yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "internal/cryptlib.h" |
| 11 | #include "crypto/bn.h" |
| 12 | #include "rsa_local.h" |
| 13 | #include "internal/constant_time.h" |
| 14 | |
| 15 | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
| 16 | unsigned char *to, RSA *rsa, int padding); |
| 17 | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
| 18 | unsigned char *to, RSA *rsa, int padding); |
| 19 | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
| 20 | unsigned char *to, RSA *rsa, int padding); |
| 21 | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
| 22 | unsigned char *to, RSA *rsa, int padding); |
| 23 | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *i, RSA *rsa, |
| 24 | BN_CTX *ctx); |
| 25 | static int rsa_ossl_init(RSA *rsa); |
| 26 | static int rsa_ossl_finish(RSA *rsa); |
| 27 | static RSA_METHOD rsa_pkcs1_ossl_meth = { |
| 28 | "OpenSSL PKCS#1 RSA", |
| 29 | rsa_ossl_public_encrypt, |
| 30 | rsa_ossl_public_decrypt, /* signature verification */ |
| 31 | rsa_ossl_private_encrypt, /* signing */ |
| 32 | rsa_ossl_private_decrypt, |
| 33 | rsa_ossl_mod_exp, |
| 34 | BN_mod_exp_mont, /* XXX probably we should not use Montgomery |
| 35 | * if e == 3 */ |
| 36 | rsa_ossl_init, |
| 37 | rsa_ossl_finish, |
| 38 | RSA_FLAG_FIPS_METHOD, /* flags */ |
| 39 | NULL, |
| 40 | 0, /* rsa_sign */ |
| 41 | 0, /* rsa_verify */ |
| 42 | NULL, /* rsa_keygen */ |
| 43 | NULL /* rsa_multi_prime_keygen */ |
| 44 | }; |
| 45 | |
| 46 | static const RSA_METHOD *default_RSA_meth = &rsa_pkcs1_ossl_meth; |
| 47 | |
| 48 | void RSA_set_default_method(const RSA_METHOD *meth) |
| 49 | { |
| 50 | default_RSA_meth = meth; |
| 51 | } |
| 52 | |
| 53 | const RSA_METHOD *RSA_get_default_method(void) |
| 54 | { |
| 55 | return default_RSA_meth; |
| 56 | } |
| 57 | |
| 58 | const RSA_METHOD *RSA_PKCS1_OpenSSL(void) |
| 59 | { |
| 60 | return &rsa_pkcs1_ossl_meth; |
| 61 | } |
| 62 | |
| 63 | const RSA_METHOD *RSA_null_method(void) |
| 64 | { |
| 65 | return NULL; |
| 66 | } |
| 67 | |
| 68 | static int rsa_ossl_public_encrypt(int flen, const unsigned char *from, |
| 69 | unsigned char *to, RSA *rsa, int padding) |
| 70 | { |
| 71 | BIGNUM *f, *ret; |
| 72 | int i, num = 0, r = -1; |
| 73 | unsigned char *buf = NULL; |
| 74 | BN_CTX *ctx = NULL; |
| 75 | |
| 76 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
| 77 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_MODULUS_TOO_LARGE); |
| 78 | return -1; |
| 79 | } |
| 80 | |
| 81 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
| 82 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); |
| 83 | return -1; |
| 84 | } |
| 85 | |
| 86 | /* for large moduli, enforce exponent limit */ |
| 87 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
| 88 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
| 89 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_BAD_E_VALUE); |
| 90 | return -1; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | if ((ctx = BN_CTX_new()) == NULL) |
| 95 | goto err; |
| 96 | BN_CTX_start(ctx); |
| 97 | f = BN_CTX_get(ctx); |
| 98 | ret = BN_CTX_get(ctx); |
| 99 | num = BN_num_bytes(rsa->n); |
| 100 | buf = OPENSSL_malloc(num); |
| 101 | if (ret == NULL || buf == NULL) { |
| 102 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, ERR_R_MALLOC_FAILURE); |
| 103 | goto err; |
| 104 | } |
| 105 | |
| 106 | switch (padding) { |
| 107 | case RSA_PKCS1_PADDING: |
| 108 | i = RSA_padding_add_PKCS1_type_2(buf, num, from, flen); |
| 109 | break; |
| 110 | case RSA_PKCS1_OAEP_PADDING: |
| 111 | i = RSA_padding_add_PKCS1_OAEP(buf, num, from, flen, NULL, 0); |
| 112 | break; |
| 113 | case RSA_SSLV23_PADDING: |
| 114 | i = RSA_padding_add_SSLv23(buf, num, from, flen); |
| 115 | break; |
| 116 | case RSA_NO_PADDING: |
| 117 | i = RSA_padding_add_none(buf, num, from, flen); |
| 118 | break; |
| 119 | default: |
| 120 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
| 121 | goto err; |
| 122 | } |
| 123 | if (i <= 0) |
| 124 | goto err; |
| 125 | |
