yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * Copyright (c) Nokia Corporation, 2006, 2007 |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; either version 2 of the License, or |
| 8 | * (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 13 | * the GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | * |
| 19 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * UBI input/output sub-system. |
| 24 | * |
| 25 | * This sub-system provides a uniform way to work with all kinds of the |
| 26 | * underlying MTD devices. It also implements handy functions for reading and |
| 27 | * writing UBI headers. |
| 28 | * |
| 29 | * We are trying to have a paranoid mindset and not to trust to what we read |
| 30 | * from the flash media in order to be more secure and robust. So this |
| 31 | * sub-system validates every single header it reads from the flash media. |
| 32 | * |
| 33 | * Some words about how the eraseblock headers are stored. |
| 34 | * |
| 35 | * The erase counter header is always stored at offset zero. By default, the |
| 36 | * VID header is stored after the EC header at the closest aligned offset |
| 37 | * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID |
| 38 | * header at the closest aligned offset. But this default layout may be |
| 39 | * changed. For example, for different reasons (e.g., optimization) UBI may be |
| 40 | * asked to put the VID header at further offset, and even at an unaligned |
| 41 | * offset. Of course, if the offset of the VID header is unaligned, UBI adds |
| 42 | * proper padding in front of it. Data offset may also be changed but it has to |
| 43 | * be aligned. |
| 44 | * |
| 45 | * About minimal I/O units. In general, UBI assumes flash device model where |
| 46 | * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, |
| 47 | * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the |
| 48 | * @ubi->mtd->writesize field. But as an exception, UBI admits of using another |
| 49 | * (smaller) minimal I/O unit size for EC and VID headers to make it possible |
| 50 | * to do different optimizations. |
| 51 | * |
| 52 | * This is extremely useful in case of NAND flashes which admit of several |
| 53 | * write operations to one NAND page. In this case UBI can fit EC and VID |
| 54 | * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal |
| 55 | * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still |
| 56 | * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI |
| 57 | * users. |
| 58 | * |
| 59 | * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so |
| 60 | * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID |
| 61 | * headers. |
| 62 | * |
| 63 | * Q: why not just to treat sub-page as a minimal I/O unit of this flash |
| 64 | * device, e.g., make @ubi->min_io_size = 512 in the example above? |
| 65 | * |
| 66 | * A: because when writing a sub-page, MTD still writes a full 2K page but the |
| 67 | * bytes which are not relevant to the sub-page are 0xFF. So, basically, |
| 68 | * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. |
| 69 | * Thus, we prefer to use sub-pages only for EC and VID headers. |
| 70 | * |
| 71 | * As it was noted above, the VID header may start at a non-aligned offset. |
| 72 | * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, |
| 73 | * the VID header may reside at offset 1984 which is the last 64 bytes of the |
| 74 | * last sub-page (EC header is always at offset zero). This causes some |
| 75 | * difficulties when reading and writing VID headers. |
| 76 | * |
| 77 | * Suppose we have a 64-byte buffer and we read a VID header at it. We change |
| 78 | * the data and want to write this VID header out. As we can only write in |
| 79 | * 512-byte chunks, we have to allocate one more buffer and copy our VID header |
| 80 | * to offset 448 of this buffer. |
| 81 | * |
| 82 | * The I/O sub-system does the following trick in order to avoid this extra |
| 83 | * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID |
| 84 | * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. |
| 85 | * When the VID header is being written out, it shifts the VID header pointer |
| 86 | * back and writes the whole sub-page. |
| 87 | */ |
| 88 | |
| 89 | #include <linux/crc32.h> |
| 90 | #include <linux/err.h> |
| 91 | #include <linux/slab.h> |
| 92 | #include "ubi.h" |
| 93 | |
| 94 | #ifdef CONFIG_MTD_UBI_DEBUG |
| 95 | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); |
| 96 | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); |
| 97 | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
| 98 | const struct ubi_ec_hdr *ec_hdr); |
| 99 | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); |
| 100 | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
| 101 | const struct ubi_vid_hdr *vid_hdr); |
| 102 | #else |
| 103 | #define paranoid_check_not_bad(ubi, pnum) 0 |
| 104 | #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 |
| 105 | #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 |
| 106 | #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 |
| 107 | #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 |
| 108 | #endif |
| 109 | |
| 110 | /** |
| 111 | * ubi_io_read - read data from a physical eraseblock. |
| 112 | * @ubi: UBI device description object |
| 113 | * @buf: buffer where to store the read data |
| 114 | * @pnum: physical eraseblock number to read from |
| 115 | * @offset: offset within the physical eraseblock from where to read |
| 116 | * @len: how many bytes to read |
| 117 | * |
| 118 | * This function reads data from offset @offset of physical eraseblock @pnum |
| 119 | * and stores the read data in the @buf buffer. The following return codes are |
| 120 | * possible: |
| 121 | * |
| 122 | * o %0 if all the requested data were successfully read; |
| 123 | * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but |
| 124 | * correctable bit-flips were detected; this is harmless but may indicate |
| 125 | * that this eraseblock may become bad soon (but do not have to); |
| 126 | * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for |
| 127 | * example it can be an ECC error in case of NAND; this most probably means |
| 128 | * that the data is corrupted; |
| 129 | * o %-EIO if some I/O error occurred; |
| 130 | * o other negative error codes in case of other errors. |
| 131 | */ |
| 132 | int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, |
| 133 | int len) |
| 134 | { |
| 135 | int err, retries = 0; |
| 136 | size_t read; |
| 137 | loff_t addr; |
| 138 | |
| 139 | dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); |
| 140 | |
| 141 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 142 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); |
| 143 | ubi_assert(len > 0); |
| 144 | |
| 145 | err = paranoid_check_not_bad(ubi, pnum); |
| 146 | if (err) |
| 147 | return err; |
| 148 | |
