher(ctx, out, in, len); |
| 3704 | |
| 3705 | /* EVP_*Final() doesn't return any data */ |
| 3706 | if (in == NULL && out != NULL) |
| 3707 | return 0; |
| 3708 | |
| 3709 | if (!cctx->iv_set) |
| 3710 | return -1; |
| 3711 | |
| 3712 | if (!out) { |
| 3713 | if (!in) { |
| 3714 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 3715 | 15 - cctx->L, len)) |
| 3716 | return -1; |
| 3717 | cctx->len_set = 1; |
| 3718 | return len; |
| 3719 | } |
| 3720 | /* If have AAD need message length */ |
| 3721 | if (!cctx->len_set && len) |
| 3722 | return -1; |
| 3723 | CRYPTO_ccm128_aad(ccm, in, len); |
| 3724 | return len; |
| 3725 | } |
| 3726 | |
| 3727 | /* The tag must be set before actually decrypting data */ |
| 3728 | if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set) |
| 3729 | return -1; |
| 3730 | |
| 3731 | /* If not set length yet do it */ |
| 3732 | if (!cctx->len_set) { |
| 3733 | if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), |
| 3734 | 15 - cctx->L, len)) |
| 3735 | return -1; |
| 3736 | cctx->len_set = 1; |
| 3737 | } |
| 3738 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3739 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, |
| 3740 | cctx->str) : |
| 3741 | CRYPTO_ccm128_encrypt(ccm, in, out, len)) |
| 3742 | return -1; |
| 3743 | cctx->tag_set = 1; |
| 3744 | return len; |
| 3745 | } else { |
| 3746 | int rv = -1; |
| 3747 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, |
| 3748 | cctx->str) : |
| 3749 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { |
| 3750 | unsigned char tag[16]; |
| 3751 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { |
| 3752 | if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), |
| 3753 | cctx->M)) |
| 3754 | rv = len; |
| 3755 | } |
| 3756 | } |
| 3757 | if (rv == -1) |
| 3758 | OPENSSL_cleanse(out, len); |
| 3759 | cctx->iv_set = 0; |
| 3760 | cctx->tag_set = 0; |
| 3761 | cctx->len_set = 0; |
| 3762 | return rv; |
| 3763 | } |
| 3764 | } |
| 3765 | |
| 3766 | #define aes_ccm_cleanup NULL |
| 3767 | |
| 3768 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, |
| 3769 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3770 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, |
| 3771 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3772 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, |
| 3773 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 3774 | |
| 3775 | typedef struct { |
| 3776 | union { |
| 3777 | double align; |
| 3778 | AES_KEY ks; |
| 3779 | } ks; |
| 3780 | /* Indicates if IV has been set */ |
| 3781 | unsigned char *iv; |
| 3782 | } EVP_AES_WRAP_CTX; |
| 3783 | |
| 3784 | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 3785 | const unsigned char *iv, int enc) |
| 3786 | { |
| 3787 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); |
| 3788 | if (!iv && !key) |
| 3789 | return 1; |
| 3790 | if (key) { |
| 3791 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3792 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3793 | &wctx->ks.ks); |
| 3794 | else |
| 3795 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 3796 | &wctx->ks.ks); |
| 3797 | if (!iv) |
| 3798 | wctx->iv = NULL; |
| 3799 | } |
| 3800 | if (iv) { |
