blob: 068a2466d060fe20e359ad7a49079f70f1f6cf5e [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 *
21 * Jan 2007: Alexander Schmidt, hacked per-volume update.
22 */
23
24/*
25 * This file contains implementation of the volume update and atomic LEB change
26 * functionality.
27 *
28 * The update operation is based on the per-volume update marker which is
29 * stored in the volume table. The update marker is set before the update
30 * starts, and removed after the update has been finished. So if the update was
31 * interrupted by an unclean re-boot or due to some other reasons, the update
32 * marker stays on the flash media and UBI finds it when it attaches the MTD
33 * device next time. If the update marker is set for a volume, the volume is
34 * treated as damaged and most I/O operations are prohibited. Only a new update
35 * operation is allowed.
36 *
37 * Note, in general it is possible to implement the update operation as a
38 * transaction with a roll-back capability.
39 */
40
41#include <linux/err.h>
42#include <linux/uaccess.h>
43#include <linux/math64.h>
44#include "ubi.h"
45
46/**
47 * set_update_marker - set update marker.
48 * @ubi: UBI device description object
49 * @vol: volume description object
50 *
51 * This function sets the update marker flag for volume @vol. Returns zero
52 * in case of success and a negative error code in case of failure.
53 */
54static int set_update_marker(struct ubi_device *ubi, struct ubi_volume *vol)
55{
56 int err;
57 struct ubi_vtbl_record vtbl_rec;
58
59 dbg_gen("set update marker for volume %d", vol->vol_id);
60
61 if (vol->upd_marker) {
62 ubi_assert(ubi->vtbl[vol->vol_id].upd_marker);
63 dbg_gen("already set");
64 return 0;
65 }
66
67 memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
68 sizeof(struct ubi_vtbl_record));
69 vtbl_rec.upd_marker = 1;
70
71 mutex_lock(&ubi->device_mutex);
72 err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
73 vol->upd_marker = 1;
74 mutex_unlock(&ubi->device_mutex);
75 return err;
76}
77
78/**
79 * clear_update_marker - clear update marker.
80 * @ubi: UBI device description object
81 * @vol: volume description object
82 * @bytes: new data size in bytes
83 *
84 * This function clears the update marker for volume @vol, sets new volume
85 * data size and clears the "corrupted" flag (static volumes only). Returns
86 * zero in case of success and a negative error code in case of failure.
87 */
88static int clear_update_marker(struct ubi_device *ubi, struct ubi_volume *vol,
89 long long bytes)
90{
91 int err;
92 struct ubi_vtbl_record vtbl_rec;
93
94 dbg_gen("clear update marker for volume %d", vol->vol_id);
95
96 memcpy(&vtbl_rec, &ubi->vtbl[vol->vol_id],
97 sizeof(struct ubi_vtbl_record));
98 ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
99 vtbl_rec.upd_marker = 0;
100
101 if (vol->vol_type == UBI_STATIC_VOLUME) {
102 vol->corrupted = 0;
103 vol->used_bytes = bytes;
104 vol->used_ebs = div_u64_rem(bytes, vol->usable_leb_size,
105 &vol->last_eb_bytes);
106 if (vol->last_eb_bytes)
107 vol->used_ebs += 1;
108 else
109 vol->last_eb_bytes = vol->usable_leb_size;
110 }
111
112 mutex_lock(&ubi->device_mutex);
113 err = ubi_change_vtbl_record(ubi, vol->vol_id, &vtbl_rec);
114 vol->upd_marker = 0;
115 mutex_unlock(&ubi->device_mutex);
116 return err;
117}
118
119/**
120 * ubi_start_update - start volume update.
121 * @ubi: UBI device description object
122 * @vol: volume description object
123 * @bytes: update bytes
124 *
125 * This function starts volume update operation. If @bytes is zero, the volume
126 * is just wiped out. Returns zero in case of success and a negative error code
127 * in case of failure.
128 */
129int ubi_start_update(struct ubi_device *ubi, struct ubi_volume *vol,
130 long long bytes)
131{
132 int i, err;
133
134 dbg_gen("start update of volume %d, %llu bytes", vol->vol_id, bytes);
135 ubi_assert(!vol->updating && !vol->changing_leb);
136 vol->updating = 1;
137
138 vol->upd_buf = vmalloc(ubi->leb_size);
139 if (!vol->upd_buf)
140 return -ENOMEM;
141
142 err = set_update_marker(ubi, vol);
143 if (err)
144 return err;
145
146 /* Before updating - wipe out the volume */
147 for (i = 0; i < vol->reserved_pebs; i++) {
148 err = ubi_eba_unmap_leb(ubi, vol, i);
149 if (err)
150 return err;
151 }
152
153 if (bytes == 0) {
154 err = ubi_wl_flush(ubi);
155 if (err)
156 return err;
157
158 err = clear_update_marker(ubi, vol, 0);
159 if (err)
160 return err;
161
162 vfree(vol->upd_buf);
163 vol->updating = 0;
164 return 0;
165 }
166
167 vol->upd_ebs = div_u64(bytes + vol->usable_leb_size - 1,
168 vol->usable_leb_size);
169 vol->upd_bytes = bytes;
170 vol->upd_received = 0;
171 return 0;
172}
173
174/**
175 * ubi_start_leb_change - start atomic LEB change.