| 149 | /* |
| 150 | * Deliberately corrupt the buffer to improve robustness. Indeed, if we |
| 151 | * do not do this, the following may happen: |
| 152 | * 1. The buffer contains data from previous operation, e.g., read from |
| 153 | * another PEB previously. The data looks like expected, e.g., if we |
| 154 | * just do not read anything and return - the caller would not |
| 155 | * notice this. E.g., if we are reading a VID header, the buffer may |
| 156 | * contain a valid VID header from another PEB. |
| 157 | * 2. The driver is buggy and returns us success or -EBADMSG or |
| 158 | * -EUCLEAN, but it does not actually put any data to the buffer. |
| 159 | * |
| 160 | * This may confuse UBI or upper layers - they may think the buffer |
| 161 | * contains valid data while in fact it is just old data. This is |
| 162 | * especially possible because UBI (and UBIFS) relies on CRC, and |
| 163 | * treats data as correct even in case of ECC errors if the CRC is |
| 164 | * correct. |
| 165 | * |
| 166 | * Try to prevent this situation by changing the first byte of the |
| 167 | * buffer. |
| 168 | */ |
| 169 | *((uint8_t *)buf) ^= 0xFF; |
| 170 | |
| 171 | addr = (loff_t)pnum * ubi->peb_size + offset; |
| 172 | retry: |
| 173 | err = mtd_read(ubi->mtd, addr, len, &read, buf); |
| 174 | if (err) { |
| 175 | const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; |
| 176 | |
| 177 | if (mtd_is_bitflip(err)) { |
| 178 | /* |
| 179 | * -EUCLEAN is reported if there was a bit-flip which |
| 180 | * was corrected, so this is harmless. |
| 181 | * |
| 182 | * We do not report about it here unless debugging is |
| 183 | * enabled. A corresponding message will be printed |
| 184 | * later, when it is has been scrubbed. |
| 185 | */ |
| 186 | dbg_msg("fixable bit-flip detected at PEB %d", pnum); |
| 187 | ubi_assert(len == read); |
| 188 | return UBI_IO_BITFLIPS; |
| 189 | } |
| 190 | |
| 191 | if (retries++ < UBI_IO_RETRIES) { |
| 192 | dbg_io("error %d%s while reading %d bytes from PEB " |
| 193 | "%d:%d, read only %zd bytes, retry", |
| 194 | err, errstr, len, pnum, offset, read); |
| 195 | yield(); |
| 196 | goto retry; |
| 197 | } |
| 198 | |
| 199 | ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " |
| 200 | "read %zd bytes", err, errstr, len, pnum, offset, read); |
| 201 | ubi_dbg_dump_stack(); |
| 202 | |
| 203 | /* |
| 204 | * The driver should never return -EBADMSG if it failed to read |
| 205 | * all the requested data. But some buggy drivers might do |
| 206 | * this, so we change it to -EIO. |
| 207 | */ |
| 208 | if (read != len && mtd_is_eccerr(err)) { |
| 209 | ubi_assert(0); |
| 210 | err = -EIO; |
| 211 | } |
| 212 | } else { |
| 213 | ubi_assert(len == read); |
| 214 | |
| 215 | if (ubi_dbg_is_bitflip(ubi)) { |
| 216 | dbg_gen("bit-flip (emulated)"); |
| 217 | err = UBI_IO_BITFLIPS; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | return err; |
| 222 | } |
| 223 | |
| 224 | /** |
| 225 | * ubi_io_write - write data to a physical eraseblock. |
| 226 | * @ubi: UBI device description object |
| 227 | * @buf: buffer with the data to write |
| 228 | * @pnum: physical eraseblock number to write to |
| 229 | * @offset: offset within the physical eraseblock where to write |
| 230 | * @len: how many bytes to write |
| 231 | * |
| 232 | * This function writes @len bytes of data from buffer @buf to offset @offset |
| 233 | * of physical eraseblock @pnum. If all the data were successfully written, |
| 234 | * zero is returned. If an error occurred, this function returns a negative |
| 235 | * error code. If %-EIO is returned, the physical eraseblock most probably went |
| 236 | * bad. |
| 237 | * |
| 238 | * Note, in case of an error, it is possible that something was still written |
| 239 | * to the flash media, but may be some garbage. |
| 240 | */ |
| 241 | int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, |
| 242 | int len) |
| 243 | { |
| 244 | int err; |
| 245 | size_t written; |
| 246 | loff_t addr; |
| 247 | |
| 248 | dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); |
| 249 | |
| 250 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 251 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); |
| 252 | ubi_assert(offset % ubi->hdrs_min_io_size == 0); |
| 253 | ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); |
| 254 | |
| 255 | if (ubi->ro_mode) { |
| 256 | ubi_err("read-only mode"); |
| 257 | return -EROFS; |
| 258 | } |
| 259 | |
| 260 | /* The below has to be compiled out if paranoid checks are disabled */ |
| 261 | |
| 262 | err = paranoid_check_not_bad(ubi, pnum); |
| 263 | if (err) |
| 264 | return err; |
| 265 | |
| 266 | /* The area we are writing to has to contain all 0xFF bytes */ |
| 267 | err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); |
| 268 | if (err) |
| 269 | return err; |
| 270 | |
| 271 | if (offset >= ubi->leb_start) { |
| 272 | /* |
| 273 | * We write to the data area of the physical eraseblock. Make |
| 274 | * sure it has valid EC and VID headers. |
| 275 | */ |
| 276 | err = paranoid_check_peb_ec_hdr(ubi, pnum); |
| 277 | if (err) |
| 278 | return err; |
| 279 | err = paranoid_check_peb_vid_hdr(ubi, pnum); |
| 280 | if (err) |
| 281 | return err; |
| 282 | } |
| 283 | |
| 284 | if (ubi_dbg_is_write_failure(ubi)) { |
| 285 | dbg_err("cannot write %d bytes to PEB %d:%d " |
| 286 | "(emulated)", len, pnum, offset); |
| 287 | ubi_dbg_dump_stack(); |
| 288 | return -EIO; |
| 289 | } |
| 290 | |
| 291 | addr = (loff_t)pnum * ubi->peb_size + offset; |
| 292 | err = mtd_write(ubi->mtd, addr, len, &written, buf); |
| 293 | if (err) { |
| 294 | ubi_err("error %d while writing %d bytes to PEB %d:%d, written " |
| 295 | "%zd bytes", err, len, pnum, offset, written); |
| 296 | ubi_dbg_dump_stack(); |
| 297 | ubi_dbg_dump_flash(ubi, pnum, offset, len); |
| 298 | } else |
| 299 | ubi_assert(written == len); |
| 300 | |
| 301 | if (!err) { |
| 302 | err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); |
| 303 | if (err) |
| 304 | return err; |
| 305 | |
| 306 | /* |
| 307 | * Since we always write sequentially, the rest of the PEB has |
| 308 | * to contain only 0xFF bytes. |
| 309 | */ |
| 310 | offset += len; |
| 311 | len = ubi->peb_size - offset; |
| 312 | if (len) |
| 313 | err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); |
| 314 | } |
| 315 | |
| 316 | return err; |
| 317 | } |
| 318 | |
| 319 | /** |
| 320 | * erase_callback - MTD erasure call-back. |
| 321 | * @ei: MTD erase information object. |
| 322 | * |
| 323 | * Note, even though MTD erase interface is asynchronous, all the current |
| 324 | * implementations are synchronous anyway. |
| 325 | */ |
| 326 | static void erase_callback(struct erase_info *ei) |
| 327 | { |
| 328 | wake_up_interruptible((wait_queue_head_t *)ei->priv); |
| 329 | } |
| 330 | |
| 331 | /** |
