blob: 8c89ab824c74030ff44c096f5492c84235e5c991 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/mman.h>
15#include <linux/nodemask.h>
16#include <linux/memblock.h>
17#include <linux/fs.h>
18#include <linux/vmalloc.h>
19
20#include <asm/cp15.h>
21#include <asm/cputype.h>
22#include <asm/sections.h>
23#include <asm/cachetype.h>
24#include <asm/setup.h>
25#include <asm/sizes.h>
26#include <asm/smp_plat.h>
27#include <asm/tlb.h>
28#include <asm/highmem.h>
29#include <asm/system_info.h>
30#include <asm/traps.h>
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
34
35#include "mm.h"
36
37/*
38 * empty_zero_page is a special page that is used for
39 * zero-initialized data and COW.
40 */
41struct page *empty_zero_page;
42EXPORT_SYMBOL(empty_zero_page);
43
44/*
45 * The pmd table for the upper-most set of pages.
46 */
47pmd_t *top_pmd;
48
49#define CPOLICY_UNCACHED 0
50#define CPOLICY_BUFFERED 1
51#define CPOLICY_WRITETHROUGH 2
52#define CPOLICY_WRITEBACK 3
53#define CPOLICY_WRITEALLOC 4
54
55static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56static unsigned int ecc_mask __initdata = 0;
57pgprot_t pgprot_user;
58pgprot_t pgprot_kernel;
59
60EXPORT_SYMBOL(pgprot_user);
61EXPORT_SYMBOL(pgprot_kernel);
62
63struct cachepolicy {
64 const char policy[16];
65 unsigned int cr_mask;
66 pmdval_t pmd;
67 pteval_t pte;
68};
69
70static struct cachepolicy cache_policies[] __initdata = {
71 {
72 .policy = "uncached",
73 .cr_mask = CR_W|CR_C,
74 .pmd = PMD_SECT_UNCACHED,
75 .pte = L_PTE_MT_UNCACHED,
76 }, {
77 .policy = "buffered",
78 .cr_mask = CR_C,
79 .pmd = PMD_SECT_BUFFERED,
80 .pte = L_PTE_MT_BUFFERABLE,
81 }, {
82 .policy = "writethrough",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WT,
85 .pte = L_PTE_MT_WRITETHROUGH,
86 }, {
87 .policy = "writeback",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WB,
90 .pte = L_PTE_MT_WRITEBACK,
91 }, {
92 .policy = "writealloc",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WBWA,
95 .pte = L_PTE_MT_WRITEALLOC,
96 }
97};
98
99/*
100 * These are useful for identifying cache coherency
101 * problems by allowing the cache or the cache and
102 * writebuffer to be turned off. (Note: the write
103 * buffer should not be on and the cache off).
104 */
105static int __init early_cachepolicy(char *p)
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 int len = strlen(cache_policies[i].policy);
111
112 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 cachepolicy = i;
114 cr_alignment &= ~cache_policies[i].cr_mask;
115 cr_no_alignment &= ~cache_policies[i].cr_mask;
116 break;
117 }
118 }
119 if (i == ARRAY_SIZE(cache_policies))
120 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 /*
122 * This restriction is partly to do with the way we boot; it is
123 * unpredictable to have memory mapped using two different sets of
124 * memory attributes (shared, type, and cache attribs). We can not
125 * change these attributes once the initial assembly has setup the
126 * page tables.