176 * @ubi: UBI device description object
177 * @vol: volume description object
178 * @req: operation request
179 *
180 * This function starts atomic LEB change operation. Returns zero in case of
181 * success and a negative error code in case of failure.
182 */
183int ubi_start_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
184 const struct ubi_leb_change_req *req)
185{
186 ubi_assert(!vol->updating && !vol->changing_leb);
187
188 dbg_gen("start changing LEB %d:%d, %u bytes",
189 vol->vol_id, req->lnum, req->bytes);
190 if (req->bytes == 0)
191 return ubi_eba_atomic_leb_change(ubi, vol, req->lnum, NULL, 0,
192 req->dtype);
193
194 vol->upd_bytes = req->bytes;
195 vol->upd_received = 0;
196 vol->changing_leb = 1;
197 vol->ch_lnum = req->lnum;
198 vol->ch_dtype = req->dtype;
199
200 vol->upd_buf = vmalloc(req->bytes);
201 if (!vol->upd_buf)
202 return -ENOMEM;
203
204 return 0;
205}
206
207/**
208 * write_leb - write update data.
209 * @ubi: UBI device description object
210 * @vol: volume description object
211 * @lnum: logical eraseblock number
212 * @buf: data to write
213 * @len: data size
214 * @used_ebs: how many logical eraseblocks will this volume contain (static
215 * volumes only)
216 *
217 * This function writes update data to corresponding logical eraseblock. In
218 * case of dynamic volume, this function checks if the data contains 0xFF bytes
219 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
220 * buffer contains only 0xFF bytes, the LEB is left unmapped.
221 *
222 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
223 * that we want to make sure that more data may be appended to the logical
224 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
225 * this PEB won't be writable anymore. So if one writes the file-system image
226 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
227 * space is writable after the update.
228 *
229 * We do not do this for static volumes because they are read-only. But this
230 * also cannot be done because we have to store per-LEB CRC and the correct
231 * data length.
232 *
233 * This function returns zero in case of success and a negative error code in
234 * case of failure.
235 */
236static int write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
237 void *buf, int len, int used_ebs)
238{
239 int err;
240
241 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
242 int l = ALIGN(len, ubi->min_io_size);
243
244 memset(buf + len, 0xFF, l - len);
245 len = ubi_calc_data_len(ubi, buf, l);
246 if (len == 0) {
247 dbg_gen("all %d bytes contain 0xFF - skip", len);
248 return 0;
249 }
250
251 err = ubi_eba_write_leb(ubi, vol, lnum, buf, 0, len,
252 UBI_UNKNOWN);
253 } else {
254 /*
255 * When writing static volume, and this is the last logical
256 * eraseblock, the length (@len) does not have to be aligned to
257 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
258 * function accepts exact (unaligned) length and stores it in
259 * the VID header. And it takes care of proper alignment by
260 * padding the buffer. Here we just make sure the padding will
261 * contain zeros, not random trash.
262 */
263 memset(buf + len, 0, vol->usable_leb_size - len);
264 err = ubi_eba_write_leb_st(ubi, vol, lnum, buf, len,
265 UBI_UNKNOWN, used_ebs);
266 }
267
268 return err;
269}
270
271/**
272 * ubi_more_update_data - write more update data.
273 * @ubi: UBI device description object
274 * @vol: volume description object
275 * @buf: write data (user-space memory buffer)
276 * @count: how much bytes to write
277 *
278 * This function writes more data to the volume which is being updated. It may
279 * be called arbitrary number of times until all the update data arriveis. This
280 * function returns %0 in case of success, number of bytes written during the
281 * last call if the whole volume update has been successfully finished, and a
282 * negative error code in case of failure.
283 */
284int ubi_more_update_data(struct ubi_device *ubi, struct ubi_volume *vol,
285 const void __user *buf, int count)
286{
287 int lnum, offs, err = 0, len, to_write = count;
288
289 dbg_gen("write %d of %lld bytes, %lld already passed",
290 count, vol->upd_bytes, vol->upd_received);
291
292 if (ubi->ro_mode)
293 return -EROFS;
294
295 lnum = div_u64_rem(vol->upd_received, vol->usable_leb_size, &offs);
296 if (vol->upd_received + count > vol->upd_bytes)
297 to_write = count = vol->upd_bytes - vol->upd_received;
298
299 /*
300 * When updating volumes, we accumulate whole logical eraseblock of
301 * data and write it at once.