| 126 | if (BN_bin2bn(buf, num, f) == NULL) |
| 127 | goto err; |
| 128 | |
| 129 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 130 | /* usually the padding functions would catch this */ |
| 131 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_ENCRYPT, |
| 132 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 133 | goto err; |
| 134 | } |
| 135 | |
| 136 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
| 137 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
| 138 | rsa->n, ctx)) |
| 139 | goto err; |
| 140 | |
| 141 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
| 142 | rsa->_method_mod_n)) |
| 143 | goto err; |
| 144 | |
| 145 | /* |
| 146 | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
| 147 | * the length of the modulus. |
| 148 | */ |
| 149 | r = BN_bn2binpad(ret, to, num); |
| 150 | err: |
| 151 | BN_CTX_end(ctx); |
| 152 | BN_CTX_free(ctx); |
| 153 | OPENSSL_clear_free(buf, num); |
| 154 | return r; |
| 155 | } |
| 156 | |
| 157 | static BN_BLINDING *rsa_get_blinding(RSA *rsa, int *local, BN_CTX *ctx) |
| 158 | { |
| 159 | BN_BLINDING *ret; |
| 160 | |
| 161 | CRYPTO_THREAD_write_lock(rsa->lock); |
| 162 | |
| 163 | if (rsa->blinding == NULL) { |
| 164 | rsa->blinding = RSA_setup_blinding(rsa, ctx); |
| 165 | } |
| 166 | |
| 167 | ret = rsa->blinding; |
| 168 | if (ret == NULL) |
| 169 | goto err; |
| 170 | |
| 171 | if (BN_BLINDING_is_current_thread(ret)) { |
| 172 | /* rsa->blinding is ours! */ |
| 173 | |
| 174 | *local = 1; |
| 175 | } else { |
| 176 | /* resort to rsa->mt_blinding instead */ |
| 177 | |
| 178 | /* |
| 179 | * instructs rsa_blinding_convert(), rsa_blinding_invert() that the |
| 180 | * BN_BLINDING is shared, meaning that accesses require locks, and |
| 181 | * that the blinding factor must be stored outside the BN_BLINDING |
| 182 | */ |
| 183 | *local = 0; |
| 184 | |
| 185 | if (rsa->mt_blinding == NULL) { |
| 186 | rsa->mt_blinding = RSA_setup_blinding(rsa, ctx); |
| 187 | } |
| 188 | ret = rsa->mt_blinding; |
| 189 | } |
| 190 | |
| 191 | err: |
| 192 | CRYPTO_THREAD_unlock(rsa->lock); |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | static int rsa_blinding_convert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
| 197 | BN_CTX *ctx) |
| 198 | { |
| 199 | if (unblind == NULL) { |
| 200 | /* |
| 201 | * Local blinding: store the unblinding factor in BN_BLINDING. |
| 202 | */ |
| 203 | return BN_BLINDING_convert_ex(f, NULL, b, ctx); |
| 204 | } else { |
| 205 | /* |
| 206 | * Shared blinding: store the unblinding factor outside BN_BLINDING. |
| 207 | */ |
| 208 | int ret; |
| 209 | |
| 210 | BN_BLINDING_lock(b); |
| 211 | ret = BN_BLINDING_convert_ex(f, unblind, b, ctx); |
| 212 | BN_BLINDING_unlock(b); |
| 213 | |
| 214 | return ret; |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | static int rsa_blinding_invert(BN_BLINDING *b, BIGNUM *f, BIGNUM *unblind, |
| 219 | BN_CTX *ctx) |
| 220 | { |
| 221 | /* |
| 222 | * For local blinding, unblind is set to NULL, and BN_BLINDING_invert_ex |
| 223 | * will use the unblinding factor stored in BN_BLINDING. If BN_BLINDING |
| 224 | * is shared between threads, unblind must be non-null: |
| 225 | * BN_BLINDING_invert_ex will then use the local unblinding factor, and |
| 226 | * will only read the modulus from BN_BLINDING. In both cases it's safe |
| 227 | * to access the blinding without a lock. |
| 228 | */ |
| 229 | return BN_BLINDING_invert_ex(f, unblind, b, ctx); |
| 230 | } |
| 231 | |
| 232 | /* signing */ |
| 233 | static int rsa_ossl_private_encrypt(int flen, const unsigned char *from, |
| 234 | unsigned char *to, RSA *rsa, int padding) |
| 235 | { |
| 236 | BIGNUM *f, *ret, *res; |
| 237 | int i, num = 0, r = -1; |
| 238 | unsigned char *buf = NULL; |
| 239 | BN_CTX *ctx = NULL; |
| 240 | int local_blinding = 0; |
| 241 | /* |
| 242 | * Used only if the blinding structure is shared. A non-NULL unblind |
| 243 | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
| 244 | * the unblinding factor outside the blinding structure. |