127 */
128 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 cachepolicy = CPOLICY_WRITEBACK;
131 }
132 flush_cache_all();
133 set_cr(cr_alignment);
134 return 0;
135}
136early_param("cachepolicy", early_cachepolicy);
137
138static int __init early_nocache(char *__unused)
139{
140 char *p = "buffered";
141 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 early_cachepolicy(p);
143 return 0;
144}
145early_param("nocache", early_nocache);
146
147static int __init early_nowrite(char *__unused)
148{
149 char *p = "uncached";
150 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 early_cachepolicy(p);
152 return 0;
153}
154early_param("nowb", early_nowrite);
155
156#ifndef CONFIG_ARM_LPAE
157static int __init early_ecc(char *p)
158{
159 if (memcmp(p, "on", 2) == 0)
160 ecc_mask = PMD_PROTECTION;
161 else if (memcmp(p, "off", 3) == 0)
162 ecc_mask = 0;
163 return 0;
164}
165early_param("ecc", early_ecc);
166#endif
167
168static int __init noalign_setup(char *__unused)
169{
170 cr_alignment &= ~CR_A;
171 cr_no_alignment &= ~CR_A;
172 set_cr(cr_alignment);
173 return 1;
174}
175__setup("noalign", noalign_setup);
176
177#ifndef CONFIG_SMP
178void adjust_cr(unsigned long mask, unsigned long set)
179{
180 unsigned long flags;
181
182 mask &= ~CR_A;
183
184 set &= mask;
185
186 local_irq_save(flags);
187
188 cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 cr_alignment = (cr_alignment & ~mask) | set;
190
191 set_cr((get_cr() & ~mask) | set);
192
193 local_irq_restore(flags);
194}
195#endif
196
197#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199
200static struct mem_type mem_types[] = {
201 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 L_PTE_SHARED,
204 .prot_l1 = PMD_TYPE_TABLE,
205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 .prot_l1 = PMD_TYPE_TABLE,
211 .prot_sect = PROT_SECT_DEVICE,
212 .domain = DOMAIN_IO,
213 },
214 [MT_DEVICE_CACHED] = { /* ioremap_cached */
215 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
218 .domain = DOMAIN_IO,
219 },
220 [MT_DEVICE_WC] = { /* ioremap_wc */
221 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 .prot_l1 = PMD_TYPE_TABLE,
223 .prot_sect = PROT_SECT_DEVICE,
224 .domain = DOMAIN_IO,
225 },
226 [MT_UNCACHED] = {
227 .prot_pte = PROT_PTE_DEVICE,
228 .prot_l1 = PMD_TYPE_TABLE,
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_IO,
231 },
232 [MT_CACHECLEAN] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 .domain = DOMAIN_KERNEL,
235 },
236#ifndef CONFIG_ARM_LPAE
237 [MT_MINICLEAN] = {
238 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 .domain = DOMAIN_KERNEL,
240 },
241#endif
242 [MT_LOW_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_RDONLY,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_HIGH_VECTORS] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 L_PTE_USER | L_PTE_RDONLY,
251 .prot_l1 = PMD_TYPE_TABLE,
252 .domain = DOMAIN_USER,
253 },
254 [MT_MEMORY] = {
255 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 .prot_l1 = PMD_TYPE_TABLE,
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
260 [MT_ROM] = {
261 .prot_sect = PMD_TYPE_SECT,
262 .domain = DOMAIN_KERNEL,
263 },
264 [MT_MEMORY_NONCACHED] = {
265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 L_PTE_MT_BUFFERABLE,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 .domain = DOMAIN_KERNEL,
270 },
271 [MT_MEMORY_DTCM] = {
272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 L_PTE_XN,
274 .prot_l1 = PMD_TYPE_TABLE,
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 .domain = DOMAIN_KERNEL,
277 },
278 [MT_MEMORY_ITCM] = {
279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 .prot_l1 = PMD_TYPE_TABLE,
281 .domain = DOMAIN_KERNEL,
282 },
283 [MT_MEMORY_SO] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_MT_UNCACHED,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 PMD_SECT_UNCACHED | PMD_SECT_XN,
289 .domain = DOMAIN_KERNEL,
290 },
291};
292
293const struct mem_type *get_mem_type(unsigned int type)
294{
295 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
296}
297EXPORT_SYMBOL(get_mem_type);
298
299/*
300 * Adjust the PMD section entries according to the CPU in use.
301 */
302static void __init build_mem_type_table(void)
303{
304 struct cachepolicy *cp;
305 unsigned int cr = get_cr();
306 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
307 int cpu_arch = cpu_architecture();
308 int i;
309
310 if (cpu_arch < CPU_ARCH_ARMv6) {
311#if defined(CONFIG_CPU_DCACHE_DISABLE)
312 if (cachepolicy > CPOLICY_BUFFERED)
313 cachepolicy = CPOLICY_BUFFERED;
314#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
315 if (cachepolicy > CPOLICY_WRITETHROUGH)
316 cachepolicy = CPOLICY_WRITETHROUGH;
317#endif
318 }
319 if (cpu_arch < CPU_ARCH_ARMv5) {
320 if (cachepolicy >= CPOLICY_WRITEALLOC)
321 cachepolicy = CPOLICY_WRITEBACK;
322 ecc_mask = 0;
323 }
324 if (is_smp())
325 cachepolicy = CPOLICY_WRITEALLOC;
326
327 /*
328 * Strip out features not present on earlier architectures.
329 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
330 * without extended page tables don't have the 'Shared' bit.
331 */
332 if (cpu_arch < CPU_ARCH_ARMv5)
333 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
335 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
336 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
337 mem_types[i].prot_sect &= ~PMD_SECT_S;
338
339 /*
340 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
341 * "update-able on write" bit on ARM610). However, Xscale and
342 * Xscale3 require this bit to be cleared.