302 */
303 if (offs != 0) {
304 /*
305 * This is a write to the middle of the logical eraseblock. We
306 * copy the data to our update buffer and wait for more data or
307 * flush it if the whole eraseblock is written or the update
308 * is finished.
309 */
310
311 len = vol->usable_leb_size - offs;
312 if (len > count)
313 len = count;
314
315 err = copy_from_user(vol->upd_buf + offs, buf, len);
316 if (err)
317 return -EFAULT;
318
319 if (offs + len == vol->usable_leb_size ||
320 vol->upd_received + len == vol->upd_bytes) {
321 int flush_len = offs + len;
322
323 /*
324 * OK, we gathered either the whole eraseblock or this
325 * is the last chunk, it's time to flush the buffer.
326 */
327 ubi_assert(flush_len <= vol->usable_leb_size);
328 err = write_leb(ubi, vol, lnum, vol->upd_buf, flush_len,
329 vol->upd_ebs);
330 if (err)
331 return err;
332 }
333
334 vol->upd_received += len;
335 count -= len;
336 buf += len;
337 lnum += 1;
338 }
339
340 /*
341 * If we've got more to write, let's continue. At this point we know we
342 * are starting from the beginning of an eraseblock.
343 */
344 while (count) {
345 if (count > vol->usable_leb_size)
346 len = vol->usable_leb_size;
347 else
348 len = count;
349
350 err = copy_from_user(vol->upd_buf, buf, len);
351 if (err)
352 return -EFAULT;
353
354 if (len == vol->usable_leb_size ||
355 vol->upd_received + len == vol->upd_bytes) {
356 err = write_leb(ubi, vol, lnum, vol->upd_buf,
357 len, vol->upd_ebs);
358 if (err)
359 break;
360 }
361
362 vol->upd_received += len;
363 count -= len;
364 lnum += 1;
365 buf += len;
366 }
367
368 ubi_assert(vol->upd_received <= vol->upd_bytes);
369 if (vol->upd_received == vol->upd_bytes) {
370 err = ubi_wl_flush(ubi);
371 if (err)
372 return err;
373 /* The update is finished, clear the update marker */
374 err = clear_update_marker(ubi, vol, vol->upd_bytes);
375 if (err)
376 return err;
377 vol->updating = 0;
378 err = to_write;
379 vfree(vol->upd_buf);
380 }
381
382 return err;
383}
384
385/**
386 * ubi_more_leb_change_data - accept more data for atomic LEB change.
387 * @ubi: UBI device description object
388 * @vol: volume description object
389 * @buf: write data (user-space memory buffer)
390 * @count: how much bytes to write
391 *
392 * This function accepts more data to the volume which is being under the
393 * "atomic LEB change" operation. It may be called arbitrary number of times
394 * until all data arrives. This function returns %0 in case of success, number
395 * of bytes written during the last call if the whole "atomic LEB change"
396 * operation has been successfully finished, and a negative error code in case
397 * of failure.
398 */
399int ubi_more_leb_change_data(struct ubi_device *ubi, struct ubi_volume *vol,
400 const void __user *buf, int count)
401{
402 int err;
403
404 dbg_gen("write %d of %lld bytes, %lld already passed",
405 count, vol->upd_bytes, vol->upd_received);
406
407 if (ubi->ro_mode)
408 return -EROFS;
409
410 if (vol->upd_received + count > vol->upd_bytes)
411 count = vol->upd_bytes - vol->upd_received;
412
413 err = copy_from_user(vol->upd_buf + vol->upd_received, buf, count);
414 if (err)
415 return -EFAULT;
416
417 vol->upd_received += count;
418
419 if (vol->upd_received == vol->upd_bytes) {
420 int len = ALIGN((int)vol->upd_bytes, ubi->min_io_size);
421
422 memset(vol->upd_buf + vol->upd_bytes, 0xFF,
423 len - vol->upd_bytes);
424 len = ubi_calc_data_len(ubi, vol->upd_buf, len);
425 err = ubi_eba_atomic_leb_change(ubi, vol, vol->ch_lnum,
426 vol->upd_buf, len, UBI_UNKNOWN);
427 if (err)
428 return err;
429 }
430
431 ubi_assert(vol->upd_received <= vol->upd_bytes);
432 if (vol->upd_received == vol->upd_bytes) {
433 vol->changing_leb = 0;
434 err = count;
435 vfree(vol->upd_buf);
436 }
437
438 return err;
439}