yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <limits.h> |
| 12 | #include <assert.h> |
| 13 | #include "internal/cryptlib.h" |
| 14 | #include <openssl/evp.h> |
| 15 | #include <openssl/err.h> |
| 16 | #include <openssl/rand.h> |
| 17 | #include <openssl/rand_drbg.h> |
| 18 | #include <openssl/engine.h> |
| 19 | #include "crypto/evp.h" |
| 20 | #include "evp_local.h" |
| 21 | |
| 22 | int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *c) |
| 23 | { |
| 24 | if (c == NULL) |
| 25 | return 1; |
| 26 | if (c->cipher != NULL) { |
| 27 | if (c->cipher->cleanup && !c->cipher->cleanup(c)) |
| 28 | return 0; |
| 29 | /* Cleanse cipher context data */ |
| 30 | if (c->cipher_data && c->cipher->ctx_size) |
| 31 | OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size); |
| 32 | } |
| 33 | OPENSSL_free(c->cipher_data); |
| 34 | #ifndef OPENSSL_NO_ENGINE |
| 35 | ENGINE_finish(c->engine); |
| 36 | #endif |
| 37 | memset(c, 0, sizeof(*c)); |
| 38 | return 1; |
| 39 | } |
| 40 | |
| 41 | EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) |
| 42 | { |
| 43 | return OPENSSL_zalloc(sizeof(EVP_CIPHER_CTX)); |
| 44 | } |
| 45 | |
| 46 | void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) |
| 47 | { |
| 48 | EVP_CIPHER_CTX_reset(ctx); |
| 49 | OPENSSL_free(ctx); |
| 50 | } |
| 51 | |
| 52 | int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| 53 | const unsigned char *key, const unsigned char *iv, int enc) |
| 54 | { |
| 55 | if (cipher != NULL) |
| 56 | EVP_CIPHER_CTX_reset(ctx); |
| 57 | return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); |
| 58 | } |
| 59 | |
| 60 | int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| 61 | ENGINE *impl, const unsigned char *key, |
| 62 | const unsigned char *iv, int enc) |
| 63 | { |
| 64 | if (enc == -1) |
| 65 | enc = ctx->encrypt; |
| 66 | else { |
| 67 | if (enc) |
| 68 | enc = 1; |
| 69 | ctx->encrypt = enc; |
| 70 | } |
| 71 | #ifndef OPENSSL_NO_ENGINE |
| 72 | /* |
| 73 | * Whether it's nice or not, "Inits" can be used on "Final"'d contexts so |
| 74 | * this context may already have an ENGINE! Try to avoid releasing the |
| 75 | * previous handle, re-querying for an ENGINE, and having a |
| 76 | * reinitialisation, when it may all be unnecessary. |
| 77 | */ |
| 78 | if (ctx->engine && ctx->cipher |
| 79 | && (cipher == NULL || cipher->nid == ctx->cipher->nid)) |
| 80 | goto skip_to_init; |
| 81 | #endif |
| 82 | if (cipher) { |
| 83 | /* |
| 84 | * Ensure a context left lying around from last time is cleared (the |
| 85 | * previous check attempted to avoid this if the same ENGINE and |
| 86 | * EVP_CIPHER could be used). |
| 87 | */ |
| 88 | if (ctx->cipher |
| 89 | #ifndef OPENSSL_NO_ENGINE |
| 90 | || ctx->engine |
| 91 | #endif |
| 92 | || ctx->cipher_data) { |
| 93 | unsigned long flags = ctx->flags; |
| 94 | EVP_CIPHER_CTX_reset(ctx); |
| 95 | /* Restore encrypt and flags */ |
| 96 | ctx->encrypt = enc; |
| 97 | ctx->flags = flags; |
| 98 | } |
| 99 | #ifndef OPENSSL_NO_ENGINE |
| 100 | if (impl) { |
| 101 | if (!ENGINE_init(impl)) { |
| 102 | EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); |
| 103 | return 0; |
| 104 | } |
| 105 | } else |
| 106 | /* Ask if an ENGINE is reserved for this job */ |
| 107 | impl = ENGINE_get_cipher_engine(cipher->nid); |
| 108 | if (impl) { |
| 109 | /* There's an ENGINE for this job ... (apparently) */ |
