yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include "internal/cryptlib.h" |
| 12 | #include "crypto/bn.h" |
| 13 | #include <openssl/bn.h> |
| 14 | #include <openssl/sha.h> |
| 15 | #include "dsa_local.h" |
| 16 | #include <openssl/asn1.h> |
| 17 | |
| 18 | static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa); |
| 19 | static int dsa_sign_setup_no_digest(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, |
| 20 | BIGNUM **rp); |
| 21 | static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, |
| 22 | BIGNUM **rp, const unsigned char *dgst, int dlen); |
| 23 | static int dsa_do_verify(const unsigned char *dgst, int dgst_len, |
| 24 | DSA_SIG *sig, DSA *dsa); |
| 25 | static int dsa_init(DSA *dsa); |
| 26 | static int dsa_finish(DSA *dsa); |
| 27 | static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q, |
| 28 | BN_CTX *ctx); |
| 29 | |
| 30 | static DSA_METHOD openssl_dsa_meth = { |
| 31 | "OpenSSL DSA method", |
| 32 | dsa_do_sign, |
| 33 | dsa_sign_setup_no_digest, |
| 34 | dsa_do_verify, |
| 35 | NULL, /* dsa_mod_exp, */ |
| 36 | NULL, /* dsa_bn_mod_exp, */ |
| 37 | dsa_init, |
| 38 | dsa_finish, |
| 39 | DSA_FLAG_FIPS_METHOD, |
| 40 | NULL, |
| 41 | NULL, |
| 42 | NULL |
| 43 | }; |
| 44 | |
| 45 | static const DSA_METHOD *default_DSA_method = &openssl_dsa_meth; |
| 46 | |
| 47 | void DSA_set_default_method(const DSA_METHOD *meth) |
| 48 | { |
| 49 | default_DSA_method = meth; |
| 50 | } |
| 51 | |
| 52 | const DSA_METHOD *DSA_get_default_method(void) |
| 53 | { |
| 54 | return default_DSA_method; |
| 55 | } |
| 56 | |
| 57 | const DSA_METHOD *DSA_OpenSSL(void) |
| 58 | { |
| 59 | return &openssl_dsa_meth; |
| 60 | } |
| 61 | |
| 62 | static DSA_SIG *dsa_do_sign(const unsigned char *dgst, int dlen, DSA *dsa) |
| 63 | { |
| 64 | BIGNUM *kinv = NULL; |
| 65 | BIGNUM *m, *blind, *blindm, *tmp; |
| 66 | BN_CTX *ctx = NULL; |
| 67 | int reason = ERR_R_BN_LIB; |
| 68 | DSA_SIG *ret = NULL; |
| 69 | int rv = 0; |
| 70 | |
| 71 | if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) { |
| 72 | reason = DSA_R_MISSING_PARAMETERS; |
| 73 | goto err; |
| 74 | } |
| 75 | if (dsa->priv_key == NULL) { |
| 76 | reason = DSA_R_MISSING_PRIVATE_KEY; |
| 77 | goto err; |
| 78 | } |
| 79 | |
| 80 | ret = DSA_SIG_new(); |
| 81 | if (ret == NULL) |
| 82 | goto err; |
| 83 | ret->r = BN_new(); |
| 84 | ret->s = BN_new(); |
| 85 | if (ret->r == NULL || ret->s == NULL) |
| 86 | goto err; |
| 87 | |
| 88 | ctx = BN_CTX_new(); |
| 89 | if (ctx == NULL) |
| 90 | goto err; |
| 91 | m = BN_CTX_get(ctx); |
| 92 | blind = BN_CTX_get(ctx); |
| 93 | blindm = BN_CTX_get(ctx); |
| 94 | tmp = BN_CTX_get(ctx); |
| 95 | if (tmp == NULL) |
| 96 | goto err; |
| 97 | |
| 98 | redo: |
| 99 | if (!dsa_sign_setup(dsa, ctx, &kinv, &ret->r, dgst, dlen)) |
| 100 | goto err; |
| 101 | |
| 102 | if (dlen > BN_num_bytes(dsa->q)) |
| 103 | /* |
| 104 | * if the digest length is greater than the size of q use the |
| 105 | * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3, |