| 245 | */ |
| 246 | BIGNUM *unblind = NULL; |
| 247 | BN_BLINDING *blinding = NULL; |
| 248 | |
| 249 | if ((ctx = BN_CTX_new()) == NULL) |
| 250 | goto err; |
| 251 | BN_CTX_start(ctx); |
| 252 | f = BN_CTX_get(ctx); |
| 253 | ret = BN_CTX_get(ctx); |
| 254 | num = BN_num_bytes(rsa->n); |
| 255 | buf = OPENSSL_malloc(num); |
| 256 | if (ret == NULL || buf == NULL) { |
| 257 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
| 258 | goto err; |
| 259 | } |
| 260 | |
| 261 | switch (padding) { |
| 262 | case RSA_PKCS1_PADDING: |
| 263 | i = RSA_padding_add_PKCS1_type_1(buf, num, from, flen); |
| 264 | break; |
| 265 | case RSA_X931_PADDING: |
| 266 | i = RSA_padding_add_X931(buf, num, from, flen); |
| 267 | break; |
| 268 | case RSA_NO_PADDING: |
| 269 | i = RSA_padding_add_none(buf, num, from, flen); |
| 270 | break; |
| 271 | case RSA_SSLV23_PADDING: |
| 272 | default: |
| 273 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
| 274 | goto err; |
| 275 | } |
| 276 | if (i <= 0) |
| 277 | goto err; |
| 278 | |
| 279 | if (BN_bin2bn(buf, num, f) == NULL) |
| 280 | goto err; |
| 281 | |
| 282 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 283 | /* usually the padding functions would catch this */ |
| 284 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, |
| 285 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 286 | goto err; |
| 287 | } |
| 288 | |
| 289 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
| 290 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
| 291 | rsa->n, ctx)) |
| 292 | goto err; |
| 293 | |
| 294 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
| 295 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
| 296 | if (blinding == NULL) { |
| 297 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR); |
| 298 | goto err; |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | if (blinding != NULL) { |
| 303 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
| 304 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
| 305 | goto err; |
| 306 | } |
| 307 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
| 308 | goto err; |
| 309 | } |
| 310 | |
| 311 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
| 312 | (rsa->version == RSA_ASN1_VERSION_MULTI) || |
| 313 | ((rsa->p != NULL) && |
| 314 | (rsa->q != NULL) && |
| 315 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
| 316 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
| 317 | goto err; |
| 318 | } else { |
| 319 | BIGNUM *d = BN_new(); |
| 320 | if (d == NULL) { |
| 321 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, ERR_R_MALLOC_FAILURE); |
| 322 | goto err; |
| 323 | } |
| 324 | if (rsa->d == NULL) { |
| 325 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_ENCRYPT, RSA_R_MISSING_PRIVATE_KEY); |
| 326 | BN_free(d); |
| 327 | goto err; |
| 328 | } |
| 329 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
| 330 | |
| 331 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
| 332 | rsa->_method_mod_n)) { |
| 333 | BN_free(d); |
| 334 | goto err; |
| 335 | } |
| 336 | /* We MUST free d before any further use of rsa->d */ |
| 337 | BN_free(d); |
| 338 | } |
| 339 | |
| 340 | if (blinding) |
| 341 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
| 342 | goto err; |
| 343 | |
| 344 | if (padding == RSA_X931_PADDING) { |
| 345 | if (!BN_sub(f, rsa->n, ret)) |
| 346 | goto err; |
| 347 | if (BN_cmp(ret, f) > 0) |
| 348 | res = f; |
| 349 | else |
| 350 | res = ret; |
| 351 | } else { |
| 352 | res = ret; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * BN_bn2binpad puts in leading 0 bytes if the number is less than |
| 357 | * the length of the modulus. |
| 358 | */ |
| 359 | r = BN_bn2binpad(res, to, num); |
| 360 | err: |
| 361 | BN_CTX_end(ctx); |
| 362 | BN_CTX_free(ctx); |
| 363 | OPENSSL_clear_free(buf, num); |
| 364 | return r; |
| 365 | } |
| 366 | |
| 367 | static int rsa_ossl_private_decrypt(int flen, const unsigned char *from, |
| 368 | unsigned char *to, RSA *rsa, int padding) |
| 369 | { |