343 */
344 if (cpu_is_xscale() || cpu_is_xsc3()) {
345 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
346 mem_types[i].prot_sect &= ~PMD_BIT4;
347 mem_types[i].prot_l1 &= ~PMD_BIT4;
348 }
349 } else if (cpu_arch < CPU_ARCH_ARMv6) {
350 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 if (mem_types[i].prot_l1)
352 mem_types[i].prot_l1 |= PMD_BIT4;
353 if (mem_types[i].prot_sect)
354 mem_types[i].prot_sect |= PMD_BIT4;
355 }
356 }
357
358 /*
359 * Mark the device areas according to the CPU/architecture.
360 */
361 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
362 if (!cpu_is_xsc3()) {
363 /*
364 * Mark device regions on ARMv6+ as execute-never
365 * to prevent speculative instruction fetches.
366 */
367 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
368 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
369 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
370 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
371 }
372 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
373 /*
374 * For ARMv7 with TEX remapping,
375 * - shared device is SXCB=1100
376 * - nonshared device is SXCB=0100
377 * - write combine device mem is SXCB=0001
378 * (Uncached Normal memory)
379 */
380 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
381 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
382 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
383 } else if (cpu_is_xsc3()) {
384 /*
385 * For Xscale3,
386 * - shared device is TEXCB=00101
387 * - nonshared device is TEXCB=01000
388 * - write combine device mem is TEXCB=00100
389 * (Inner/Outer Uncacheable in xsc3 parlance)
390 */
391 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
392 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
394 } else {
395 /*
396 * For ARMv6 and ARMv7 without TEX remapping,
397 * - shared device is TEXCB=00001
398 * - nonshared device is TEXCB=01000
399 * - write combine device mem is TEXCB=00100
400 * (Uncached Normal in ARMv6 parlance).
401 */
402 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
403 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
404 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
405 }
406 } else {
407 /*
408 * On others, write combining is "Uncached/Buffered"
409 */
410 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
411 }
412
413 /*
414 * Now deal with the memory-type mappings
415 */
416 cp = &cache_policies[cachepolicy];
417 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
418
419 /*
420 * Only use write-through for non-SMP systems
421 */
422 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
423 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
424
425 /*
426 * Enable CPU-specific coherency if supported.
427 * (Only available on XSC3 at the moment.)
428 */
429 if (arch_is_coherent() && cpu_is_xsc3()) {
430 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
431 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
432 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 }
435 /*
436 * ARMv6 and above have extended page tables.
437 */
438 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439#ifndef CONFIG_ARM_LPAE
440 /*
441 * Mark cache clean areas and XIP ROM read only
442 * from SVC mode and no access from userspace.
443 */
444 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447#endif
448
449 if (is_smp()) {
450 /*
451 * Mark memory with the "shared" attribute
452 * for SMP systems
453 */
454 user_pgprot |= L_PTE_SHARED;
455 kern_pgprot |= L_PTE_SHARED;
456 vecs_pgprot |= L_PTE_SHARED;
457 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
464 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
465 }
466 }
467
468 /*
469 * Non-cacheable Normal - intended for memory areas that must
470 * not cause dirty cache line writebacks when used
471 */
472 if (cpu_arch >= CPU_ARCH_ARMv6) {
473 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
474 /* Non-cacheable Normal is XCB = 001 */
475 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
476 PMD_SECT_BUFFERED;
477 } else {
478 /* For both ARMv6 and non-TEX-remapping ARMv7 */
479 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
480 PMD_SECT_TEX(1);
481 }
482 } else {
483 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
484 }
485
486#ifdef CONFIG_ARM_LPAE
487 /*
488 * Do not generate access flag faults for the kernel mappings.