| 106 | * 4.2 |
| 107 | */ |
| 108 | dlen = BN_num_bytes(dsa->q); |
| 109 | if (BN_bin2bn(dgst, dlen, m) == NULL) |
| 110 | goto err; |
| 111 | |
| 112 | /* |
| 113 | * The normal signature calculation is: |
| 114 | * |
| 115 | * s := k^-1 * (m + r * priv_key) mod q |
| 116 | * |
| 117 | * We will blind this to protect against side channel attacks |
| 118 | * |
| 119 | * s := blind^-1 * k^-1 * (blind * m + blind * r * priv_key) mod q |
| 120 | */ |
| 121 | |
| 122 | /* Generate a blinding value */ |
| 123 | do { |
| 124 | if (!BN_priv_rand(blind, BN_num_bits(dsa->q) - 1, |
| 125 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) |
| 126 | goto err; |
| 127 | } while (BN_is_zero(blind)); |
| 128 | BN_set_flags(blind, BN_FLG_CONSTTIME); |
| 129 | BN_set_flags(blindm, BN_FLG_CONSTTIME); |
| 130 | BN_set_flags(tmp, BN_FLG_CONSTTIME); |
| 131 | |
| 132 | /* tmp := blind * priv_key * r mod q */ |
| 133 | if (!BN_mod_mul(tmp, blind, dsa->priv_key, dsa->q, ctx)) |
| 134 | goto err; |
| 135 | if (!BN_mod_mul(tmp, tmp, ret->r, dsa->q, ctx)) |
| 136 | goto err; |
| 137 | |
| 138 | /* blindm := blind * m mod q */ |
| 139 | if (!BN_mod_mul(blindm, blind, m, dsa->q, ctx)) |
| 140 | goto err; |
| 141 | |
| 142 | /* s : = (blind * priv_key * r) + (blind * m) mod q */ |
| 143 | if (!BN_mod_add_quick(ret->s, tmp, blindm, dsa->q)) |
| 144 | goto err; |
| 145 | |
| 146 | /* s := s * k^-1 mod q */ |
| 147 | if (!BN_mod_mul(ret->s, ret->s, kinv, dsa->q, ctx)) |
| 148 | goto err; |
| 149 | |
| 150 | /* s:= s * blind^-1 mod q */ |
| 151 | if (BN_mod_inverse(blind, blind, dsa->q, ctx) == NULL) |
| 152 | goto err; |
| 153 | if (!BN_mod_mul(ret->s, ret->s, blind, dsa->q, ctx)) |
| 154 | goto err; |
| 155 | |
| 156 | /* |
| 157 | * Redo if r or s is zero as required by FIPS 186-3: this is very |
| 158 | * unlikely. |
| 159 | */ |
| 160 | if (BN_is_zero(ret->r) || BN_is_zero(ret->s)) |
| 161 | goto redo; |
| 162 | |
| 163 | rv = 1; |
| 164 | |
| 165 | err: |
| 166 | if (rv == 0) { |
| 167 | DSAerr(DSA_F_DSA_DO_SIGN, reason); |
| 168 | DSA_SIG_free(ret); |
| 169 | ret = NULL; |
| 170 | } |
| 171 | BN_CTX_free(ctx); |
| 172 | BN_clear_free(kinv); |
| 173 | return ret; |
| 174 | } |
| 175 | |
| 176 | static int dsa_sign_setup_no_digest(DSA *dsa, BN_CTX *ctx_in, |
| 177 | BIGNUM **kinvp, BIGNUM **rp) |
| 178 | { |
| 179 | return dsa_sign_setup(dsa, ctx_in, kinvp, rp, NULL, 0); |
| 180 | } |
| 181 | |
| 182 | static int dsa_sign_setup(DSA *dsa, BN_CTX *ctx_in, |
| 183 | BIGNUM **kinvp, BIGNUM **rp, |
| 184 | const unsigned char *dgst, int dlen) |
| 185 | { |
| 186 | BN_CTX *ctx = NULL; |
| 187 | BIGNUM *k, *kinv = NULL, *r = *rp; |
| 188 | BIGNUM *l; |
| 189 | int ret = 0; |
| 190 | int q_bits, q_words; |
| 191 | |
| 192 | if (!dsa->p || !dsa->q || !dsa->g) { |
| 193 | DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PARAMETERS); |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | /* Reject obviously invalid parameters */ |
| 198 | if (BN_is_zero(dsa->p) || BN_is_zero(dsa->q) || BN_is_zero(dsa->g)) { |