| 110 | const EVP_CIPHER *c = ENGINE_get_cipher(impl, cipher->nid); |
| 111 | if (!c) { |
| 112 | ENGINE_finish(impl); |
| 113 | EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); |
| 114 | return 0; |
| 115 | } |
| 116 | /* We'll use the ENGINE's private cipher definition */ |
| 117 | cipher = c; |
| 118 | /* |
| 119 | * Store the ENGINE functional reference so we know 'cipher' came |
| 120 | * from an ENGINE and we need to release it when done. |
| 121 | */ |
| 122 | ctx->engine = impl; |
| 123 | } else |
| 124 | ctx->engine = NULL; |
| 125 | #endif |
| 126 | |
| 127 | ctx->cipher = cipher; |
| 128 | if (ctx->cipher->ctx_size) { |
| 129 | ctx->cipher_data = OPENSSL_zalloc(ctx->cipher->ctx_size); |
| 130 | if (ctx->cipher_data == NULL) { |
| 131 | ctx->cipher = NULL; |
| 132 | EVPerr(EVP_F_EVP_CIPHERINIT_EX, ERR_R_MALLOC_FAILURE); |
| 133 | return 0; |
| 134 | } |
| 135 | } else { |
| 136 | ctx->cipher_data = NULL; |
| 137 | } |
| 138 | ctx->key_len = cipher->key_len; |
| 139 | /* Preserve wrap enable flag, zero everything else */ |
| 140 | ctx->flags &= EVP_CIPHER_CTX_FLAG_WRAP_ALLOW; |
| 141 | if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { |
| 142 | if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { |
| 143 | ctx->cipher = NULL; |
| 144 | EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); |
| 145 | return 0; |
| 146 | } |
| 147 | } |
| 148 | } else if (!ctx->cipher) { |
| 149 | EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_NO_CIPHER_SET); |
| 150 | return 0; |
| 151 | } |
| 152 | #ifndef OPENSSL_NO_ENGINE |
| 153 | skip_to_init: |
| 154 | #endif |
| 155 | /* we assume block size is a power of 2 in *cryptUpdate */ |
| 156 | OPENSSL_assert(ctx->cipher->block_size == 1 |
| 157 | || ctx->cipher->block_size == 8 |
| 158 | || ctx->cipher->block_size == 16); |
| 159 | |
| 160 | if (!(ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW) |
| 161 | && EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) { |
| 162 | EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_WRAP_MODE_NOT_ALLOWED); |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_CUSTOM_IV)) { |
| 167 | switch (EVP_CIPHER_CTX_mode(ctx)) { |
| 168 | |
| 169 | case EVP_CIPH_STREAM_CIPHER: |
| 170 | case EVP_CIPH_ECB_MODE: |
| 171 | break; |
| 172 | |
| 173 | case EVP_CIPH_CFB_MODE: |
| 174 | case EVP_CIPH_OFB_MODE: |
| 175 | |
| 176 | ctx->num = 0; |
| 177 | /* fall-through */ |
| 178 | |
| 179 | case EVP_CIPH_CBC_MODE: |
| 180 | |
| 181 | OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) <= |
| 182 | (int)sizeof(ctx->iv)); |
| 183 | if (iv) |
| 184 | memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| 185 | memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); |
| 186 | break; |
| 187 | |
| 188 | case EVP_CIPH_CTR_MODE: |
| 189 | ctx->num = 0; |
| 190 | /* Don't reuse IV for CTR mode */ |
| 191 | if (iv) |
| 192 | memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); |
| 193 | break; |
| 194 | |
| 195 | default: |
| 196 | return 0; |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { |
| 201 | if (!ctx->cipher->init(ctx, key, iv, enc)) |
| 202 | return 0; |
| 203 | } |
| 204 | ctx->buf_len = 0; |
| 205 | ctx->final_used = 0; |
| 206 | ctx->block_mask = ctx->cipher->block_size - 1; |
| 207 | return 1; |
| 208 | } |
| 209 | |
| 210 | int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, |