| 332 | * do_sync_erase - synchronously erase a physical eraseblock. |
| 333 | * @ubi: UBI device description object |
| 334 | * @pnum: the physical eraseblock number to erase |
| 335 | * |
| 336 | * This function synchronously erases physical eraseblock @pnum and returns |
| 337 | * zero in case of success and a negative error code in case of failure. If |
| 338 | * %-EIO is returned, the physical eraseblock most probably went bad. |
| 339 | */ |
| 340 | static int do_sync_erase(struct ubi_device *ubi, int pnum) |
| 341 | { |
| 342 | int err, retries = 0; |
| 343 | struct erase_info ei; |
| 344 | wait_queue_head_t wq; |
| 345 | |
| 346 | dbg_io("erase PEB %d", pnum); |
| 347 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 348 | |
| 349 | if (ubi->ro_mode) { |
| 350 | ubi_err("read-only mode"); |
| 351 | return -EROFS; |
| 352 | } |
| 353 | |
| 354 | retry: |
| 355 | init_waitqueue_head(&wq); |
| 356 | memset(&ei, 0, sizeof(struct erase_info)); |
| 357 | |
| 358 | ei.mtd = ubi->mtd; |
| 359 | ei.addr = (loff_t)pnum * ubi->peb_size; |
| 360 | ei.len = ubi->peb_size; |
| 361 | ei.callback = erase_callback; |
| 362 | ei.priv = (unsigned long)&wq; |
| 363 | |
| 364 | err = mtd_erase(ubi->mtd, &ei); |
| 365 | if (err) { |
| 366 | if (retries++ < UBI_IO_RETRIES) { |
| 367 | dbg_io("error %d while erasing PEB %d, retry", |
| 368 | err, pnum); |
| 369 | yield(); |
| 370 | goto retry; |
| 371 | } |
| 372 | ubi_err("cannot erase PEB %d, error %d", pnum, err); |
| 373 | ubi_dbg_dump_stack(); |
| 374 | return err; |
| 375 | } |
| 376 | |
| 377 | err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || |
| 378 | ei.state == MTD_ERASE_FAILED); |
| 379 | if (err) { |
| 380 | ubi_err("interrupted PEB %d erasure", pnum); |
| 381 | return -EINTR; |
| 382 | } |
| 383 | |
| 384 | if (ei.state == MTD_ERASE_FAILED) { |
| 385 | if (retries++ < UBI_IO_RETRIES) { |
| 386 | dbg_io("error while erasing PEB %d, retry", pnum); |
| 387 | yield(); |
| 388 | goto retry; |
| 389 | } |
| 390 | ubi_err("cannot erase PEB %d", pnum); |
| 391 | ubi_dbg_dump_stack(); |
| 392 | return -EIO; |
| 393 | } |
| 394 | |
| 395 | err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); |
| 396 | if (err) |
| 397 | return err; |
| 398 | |
| 399 | if (ubi_dbg_is_erase_failure(ubi)) { |
| 400 | dbg_err("cannot erase PEB %d (emulated)", pnum); |
| 401 | return -EIO; |
| 402 | } |
| 403 | |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | /* Patterns to write to a physical eraseblock when torturing it */ |
| 408 | static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; |
| 409 | |
| 410 | /** |
| 411 | * torture_peb - test a supposedly bad physical eraseblock. |
| 412 | * @ubi: UBI device description object |
| 413 | * @pnum: the physical eraseblock number to test |
| 414 | * |
| 415 | * This function returns %-EIO if the physical eraseblock did not pass the |
| 416 | * test, a positive number of erase operations done if the test was |
| 417 | * successfully passed, and other negative error codes in case of other errors. |
| 418 | */ |
| 419 | static int torture_peb(struct ubi_device *ubi, int pnum) |
| 420 | { |
| 421 | int err, i, patt_count; |
| 422 | |
| 423 | ubi_msg("run torture test for PEB %d", pnum); |
| 424 | patt_count = ARRAY_SIZE(patterns); |
| 425 | ubi_assert(patt_count > 0); |
| 426 | |
| 427 | mutex_lock(&ubi->buf_mutex); |
| 428 | for (i = 0; i < patt_count; i++) { |
| 429 | err = do_sync_erase(ubi, pnum); |
| 430 | if (err) |
| 431 | goto out; |
| 432 | |
| 433 | /* Make sure the PEB contains only 0xFF bytes */ |
| 434 | err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| 435 | if (err) |
| 436 | goto out; |
| 437 | |
| 438 | err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); |
| 439 | if (err == 0) { |
| 440 | ubi_err("erased PEB %d, but a non-0xFF byte found", |
| 441 | pnum); |
| 442 | err = -EIO; |
| 443 | goto out; |
| 444 | } |
| 445 | |
| 446 | /* Write a pattern and check it */ |
| 447 | memset(ubi->peb_buf, patterns[i], ubi->peb_size); |
| 448 | err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| 449 | if (err) |
| 450 | goto out; |
| 451 | |
| 452 | memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); |
| 453 | err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
| 454 | if (err) |
| 455 | goto out; |
| 456 | |
| 457 | err = ubi_check_pattern(ubi->peb_buf, patterns[i], |
| 458 | ubi->peb_size); |
| 459 | if (err == 0) { |
| 460 | ubi_err("pattern %x checking failed for PEB %d", |
| 461 | patterns[i], pnum); |
| 462 | err = -EIO; |
| 463 | goto out; |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | err = patt_count; |
| 468 | ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); |
| 469 | |
| 470 | out: |
| 471 | mutex_unlock(&ubi->buf_mutex); |
| 472 | if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { |
| 473 | /* |
| 474 | * If a bit-flip or data integrity error was detected, the test |
| 475 | * has not passed because it happened on a freshly erased |
| 476 | * physical eraseblock which means something is wrong with it. |
| 477 | */ |
| 478 | ubi_err("read problems on freshly erased PEB %d, must be bad", |
| 479 | pnum); |
| 480 | err = -EIO; |
| 481 | } |
| 482 | return err; |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * nor_erase_prepare - prepare a NOR flash PEB for erasure. |
| 487 | * @ubi: UBI device description object |
| 488 | * @pnum: physical eraseblock number to prepare |
| 489 | * |
| 490 | * NOR flash, or at least some of them, have peculiar embedded PEB erasure |
| 491 | * algorithm: the PEB is first filled with zeroes, then it is erased. And |
| 492 | * filling with zeroes starts from the end of the PEB. This was observed with |
| 493 | * Spansion S29GL512N NOR flash. |
| 494 | * |
| 495 | * This means that in case of a power cut we may end up with intact data at the |
| 496 | * beginning of the PEB, and all zeroes at the end of PEB. In other words, the |
| 497 | * EC and VID headers are OK, but a large chunk of data at the end of PEB is |
| 498 | * zeroed. This makes UBI mistakenly treat this PEB as used and associate it |
| 499 | * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). |
| 500 | * |
| 501 | * This function is called before erasing NOR PEBs and it zeroes out EC and VID |
| 502 | * magic numbers in order to invalidate them and prevent the failures. Returns |
| 503 | * zero in case of success and a negative error code in case of failure. |
| 504 | */ |
| 505 | static int nor_erase_prepare(struct ubi_device *ubi, int pnum) |
| 506 | { |
| 507 | int err, err1; |
| 508 | size_t written; |
| 509 | loff_t addr; |
| 510 | uint32_t data = 0; |
| 511 | /* |
| 512 | * Note, we cannot generally define VID header buffers on stack, |
| 513 | * because of the way we deal with these buffers (see the header |
| 514 | * comment in this file). But we know this is a NOR-specific piece of |