489 */
490 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 mem_types[i].prot_pte |= PTE_EXT_AF;
492 if (mem_types[i].prot_sect)
493 mem_types[i].prot_sect |= PMD_SECT_AF;
494 }
495 kern_pgprot |= PTE_EXT_AF;
496 vecs_pgprot |= PTE_EXT_AF;
497#endif
498
499 for (i = 0; i < 16; i++) {
500 pteval_t v = pgprot_val(protection_map[i]);
501 protection_map[i] = __pgprot(v | user_pgprot);
502 }
503
504 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
505 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
506
507 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
508 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
509 L_PTE_DIRTY | kern_pgprot);
510
511 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
512 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
513 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
514 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
515 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
516 mem_types[MT_ROM].prot_sect |= cp->pmd;
517
518 switch (cp->pmd) {
519 case PMD_SECT_WT:
520 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
521 break;
522 case PMD_SECT_WB:
523 case PMD_SECT_WBWA:
524 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
525 break;
526 }
527 printk("Memory policy: ECC %sabled, Data cache %s\n",
528 ecc_mask ? "en" : "dis", cp->policy);
529
530 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
531 struct mem_type *t = &mem_types[i];
532 if (t->prot_l1)
533 t->prot_l1 |= PMD_DOMAIN(t->domain);
534 if (t->prot_sect)
535 t->prot_sect |= PMD_DOMAIN(t->domain);
536 }
537}
538
539#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
540pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
541 unsigned long size, pgprot_t vma_prot)
542{
543 if (!pfn_valid(pfn))
544 return pgprot_noncached(vma_prot);
545 else if (file->f_flags & O_SYNC)
546 return pgprot_writecombine(vma_prot);
547 return vma_prot;
548}
549EXPORT_SYMBOL(phys_mem_access_prot);
550#endif
551
552#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
553
554static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
555{
556 void *ptr = __va(memblock_alloc(sz, align));
557 memset(ptr, 0, sz);
558 return ptr;
559}
560
561static void __init *early_alloc(unsigned long sz)
562{
563 return early_alloc_aligned(sz, sz);
564}
565
566static pte_t * __init early_pte_alloc(pmd_t *pmd)
567{
568 if (pmd_none(*pmd) || pmd_bad(*pmd))
569 return early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
570 return pmd_page_vaddr(*pmd);
571}
572
573static void __init early_pte_install(pmd_t *pmd, pte_t *pte, unsigned long prot)
574{
575 __pmd_populate(pmd, __pa(pte), prot);
576 BUG_ON(pmd_bad(*pmd));
577}
578
579static pte_t * __init early_pte_alloc_and_install(pmd_t *pmd,
580 unsigned long addr, unsigned long prot)
581{
582 if (pmd_none(*pmd)) {
583 pte_t *pte = early_pte_alloc(pmd);
584 early_pte_install(pmd, pte, prot);
585 }
586 BUG_ON(pmd_bad(*pmd));
587 return pte_offset_kernel(pmd, addr);
588}
589
590static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
591 unsigned long end, unsigned long pfn,
592 const struct mem_type *type)
593{
594 pte_t *start_pte = early_pte_alloc(pmd);
595 pte_t *pte = start_pte + pte_index(addr);
596
597 /* If replacing a section mapping, the whole section must be replaced */
598#ifndef CONFIG_DEBUG_RODATA
599 BUG_ON(pmd_bad(*pmd) && ((addr | end) & ~PMD_MASK));
600#endif
601
602 do {
603 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
604 pfn++;
605 } while (pte++, addr += PAGE_SIZE, addr != end);
606 early_pte_install(pmd, start_pte, type->prot_l1);
607}
608
609static void __init alloc_init_section(pud_t *pud, unsigned long addr,
610 unsigned long end, phys_addr_t phys,
611 const struct mem_type *type,
612 bool force_pages)
613{
614 pmd_t *pmd = pmd_offset(pud, addr);
615
616 /*
617 * Try a section mapping - end, addr and phys must all be aligned
618 * to a section boundary. Note that PMDs refer to the individual
619 * L1 entries, whereas PGDs refer to a group of L1 entries making
620 * up one logical pointer to an L2 table.
621 */
622 if (((addr | end | phys) & ~SECTION_MASK) == 0 && !force_pages) {
623 pmd_t *p = pmd;
624
625#ifndef CONFIG_ARM_LPAE
626 if (addr & SECTION_SIZE)
627 pmd++;
628#endif
629
630 do {
631 *pmd = __pmd(phys | type->prot_sect);
632 phys += SECTION_SIZE;
633 } while (pmd++, addr += SECTION_SIZE, addr != end);
634
635 flush_pmd_entry(p);
636 } else {
637 /*
638 * No need to loop; pte's aren't interested in the
639 * individual L1 entries.
640 */
641 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
642 }
643}
644
645static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
646 unsigned long end, unsigned long phys, const struct mem_type *type,
647 bool force_pages)
648{
649 pud_t *pud = pud_offset(pgd, addr);
650 unsigned long next;
651
652 do {
653 next = pud_addr_end(addr, end);
654 alloc_init_section(pud, addr, next, phys, type, force_pages);
655 phys += next - addr;
656 } while (pud++, addr = next, addr != end);
657}
658
659#ifndef CONFIG_ARM_LPAE
660static void __init create_36bit_mapping(struct map_desc *md,
661 const struct mem_type *type)
662{
663 unsigned long addr, length, end;
664 phys_addr_t phys;
665 pgd_t *pgd;
666
667 addr = md->virtual;
668 phys = __pfn_to_phys(md->pfn);
669 length = PAGE_ALIGN(md->length);
670
671 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
672 printk(KERN_ERR "MM: CPU does not support supersection "
673 "mapping for 0x%08llx at 0x%08lx\n",
674 (long long)__pfn_to_phys((u64)md->pfn), addr);
675 return;
676 }
677
678 /* N.B. ARMv6 supersections are only defined to work with domain 0.