| 3801 | memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| 3802 | wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx); |
| 3803 | } |
| 3804 | return 1; |
| 3805 | } |
| 3806 | |
| 3807 | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 3808 | const unsigned char *in, size_t inlen) |
| 3809 | { |
| 3810 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); |
| 3811 | size_t rv; |
| 3812 | /* AES wrap with padding has IV length of 4, without padding 8 */ |
| 3813 | int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4; |
| 3814 | /* No final operation so always return zero length */ |
| 3815 | if (!in) |
| 3816 | return 0; |
| 3817 | /* Input length must always be non-zero */ |
| 3818 | if (!inlen) |
| 3819 | return -1; |
| 3820 | /* If decrypting need at least 16 bytes and multiple of 8 */ |
| 3821 | if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7)) |
| 3822 | return -1; |
| 3823 | /* If not padding input must be multiple of 8 */ |
| 3824 | if (!pad && inlen & 0x7) |
| 3825 | return -1; |
| 3826 | if (is_partially_overlapping(out, in, inlen)) { |
| 3827 | EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); |
| 3828 | return 0; |
| 3829 | } |
| 3830 | if (!out) { |
| 3831 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 3832 | /* If padding round up to multiple of 8 */ |
| 3833 | if (pad) |
| 3834 | inlen = (inlen + 7) / 8 * 8; |
| 3835 | /* 8 byte prefix */ |
| 3836 | return inlen + 8; |
| 3837 | } else { |
| 3838 | /* |
| 3839 | * If not padding output will be exactly 8 bytes smaller than |
| 3840 | * input. If padding it will be at least 8 bytes smaller but we |
| 3841 | * don't know how much. |
| 3842 | */ |
| 3843 | return inlen - 8; |
| 3844 | } |
| 3845 | } |
| 3846 | if (pad) { |
| 3847 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3848 | rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, |
| 3849 | out, in, inlen, |
| 3850 | (block128_f) AES_encrypt); |
| 3851 | else |
| 3852 | rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, |
| 3853 | out, in, inlen, |
| 3854 | (block128_f) AES_decrypt); |
| 3855 | } else { |
| 3856 | if (EVP_CIPHER_CTX_encrypting(ctx)) |
| 3857 | rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, |
| 3858 | out, in, inlen, (block128_f) AES_encrypt); |
| 3859 | else |
| 3860 | rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, |
| 3861 | out, in, inlen, (block128_f) AES_decrypt); |
| 3862 | } |
| 3863 | return rv ? (int)rv : -1; |
| 3864 | } |
| 3865 | |
| 3866 | #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ |
| 3867 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ |
| 3868 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) |
| 3869 | |
| 3870 | static const EVP_CIPHER aes_128_wrap = { |
| 3871 | NID_id_aes128_wrap, |
| 3872 | 8, 16, 8, WRAP_FLAGS, |
| 3873 | aes_wrap_init_key, aes_wrap_cipher, |
| 3874 | NULL, |
| 3875 | sizeof(EVP_AES_WRAP_CTX), |
| 3876 | NULL, NULL, NULL, NULL |
| 3877 | }; |
| 3878 | |
| 3879 | const EVP_CIPHER *EVP_aes_128_wrap(void) |
| 3880 | { |
| 3881 | return &aes_128_wrap; |
| 3882 | } |
| 3883 | |
| 3884 | static const EVP_CIPHER aes_192_wrap = { |
| 3885 | NID_id_aes192_wrap, |
| 3886 | 8, 24, 8, WRAP_FLAGS, |
| 3887 | aes_wrap_init_key, aes_wrap_cipher, |
| 3888 | NULL, |
| 3889 | sizeof(EVP_AES_WRAP_CTX), |