| 211 | const unsigned char *in, int inl) |
| 212 | { |
| 213 | if (ctx->encrypt) |
| 214 | return EVP_EncryptUpdate(ctx, out, outl, in, inl); |
| 215 | else |
| 216 | return EVP_DecryptUpdate(ctx, out, outl, in, inl); |
| 217 | } |
| 218 | |
| 219 | int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| 220 | { |
| 221 | if (ctx->encrypt) |
| 222 | return EVP_EncryptFinal_ex(ctx, out, outl); |
| 223 | else |
| 224 | return EVP_DecryptFinal_ex(ctx, out, outl); |
| 225 | } |
| 226 | |
| 227 | int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| 228 | { |
| 229 | if (ctx->encrypt) |
| 230 | return EVP_EncryptFinal(ctx, out, outl); |
| 231 | else |
| 232 | return EVP_DecryptFinal(ctx, out, outl); |
| 233 | } |
| 234 | |
| 235 | int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| 236 | const unsigned char *key, const unsigned char *iv) |
| 237 | { |
| 238 | return EVP_CipherInit(ctx, cipher, key, iv, 1); |
| 239 | } |
| 240 | |
| 241 | int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| 242 | ENGINE *impl, const unsigned char *key, |
| 243 | const unsigned char *iv) |
| 244 | { |
| 245 | return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); |
| 246 | } |
| 247 | |
| 248 | int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| 249 | const unsigned char *key, const unsigned char *iv) |
| 250 | { |
| 251 | return EVP_CipherInit(ctx, cipher, key, iv, 0); |
| 252 | } |
| 253 | |
| 254 | int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| 255 | ENGINE *impl, const unsigned char *key, |
| 256 | const unsigned char *iv) |
| 257 | { |
| 258 | return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * According to the letter of standard difference between pointers |
| 263 | * is specified to be valid only within same object. This makes |
| 264 | * it formally challenging to determine if input and output buffers |
| 265 | * are not partially overlapping with standard pointer arithmetic. |
| 266 | */ |
| 267 | #ifdef PTRDIFF_T |
| 268 | # undef PTRDIFF_T |
| 269 | #endif |
| 270 | #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE==64 |
| 271 | /* |
| 272 | * Then we have VMS that distinguishes itself by adhering to |
| 273 | * sizeof(size_t)==4 even in 64-bit builds, which means that |
| 274 | * difference between two pointers might be truncated to 32 bits. |
| 275 | * In the context one can even wonder how comparison for |
| 276 | * equality is implemented. To be on the safe side we adhere to |
| 277 | * PTRDIFF_T even for comparison for equality. |
| 278 | */ |
| 279 | # define PTRDIFF_T uint64_t |
| 280 | #else |
| 281 | # define PTRDIFF_T size_t |
| 282 | #endif |
| 283 | |
| 284 | int is_partially_overlapping(const void *ptr1, const void *ptr2, size_t len) |
| 285 | { |
| 286 | PTRDIFF_T diff = (PTRDIFF_T)ptr1-(PTRDIFF_T)ptr2; |
| 287 | /* |
| 288 | * Check for partially overlapping buffers. [Binary logical |
| 289 | * operations are used instead of boolean to minimize number |
| 290 | * of conditional branches.] |
| 291 | */ |
| 292 | int overlapped = (len > 0) & (diff != 0) & ((diff < (PTRDIFF_T)len) | |
| 293 | (diff > (0 - (PTRDIFF_T)len))); |
| 294 | |
| 295 | return overlapped; |
| 296 | } |
| 297 | |
| 298 | static int evp_EncryptDecryptUpdate(EVP_CIPHER_CTX *ctx, |
| 299 | unsigned char *out, int *outl, |
| 300 | const unsigned char *in, int inl) |