679 * Since domain assignments can in fact be arbitrary, the
680 * 'domain == 0' check below is required to insure that ARMv6
681 * supersections are only allocated for domain 0 regardless
682 * of the actual domain assignments in use.
683 */
684 if (type->domain) {
685 printk(KERN_ERR "MM: invalid domain in supersection "
686 "mapping for 0x%08llx at 0x%08lx\n",
687 (long long)__pfn_to_phys((u64)md->pfn), addr);
688 return;
689 }
690
691 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
692 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
693 " at 0x%08lx invalid alignment\n",
694 (long long)__pfn_to_phys((u64)md->pfn), addr);
695 return;
696 }
697
698 /*
699 * Shift bits [35:32] of address into bits [23:20] of PMD
700 * (See ARMv6 spec).
701 */
702 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
703
704 pgd = pgd_offset_k(addr);
705 end = addr + length;
706 do {
707 pud_t *pud = pud_offset(pgd, addr);
708 pmd_t *pmd = pmd_offset(pud, addr);
709 int i;
710
711 for (i = 0; i < 16; i++)
712 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
713
714 addr += SUPERSECTION_SIZE;
715 phys += SUPERSECTION_SIZE;
716 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
717 } while (addr != end);
718}
719#endif /* !CONFIG_ARM_LPAE */
720
721/*
722 * Create the page directory entries and any necessary
723 * page tables for the mapping specified by `md'. We
724 * are able to cope here with varying sizes and address
725 * offsets, and we take full advantage of sections and
726 * supersections.
727 */
728static void __init create_mapping(struct map_desc *md, bool force_pages)
729{
730 unsigned long addr, length, end;
731 phys_addr_t phys;
732 const struct mem_type *type;
733 pgd_t *pgd;
734
735 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
736 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
737 " at 0x%08lx in user region\n",
738 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
739 return;
740 }
741
742 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
743 md->virtual >= PAGE_OFFSET &&
744 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
745 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
746 " at 0x%08lx out of vmalloc space\n",
747 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
748 }
749
750 type = &mem_types[md->type];
751
752#ifndef CONFIG_ARM_LPAE
753 /*
754 * Catch 36-bit addresses
755 */
756 if (md->pfn >= 0x100000) {
757 create_36bit_mapping(md, type);
758 return;
759 }
760#endif
761
762 addr = md->virtual & PAGE_MASK;
763 phys = __pfn_to_phys(md->pfn);
764 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
765
766 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
767 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
768 "be mapped using pages, ignoring.\n",
769 (long long)__pfn_to_phys(md->pfn), addr);
770 return;
771 }
772
773 if ((addr & ~SECTION_MASK) && length > (2 * PGDIR_SIZE))
774 {
775 unsigned long addr_tmp;
776 phys_addr_t phys_tmp;
777
778 addr_tmp = (addr & SECTION_MASK) + PGDIR_SIZE;
779 phys_tmp = phys + (addr_tmp - addr);
780
781 pgd = pgd_offset_k(addr_tmp);
782 end = addr + length;
783 do {
784 unsigned long next = pgd_addr_end(addr_tmp, end);
785
786 alloc_init_pud(pgd, addr_tmp, next, phys_tmp, type, force_pages);
787
788 phys_tmp += next - addr_tmp;
789 addr_tmp = next;
790 } while (pgd++, addr_tmp != end);
791
792 pgd = pgd_offset_k(addr);
793 end = (addr & SECTION_MASK) + PGDIR_SIZE;
794 do {
795 unsigned long next = pgd_addr_end(addr, end);
796
797 alloc_init_pud(pgd, addr, next, phys, type, force_pages);
798
799 phys += next - addr;
800 addr = next;
801 } while (pgd++, addr != end);
802 }
803 else
804 {
805 pgd = pgd_offset_k(addr);
806 end = addr + length;
807 do {
808 unsigned long next = pgd_addr_end(addr, end);
809
810 alloc_init_pud(pgd, addr, next, phys, type, force_pages);
811
812 phys += next - addr;
813 addr = next;
814 } while (pgd++, addr != end);
815 }
816}
817
818/*
819 * Create the architecture specific mappings
820 */
821void __init iotable_init(struct map_desc *io_desc, int nr)
822{
823 struct map_desc *md;
824 struct vm_struct *vm;
825
826 if (!nr)
827 return;
828
829 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
830
831 for (md = io_desc; nr; md++, nr--) {
832 create_mapping(md, false);
833 vm->addr = (void *)(md->virtual & PAGE_MASK);
834 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
835 vm->phys_addr = __pfn_to_phys(md->pfn);
836 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
837 vm->flags |= VM_ARM_MTYPE(md->type);
838 vm->caller = iotable_init;
839 vm_area_add_early(vm++);
840 }
841}
842
843#ifndef CONFIG_ARM_LPAE
844
845/*
846 * The Linux PMD is made of two consecutive section entries covering 2MB
847 * (see definition in include/asm/pgtable-2level.h). However a call to
848 * create_mapping() may optimize static mappings by using individual
849 * 1MB section mappings. This leaves the actual PMD potentially half
850 * initialized if the top or bottom section entry isn't used, leaving it
851 * open to problems if a subsequent ioremap() or vmalloc() tries to use
852 * the virtual space left free by that unused section entry.