| 515 | * code, so we can do this. But yes, this is error-prone and we should |
| 516 | * (pre-)allocate VID header buffer instead. |
| 517 | */ |
| 518 | struct ubi_vid_hdr vid_hdr; |
| 519 | |
| 520 | /* |
| 521 | * It is important to first invalidate the EC header, and then the VID |
| 522 | * header. Otherwise a power cut may lead to valid EC header and |
| 523 | * invalid VID header, in which case UBI will treat this PEB as |
| 524 | * corrupted and will try to preserve it, and print scary warnings (see |
| 525 | * the header comment in scan.c for more information). |
| 526 | */ |
| 527 | addr = (loff_t)pnum * ubi->peb_size; |
| 528 | err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); |
| 529 | if (!err) { |
| 530 | addr += ubi->vid_hdr_aloffset; |
| 531 | err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); |
| 532 | if (!err) |
| 533 | return 0; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * We failed to write to the media. This was observed with Spansion |
| 538 | * S29GL512N NOR flash. Most probably the previously eraseblock erasure |
| 539 | * was interrupted at a very inappropriate moment, so it became |
| 540 | * unwritable. In this case we probably anyway have garbage in this |
| 541 | * PEB. |
| 542 | */ |
| 543 | err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); |
| 544 | if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || |
| 545 | err1 == UBI_IO_FF) { |
| 546 | struct ubi_ec_hdr ec_hdr; |
| 547 | |
| 548 | err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); |
| 549 | if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || |
| 550 | err1 == UBI_IO_FF) |
| 551 | /* |
| 552 | * Both VID and EC headers are corrupted, so we can |
| 553 | * safely erase this PEB and not afraid that it will be |
| 554 | * treated as a valid PEB in case of an unclean reboot. |
| 555 | */ |
| 556 | return 0; |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * The PEB contains a valid VID header, but we cannot invalidate it. |
| 561 | * Supposedly the flash media or the driver is screwed up, so return an |
| 562 | * error. |
| 563 | */ |
| 564 | ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", |
| 565 | pnum, err, err1); |
| 566 | ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); |
| 567 | return -EIO; |
| 568 | } |
| 569 | |
| 570 | /** |
| 571 | * ubi_io_sync_erase - synchronously erase a physical eraseblock. |
| 572 | * @ubi: UBI device description object |
| 573 | * @pnum: physical eraseblock number to erase |
| 574 | * @torture: if this physical eraseblock has to be tortured |
| 575 | * |
| 576 | * This function synchronously erases physical eraseblock @pnum. If @torture |
| 577 | * flag is not zero, the physical eraseblock is checked by means of writing |
| 578 | * different patterns to it and reading them back. If the torturing is enabled, |
| 579 | * the physical eraseblock is erased more than once. |
| 580 | * |
| 581 | * This function returns the number of erasures made in case of success, %-EIO |
| 582 | * if the erasure failed or the torturing test failed, and other negative error |
| 583 | * codes in case of other errors. Note, %-EIO means that the physical |
| 584 | * eraseblock is bad. |
| 585 | */ |
| 586 | int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) |
| 587 | { |
| 588 | int err, ret = 0; |
| 589 | |
| 590 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 591 | |
| 592 | err = paranoid_check_not_bad(ubi, pnum); |
| 593 | if (err != 0) |
| 594 | return err; |
| 595 | |
| 596 | if (ubi->ro_mode) { |
| 597 | ubi_err("read-only mode"); |
| 598 | return -EROFS; |
| 599 | } |
| 600 | |
| 601 | if (ubi->nor_flash) { |
| 602 | err = nor_erase_prepare(ubi, pnum); |
| 603 | if (err) |
| 604 | return err; |
| 605 | } |
| 606 | |
| 607 | if (torture) { |
| 608 | ret = torture_peb(ubi, pnum); |
| 609 | if (ret < 0) |
| 610 | return ret; |
| 611 | } |
| 612 | |
| 613 | err = do_sync_erase(ubi, pnum); |
| 614 | if (err) |
| 615 | return err; |
| 616 | |
| 617 | return ret + 1; |
| 618 | } |
| 619 | |
| 620 | /** |
| 621 | * ubi_io_is_bad - check if a physical eraseblock is bad. |
| 622 | * @ubi: UBI device description object |
| 623 | * @pnum: the physical eraseblock number to check |
| 624 | * |
| 625 | * This function returns a positive number if the physical eraseblock is bad, |
| 626 | * zero if not, and a negative error code if an error occurred. |
| 627 | */ |
| 628 | int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) |
| 629 | { |
| 630 | struct mtd_info *mtd = ubi->mtd; |
| 631 | |
| 632 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 633 | |
| 634 | if (ubi->bad_allowed) { |
| 635 | int ret; |
| 636 | |
| 637 | ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); |
| 638 | if (ret < 0) |
| 639 | ubi_err("error %d while checking if PEB %d is bad", |
| 640 | ret, pnum); |
| 641 | else if (ret) |
| 642 | dbg_io("PEB %d is bad", pnum); |
| 643 | return ret; |
| 644 | } |
| 645 | |
| 646 | return 0; |
| 647 | } |
| 648 | |
| 649 | /** |
| 650 | * ubi_io_mark_bad - mark a physical eraseblock as bad. |
| 651 | * @ubi: UBI device description object |
| 652 | * @pnum: the physical eraseblock number to mark |
| 653 | * |
| 654 | * This function returns zero in case of success and a negative error code in |
| 655 | * case of failure. |
| 656 | */ |
| 657 | int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) |
| 658 | { |
| 659 | int err; |
| 660 | struct mtd_info *mtd = ubi->mtd; |
| 661 | |
| 662 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 663 | |
| 664 | if (ubi->ro_mode) { |
| 665 | ubi_err("read-only mode"); |
| 666 | return -EROFS; |
| 667 | } |
| 668 | |
| 669 | if (!ubi->bad_allowed) |
| 670 | return 0; |
| 671 | |
| 672 | err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); |
| 673 | if (err) |
| 674 | ubi_err("cannot mark PEB %d bad, error %d", pnum, err); |
| 675 | return err; |
| 676 | } |
| 677 | |
| 678 | /** |
| 679 | * validate_ec_hdr - validate an erase counter header. |
| 680 | * @ubi: UBI device description object |
| 681 | * @ec_hdr: the erase counter header to check |
| 682 | * |
| 683 | * This function returns zero if the erase counter header is OK, and %1 if |
| 684 | * not. |
| 685 | */ |
| 686 | static int validate_ec_hdr(const struct ubi_device *ubi, |
| 687 | const struct ubi_ec_hdr *ec_hdr) |
| 688 | { |
| 689 | long long ec; |
| 690 | int vid_hdr_offset, leb_start; |
| 691 | |
| 692 | ec = be64_to_cpu(ec_hdr->ec); |
| 693 | vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); |
| 694 | leb_start = be32_to_cpu(ec_hdr->data_offset); |
| 695 | |
| 696 | if (ec_hdr->version != UBI_VERSION) { |
| 697 | ubi_err("node with incompatible UBI version found: " |
| 698 | "this UBI version is %d, image version is %d", |
| 699 | UBI_VERSION, (int)ec_hdr->version); |
| 700 | goto bad; |
| 701 | } |
| 702 | |