| 301 | { |
| 302 | int i, j, bl; |
| 303 | size_t cmpl = (size_t)inl; |
| 304 | |
| 305 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) |
| 306 | cmpl = (cmpl + 7) / 8; |
| 307 | |
| 308 | bl = ctx->cipher->block_size; |
| 309 | |
| 310 | /* |
| 311 | * CCM mode needs to know about the case where inl == 0 && in == NULL - it |
| 312 | * means the plaintext/ciphertext length is 0 |
| 313 | */ |
| 314 | if (inl < 0 |
| 315 | || (inl == 0 |
| 316 | && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)) { |
| 317 | *outl = 0; |
| 318 | return inl == 0; |
| 319 | } |
| 320 | |
| 321 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| 322 | /* If block size > 1 then the cipher will have to do this check */ |
| 323 | if (bl == 1 && is_partially_overlapping(out, in, cmpl)) { |
| 324 | EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| 325 | return 0; |
| 326 | } |
| 327 | |
| 328 | i = ctx->cipher->do_cipher(ctx, out, in, inl); |
| 329 | if (i < 0) |
| 330 | return 0; |
| 331 | else |
| 332 | *outl = i; |
| 333 | return 1; |
| 334 | } |
| 335 | |
| 336 | if (is_partially_overlapping(out + ctx->buf_len, in, cmpl)) { |
| 337 | EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | if (ctx->buf_len == 0 && (inl & (ctx->block_mask)) == 0) { |
| 342 | if (ctx->cipher->do_cipher(ctx, out, in, inl)) { |
| 343 | *outl = inl; |
| 344 | return 1; |
| 345 | } else { |
| 346 | *outl = 0; |
| 347 | return 0; |
| 348 | } |
| 349 | } |
| 350 | i = ctx->buf_len; |
| 351 | OPENSSL_assert(bl <= (int)sizeof(ctx->buf)); |
| 352 | if (i != 0) { |
| 353 | if (bl - i > inl) { |
| 354 | memcpy(&(ctx->buf[i]), in, inl); |
| 355 | ctx->buf_len += inl; |
| 356 | *outl = 0; |
| 357 | return 1; |
| 358 | } else { |
| 359 | j = bl - i; |
| 360 | |
| 361 | /* |
| 362 | * Once we've processed the first j bytes from in, the amount of |
| 363 | * data left that is a multiple of the block length is: |
| 364 | * (inl - j) & ~(bl - 1) |
| 365 | * We must ensure that this amount of data, plus the one block that |
| 366 | * we process from ctx->buf does not exceed INT_MAX |
| 367 | */ |
| 368 | if (((inl - j) & ~(bl - 1)) > INT_MAX - bl) { |
| 369 | EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, |
| 370 | EVP_R_OUTPUT_WOULD_OVERFLOW); |
| 371 | return 0; |
| 372 | } |
| 373 | memcpy(&(ctx->buf[i]), in, j); |
| 374 | inl -= j; |
| 375 | in += j; |
| 376 | if (!ctx->cipher->do_cipher(ctx, out, ctx->buf, bl)) |
| 377 | return 0; |
| 378 | out += bl; |
| 379 | *outl = bl; |
| 380 | } |
| 381 | } else |
| 382 | *outl = 0; |
| 383 | i = inl & (bl - 1); |
| 384 | inl -= i; |
| 385 | if (inl > 0) { |
| 386 | if (!ctx->cipher->do_cipher(ctx, out, in, inl)) |
| 387 | return 0; |
| 388 | *outl += inl; |
| 389 | } |
| 390 | |
| 391 | if (i != 0) |
| 392 | memcpy(ctx->buf, &(in[inl]), i); |
| 393 | ctx->buf_len = i; |
| 394 | return 1; |
| 395 | } |
| 396 | |
| 397 | |
| 398 | int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, |
| 399 | const unsigned char *in, int inl) |
| 400 | { |
| 401 | /* Prevent accidental use of decryption context when encrypting */ |
| 402 | if (!ctx->encrypt) { |
| 403 | EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_INVALID_OPERATION); |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | return evp_EncryptDecryptUpdate(ctx, out, outl, in, inl); |
| 408 | } |
| 409 | |