| 199 | DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_INVALID_PARAMETERS); |
| 200 | return 0; |
| 201 | } |
| 202 | if (dsa->priv_key == NULL) { |
| 203 | DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_MISSING_PRIVATE_KEY); |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | k = BN_new(); |
| 208 | l = BN_new(); |
| 209 | if (k == NULL || l == NULL) |
| 210 | goto err; |
| 211 | |
| 212 | if (ctx_in == NULL) { |
| 213 | if ((ctx = BN_CTX_new()) == NULL) |
| 214 | goto err; |
| 215 | } else |
| 216 | ctx = ctx_in; |
| 217 | |
| 218 | /* Preallocate space */ |
| 219 | q_bits = BN_num_bits(dsa->q); |
| 220 | q_words = bn_get_top(dsa->q); |
| 221 | if (!bn_wexpand(k, q_words + 2) |
| 222 | || !bn_wexpand(l, q_words + 2)) |
| 223 | goto err; |
| 224 | |
| 225 | /* Get random k */ |
| 226 | do { |
| 227 | if (dgst != NULL) { |
| 228 | /* |
| 229 | * We calculate k from SHA512(private_key + H(message) + random). |
| 230 | * This protects the private key from a weak PRNG. |
| 231 | */ |
| 232 | if (!BN_generate_dsa_nonce(k, dsa->q, dsa->priv_key, dgst, |
| 233 | dlen, ctx)) |
| 234 | goto err; |
| 235 | } else if (!BN_priv_rand_range(k, dsa->q)) |
| 236 | goto err; |
| 237 | } while (BN_is_zero(k)); |
| 238 | |
| 239 | BN_set_flags(k, BN_FLG_CONSTTIME); |
| 240 | BN_set_flags(l, BN_FLG_CONSTTIME); |
| 241 | |
| 242 | if (dsa->flags & DSA_FLAG_CACHE_MONT_P) { |
| 243 | if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, |
| 244 | dsa->lock, dsa->p, ctx)) |
| 245 | goto err; |
| 246 | } |
| 247 | |
| 248 | /* Compute r = (g^k mod p) mod q */ |
| 249 | |
| 250 | /* |
| 251 | * We do not want timing information to leak the length of k, so we |
| 252 | * compute G^k using an equivalent scalar of fixed bit-length. |
| 253 | * |
| 254 | * We unconditionally perform both of these additions to prevent a |
| 255 | * small timing information leakage. We then choose the sum that is |
| 256 | * one bit longer than the modulus. |
| 257 | * |
| 258 | * There are some concerns about the efficacy of doing this. More |
| 259 | * specifically refer to the discussion starting with: |
| 260 | * https://github.com/openssl/openssl/pull/7486#discussion_r228323705 |
| 261 | * The fix is to rework BN so these gymnastics aren't required. |
| 262 | */ |
| 263 | if (!BN_add(l, k, dsa->q) |
| 264 | || !BN_add(k, l, dsa->q)) |
| 265 | goto err; |
| 266 | |
| 267 | BN_consttime_swap(BN_is_bit_set(l, q_bits), k, l, q_words + 2); |
| 268 | |
| 269 | if ((dsa)->meth->bn_mod_exp != NULL) { |
| 270 | if (!dsa->meth->bn_mod_exp(dsa, r, dsa->g, k, dsa->p, ctx, |
| 271 | dsa->method_mont_p)) |
| 272 | goto err; |
| 273 | } else { |
| 274 | if (!BN_mod_exp_mont(r, dsa->g, k, dsa->p, ctx, dsa->method_mont_p)) |
| 275 | goto err; |
| 276 | } |
| 277 | |
| 278 | if (!BN_mod(r, r, dsa->q, ctx)) |
| 279 | goto err; |
| 280 | |
| 281 | /* Compute part of 's = inv(k) (m + xr) mod q' */ |
| 282 | if ((kinv = dsa_mod_inverse_fermat(k, dsa->q, ctx)) == NULL) |
| 283 | goto err; |
| 284 | |