853 *
854 * Let's avoid the issue by inserting dummy vm entries covering the unused
855 * PMD halves once the static mappings are in place.
856 */
857
858static void __init pmd_empty_section_gap(unsigned long addr)
859{
860 struct vm_struct *vm;
861
862 vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
863 vm->addr = (void *)addr;
864 vm->size = SECTION_SIZE;
865 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
866 vm->caller = pmd_empty_section_gap;
867 vm_area_add_early(vm);
868}
869
870static void __init fill_pmd_gaps(void)
871{
872 struct vm_struct *vm;
873 unsigned long addr, next = 0;
874 pmd_t *pmd;
875
876 /* we're still single threaded hence no lock needed here */
877 for (vm = vmlist; vm; vm = vm->next) {
878 if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
879 continue;
880 addr = (unsigned long)vm->addr;
881 if (addr < next)
882 continue;
883
884 /*
885 * Check if this vm starts on an odd section boundary.
886 * If so and the first section entry for this PMD is free
887 * then we block the corresponding virtual address.
888 */
889 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
890 pmd = pmd_off_k(addr);
891 if (pmd_none(*pmd))
892 pmd_empty_section_gap(addr & PMD_MASK);
893 }
894
895 /*
896 * Then check if this vm ends on an odd section boundary.
897 * If so and the second section entry for this PMD is empty
898 * then we block the corresponding virtual address.
899 */
900 addr += vm->size;
901 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
902 pmd = pmd_off_k(addr) + 1;
903 if (pmd_none(*pmd))
904 pmd_empty_section_gap(addr);
905 }
906
907 /* no need to look at any vm entry until we hit the next PMD */
908 next = (addr + PMD_SIZE - 1) & PMD_MASK;
909 }
910}
911
912#else
913#define fill_pmd_gaps() do { } while (0)
914#endif
915
916static void * __initdata vmalloc_min =
917 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
918
919/*
920 * vmalloc=size forces the vmalloc area to be exactly 'size'
921 * bytes. This can be used to increase (or decrease) the vmalloc
922 * area - the default is 240m.
923 */
924static int __init early_vmalloc(char *arg)
925{
926 unsigned long vmalloc_reserve = memparse(arg, NULL);
927
928 if (vmalloc_reserve < SZ_16M) {
929 vmalloc_reserve = SZ_16M;
930 printk(KERN_WARNING
931 "vmalloc area too small, limiting to %luMB\n",
932 vmalloc_reserve >> 20);
933 }
934
935 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
936 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
937 printk(KERN_WARNING
938 "vmalloc area is too big, limiting to %luMB\n",
939 vmalloc_reserve >> 20);
940 }
941
942 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
943 return 0;
944}
945early_param("vmalloc", early_vmalloc);
946
947static phys_addr_t lowmem_limit __initdata = 0;
948
949void __init sanity_check_meminfo(void)
950{
951 int i, j, highmem = 0;
952
953 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
954 struct membank *bank = &meminfo.bank[j];
955 *bank = meminfo.bank[i];
956
957 if (bank->start > ULONG_MAX)
958 highmem = 1;
959
960#ifdef CONFIG_HIGHMEM
961 if (__va(bank->start) >= vmalloc_min ||
962 __va(bank->start) < (void *)PAGE_OFFSET)
963 highmem = 1;
964
965 bank->highmem = highmem;
966
967 /*
968 * Split those memory banks which are partially overlapping
969 * the vmalloc area greatly simplifying things later.
970 */
971 if (!highmem && __va(bank->start) < vmalloc_min &&
972 bank->size > vmalloc_min - __va(bank->start)) {
973 if (meminfo.nr_banks >= NR_BANKS) {
974 printk(KERN_CRIT "NR_BANKS too low, "
975 "ignoring high memory\n");
976 } else {
977 memmove(bank + 1, bank,
978 (meminfo.nr_banks - i) * sizeof(*bank));
979 meminfo.nr_banks++;
980 i++;
981 bank[1].size -= vmalloc_min - __va(bank->start);
982 bank[1].start = __pa(vmalloc_min - 1) + 1;
983 bank[1].highmem = highmem = 1;
984 j++;
985 }
986 bank->size = vmalloc_min - __va(bank->start);
987 }
988#else
989 bank->highmem = highmem;
990
991 /*
992 * Highmem banks not allowed with !CONFIG_HIGHMEM.