| 370 | BIGNUM *f, *ret; |
| 371 | int j, num = 0, r = -1; |
| 372 | unsigned char *buf = NULL; |
| 373 | BN_CTX *ctx = NULL; |
| 374 | int local_blinding = 0; |
| 375 | /* |
| 376 | * Used only if the blinding structure is shared. A non-NULL unblind |
| 377 | * instructs rsa_blinding_convert() and rsa_blinding_invert() to store |
| 378 | * the unblinding factor outside the blinding structure. |
| 379 | */ |
| 380 | BIGNUM *unblind = NULL; |
| 381 | BN_BLINDING *blinding = NULL; |
| 382 | |
| 383 | if ((ctx = BN_CTX_new()) == NULL) |
| 384 | goto err; |
| 385 | BN_CTX_start(ctx); |
| 386 | f = BN_CTX_get(ctx); |
| 387 | ret = BN_CTX_get(ctx); |
| 388 | num = BN_num_bytes(rsa->n); |
| 389 | buf = OPENSSL_malloc(num); |
| 390 | if (ret == NULL || buf == NULL) { |
| 391 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
| 392 | goto err; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * This check was for equality but PGP does evil things and chops off the |
| 397 | * top '0' bytes |
| 398 | */ |
| 399 | if (flen > num) { |
| 400 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, |
| 401 | RSA_R_DATA_GREATER_THAN_MOD_LEN); |
| 402 | goto err; |
| 403 | } |
| 404 | |
| 405 | /* make data into a big number */ |
| 406 | if (BN_bin2bn(from, (int)flen, f) == NULL) |
| 407 | goto err; |
| 408 | |
| 409 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 410 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, |
| 411 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 412 | goto err; |
| 413 | } |
| 414 | |
| 415 | if (!(rsa->flags & RSA_FLAG_NO_BLINDING)) { |
| 416 | blinding = rsa_get_blinding(rsa, &local_blinding, ctx); |
| 417 | if (blinding == NULL) { |
| 418 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_INTERNAL_ERROR); |
| 419 | goto err; |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | if (blinding != NULL) { |
| 424 | if (!local_blinding && ((unblind = BN_CTX_get(ctx)) == NULL)) { |
| 425 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
| 426 | goto err; |
| 427 | } |
| 428 | if (!rsa_blinding_convert(blinding, f, unblind, ctx)) |
| 429 | goto err; |
| 430 | } |
| 431 | |
| 432 | /* do the decrypt */ |
| 433 | if ((rsa->flags & RSA_FLAG_EXT_PKEY) || |
| 434 | (rsa->version == RSA_ASN1_VERSION_MULTI) || |
| 435 | ((rsa->p != NULL) && |
| 436 | (rsa->q != NULL) && |
| 437 | (rsa->dmp1 != NULL) && (rsa->dmq1 != NULL) && (rsa->iqmp != NULL))) { |
| 438 | if (!rsa->meth->rsa_mod_exp(ret, f, rsa, ctx)) |
| 439 | goto err; |
| 440 | } else { |
| 441 | BIGNUM *d = BN_new(); |
| 442 | if (d == NULL) { |
| 443 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, ERR_R_MALLOC_FAILURE); |
| 444 | goto err; |
| 445 | } |
| 446 | if (rsa->d == NULL) { |
| 447 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_MISSING_PRIVATE_KEY); |
| 448 | BN_free(d); |
| 449 | goto err; |
| 450 | } |
| 451 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
| 452 | |
| 453 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
| 454 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
| 455 | rsa->n, ctx)) { |
| 456 | BN_free(d); |
| 457 | goto err; |
| 458 | } |
| 459 | if (!rsa->meth->bn_mod_exp(ret, f, d, rsa->n, ctx, |
| 460 | rsa->_method_mod_n)) { |
| 461 | BN_free(d); |
| 462 | goto err; |
| 463 | } |
| 464 | /* We MUST free d before any further use of rsa->d */ |
| 465 | BN_free(d); |
| 466 | } |
| 467 | |
| 468 | if (blinding) |
| 469 | if (!rsa_blinding_invert(blinding, ret, unblind, ctx)) |
| 470 | goto err; |
| 471 | |
| 472 | j = BN_bn2binpad(ret, buf, num); |
| 473 | |
| 474 | switch (padding) { |
| 475 | case RSA_PKCS1_PADDING: |
| 476 | r = RSA_padding_check_PKCS1_type_2(to, num, buf, j, num); |
| 477 | break; |
| 478 | case RSA_PKCS1_OAEP_PADDING: |
| 479 | r = RSA_padding_check_PKCS1_OAEP(to, num, buf, j, num, NULL, 0); |
| 480 | break; |
| 481 | case RSA_SSLV23_PADDING: |
| 482 | r = RSA_padding_check_SSLv23(to, num, buf, j, num); |
| 483 | break; |
| 484 | case RSA_NO_PADDING: |
| 485 | memcpy(to, buf, (r = j)); |
| 486 | break; |