| 3890 | NULL, NULL, NULL, NULL |
| 3891 | }; |
| 3892 | |
| 3893 | const EVP_CIPHER *EVP_aes_192_wrap(void) |
| 3894 | { |
| 3895 | return &aes_192_wrap; |
| 3896 | } |
| 3897 | |
| 3898 | static const EVP_CIPHER aes_256_wrap = { |
| 3899 | NID_id_aes256_wrap, |
| 3900 | 8, 32, 8, WRAP_FLAGS, |
| 3901 | aes_wrap_init_key, aes_wrap_cipher, |
| 3902 | NULL, |
| 3903 | sizeof(EVP_AES_WRAP_CTX), |
| 3904 | NULL, NULL, NULL, NULL |
| 3905 | }; |
| 3906 | |
| 3907 | const EVP_CIPHER *EVP_aes_256_wrap(void) |
| 3908 | { |
| 3909 | return &aes_256_wrap; |
| 3910 | } |
| 3911 | |
| 3912 | static const EVP_CIPHER aes_128_wrap_pad = { |
| 3913 | NID_id_aes128_wrap_pad, |
| 3914 | 8, 16, 4, WRAP_FLAGS, |
| 3915 | aes_wrap_init_key, aes_wrap_cipher, |
| 3916 | NULL, |
| 3917 | sizeof(EVP_AES_WRAP_CTX), |
| 3918 | NULL, NULL, NULL, NULL |
| 3919 | }; |
| 3920 | |
| 3921 | const EVP_CIPHER *EVP_aes_128_wrap_pad(void) |
| 3922 | { |
| 3923 | return &aes_128_wrap_pad; |
| 3924 | } |
| 3925 | |
| 3926 | static const EVP_CIPHER aes_192_wrap_pad = { |
| 3927 | NID_id_aes192_wrap_pad, |
| 3928 | 8, 24, 4, WRAP_FLAGS, |
| 3929 | aes_wrap_init_key, aes_wrap_cipher, |
| 3930 | NULL, |
| 3931 | sizeof(EVP_AES_WRAP_CTX), |
| 3932 | NULL, NULL, NULL, NULL |
| 3933 | }; |
| 3934 | |
| 3935 | const EVP_CIPHER *EVP_aes_192_wrap_pad(void) |
| 3936 | { |
| 3937 | return &aes_192_wrap_pad; |
| 3938 | } |
| 3939 | |
| 3940 | static const EVP_CIPHER aes_256_wrap_pad = { |
| 3941 | NID_id_aes256_wrap_pad, |
| 3942 | 8, 32, 4, WRAP_FLAGS, |
| 3943 | aes_wrap_init_key, aes_wrap_cipher, |
| 3944 | NULL, |
| 3945 | sizeof(EVP_AES_WRAP_CTX), |
| 3946 | NULL, NULL, NULL, NULL |
| 3947 | }; |
| 3948 | |
| 3949 | const EVP_CIPHER *EVP_aes_256_wrap_pad(void) |
| 3950 | { |
| 3951 | return &aes_256_wrap_pad; |
| 3952 | } |
| 3953 | |
| 3954 | #ifndef OPENSSL_NO_OCB |
| 3955 | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) |
| 3956 | { |
| 3957 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); |
| 3958 | EVP_CIPHER_CTX *newc; |
| 3959 | EVP_AES_OCB_CTX *new_octx; |
| 3960 | |
| 3961 | switch (type) { |
| 3962 | case EVP_CTRL_INIT: |
| 3963 | octx->key_set = 0; |
| 3964 | octx->iv_set = 0; |
| 3965 | octx->ivlen = EVP_CIPHER_iv_length(c->cipher); |
| 3966 | octx->iv = EVP_CIPHER_CTX_iv_noconst(c); |
| 3967 | octx->taglen = 16; |
| 3968 | octx->data_buf_len = 0; |
| 3969 | octx->aad_buf_len = 0; |
| 3970 | return 1; |
| 3971 | |
| 3972 | case EVP_CTRL_GET_IVLEN: |
| 3973 | *(int *)ptr = octx->ivlen; |
| 3974 | return 1; |
| 3975 | |
| 3976 | case EVP_CTRL_AEAD_SET_IVLEN: |
| 3977 | /* IV len must be 1 to 15 */ |
| 3978 | if (arg <= 0 || arg > 15) |
| 3979 | return 0; |
| 3980 | |
| 3981 | octx->ivlen = arg; |
| 3982 | return 1; |
| 3983 | |
| 3984 | case EVP_CTRL_AEAD_SET_TAG: |
| 3985 | if (!ptr) { |
| 3986 | /* Tag len must be 0 to 16 */ |
| 3987 | if (arg < 0 || arg > 16) |
| 3988 | return 0; |
| 3989 | |
| 3990 | octx->taglen = arg; |
| 3991 | return 1; |
| 3992 | } |
| 3993 | if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c)) |
| 3994 | return 0; |
| 3995 | memcpy(octx->tag, ptr, arg); |
| 3996 | return 1; |
| 3997 | |
| 3998 | case EVP_CTRL_AEAD_GET_TAG: |
| 3999 | if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c)) |