993 */
994 if (highmem) {
995 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
996 "(!CONFIG_HIGHMEM).\n",
997 (unsigned long long)bank->start,
998 (unsigned long long)bank->start + bank->size - 1);
999 continue;
1000 }
1001
1002 /*
1003 * Check whether this memory bank would entirely overlap
1004 * the vmalloc area.
1005 */
1006 if (__va(bank->start) >= vmalloc_min ||
1007 __va(bank->start) < (void *)PAGE_OFFSET) {
1008 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1009 "(vmalloc region overlap).\n",
1010 (unsigned long long)bank->start,
1011 (unsigned long long)bank->start + bank->size - 1);
1012 continue;
1013 }
1014
1015 /*
1016 * Check whether this memory bank would partially overlap
1017 * the vmalloc area.
1018 */
1019 if (__va(bank->start + bank->size) > vmalloc_min ||
1020 __va(bank->start + bank->size) < __va(bank->start)) {
1021 unsigned long newsize = vmalloc_min - __va(bank->start);
1022 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1023 "to -%.8llx (vmalloc region overlap).\n",
1024 (unsigned long long)bank->start,
1025 (unsigned long long)bank->start + bank->size - 1,
1026 (unsigned long long)bank->start + newsize - 1);
1027 bank->size = newsize;
1028 }
1029#endif
1030 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
1031 lowmem_limit = bank->start + bank->size;
1032
1033 j++;
1034 }
1035#ifdef CONFIG_HIGHMEM
1036 if (highmem) {
1037 const char *reason = NULL;
1038
1039 if (cache_is_vipt_aliasing()) {
1040 /*
1041 * Interactions between kmap and other mappings
1042 * make highmem support with aliasing VIPT caches
1043 * rather difficult.
1044 */
1045 reason = "with VIPT aliasing cache";
1046 }
1047 if (reason) {
1048 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1049 reason);
1050 while (j > 0 && meminfo.bank[j - 1].highmem)
1051 j--;
1052 }
1053 }
1054#endif
1055 meminfo.nr_banks = j;
1056 high_memory = __va(lowmem_limit - 1) + 1;
1057 memblock_set_current_limit(lowmem_limit);
1058}
1059
1060static inline void prepare_page_table(void)
1061{
1062 unsigned long addr;
1063 phys_addr_t end;
1064
1065 /*
1066 * Clear out all the mappings below the kernel image.
1067 */
1068 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1069 pmd_clear(pmd_off_k(addr));
1070
1071#ifdef CONFIG_XIP_KERNEL
1072 /* The XIP kernel is mapped in the module area -- skip over it */
1073 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1074#endif
1075 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1076 pmd_clear(pmd_off_k(addr));
1077
1078 /*
1079 * Find the end of the first block of lowmem.
1080 */
1081 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1082 if (end >= lowmem_limit)
1083 end = lowmem_limit;
1084
1085 /*
1086 * Clear out all the kernel space mappings, except for the first
1087 * memory bank, up to the vmalloc region.
1088 */
1089 for (addr = __phys_to_virt(end);
1090 addr < VMALLOC_START; addr += PMD_SIZE)
1091 pmd_clear(pmd_off_k(addr));
1092}
1093
1094#ifdef CONFIG_ARM_LPAE
1095/* the first page is reserved for pgd */
1096#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1097 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1098#else
1099#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1100#endif
1101
1102/*
1103 * Reserve the special regions of memory
1104 */
1105void __init arm_mm_memblock_reserve(void)
1106{
1107 /*
1108 * Reserve the page tables. These are already in use,
1109 * and can only be in node 0.
1110 */
1111 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1112
1113#ifdef CONFIG_SA1111
1114 /*
1115 * Because of the SA1111 DMA bug, we want to preserve our
1116 * precious DMA-able memory...
1117 */
1118 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1119#endif
1120}
1121
1122/*
1123 * Set up the device mappings. Since we clear out the page tables for all
1124 * mappings above VMALLOC_START, we will remove any debug device mappings.
1125 * This means you have to be careful how you debug this function, or any
1126 * called function. This means you can't use any function or debugging
1127 * method which may touch any device, otherwise the kernel _will_ crash.
1128 */
1129static void __init devicemaps_init(struct machine_desc *mdesc)
1130{
1131 struct map_desc map;
1132 unsigned long addr;
1133 void *vectors;
1134
1135 /*
1136 * Allocate the vector page early.