| 487 | default: |
| 488 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
| 489 | goto err; |
| 490 | } |
| 491 | RSAerr(RSA_F_RSA_OSSL_PRIVATE_DECRYPT, RSA_R_PADDING_CHECK_FAILED); |
| 492 | err_clear_last_constant_time(1 & ~constant_time_msb(r)); |
| 493 | |
| 494 | err: |
| 495 | BN_CTX_end(ctx); |
| 496 | BN_CTX_free(ctx); |
| 497 | OPENSSL_clear_free(buf, num); |
| 498 | return r; |
| 499 | } |
| 500 | |
| 501 | /* signature verification */ |
| 502 | static int rsa_ossl_public_decrypt(int flen, const unsigned char *from, |
| 503 | unsigned char *to, RSA *rsa, int padding) |
| 504 | { |
| 505 | BIGNUM *f, *ret; |
| 506 | int i, num = 0, r = -1; |
| 507 | unsigned char *buf = NULL; |
| 508 | BN_CTX *ctx = NULL; |
| 509 | |
| 510 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_MAX_MODULUS_BITS) { |
| 511 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_MODULUS_TOO_LARGE); |
| 512 | return -1; |
| 513 | } |
| 514 | |
| 515 | if (BN_ucmp(rsa->n, rsa->e) <= 0) { |
| 516 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); |
| 517 | return -1; |
| 518 | } |
| 519 | |
| 520 | /* for large moduli, enforce exponent limit */ |
| 521 | if (BN_num_bits(rsa->n) > OPENSSL_RSA_SMALL_MODULUS_BITS) { |
| 522 | if (BN_num_bits(rsa->e) > OPENSSL_RSA_MAX_PUBEXP_BITS) { |
| 523 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_BAD_E_VALUE); |
| 524 | return -1; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | if ((ctx = BN_CTX_new()) == NULL) |
| 529 | goto err; |
| 530 | BN_CTX_start(ctx); |
| 531 | f = BN_CTX_get(ctx); |
| 532 | ret = BN_CTX_get(ctx); |
| 533 | num = BN_num_bytes(rsa->n); |
| 534 | buf = OPENSSL_malloc(num); |
| 535 | if (ret == NULL || buf == NULL) { |
| 536 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, ERR_R_MALLOC_FAILURE); |
| 537 | goto err; |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * This check was for equality but PGP does evil things and chops off the |
| 542 | * top '0' bytes |
| 543 | */ |
| 544 | if (flen > num) { |
| 545 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_DATA_GREATER_THAN_MOD_LEN); |
| 546 | goto err; |
| 547 | } |
| 548 | |
| 549 | if (BN_bin2bn(from, flen, f) == NULL) |
| 550 | goto err; |
| 551 | |
| 552 | if (BN_ucmp(f, rsa->n) >= 0) { |
| 553 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, |
| 554 | RSA_R_DATA_TOO_LARGE_FOR_MODULUS); |
| 555 | goto err; |
| 556 | } |
| 557 | |
| 558 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
| 559 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
| 560 | rsa->n, ctx)) |
| 561 | goto err; |
| 562 | |
| 563 | if (!rsa->meth->bn_mod_exp(ret, f, rsa->e, rsa->n, ctx, |
| 564 | rsa->_method_mod_n)) |
| 565 | goto err; |
| 566 | |
| 567 | if ((padding == RSA_X931_PADDING) && ((bn_get_words(ret)[0] & 0xf) != 12)) |
| 568 | if (!BN_sub(ret, rsa->n, ret)) |
| 569 | goto err; |
| 570 | |
| 571 | i = BN_bn2binpad(ret, buf, num); |
| 572 | |
| 573 | switch (padding) { |
| 574 | case RSA_PKCS1_PADDING: |
| 575 | r = RSA_padding_check_PKCS1_type_1(to, num, buf, i, num); |
| 576 | break; |
| 577 | case RSA_X931_PADDING: |
| 578 | r = RSA_padding_check_X931(to, num, buf, i, num); |
| 579 | break; |
| 580 | case RSA_NO_PADDING: |
| 581 | memcpy(to, buf, (r = i)); |
| 582 | break; |
| 583 | default: |
| 584 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_UNKNOWN_PADDING_TYPE); |
| 585 | goto err; |
| 586 | } |
| 587 | if (r < 0) |
| 588 | RSAerr(RSA_F_RSA_OSSL_PUBLIC_DECRYPT, RSA_R_PADDING_CHECK_FAILED); |
| 589 | |
| 590 | err: |
| 591 | BN_CTX_end(ctx); |
| 592 | BN_CTX_free(ctx); |
| 593 | OPENSSL_clear_free(buf, num); |
| 594 | return r; |
| 595 | } |
| 596 | |
| 597 | static int rsa_ossl_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) |
| 598 | { |
| 599 | BIGNUM *r1, *m1, *vrfy, *r2, *m[RSA_MAX_PRIME_NUM - 2]; |
| 600 | int ret = 0, i, ex_primes = 0, smooth = 0; |
| 601 | RSA_PRIME_INFO *pinfo; |
| 602 | |
| 603 | BN_CTX_start(ctx); |
| 604 | |
| 605 | r1 = BN_CTX_get(ctx); |
| 606 | r2 = BN_CTX_get(ctx); |