| 4000 | return 0; |
| 4001 | |
| 4002 | memcpy(ptr, octx->tag, arg); |
| 4003 | return 1; |
| 4004 | |
| 4005 | case EVP_CTRL_COPY: |
| 4006 | newc = (EVP_CIPHER_CTX *)ptr; |
| 4007 | new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc); |
| 4008 | return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, |
| 4009 | &new_octx->ksenc.ks, |
| 4010 | &new_octx->ksdec.ks); |
| 4011 | |
| 4012 | default: |
| 4013 | return -1; |
| 4014 | |
| 4015 | } |
| 4016 | } |
| 4017 | |
| 4018 | # ifdef HWAES_CAPABLE |
| 4019 | # ifdef HWAES_ocb_encrypt |
| 4020 | void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out, |
| 4021 | size_t blocks, const void *key, |
| 4022 | size_t start_block_num, |
| 4023 | unsigned char offset_i[16], |
| 4024 | const unsigned char L_[][16], |
| 4025 | unsigned char checksum[16]); |
| 4026 | # else |
| 4027 | # define HWAES_ocb_encrypt ((ocb128_f)NULL) |
| 4028 | # endif |
| 4029 | # ifdef HWAES_ocb_decrypt |
| 4030 | void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out, |
| 4031 | size_t blocks, const void *key, |
| 4032 | size_t start_block_num, |
| 4033 | unsigned char offset_i[16], |
| 4034 | const unsigned char L_[][16], |
| 4035 | unsigned char checksum[16]); |
| 4036 | # else |
| 4037 | # define HWAES_ocb_decrypt ((ocb128_f)NULL) |
| 4038 | # endif |
| 4039 | # endif |
| 4040 | |
| 4041 | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, |
| 4042 | const unsigned char *iv, int enc) |
| 4043 | { |
| 4044 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 4045 | if (!iv && !key) |
| 4046 | return 1; |
| 4047 | if (key) { |
| 4048 | do { |
| 4049 | /* |
| 4050 | * We set both the encrypt and decrypt key here because decrypt |
| 4051 | * needs both. We could possibly optimise to remove setting the |
| 4052 | * decrypt for an encryption operation. |
| 4053 | */ |
| 4054 | # ifdef HWAES_CAPABLE |
| 4055 | if (HWAES_CAPABLE) { |
| 4056 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 4057 | &octx->ksenc.ks); |
| 4058 | HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 4059 | &octx->ksdec.ks); |
| 4060 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 4061 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 4062 | (block128_f) HWAES_encrypt, |
| 4063 | (block128_f) HWAES_decrypt, |
| 4064 | enc ? HWAES_ocb_encrypt |
| 4065 | : HWAES_ocb_decrypt)) |
| 4066 | return 0; |
| 4067 | break; |
| 4068 | } |
| 4069 | # endif |
| 4070 | # ifdef VPAES_CAPABLE |
| 4071 | if (VPAES_CAPABLE) { |
| 4072 | vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 4073 | &octx->ksenc.ks); |
| 4074 | vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 4075 | &octx->ksdec.ks); |
| 4076 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 4077 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 4078 | (block128_f) vpaes_encrypt, |
| 4079 | (block128_f) vpaes_decrypt, |
| 4080 | NULL)) |
| 4081 | return 0; |
| 4082 | break; |
| 4083 | } |
| 4084 | # endif |
| 4085 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 4086 | &octx->ksenc.ks); |
| 4087 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, |
| 4088 | &octx->ksdec.ks); |
| 4089 | if (!CRYPTO_ocb128_init(&octx->ocb, |
| 4090 | &octx->ksenc.ks, &octx->ksdec.ks, |
| 4091 | (block128_f) AES_encrypt, |