1137 */
1138 vectors = early_alloc(PAGE_SIZE);
1139
1140 early_trap_init(vectors);
1141
1142 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1143 pmd_clear(pmd_off_k(addr));
1144
1145 /*
1146 * Map the kernel if it is XIP.
1147 * It is always first in the modulearea.
1148 */
1149#ifdef CONFIG_XIP_KERNEL
1150 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1151 map.virtual = MODULES_VADDR;
1152 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1153 map.type = MT_ROM;
1154 create_mapping(&map);
1155#endif
1156
1157 /*
1158 * Map the cache flushing regions.
1159 */
1160#ifdef FLUSH_BASE
1161 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1162 map.virtual = FLUSH_BASE;
1163 map.length = SZ_1M;
1164 map.type = MT_CACHECLEAN;
1165 create_mapping(&map);
1166#endif
1167#ifdef FLUSH_BASE_MINICACHE
1168 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1169 map.virtual = FLUSH_BASE_MINICACHE;
1170 map.length = SZ_1M;
1171 map.type = MT_MINICLEAN;
1172 create_mapping(&map);
1173#endif
1174
1175 /*
1176 * Create a mapping for the machine vectors at the high-vectors
1177 * location (0xffff0000). If we aren't using high-vectors, also
1178 * create a mapping at the low-vectors virtual address.
1179 */
1180 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1181 map.virtual = 0xffff0000;
1182 map.length = PAGE_SIZE;
1183 map.type = MT_HIGH_VECTORS;
1184 create_mapping(&map, false);
1185
1186 if (!vectors_high()) {
1187 map.virtual = 0;
1188 map.type = MT_LOW_VECTORS;
1189 create_mapping(&map, false);
1190 }
1191
1192 /*
1193 * Ask the machine support to map in the statically mapped devices.
1194 */
1195 if (mdesc->map_io)
1196 mdesc->map_io();
1197 fill_pmd_gaps();
1198
1199 /*
1200 * Finally flush the caches and tlb to ensure that we're in a
1201 * consistent state wrt the writebuffer. This also ensures that
1202 * any write-allocated cache lines in the vector page are written
1203 * back. After this point, we can start to touch devices again.
1204 */
1205 local_flush_tlb_all();
1206 flush_cache_all();
1207}
1208
1209static void __init kmap_init(void)
1210{
1211#ifdef CONFIG_HIGHMEM
1212 pkmap_page_table = early_pte_alloc_and_install(pmd_off_k(PKMAP_BASE),
1213 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1214#endif
1215}
1216
1217static void __init map_lowmem(void)
1218{
1219 struct memblock_region *reg;
1220 phys_addr_t start;
1221 phys_addr_t end;
1222 struct map_desc map;
1223
1224 /* Map all the lowmem memory banks. */
1225 for_each_memblock(memory, reg) {
1226 start = reg->base;
1227 end = start + reg->size;
1228
1229 if (end > lowmem_limit)
1230 end = lowmem_limit;
1231 if (start >= end)
1232 break;
1233
1234 map.pfn = __phys_to_pfn(start);
1235 map.virtual = __phys_to_virt(start);
1236 map.length = end - start;
1237 map.type = MT_MEMORY;
1238
1239 create_mapping(&map, false);
1240 }
1241
1242#ifdef CONFIG_DEBUG_RODATA
1243 //start = __pa(_stext) & PMD_MASK;
1244 //end = ALIGN(__pa(__end_rodata), PMD_SIZE);
1245
1246 map.pfn = __phys_to_pfn(start);
1247 map.virtual = __phys_to_virt(start);
1248 map.length = end - start;
1249 map.type = MT_MEMORY;
1250
1251 create_mapping(&map, true);
1252#endif
1253}
1254
1255/*
1256 * paging_init() sets up the page tables, initialises the zone memory
1257 * maps, and sets up the zero page, bad page and bad page tables.
1258 */
1259void __init paging_init(struct machine_desc *mdesc)
1260{
1261 void *zero_page;
1262
1263 memblock_set_current_limit(PHYS_OFFSET + (((lowmem_limit - PHYS_OFFSET) >> PMD_SHIFT) << PMD_SHIFT));
1264
1265 build_mem_type_table();
1266 prepare_page_table();
1267 map_lowmem();
1268 devicemaps_init(mdesc);
1269 kmap_init();
1270
1271 top_pmd = pmd_off_k(0xffff0000);
1272
1273 /* allocate the zero page. */
1274 zero_page = early_alloc(PAGE_SIZE);
1275
1276 bootmem_init();
1277
1278 empty_zero_page = virt_to_page(zero_page);
1279 __flush_dcache_page(NULL, empty_zero_page);
1280}