| 607 | m1 = BN_CTX_get(ctx); |
| 608 | vrfy = BN_CTX_get(ctx); |
| 609 | if (vrfy == NULL) |
| 610 | goto err; |
| 611 | |
| 612 | if (rsa->version == RSA_ASN1_VERSION_MULTI |
| 613 | && ((ex_primes = sk_RSA_PRIME_INFO_num(rsa->prime_infos)) <= 0 |
| 614 | || ex_primes > RSA_MAX_PRIME_NUM - 2)) |
| 615 | goto err; |
| 616 | |
| 617 | if (rsa->flags & RSA_FLAG_CACHE_PRIVATE) { |
| 618 | BIGNUM *factor = BN_new(); |
| 619 | |
| 620 | if (factor == NULL) |
| 621 | goto err; |
| 622 | |
| 623 | /* |
| 624 | * Make sure BN_mod_inverse in Montgomery initialization uses the |
| 625 | * BN_FLG_CONSTTIME flag |
| 626 | */ |
| 627 | if (!(BN_with_flags(factor, rsa->p, BN_FLG_CONSTTIME), |
| 628 | BN_MONT_CTX_set_locked(&rsa->_method_mod_p, rsa->lock, |
| 629 | factor, ctx)) |
| 630 | || !(BN_with_flags(factor, rsa->q, BN_FLG_CONSTTIME), |
| 631 | BN_MONT_CTX_set_locked(&rsa->_method_mod_q, rsa->lock, |
| 632 | factor, ctx))) { |
| 633 | BN_free(factor); |
| 634 | goto err; |
| 635 | } |
| 636 | for (i = 0; i < ex_primes; i++) { |
| 637 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
| 638 | BN_with_flags(factor, pinfo->r, BN_FLG_CONSTTIME); |
| 639 | if (!BN_MONT_CTX_set_locked(&pinfo->m, rsa->lock, factor, ctx)) { |
| 640 | BN_free(factor); |
| 641 | goto err; |
| 642 | } |
| 643 | } |
| 644 | /* |
| 645 | * We MUST free |factor| before any further use of the prime factors |
| 646 | */ |
| 647 | BN_free(factor); |
| 648 | |
| 649 | smooth = (ex_primes == 0) |
| 650 | && (rsa->meth->bn_mod_exp == BN_mod_exp_mont) |
| 651 | && (BN_num_bits(rsa->q) == BN_num_bits(rsa->p)); |
| 652 | } |
| 653 | |
| 654 | if (rsa->flags & RSA_FLAG_CACHE_PUBLIC) |
| 655 | if (!BN_MONT_CTX_set_locked(&rsa->_method_mod_n, rsa->lock, |
| 656 | rsa->n, ctx)) |
| 657 | goto err; |
| 658 | |
| 659 | if (smooth) { |
| 660 | /* |
| 661 | * Conversion from Montgomery domain, a.k.a. Montgomery reduction, |
| 662 | * accepts values in [0-m*2^w) range. w is m's bit width rounded up |
| 663 | * to limb width. So that at the very least if |I| is fully reduced, |
| 664 | * i.e. less than p*q, we can count on from-to round to perform |
| 665 | * below modulo operations on |I|. Unlike BN_mod it's constant time. |
| 666 | */ |
| 667 | if (/* m1 = I moq q */ |
| 668 | !bn_from_mont_fixed_top(m1, I, rsa->_method_mod_q, ctx) |
| 669 | || !bn_to_mont_fixed_top(m1, m1, rsa->_method_mod_q, ctx) |
| 670 | /* m1 = m1^dmq1 mod q */ |
| 671 | || !BN_mod_exp_mont_consttime(m1, m1, rsa->dmq1, rsa->q, ctx, |
| 672 | rsa->_method_mod_q) |
| 673 | /* r1 = I mod p */ |
| 674 | || !bn_from_mont_fixed_top(r1, I, rsa->_method_mod_p, ctx) |
| 675 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
| 676 | /* r1 = r1^dmp1 mod p */ |
| 677 | || !BN_mod_exp_mont_consttime(r1, r1, rsa->dmp1, rsa->p, ctx, |
| 678 | rsa->_method_mod_p) |
| 679 | /* r1 = (r1 - m1) mod p */ |
| 680 | /* |
| 681 | * bn_mod_sub_fixed_top is not regular modular subtraction, |
| 682 | * it can tolerate subtrahend to be larger than modulus, but |
| 683 | * not bit-wise wider. This makes up for uncommon q>p case, |
| 684 | * when |m1| can be larger than |rsa->p|. |
| 685 | */ |
| 686 | || !bn_mod_sub_fixed_top(r1, r1, m1, rsa->p) |
| 687 | |
| 688 | /* r1 = r1 * iqmp mod p */ |
| 689 | || !bn_to_mont_fixed_top(r1, r1, rsa->_method_mod_p, ctx) |
| 690 | || !bn_mul_mont_fixed_top(r1, r1, rsa->iqmp, rsa->_method_mod_p, |
| 691 | ctx) |
| 692 | /* r0 = r1 * q + m1 */ |
| 693 | || !bn_mul_fixed_top(r0, r1, rsa->q, ctx) |
| 694 | || !bn_mod_add_fixed_top(r0, r0, m1, rsa->n)) |
| 695 | goto err; |
| 696 | |
| 697 | goto tail; |
| 698 | } |
| 699 | |
| 700 | /* compute I mod q */ |
| 701 | { |
| 702 | BIGNUM *c = BN_new(); |
| 703 | if (c == NULL) |
| 704 | goto err; |
| 705 | BN_with_flags(c, I, BN_FLG_CONSTTIME); |
| 706 | |
| 707 | if (!BN_mod(r1, c, rsa->q, ctx)) { |
| 708 | BN_free(c); |
| 709 | goto err; |
| 710 | } |
| 711 | |
| 712 | { |
| 713 | BIGNUM *dmq1 = BN_new(); |
| 714 | if (dmq1 == NULL) { |
| 715 | BN_free(c); |
| 716 | goto err; |
| 717 | } |