| 4092 | (block128_f) AES_decrypt, |
| 4093 | NULL)) |
| 4094 | return 0; |
| 4095 | } |
| 4096 | while (0); |
| 4097 | |
| 4098 | /* |
| 4099 | * If we have an iv we can set it directly, otherwise use saved IV. |
| 4100 | */ |
| 4101 | if (iv == NULL && octx->iv_set) |
| 4102 | iv = octx->iv; |
| 4103 | if (iv) { |
| 4104 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) |
| 4105 | != 1) |
| 4106 | return 0; |
| 4107 | octx->iv_set = 1; |
| 4108 | } |
| 4109 | octx->key_set = 1; |
| 4110 | } else { |
| 4111 | /* If key set use IV, otherwise copy */ |
| 4112 | if (octx->key_set) |
| 4113 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); |
| 4114 | else |
| 4115 | memcpy(octx->iv, iv, octx->ivlen); |
| 4116 | octx->iv_set = 1; |
| 4117 | } |
| 4118 | return 1; |
| 4119 | } |
| 4120 | |
| 4121 | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, |
| 4122 | const unsigned char *in, size_t len) |
| 4123 | { |
| 4124 | unsigned char *buf; |
| 4125 | int *buf_len; |
| 4126 | int written_len = 0; |
| 4127 | size_t trailing_len; |
| 4128 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); |
| 4129 | |
| 4130 | /* If IV or Key not set then return error */ |
| 4131 | if (!octx->iv_set) |
| 4132 | return -1; |
| 4133 | |
| 4134 | if (!octx->key_set) |
| 4135 | return -1; |
| 4136 | |
| 4137 | if (in != NULL) { |
| 4138 | /* |
| 4139 | * Need to ensure we are only passing full blocks to low level OCB |
| 4140 | * routines. We do it here rather than in EVP_EncryptUpdate/ |
| 4141 | * EVP_DecryptUpdate because we need to pass full blocks of AAD too |
| 4142 | * and those routines don't support that |
| 4143 | */ |
| 4144 | |
| 4145 | /* Are we dealing with AAD or normal data here? */ |
| 4146 | if (out == NULL) { |
| 4147 | buf = octx->aad_buf; |
| 4148 | buf_len = &(octx->aad_buf_len); |
| 4149 | } else { |
| 4150 | buf = octx->data_buf; |
| 4151 | buf_len = &(octx->data_buf_len); |
| 4152 | |
| 4153 | if (is_partially_overlapping(out + *buf_len, in, len)) { |
| 4154 | EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); |
| 4155 | return 0; |
| 4156 | } |
| 4157 | } |
| 4158 | |
| 4159 | /* |
| 4160 | * If we've got a partially filled buffer from a previous call then |
| 4161 | * use that data first |
| 4162 | */ |
| 4163 | if (*buf_len > 0) { |
| 4164 | unsigned int remaining; |
| 4165 | |
| 4166 | remaining = AES_BLOCK_SIZE - (*buf_len); |
| 4167 | if (remaining > len) { |
| 4168 | memcpy(buf + (*buf_len), in, len); |
| 4169 | *(buf_len) += len; |
| 4170 | return 0; |
| 4171 | } |
| 4172 | memcpy(buf + (*buf_len), in, remaining); |
| 4173 | |
| 4174 | /* |
| 4175 | * If we get here we've filled the buffer, so process it |
| 4176 | */ |
| 4177 | len -= remaining; |
| 4178 | in += remaining; |
| 4179 | if (out == NULL) { |
| 4180 | if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE)) |
| 4181 | return -1; |
| 4182 | } else if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 4183 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, |
| 4184 | AES_BLOCK_SIZE)) |
| 4185 | return -1; |
| 4186 | } else { |
| 4187 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, |
| 4188 | AES_BLOCK_SIZE)) |
| 4189 | return -1; |
| 4190 | } |
| 4191 | written_len = AES_BLOCK_SIZE; |