| 410 | int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| 411 | { |
| 412 | int ret; |
| 413 | ret = EVP_EncryptFinal_ex(ctx, out, outl); |
| 414 | return ret; |
| 415 | } |
| 416 | |
| 417 | int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| 418 | { |
| 419 | int n, ret; |
| 420 | unsigned int i, b, bl; |
| 421 | |
| 422 | /* Prevent accidental use of decryption context when encrypting */ |
| 423 | if (!ctx->encrypt) { |
| 424 | EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_INVALID_OPERATION); |
| 425 | return 0; |
| 426 | } |
| 427 | |
| 428 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| 429 | ret = ctx->cipher->do_cipher(ctx, out, NULL, 0); |
| 430 | if (ret < 0) |
| 431 | return 0; |
| 432 | else |
| 433 | *outl = ret; |
| 434 | return 1; |
| 435 | } |
| 436 | |
| 437 | b = ctx->cipher->block_size; |
| 438 | OPENSSL_assert(b <= sizeof(ctx->buf)); |
| 439 | if (b == 1) { |
| 440 | *outl = 0; |
| 441 | return 1; |
| 442 | } |
| 443 | bl = ctx->buf_len; |
| 444 | if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| 445 | if (bl) { |
| 446 | EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, |
| 447 | EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| 448 | return 0; |
| 449 | } |
| 450 | *outl = 0; |
| 451 | return 1; |
| 452 | } |
| 453 | |
| 454 | n = b - bl; |
| 455 | for (i = bl; i < b; i++) |
| 456 | ctx->buf[i] = n; |
| 457 | ret = ctx->cipher->do_cipher(ctx, out, ctx->buf, b); |
| 458 | |
| 459 | if (ret) |
| 460 | *outl = b; |
| 461 | |
| 462 | return ret; |
| 463 | } |
| 464 | |
| 465 | int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, |
| 466 | const unsigned char *in, int inl) |
| 467 | { |
| 468 | int fix_len; |
| 469 | unsigned int b; |
| 470 | size_t cmpl = (size_t)inl; |
| 471 | |
| 472 | /* Prevent accidental use of encryption context when decrypting */ |
| 473 | if (ctx->encrypt) { |
| 474 | EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_INVALID_OPERATION); |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | b = ctx->cipher->block_size; |
| 479 | |
| 480 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) |
| 481 | cmpl = (cmpl + 7) / 8; |
| 482 | |
| 483 | /* |
| 484 | * CCM mode needs to know about the case where inl == 0 - it means the |
| 485 | * plaintext/ciphertext length is 0 |
| 486 | */ |
| 487 | if (inl < 0 |
| 488 | || (inl == 0 |
| 489 | && EVP_CIPHER_mode(ctx->cipher) != EVP_CIPH_CCM_MODE)) { |
| 490 | *outl = 0; |
| 491 | return inl == 0; |
| 492 | } |
| 493 | |
| 494 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| 495 | if (b == 1 && is_partially_overlapping(out, in, cmpl)) { |
| 496 | EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| 497 | return 0; |
| 498 | } |
| 499 | |
| 500 | fix_len = ctx->cipher->do_cipher(ctx, out, in, inl); |
| 501 | if (fix_len < 0) { |
| 502 | *outl = 0; |
| 503 | return 0; |
| 504 | } else |
| 505 | *outl = fix_len; |
| 506 | return 1; |
| 507 | } |
| 508 | |
| 509 | if (ctx->flags & EVP_CIPH_NO_PADDING) |
| 510 | return evp_EncryptDecryptUpdate(ctx, out, outl, in, inl); |
| 511 | |
| 512 | OPENSSL_assert(b <= sizeof(ctx->final)); |
| 513 | |
| 514 | if (ctx->final_used) { |
| 515 | /* see comment about PTRDIFF_T comparison above */ |
| 516 | if (((PTRDIFF_T)out == (PTRDIFF_T)in) |
| 517 | || is_partially_overlapping(out, in, b)) { |
| 518 | EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); |