| 718 | BN_with_flags(dmq1, rsa->dmq1, BN_FLG_CONSTTIME); |
| 719 | |
| 720 | /* compute r1^dmq1 mod q */ |
| 721 | if (!rsa->meth->bn_mod_exp(m1, r1, dmq1, rsa->q, ctx, |
| 722 | rsa->_method_mod_q)) { |
| 723 | BN_free(c); |
| 724 | BN_free(dmq1); |
| 725 | goto err; |
| 726 | } |
| 727 | /* We MUST free dmq1 before any further use of rsa->dmq1 */ |
| 728 | BN_free(dmq1); |
| 729 | } |
| 730 | |
| 731 | /* compute I mod p */ |
| 732 | if (!BN_mod(r1, c, rsa->p, ctx)) { |
| 733 | BN_free(c); |
| 734 | goto err; |
| 735 | } |
| 736 | /* We MUST free c before any further use of I */ |
| 737 | BN_free(c); |
| 738 | } |
| 739 | |
| 740 | { |
| 741 | BIGNUM *dmp1 = BN_new(); |
| 742 | if (dmp1 == NULL) |
| 743 | goto err; |
| 744 | BN_with_flags(dmp1, rsa->dmp1, BN_FLG_CONSTTIME); |
| 745 | |
| 746 | /* compute r1^dmp1 mod p */ |
| 747 | if (!rsa->meth->bn_mod_exp(r0, r1, dmp1, rsa->p, ctx, |
| 748 | rsa->_method_mod_p)) { |
| 749 | BN_free(dmp1); |
| 750 | goto err; |
| 751 | } |
| 752 | /* We MUST free dmp1 before any further use of rsa->dmp1 */ |
| 753 | BN_free(dmp1); |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * calculate m_i in multi-prime case |
| 758 | * |
| 759 | * TODO: |
| 760 | * 1. squash the following two loops and calculate |m_i| there. |
| 761 | * 2. remove cc and reuse |c|. |
| 762 | * 3. remove |dmq1| and |dmp1| in previous block and use |di|. |
| 763 | * |
| 764 | * If these things are done, the code will be more readable. |
| 765 | */ |
| 766 | if (ex_primes > 0) { |
| 767 | BIGNUM *di = BN_new(), *cc = BN_new(); |
| 768 | |
| 769 | if (cc == NULL || di == NULL) { |
| 770 | BN_free(cc); |
| 771 | BN_free(di); |
| 772 | goto err; |
| 773 | } |
| 774 | |
| 775 | for (i = 0; i < ex_primes; i++) { |
| 776 | /* prepare m_i */ |
| 777 | if ((m[i] = BN_CTX_get(ctx)) == NULL) { |
| 778 | BN_free(cc); |
| 779 | BN_free(di); |
| 780 | goto err; |
| 781 | } |
| 782 | |
| 783 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
| 784 | |
| 785 | /* prepare c and d_i */ |
| 786 | BN_with_flags(cc, I, BN_FLG_CONSTTIME); |
| 787 | BN_with_flags(di, pinfo->d, BN_FLG_CONSTTIME); |
| 788 | |
| 789 | if (!BN_mod(r1, cc, pinfo->r, ctx)) { |
| 790 | BN_free(cc); |
| 791 | BN_free(di); |
| 792 | goto err; |
| 793 | } |
| 794 | /* compute r1 ^ d_i mod r_i */ |
| 795 | if (!rsa->meth->bn_mod_exp(m[i], r1, di, pinfo->r, ctx, pinfo->m)) { |
| 796 | BN_free(cc); |
| 797 | BN_free(di); |
| 798 | goto err; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | BN_free(cc); |
| 803 | BN_free(di); |
| 804 | } |
| 805 | |
| 806 | if (!BN_sub(r0, r0, m1)) |
| 807 | goto err; |
| 808 | /* |
| 809 | * This will help stop the size of r0 increasing, which does affect the |
| 810 | * multiply if it optimised for a power of 2 size |
| 811 | */ |
| 812 | if (BN_is_negative(r0)) |
| 813 | if (!BN_add(r0, r0, rsa->p)) |
| 814 | goto err; |
| 815 | |
| 816 | if (!BN_mul(r1, r0, rsa->iqmp, ctx)) |
| 817 | goto err; |
| 818 | |
| 819 | { |
| 820 | BIGNUM *pr1 = BN_new(); |
| 821 | if (pr1 == NULL) |
| 822 | goto err; |
| 823 | BN_with_flags(pr1, r1, BN_FLG_CONSTTIME); |
| 824 | |
| 825 | if (!BN_mod(r0, pr1, rsa->p, ctx)) { |
| 826 | BN_free(pr1); |
| 827 | goto err; |
| 828 | } |
| 829 | /* We MUST free pr1 before any further use of r1 */ |
| 830 | BN_free(pr1); |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * If p < q it is occasionally possible for the correction of adding 'p' |
| 835 | * if r0 is negative above to leave the result still negative. This can |
| 836 | * break the private key operations: the following second correction |
| 837 | * should *always* correct this rare occurrence. This will *never* happen |
| 838 | * with OpenSSL generated keys because they ensure p > q [steve] |
| 839 | */ |
| 840 | if (BN_is_negative(r0)) |
| 841 | if (!BN_add(r0, r0, rsa->p)) |
| 842 | goto err; |
| 843 | if (!BN_mul(r1, r0, rsa->q, ctx)) |
| 844 | goto err; |
| 845 | if (!BN_add(r0, r1, m1)) |
| 846 | goto err; |
| 847 | |
| 848 | /* add m_i to m in multi-prime case */ |