| 703 | if (vid_hdr_offset != ubi->vid_hdr_offset) { |
| 704 | ubi_err("bad VID header offset %d, expected %d", |
| 705 | vid_hdr_offset, ubi->vid_hdr_offset); |
| 706 | goto bad; |
| 707 | } |
| 708 | |
| 709 | if (leb_start != ubi->leb_start) { |
| 710 | ubi_err("bad data offset %d, expected %d", |
| 711 | leb_start, ubi->leb_start); |
| 712 | goto bad; |
| 713 | } |
| 714 | |
| 715 | if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { |
| 716 | ubi_err("bad erase counter %lld", ec); |
| 717 | goto bad; |
| 718 | } |
| 719 | |
| 720 | return 0; |
| 721 | |
| 722 | bad: |
| 723 | ubi_err("bad EC header"); |
| 724 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 725 | ubi_dbg_dump_stack(); |
| 726 | return 1; |
| 727 | } |
| 728 | |
| 729 | /** |
| 730 | * ubi_io_read_ec_hdr - read and check an erase counter header. |
| 731 | * @ubi: UBI device description object |
| 732 | * @pnum: physical eraseblock to read from |
| 733 | * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter |
| 734 | * header |
| 735 | * @verbose: be verbose if the header is corrupted or was not found |
| 736 | * |
| 737 | * This function reads erase counter header from physical eraseblock @pnum and |
| 738 | * stores it in @ec_hdr. This function also checks CRC checksum of the read |
| 739 | * erase counter header. The following codes may be returned: |
| 740 | * |
| 741 | * o %0 if the CRC checksum is correct and the header was successfully read; |
| 742 | * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected |
| 743 | * and corrected by the flash driver; this is harmless but may indicate that |
| 744 | * this eraseblock may become bad soon (but may be not); |
| 745 | * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); |
| 746 | * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was |
| 747 | * a data integrity error (uncorrectable ECC error in case of NAND); |
| 748 | * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) |
| 749 | * o a negative error code in case of failure. |
| 750 | */ |
| 751 | int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, |
| 752 | struct ubi_ec_hdr *ec_hdr, int verbose) |
| 753 | { |
| 754 | int err, read_err; |
| 755 | uint32_t crc, magic, hdr_crc; |
| 756 | |
| 757 | dbg_io("read EC header from PEB %d", pnum); |
| 758 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 759 | |
| 760 | read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
| 761 | if (read_err) { |
| 762 | if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
| 763 | return read_err; |
| 764 | |
| 765 | /* |
| 766 | * We read all the data, but either a correctable bit-flip |
| 767 | * occurred, or MTD reported a data integrity error |
| 768 | * (uncorrectable ECC error in case of NAND). The former is |
| 769 | * harmless, the later may mean that the read data is |
| 770 | * corrupted. But we have a CRC check-sum and we will detect |
| 771 | * this. If the EC header is still OK, we just report this as |
| 772 | * there was a bit-flip, to force scrubbing. |
| 773 | */ |
| 774 | } |
| 775 | |
| 776 | magic = be32_to_cpu(ec_hdr->magic); |
| 777 | if (magic != UBI_EC_HDR_MAGIC) { |
| 778 | if (mtd_is_eccerr(read_err)) |
| 779 | return UBI_IO_BAD_HDR_EBADMSG; |
| 780 | |
| 781 | /* |
| 782 | * The magic field is wrong. Let's check if we have read all |
| 783 | * 0xFF. If yes, this physical eraseblock is assumed to be |
| 784 | * empty. |
| 785 | */ |
| 786 | if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { |
| 787 | /* The physical eraseblock is supposedly empty */ |
| 788 | if (verbose) |
| 789 | ubi_warn("no EC header found at PEB %d, " |
| 790 | "only 0xFF bytes", pnum); |
| 791 | dbg_bld("no EC header found at PEB %d, " |
| 792 | "only 0xFF bytes", pnum); |
| 793 | if (!read_err) |
| 794 | return UBI_IO_FF; |
| 795 | else |
| 796 | return UBI_IO_FF_BITFLIPS; |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * This is not a valid erase counter header, and these are not |
| 801 | * 0xFF bytes. Report that the header is corrupted. |
| 802 | */ |
| 803 | if (verbose) { |
| 804 | ubi_warn("bad magic number at PEB %d: %08x instead of " |
| 805 | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); |
| 806 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 807 | } |
| 808 | dbg_bld("bad magic number at PEB %d: %08x instead of " |
| 809 | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); |
| 810 | return UBI_IO_BAD_HDR; |
| 811 | } |
| 812 | |
| 813 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| 814 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
| 815 | |
| 816 | if (hdr_crc != crc) { |
| 817 | if (verbose) { |
| 818 | ubi_warn("bad EC header CRC at PEB %d, calculated " |
| 819 | "%#08x, read %#08x", pnum, crc, hdr_crc); |
| 820 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 821 | } |
| 822 | dbg_bld("bad EC header CRC at PEB %d, calculated " |
| 823 | "%#08x, read %#08x", pnum, crc, hdr_crc); |
| 824 | |
| 825 | if (!read_err) |
| 826 | return UBI_IO_BAD_HDR; |
| 827 | else |
| 828 | return UBI_IO_BAD_HDR_EBADMSG; |
| 829 | } |
| 830 | |
| 831 | /* And of course validate what has just been read from the media */ |
| 832 | err = validate_ec_hdr(ubi, ec_hdr); |
| 833 | if (err) { |
| 834 | ubi_err("validation failed for PEB %d", pnum); |
| 835 | return -EINVAL; |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * If there was %-EBADMSG, but the header CRC is still OK, report about |
| 840 | * a bit-flip to force scrubbing on this PEB. |
| 841 | */ |
| 842 | return read_err ? UBI_IO_BITFLIPS : 0; |
| 843 | } |
| 844 | |
| 845 | /** |
| 846 | * ubi_io_write_ec_hdr - write an erase counter header. |
| 847 | * @ubi: UBI device description object |
| 848 | * @pnum: physical eraseblock to write to |
| 849 | * @ec_hdr: the erase counter header to write |
| 850 | * |
| 851 | * This function writes erase counter header described by @ec_hdr to physical |
| 852 | * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so |
| 853 | * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec |
| 854 | * field. |
| 855 | * |
| 856 | * This function returns zero in case of success and a negative error code in |
| 857 | * case of failure. If %-EIO is returned, the physical eraseblock most probably |
| 858 | * went bad. |
| 859 | */ |
| 860 | int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, |
| 861 | struct ubi_ec_hdr *ec_hdr) |
| 862 | { |
| 863 | int err; |
| 864 | uint32_t crc; |
| 865 | |
| 866 | dbg_io("write EC header to PEB %d", pnum); |
| 867 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 868 | |
| 869 | ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); |
| 870 | ec_hdr->version = UBI_VERSION; |
| 871 | ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); |
| 872 | ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); |
| 873 | ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); |