| 519 | return 0; |
| 520 | } |
| 521 | /* |
| 522 | * final_used is only ever set if buf_len is 0. Therefore the maximum |
| 523 | * length output we will ever see from evp_EncryptDecryptUpdate is |
| 524 | * the maximum multiple of the block length that is <= inl, or just: |
| 525 | * inl & ~(b - 1) |
| 526 | * Since final_used has been set then the final output length is: |
| 527 | * (inl & ~(b - 1)) + b |
| 528 | * This must never exceed INT_MAX |
| 529 | */ |
| 530 | if ((inl & ~(b - 1)) > INT_MAX - b) { |
| 531 | EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_OUTPUT_WOULD_OVERFLOW); |
| 532 | return 0; |
| 533 | } |
| 534 | memcpy(out, ctx->final, b); |
| 535 | out += b; |
| 536 | fix_len = 1; |
| 537 | } else |
| 538 | fix_len = 0; |
| 539 | |
| 540 | if (!evp_EncryptDecryptUpdate(ctx, out, outl, in, inl)) |
| 541 | return 0; |
| 542 | |
| 543 | /* |
| 544 | * if we have 'decrypted' a multiple of block size, make sure we have a |
| 545 | * copy of this last block |
| 546 | */ |
| 547 | if (b > 1 && !ctx->buf_len) { |
| 548 | *outl -= b; |
| 549 | ctx->final_used = 1; |
| 550 | memcpy(ctx->final, &out[*outl], b); |
| 551 | } else |
| 552 | ctx->final_used = 0; |
| 553 | |
| 554 | if (fix_len) |
| 555 | *outl += b; |
| 556 | |
| 557 | return 1; |
| 558 | } |
| 559 | |
| 560 | int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| 561 | { |
| 562 | int ret; |
| 563 | ret = EVP_DecryptFinal_ex(ctx, out, outl); |
| 564 | return ret; |
| 565 | } |
| 566 | |
| 567 | int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) |
| 568 | { |
| 569 | int i, n; |
| 570 | unsigned int b; |
| 571 | |
| 572 | /* Prevent accidental use of encryption context when decrypting */ |
| 573 | if (ctx->encrypt) { |
| 574 | EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_INVALID_OPERATION); |
| 575 | return 0; |
| 576 | } |
| 577 | |
| 578 | *outl = 0; |
| 579 | |
| 580 | if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { |
| 581 | i = ctx->cipher->do_cipher(ctx, out, NULL, 0); |
| 582 | if (i < 0) |
| 583 | return 0; |
| 584 | else |
| 585 | *outl = i; |
| 586 | return 1; |
| 587 | } |
| 588 | |
| 589 | b = ctx->cipher->block_size; |
| 590 | if (ctx->flags & EVP_CIPH_NO_PADDING) { |
| 591 | if (ctx->buf_len) { |
| 592 | EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, |
| 593 | EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); |
| 594 | return 0; |
| 595 | } |
| 596 | *outl = 0; |
| 597 | return 1; |
| 598 | } |
| 599 | if (b > 1) { |
| 600 | if (ctx->buf_len || !ctx->final_used) { |
| 601 | EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_WRONG_FINAL_BLOCK_LENGTH); |
| 602 | return 0; |
| 603 | } |
| 604 | OPENSSL_assert(b <= sizeof(ctx->final)); |
| 605 | |
| 606 | /* |
| 607 | * The following assumes that the ciphertext has been authenticated. |
| 608 | * Otherwise it provides a padding oracle. |
| 609 | */ |
| 610 | n = ctx->final[b - 1]; |
| 611 | if (n == 0 || n > (int)b) { |
| 612 | EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); |
| 613 | return 0; |
| 614 | } |
| 615 | for (i = 0; i < n; i++) { |
| 616 | if (ctx->final[--b] != n) { |
| 617 | EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); |
| 618 | return 0; |
| 619 | } |
| 620 | } |
| 621 | n = ctx->cipher->block_size - n; |
| 622 | for (i = 0; i < n; i++) |