| 4192 | *buf_len = 0; |
| 4193 | if (out != NULL) |
| 4194 | out += AES_BLOCK_SIZE; |
| 4195 | } |
| 4196 | |
| 4197 | /* Do we have a partial block to handle at the end? */ |
| 4198 | trailing_len = len % AES_BLOCK_SIZE; |
| 4199 | |
| 4200 | /* |
| 4201 | * If we've got some full blocks to handle, then process these first |
| 4202 | */ |
| 4203 | if (len != trailing_len) { |
| 4204 | if (out == NULL) { |
| 4205 | if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) |
| 4206 | return -1; |
| 4207 | } else if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 4208 | if (!CRYPTO_ocb128_encrypt |
| 4209 | (&octx->ocb, in, out, len - trailing_len)) |
| 4210 | return -1; |
| 4211 | } else { |
| 4212 | if (!CRYPTO_ocb128_decrypt |
| 4213 | (&octx->ocb, in, out, len - trailing_len)) |
| 4214 | return -1; |
| 4215 | } |
| 4216 | written_len += len - trailing_len; |
| 4217 | in += len - trailing_len; |
| 4218 | } |
| 4219 | |
| 4220 | /* Handle any trailing partial block */ |
| 4221 | if (trailing_len > 0) { |
| 4222 | memcpy(buf, in, trailing_len); |
| 4223 | *buf_len = trailing_len; |
| 4224 | } |
| 4225 | |
| 4226 | return written_len; |
| 4227 | } else { |
| 4228 | /* |
| 4229 | * First of all empty the buffer of any partial block that we might |
| 4230 | * have been provided - both for data and AAD |
| 4231 | */ |
| 4232 | if (octx->data_buf_len > 0) { |
| 4233 | if (EVP_CIPHER_CTX_encrypting(ctx)) { |
| 4234 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, |
| 4235 | octx->data_buf_len)) |
| 4236 | return -1; |
| 4237 | } else { |
| 4238 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, |
| 4239 | octx->data_buf_len)) |
| 4240 | return -1; |
| 4241 | } |
| 4242 | written_len = octx->data_buf_len; |
| 4243 | octx->data_buf_len = 0; |
| 4244 | } |
| 4245 | if (octx->aad_buf_len > 0) { |
| 4246 | if (!CRYPTO_ocb128_aad |
| 4247 | (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) |
| 4248 | return -1; |
| 4249 | octx->aad_buf_len = 0; |
| 4250 | } |
| 4251 | /* If decrypting then verify */ |
| 4252 | if (!EVP_CIPHER_CTX_encrypting(ctx)) { |
| 4253 | if (octx->taglen < 0) |
| 4254 | return -1; |
| 4255 | if (CRYPTO_ocb128_finish(&octx->ocb, |
| 4256 | octx->tag, octx->taglen) != 0) |
| 4257 | return -1; |
| 4258 | octx->iv_set = 0; |
| 4259 | return written_len; |
| 4260 | } |
| 4261 | /* If encrypting then just get the tag */ |
| 4262 | if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) |
| 4263 | return -1; |
| 4264 | /* Don't reuse the IV */ |
| 4265 | octx->iv_set = 0; |
| 4266 | return written_len; |
| 4267 | } |
| 4268 | } |
| 4269 | |
| 4270 | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) |
| 4271 | { |
| 4272 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); |
| 4273 | CRYPTO_ocb128_cleanup(&octx->ocb); |
| 4274 | return 1; |
| 4275 | } |
| 4276 | |
| 4277 | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, |
| 4278 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 4279 | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, |
| 4280 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 4281 | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, |
| 4282 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) |
| 4283 | #endif /* OPENSSL_NO_OCB */ |