| 874 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| 875 | ec_hdr->hdr_crc = cpu_to_be32(crc); |
| 876 | |
| 877 | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); |
| 878 | if (err) |
| 879 | return err; |
| 880 | |
| 881 | err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); |
| 882 | return err; |
| 883 | } |
| 884 | |
| 885 | /** |
| 886 | * validate_vid_hdr - validate a volume identifier header. |
| 887 | * @ubi: UBI device description object |
| 888 | * @vid_hdr: the volume identifier header to check |
| 889 | * |
| 890 | * This function checks that data stored in the volume identifier header |
| 891 | * @vid_hdr. Returns zero if the VID header is OK and %1 if not. |
| 892 | */ |
| 893 | static int validate_vid_hdr(const struct ubi_device *ubi, |
| 894 | const struct ubi_vid_hdr *vid_hdr) |
| 895 | { |
| 896 | int vol_type = vid_hdr->vol_type; |
| 897 | int copy_flag = vid_hdr->copy_flag; |
| 898 | int vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 899 | int lnum = be32_to_cpu(vid_hdr->lnum); |
| 900 | int compat = vid_hdr->compat; |
| 901 | int data_size = be32_to_cpu(vid_hdr->data_size); |
| 902 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
| 903 | int data_pad = be32_to_cpu(vid_hdr->data_pad); |
| 904 | int data_crc = be32_to_cpu(vid_hdr->data_crc); |
| 905 | int usable_leb_size = ubi->leb_size - data_pad; |
| 906 | |
| 907 | if (copy_flag != 0 && copy_flag != 1) { |
| 908 | dbg_err("bad copy_flag"); |
| 909 | goto bad; |
| 910 | } |
| 911 | |
| 912 | if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || |
| 913 | data_pad < 0) { |
| 914 | dbg_err("negative values"); |
| 915 | goto bad; |
| 916 | } |
| 917 | |
| 918 | if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { |
| 919 | dbg_err("bad vol_id"); |
| 920 | goto bad; |
| 921 | } |
| 922 | |
| 923 | if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { |
| 924 | dbg_err("bad compat"); |
| 925 | goto bad; |
| 926 | } |
| 927 | |
| 928 | if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && |
| 929 | compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && |
| 930 | compat != UBI_COMPAT_REJECT) { |
| 931 | dbg_err("bad compat"); |
| 932 | goto bad; |
| 933 | } |
| 934 | |
| 935 | if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { |
| 936 | dbg_err("bad vol_type"); |
| 937 | goto bad; |
| 938 | } |
| 939 | |
| 940 | if (data_pad >= ubi->leb_size / 2) { |
| 941 | dbg_err("bad data_pad"); |
| 942 | goto bad; |
| 943 | } |
| 944 | |
| 945 | if (data_size > ubi->leb_size) { |
| 946 | dbg_err("bad data_size"); |
| 947 | goto bad; |
| 948 | } |
| 949 | |
| 950 | if (vol_type == UBI_VID_STATIC) { |
| 951 | /* |
| 952 | * Although from high-level point of view static volumes may |
| 953 | * contain zero bytes of data, but no VID headers can contain |
| 954 | * zero at these fields, because they empty volumes do not have |
| 955 | * mapped logical eraseblocks. |
| 956 | */ |
| 957 | if (used_ebs == 0) { |
| 958 | dbg_err("zero used_ebs"); |
| 959 | goto bad; |
| 960 | } |
| 961 | if (data_size == 0) { |
| 962 | dbg_err("zero data_size"); |
| 963 | goto bad; |
| 964 | } |
| 965 | if (lnum < used_ebs - 1) { |
| 966 | if (data_size != usable_leb_size) { |
| 967 | dbg_err("bad data_size"); |
| 968 | goto bad; |
| 969 | } |
| 970 | } else if (lnum == used_ebs - 1) { |
| 971 | if (data_size == 0) { |
| 972 | dbg_err("bad data_size at last LEB"); |
| 973 | goto bad; |
| 974 | } |
| 975 | } else { |
| 976 | dbg_err("too high lnum"); |
| 977 | goto bad; |
| 978 | } |
| 979 | } else { |
| 980 | if (copy_flag == 0) { |
| 981 | if (data_crc != 0) { |
| 982 | dbg_err("non-zero data CRC"); |
| 983 | goto bad; |
| 984 | } |
| 985 | if (data_size != 0) { |
| 986 | dbg_err("non-zero data_size"); |
| 987 | goto bad; |
| 988 | } |
| 989 | } else { |
| 990 | if (data_size == 0) { |
| 991 | dbg_err("zero data_size of copy"); |
| 992 | goto bad; |
| 993 | } |
| 994 | } |
| 995 | if (used_ebs != 0) { |
| 996 | dbg_err("bad used_ebs"); |
| 997 | goto bad; |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | return 0; |
| 1002 | |
| 1003 | bad: |
| 1004 | ubi_err("bad VID header"); |
| 1005 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1006 | ubi_dbg_dump_stack(); |
| 1007 | return 1; |
| 1008 | } |
| 1009 | |
| 1010 | /** |
| 1011 | * ubi_io_read_vid_hdr - read and check a volume identifier header. |
| 1012 | * @ubi: UBI device description object |
| 1013 | * @pnum: physical eraseblock number to read from |
| 1014 | * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume |
| 1015 | * identifier header |
| 1016 | * @verbose: be verbose if the header is corrupted or wasn't found |
| 1017 | * |
| 1018 | * This function reads the volume identifier header from physical eraseblock |
| 1019 | * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read |
| 1020 | * volume identifier header. The error codes are the same as in |
| 1021 | * 'ubi_io_read_ec_hdr()'. |
| 1022 | * |
| 1023 | * Note, the implementation of this function is also very similar to |
| 1024 | * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. |
| 1025 | */ |
| 1026 | int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, |
| 1027 | struct ubi_vid_hdr *vid_hdr, int verbose) |
| 1028 | { |
| 1029 | int err, read_err; |
| 1030 | uint32_t crc, magic, hdr_crc; |
| 1031 | void *p; |
| 1032 | |
| 1033 | dbg_io("read VID header from PEB %d", pnum); |
| 1034 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 1035 | |
| 1036 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| 1037 | read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| 1038 | ubi->vid_hdr_alsize); |
| 1039 | if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
| 1040 | return read_err; |
| 1041 | |
| 1042 | magic = be32_to_cpu(vid_hdr->magic); |
| 1043 | if (magic != UBI_VID_HDR_MAGIC) { |
| 1044 | if (mtd_is_eccerr(read_err)) |
| 1045 | return UBI_IO_BAD_HDR_EBADMSG; |
| 1046 | |
| 1047 | if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { |
| 1048 | if (verbose) |
| 1049 | ubi_warn("no VID header found at PEB %d, " |
| 1050 | "only 0xFF bytes", pnum); |
| 1051 | dbg_bld("no VID header found at PEB %d, " |
| 1052 | "only 0xFF bytes", pnum); |
| 1053 | if (!read_err) |
| 1054 | return UBI_IO_FF; |
| 1055 | else |
| 1056 | return UBI_IO_FF_BITFLIPS; |
| 1057 | } |
| 1058 | |
| 1059 | if (verbose) { |
| 1060 | ubi_warn("bad magic number at PEB %d: %08x instead of " |
| 1061 | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); |
| 1062 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1063 | } |
| 1064 | dbg_bld("bad magic number at PEB %d: %08x instead of " |
| 1065 | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); |
| 1066 | return UBI_IO_BAD_HDR; |
| 1067 | } |
| 1068 | |
| 1069 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); |