| 849 | if (ex_primes > 0) { |
| 850 | BIGNUM *pr2 = BN_new(); |
| 851 | |
| 852 | if (pr2 == NULL) |
| 853 | goto err; |
| 854 | |
| 855 | for (i = 0; i < ex_primes; i++) { |
| 856 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
| 857 | if (!BN_sub(r1, m[i], r0)) { |
| 858 | BN_free(pr2); |
| 859 | goto err; |
| 860 | } |
| 861 | |
| 862 | if (!BN_mul(r2, r1, pinfo->t, ctx)) { |
| 863 | BN_free(pr2); |
| 864 | goto err; |
| 865 | } |
| 866 | |
| 867 | BN_with_flags(pr2, r2, BN_FLG_CONSTTIME); |
| 868 | |
| 869 | if (!BN_mod(r1, pr2, pinfo->r, ctx)) { |
| 870 | BN_free(pr2); |
| 871 | goto err; |
| 872 | } |
| 873 | |
| 874 | if (BN_is_negative(r1)) |
| 875 | if (!BN_add(r1, r1, pinfo->r)) { |
| 876 | BN_free(pr2); |
| 877 | goto err; |
| 878 | } |
| 879 | if (!BN_mul(r1, r1, pinfo->pp, ctx)) { |
| 880 | BN_free(pr2); |
| 881 | goto err; |
| 882 | } |
| 883 | if (!BN_add(r0, r0, r1)) { |
| 884 | BN_free(pr2); |
| 885 | goto err; |
| 886 | } |
| 887 | } |
| 888 | BN_free(pr2); |
| 889 | } |
| 890 | |
| 891 | tail: |
| 892 | if (rsa->e && rsa->n) { |
| 893 | if (rsa->meth->bn_mod_exp == BN_mod_exp_mont) { |
| 894 | if (!BN_mod_exp_mont(vrfy, r0, rsa->e, rsa->n, ctx, |
| 895 | rsa->_method_mod_n)) |
| 896 | goto err; |
| 897 | } else { |
| 898 | bn_correct_top(r0); |
| 899 | if (!rsa->meth->bn_mod_exp(vrfy, r0, rsa->e, rsa->n, ctx, |
| 900 | rsa->_method_mod_n)) |
| 901 | goto err; |
| 902 | } |
| 903 | /* |
| 904 | * If 'I' was greater than (or equal to) rsa->n, the operation will |
| 905 | * be equivalent to using 'I mod n'. However, the result of the |
| 906 | * verify will *always* be less than 'n' so we don't check for |
| 907 | * absolute equality, just congruency. |
| 908 | */ |
| 909 | if (!BN_sub(vrfy, vrfy, I)) |
| 910 | goto err; |
| 911 | if (BN_is_zero(vrfy)) { |
| 912 | bn_correct_top(r0); |
| 913 | ret = 1; |
| 914 | goto err; /* not actually error */ |
| 915 | } |
| 916 | if (!BN_mod(vrfy, vrfy, rsa->n, ctx)) |
| 917 | goto err; |
| 918 | if (BN_is_negative(vrfy)) |
| 919 | if (!BN_add(vrfy, vrfy, rsa->n)) |
| 920 | goto err; |
| 921 | if (!BN_is_zero(vrfy)) { |
| 922 | /* |
| 923 | * 'I' and 'vrfy' aren't congruent mod n. Don't leak |
| 924 | * miscalculated CRT output, just do a raw (slower) mod_exp and |
| 925 | * return that instead. |
| 926 | */ |
| 927 | |
| 928 | BIGNUM *d = BN_new(); |
| 929 | if (d == NULL) |
| 930 | goto err; |
| 931 | BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME); |
| 932 | |
| 933 | if (!rsa->meth->bn_mod_exp(r0, I, d, rsa->n, ctx, |
| 934 | rsa->_method_mod_n)) { |
| 935 | BN_free(d); |
| 936 | goto err; |
| 937 | } |
| 938 | /* We MUST free d before any further use of rsa->d */ |
| 939 | BN_free(d); |
| 940 | } |
| 941 | } |
| 942 | /* |
| 943 | * It's unfortunate that we have to bn_correct_top(r0). What hopefully |
| 944 | * saves the day is that correction is highly unlike, and private key |
| 945 | * operations are customarily performed on blinded message. Which means |
| 946 | * that attacker won't observe correlation with chosen plaintext. |
| 947 | * Secondly, remaining code would still handle it in same computational |
| 948 | * time and even conceal memory access pattern around corrected top. |
| 949 | */ |
| 950 | bn_correct_top(r0); |
| 951 | ret = 1; |
| 952 | err: |
| 953 | BN_CTX_end(ctx); |
| 954 | return ret; |
| 955 | } |
| 956 | |
| 957 | static int rsa_ossl_init(RSA *rsa) |
| 958 | { |
| 959 | rsa->flags |= RSA_FLAG_CACHE_PUBLIC | RSA_FLAG_CACHE_PRIVATE; |
| 960 | return 1; |
| 961 | } |
| 962 | |
| 963 | static int rsa_ossl_finish(RSA *rsa) |
| 964 | { |
| 965 | int i; |
| 966 | RSA_PRIME_INFO *pinfo; |
| 967 | |
| 968 | BN_MONT_CTX_free(rsa->_method_mod_n); |
| 969 | BN_MONT_CTX_free(rsa->_method_mod_p); |
| 970 | BN_MONT_CTX_free(rsa->_method_mod_q); |
| 971 | for (i = 0; i < sk_RSA_PRIME_INFO_num(rsa->prime_infos); i++) { |
| 972 | pinfo = sk_RSA_PRIME_INFO_value(rsa->prime_infos, i); |
| 973 | BN_MONT_CTX_free(pinfo->m); |
| 974 | } |
| 975 | return 1; |
| 976 | } |