| 623 | out[i] = ctx->final[i]; |
| 624 | *outl = n; |
| 625 | } else |
| 626 | *outl = 0; |
| 627 | return 1; |
| 628 | } |
| 629 | |
| 630 | int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen) |
| 631 | { |
| 632 | if (c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH) |
| 633 | return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH, keylen, NULL); |
| 634 | if (c->key_len == keylen) |
| 635 | return 1; |
| 636 | if ((keylen > 0) && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { |
| 637 | c->key_len = keylen; |
| 638 | return 1; |
| 639 | } |
| 640 | EVPerr(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH, EVP_R_INVALID_KEY_LENGTH); |
| 641 | return 0; |
| 642 | } |
| 643 | |
| 644 | int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) |
| 645 | { |
| 646 | if (pad) |
| 647 | ctx->flags &= ~EVP_CIPH_NO_PADDING; |
| 648 | else |
| 649 | ctx->flags |= EVP_CIPH_NO_PADDING; |
| 650 | return 1; |
| 651 | } |
| 652 | |
| 653 | int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) |
| 654 | { |
| 655 | int ret; |
| 656 | |
| 657 | if (!ctx->cipher) { |
| 658 | EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_NO_CIPHER_SET); |
| 659 | return 0; |
| 660 | } |
| 661 | |
| 662 | if (!ctx->cipher->ctrl) { |
| 663 | EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_NOT_IMPLEMENTED); |
| 664 | return 0; |
| 665 | } |
| 666 | |
| 667 | ret = ctx->cipher->ctrl(ctx, type, arg, ptr); |
| 668 | if (ret == -1) { |
| 669 | EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, |
| 670 | EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED); |
| 671 | return 0; |
| 672 | } |
| 673 | return ret; |
| 674 | } |
| 675 | |
| 676 | int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key) |
| 677 | { |
| 678 | if (ctx->cipher->flags & EVP_CIPH_RAND_KEY) |
| 679 | return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key); |
| 680 | if (RAND_priv_bytes(key, ctx->key_len) <= 0) |
| 681 | return 0; |
| 682 | return 1; |
| 683 | } |
| 684 | |
| 685 | int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) |
| 686 | { |
| 687 | if ((in == NULL) || (in->cipher == NULL)) { |
| 688 | EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INPUT_NOT_INITIALIZED); |
| 689 | return 0; |
| 690 | } |
| 691 | #ifndef OPENSSL_NO_ENGINE |
| 692 | /* Make sure it's safe to copy a cipher context using an ENGINE */ |
| 693 | if (in->engine && !ENGINE_init(in->engine)) { |
| 694 | EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_ENGINE_LIB); |
| 695 | return 0; |
| 696 | } |
| 697 | #endif |
| 698 | |
| 699 | EVP_CIPHER_CTX_reset(out); |
| 700 | memcpy(out, in, sizeof(*out)); |
| 701 | |
| 702 | if (in->cipher_data && in->cipher->ctx_size) { |
| 703 | out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); |
| 704 | if (out->cipher_data == NULL) { |
| 705 | out->cipher = NULL; |
| 706 | EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_MALLOC_FAILURE); |
| 707 | return 0; |
| 708 | } |
| 709 | memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); |
| 710 | } |
| 711 | |
| 712 | if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) |
| 713 | if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { |
| 714 | out->cipher = NULL; |
| 715 | EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INITIALIZATION_ERROR); |
| 716 | return 0; |
| 717 | } |
| 718 | return 1; |
| 719 | } |