| 1070 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
| 1071 | |
| 1072 | if (hdr_crc != crc) { |
| 1073 | if (verbose) { |
| 1074 | ubi_warn("bad CRC at PEB %d, calculated %#08x, " |
| 1075 | "read %#08x", pnum, crc, hdr_crc); |
| 1076 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1077 | } |
| 1078 | dbg_bld("bad CRC at PEB %d, calculated %#08x, " |
| 1079 | "read %#08x", pnum, crc, hdr_crc); |
| 1080 | if (!read_err) |
| 1081 | return UBI_IO_BAD_HDR; |
| 1082 | else |
| 1083 | return UBI_IO_BAD_HDR_EBADMSG; |
| 1084 | } |
| 1085 | |
| 1086 | err = validate_vid_hdr(ubi, vid_hdr); |
| 1087 | if (err) { |
| 1088 | ubi_err("validation failed for PEB %d", pnum); |
| 1089 | return -EINVAL; |
| 1090 | } |
| 1091 | |
| 1092 | return read_err ? UBI_IO_BITFLIPS : 0; |
| 1093 | } |
| 1094 | |
| 1095 | /** |
| 1096 | * ubi_io_write_vid_hdr - write a volume identifier header. |
| 1097 | * @ubi: UBI device description object |
| 1098 | * @pnum: the physical eraseblock number to write to |
| 1099 | * @vid_hdr: the volume identifier header to write |
| 1100 | * |
| 1101 | * This function writes the volume identifier header described by @vid_hdr to |
| 1102 | * physical eraseblock @pnum. This function automatically fills the |
| 1103 | * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates |
| 1104 | * header CRC checksum and stores it at vid_hdr->hdr_crc. |
| 1105 | * |
| 1106 | * This function returns zero in case of success and a negative error code in |
| 1107 | * case of failure. If %-EIO is returned, the physical eraseblock probably went |
| 1108 | * bad. |
| 1109 | */ |
| 1110 | int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, |
| 1111 | struct ubi_vid_hdr *vid_hdr) |
| 1112 | { |
| 1113 | int err; |
| 1114 | uint32_t crc; |
| 1115 | void *p; |
| 1116 | |
| 1117 | dbg_io("write VID header to PEB %d", pnum); |
| 1118 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
| 1119 | |
| 1120 | err = paranoid_check_peb_ec_hdr(ubi, pnum); |
| 1121 | if (err) |
| 1122 | return err; |
| 1123 | |
| 1124 | vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); |
| 1125 | vid_hdr->version = UBI_VERSION; |
| 1126 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); |
| 1127 | vid_hdr->hdr_crc = cpu_to_be32(crc); |
| 1128 | |
| 1129 | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); |
| 1130 | if (err) |
| 1131 | return err; |
| 1132 | |
| 1133 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| 1134 | err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| 1135 | ubi->vid_hdr_alsize); |
| 1136 | return err; |
| 1137 | } |
| 1138 | |
| 1139 | #ifdef CONFIG_MTD_UBI_DEBUG |
| 1140 | |
| 1141 | /** |
| 1142 | * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. |
| 1143 | * @ubi: UBI device description object |
| 1144 | * @pnum: physical eraseblock number to check |
| 1145 | * |
| 1146 | * This function returns zero if the physical eraseblock is good, %-EINVAL if |
| 1147 | * it is bad and a negative error code if an error occurred. |
| 1148 | */ |
| 1149 | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) |
| 1150 | { |
| 1151 | int err; |
| 1152 | |
| 1153 | if (!ubi->dbg->chk_io) |
| 1154 | return 0; |
| 1155 | |
| 1156 | err = ubi_io_is_bad(ubi, pnum); |
| 1157 | if (!err) |
| 1158 | return err; |
| 1159 | |
| 1160 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1161 | ubi_dbg_dump_stack(); |
| 1162 | return err > 0 ? -EINVAL : err; |
| 1163 | } |
| 1164 | |
| 1165 | /** |
| 1166 | * paranoid_check_ec_hdr - check if an erase counter header is all right. |
| 1167 | * @ubi: UBI device description object |
| 1168 | * @pnum: physical eraseblock number the erase counter header belongs to |
| 1169 | * @ec_hdr: the erase counter header to check |
| 1170 | * |
| 1171 | * This function returns zero if the erase counter header contains valid |
| 1172 | * values, and %-EINVAL if not. |
| 1173 | */ |
| 1174 | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
| 1175 | const struct ubi_ec_hdr *ec_hdr) |
| 1176 | { |
| 1177 | int err; |
| 1178 | uint32_t magic; |
| 1179 | |
| 1180 | if (!ubi->dbg->chk_io) |
| 1181 | return 0; |
| 1182 | |
| 1183 | magic = be32_to_cpu(ec_hdr->magic); |
| 1184 | if (magic != UBI_EC_HDR_MAGIC) { |
| 1185 | ubi_err("bad magic %#08x, must be %#08x", |
| 1186 | magic, UBI_EC_HDR_MAGIC); |
| 1187 | goto fail; |
| 1188 | } |
| 1189 | |
| 1190 | err = validate_ec_hdr(ubi, ec_hdr); |
| 1191 | if (err) { |
| 1192 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1193 | goto fail; |
| 1194 | } |
| 1195 | |
| 1196 | return 0; |
| 1197 | |
| 1198 | fail: |
| 1199 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 1200 | ubi_dbg_dump_stack(); |
| 1201 | return -EINVAL; |
| 1202 | } |
| 1203 | |
| 1204 | /** |
| 1205 | * paranoid_check_peb_ec_hdr - check erase counter header. |
| 1206 | * @ubi: UBI device description object |
| 1207 | * @pnum: the physical eraseblock number to check |
| 1208 | * |
| 1209 | * This function returns zero if the erase counter header is all right and and |
| 1210 | * a negative error code if not or if an error occurred. |
| 1211 | */ |
| 1212 | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) |
| 1213 | { |
| 1214 | int err; |
| 1215 | uint32_t crc, hdr_crc; |
| 1216 | struct ubi_ec_hdr *ec_hdr; |
| 1217 | |
| 1218 | if (!ubi->dbg->chk_io) |
| 1219 | return 0; |
| 1220 | |
| 1221 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
| 1222 | if (!ec_hdr) |
| 1223 | return -ENOMEM; |
| 1224 | |
| 1225 | err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
| 1226 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
| 1227 | goto exit; |
| 1228 | |
| 1229 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
| 1230 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
| 1231 | if (hdr_crc != crc) { |
| 1232 | ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); |
| 1233 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1234 | ubi_dbg_dump_ec_hdr(ec_hdr); |
| 1235 | ubi_dbg_dump_stack(); |
| 1236 | err = -EINVAL; |
| 1237 | goto exit; |
| 1238 | } |
| 1239 | |
| 1240 | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); |
| 1241 | |
| 1242 | exit: |
| 1243 | kfree(ec_hdr); |
| 1244 | return err; |
| 1245 | } |
| 1246 | |
| 1247 | /** |
| 1248 | * paranoid_check_vid_hdr - check that a volume identifier header is all right. |
| 1249 | * @ubi: UBI device description object |
| 1250 | * @pnum: physical eraseblock number the volume identifier header belongs to |
| 1251 | * @vid_hdr: the volume identifier header to check |
| 1252 | * |
| 1253 | * This function returns zero if the volume identifier header is all right, and |
| 1254 | * %-EINVAL if not. |
| 1255 | */ |
| 1256 | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
| 1257 | const struct ubi_vid_hdr *vid_hdr) |
| 1258 | { |
| 1259 | int err; |
| 1260 | uint32_t magic; |
| 1261 | |
| 1262 | if (!ubi->dbg->chk_io) |
| 1263 | return 0; |
| 1264 | |
| 1265 | magic = be32_to_cpu(vid_hdr->magic); |
| 1266 | if (magic != UBI_VID_HDR_MAGIC) { |
| 1267 | ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", |
| 1268 | magic, pnum, UBI_VID_HDR_MAGIC); |
| 1269 | goto fail; |
| 1270 | } |
| 1271 | |
| 1272 | err = validate_vid_hdr(ubi, vid_hdr); |
| 1273 | if (err) { |
| 1274 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1275 | goto fail; |
| 1276 | } |
| 1277 | |
| 1278 | return err; |
| 1279 | |
| 1280 | fail: |
| 1281 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1282 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1283 | ubi_dbg_dump_stack(); |
| 1284 | return -EINVAL; |
| 1285 | |
| 1286 | } |
| 1287 | |
| 1288 | /** |
| 1289 | * paranoid_check_peb_vid_hdr - check volume identifier header. |
| 1290 | * @ubi: UBI device description object |
| 1291 | * @pnum: the physical eraseblock number to check |
| 1292 | * |
| 1293 | * This function returns zero if the volume identifier header is all right, |
| 1294 | * and a negative error code if not or if an error occurred. |
| 1295 | */ |
| 1296 | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) |
| 1297 | { |
| 1298 | int err; |
| 1299 | uint32_t crc, hdr_crc; |
| 1300 | struct ubi_vid_hdr *vid_hdr; |
| 1301 | void *p; |
| 1302 | |
| 1303 | if (!ubi->dbg->chk_io) |
| 1304 | return 0; |
| 1305 | |
| 1306 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 1307 | if (!vid_hdr) |
| 1308 | return -ENOMEM; |
| 1309 | |
| 1310 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
| 1311 | err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
| 1312 | ubi->vid_hdr_alsize); |
| 1313 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
| 1314 | goto exit; |
| 1315 | |
| 1316 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); |
| 1317 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
| 1318 | if (hdr_crc != crc) { |
| 1319 | ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " |
| 1320 | "read %#08x", pnum, crc, hdr_crc); |
| 1321 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1322 | ubi_dbg_dump_vid_hdr(vid_hdr); |
| 1323 | ubi_dbg_dump_stack(); |
| 1324 | err = -EINVAL; |
| 1325 | goto exit; |
| 1326 | } |
| 1327 | |
| 1328 | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); |
| 1329 | |
| 1330 | exit: |
| 1331 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 1332 | return err; |
| 1333 | } |
| 1334 | |
| 1335 | /** |
| 1336 | * ubi_dbg_check_write - make sure write succeeded. |
| 1337 | * @ubi: UBI device description object |
| 1338 | * @buf: buffer with data which were written |
| 1339 | * @pnum: physical eraseblock number the data were written to |
| 1340 | * @offset: offset within the physical eraseblock the data were written to |
| 1341 | * @len: how many bytes were written |
| 1342 | * |
| 1343 | * This functions reads data which were recently written and compares it with |
| 1344 | * the original data buffer - the data have to match. Returns zero if the data |
| 1345 | * match and a negative error code if not or in case of failure. |
| 1346 | */ |
| 1347 | int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, |
| 1348 | int offset, int len) |
| 1349 | { |
| 1350 | int err, i; |
| 1351 | size_t read; |
| 1352 | void *buf1; |
| 1353 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
| 1354 | |
| 1355 | if (!ubi->dbg->chk_io) |
| 1356 | return 0; |
| 1357 | |
| 1358 | buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); |
| 1359 | if (!buf1) { |
| 1360 | ubi_err("cannot allocate memory to check writes"); |
| 1361 | return 0; |
| 1362 | } |
| 1363 | |
| 1364 | err = mtd_read(ubi->mtd, addr, len, &read, buf1); |
| 1365 | if (err && !mtd_is_bitflip(err)) |
| 1366 | goto out_free; |
| 1367 | |
| 1368 | for (i = 0; i < len; i++) { |
| 1369 | uint8_t c = ((uint8_t *)buf)[i]; |
| 1370 | uint8_t c1 = ((uint8_t *)buf1)[i]; |
| 1371 | int dump_len; |
| 1372 | |
| 1373 | if (c == c1) |
| 1374 | continue; |
| 1375 | |
| 1376 | ubi_err("paranoid check failed for PEB %d:%d, len %d", |
| 1377 | pnum, offset, len); |
| 1378 | ubi_msg("data differ at position %d", i); |
| 1379 | dump_len = max_t(int, 128, len - i); |
| 1380 | ubi_msg("hex dump of the original buffer from %d to %d", |
| 1381 | i, i + dump_len); |
| 1382 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, |
| 1383 | buf + i, dump_len, 1); |
| 1384 | ubi_msg("hex dump of the read buffer from %d to %d", |
| 1385 | i, i + dump_len); |
| 1386 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, |
| 1387 | buf1 + i, dump_len, 1); |
| 1388 | ubi_dbg_dump_stack(); |
| 1389 | err = -EINVAL; |
| 1390 | goto out_free; |
| 1391 | } |
| 1392 | |
| 1393 | vfree(buf1); |
| 1394 | return 0; |
| 1395 | |
| 1396 | out_free: |
| 1397 | vfree(buf1); |
| 1398 | return err; |
| 1399 | } |
| 1400 | |
| 1401 | /** |
| 1402 | * ubi_dbg_check_all_ff - check that a region of flash is empty. |
| 1403 | * @ubi: UBI device description object |
| 1404 | * @pnum: the physical eraseblock number to check |
| 1405 | * @offset: the starting offset within the physical eraseblock to check |
| 1406 | * @len: the length of the region to check |
| 1407 | * |
| 1408 | * This function returns zero if only 0xFF bytes are present at offset |
| 1409 | * @offset of the physical eraseblock @pnum, and a negative error code if not |
| 1410 | * or if an error occurred. |
| 1411 | */ |
| 1412 | int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) |
| 1413 | { |
| 1414 | size_t read; |
| 1415 | int err; |
| 1416 | void *buf; |
| 1417 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
| 1418 | |
| 1419 | if (!ubi->dbg->chk_io) |
| 1420 | return 0; |
| 1421 | |
| 1422 | buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); |
| 1423 | if (!buf) { |
| 1424 | ubi_err("cannot allocate memory to check for 0xFFs"); |
| 1425 | return 0; |
| 1426 | } |
| 1427 | |
| 1428 | err = mtd_read(ubi->mtd, addr, len, &read, buf); |
| 1429 | if (err && !mtd_is_bitflip(err)) { |
| 1430 | ubi_err("error %d while reading %d bytes from PEB %d:%d, " |
| 1431 | "read %zd bytes", err, len, pnum, offset, read); |
| 1432 | goto error; |
| 1433 | } |
| 1434 | |
| 1435 | err = ubi_check_pattern(buf, 0xFF, len); |
| 1436 | if (err == 0) { |
| 1437 | ubi_err("flash region at PEB %d:%d, length %d does not " |
| 1438 | "contain all 0xFF bytes", pnum, offset, len); |
| 1439 | goto fail; |
| 1440 | } |
| 1441 | |
| 1442 | vfree(buf); |
| 1443 | return 0; |
| 1444 | |
| 1445 | fail: |
| 1446 | ubi_err("paranoid check failed for PEB %d", pnum); |
| 1447 | ubi_msg("hex dump of the %d-%d region", offset, offset + len); |
| 1448 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); |
| 1449 | err = -EINVAL; |
| 1450 | error: |
| 1451 | ubi_dbg_dump_stack(); |
| 1452 | vfree(buf); |
| 1453 | return err; |
| 1454 | } |
| 1455 | |
| 1456 | #endif /* CONFIG_MTD_UBI_DEBUG */ |