| 285 | BN_clear_free(*kinvp); |
| 286 | *kinvp = kinv; |
| 287 | kinv = NULL; |
| 288 | ret = 1; |
| 289 | err: |
| 290 | if (!ret) |
| 291 | DSAerr(DSA_F_DSA_SIGN_SETUP, ERR_R_BN_LIB); |
| 292 | if (ctx != ctx_in) |
| 293 | BN_CTX_free(ctx); |
| 294 | BN_clear_free(k); |
| 295 | BN_clear_free(l); |
| 296 | return ret; |
| 297 | } |
| 298 | |
| 299 | static int dsa_do_verify(const unsigned char *dgst, int dgst_len, |
| 300 | DSA_SIG *sig, DSA *dsa) |
| 301 | { |
| 302 | BN_CTX *ctx; |
| 303 | BIGNUM *u1, *u2, *t1; |
| 304 | BN_MONT_CTX *mont = NULL; |
| 305 | const BIGNUM *r, *s; |
| 306 | int ret = -1, i; |
| 307 | if (!dsa->p || !dsa->q || !dsa->g) { |
| 308 | DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MISSING_PARAMETERS); |
| 309 | return -1; |
| 310 | } |
| 311 | |
| 312 | i = BN_num_bits(dsa->q); |
| 313 | /* fips 186-3 allows only different sizes for q */ |
| 314 | if (i != 160 && i != 224 && i != 256) { |
| 315 | DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_BAD_Q_VALUE); |
| 316 | return -1; |
| 317 | } |
| 318 | |
| 319 | if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) { |
| 320 | DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_MODULUS_TOO_LARGE); |
| 321 | return -1; |
| 322 | } |
| 323 | u1 = BN_new(); |
| 324 | u2 = BN_new(); |
| 325 | t1 = BN_new(); |
| 326 | ctx = BN_CTX_new(); |
| 327 | if (u1 == NULL || u2 == NULL || t1 == NULL || ctx == NULL) |
| 328 | goto err; |
| 329 | |
| 330 | DSA_SIG_get0(sig, &r, &s); |
| 331 | |
| 332 | if (BN_is_zero(r) || BN_is_negative(r) || |
| 333 | BN_ucmp(r, dsa->q) >= 0) { |
| 334 | ret = 0; |
| 335 | goto err; |
| 336 | } |
| 337 | if (BN_is_zero(s) || BN_is_negative(s) || |
| 338 | BN_ucmp(s, dsa->q) >= 0) { |
| 339 | ret = 0; |
| 340 | goto err; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Calculate W = inv(S) mod Q save W in u2 |
| 345 | */ |
| 346 | if ((BN_mod_inverse(u2, s, dsa->q, ctx)) == NULL) |
| 347 | goto err; |
| 348 | |
| 349 | /* save M in u1 */ |
| 350 | if (dgst_len > (i >> 3)) |
| 351 | /* |
| 352 | * if the digest length is greater than the size of q use the |
| 353 | * BN_num_bits(dsa->q) leftmost bits of the digest, see fips 186-3, |
| 354 | * 4.2 |
| 355 | */ |
| 356 | dgst_len = (i >> 3); |
| 357 | if (BN_bin2bn(dgst, dgst_len, u1) == NULL) |
| 358 | goto err; |
| 359 | |
| 360 | /* u1 = M * w mod q */ |
| 361 | if (!BN_mod_mul(u1, u1, u2, dsa->q, ctx)) |
| 362 | goto err; |
| 363 | |
| 364 | /* u2 = r * w mod q */ |
| 365 | if (!BN_mod_mul(u2, r, u2, dsa->q, ctx)) |
| 366 | goto err; |
| 367 | |
| 368 | if (dsa->flags & DSA_FLAG_CACHE_MONT_P) { |
| 369 | mont = BN_MONT_CTX_set_locked(&dsa->method_mont_p, |
| 370 | dsa->lock, dsa->p, ctx); |
| 371 | if (!mont) |
| 372 | goto err; |
| 373 | } |
| 374 | |
| 375 | if (dsa->meth->dsa_mod_exp != NULL) { |
| 376 | if (!dsa->meth->dsa_mod_exp(dsa, t1, dsa->g, u1, dsa->pub_key, u2, |
| 377 | dsa->p, ctx, mont)) |
| 378 | goto err; |
| 379 | } else { |
| 380 | if (!BN_mod_exp2_mont(t1, dsa->g, u1, dsa->pub_key, u2, dsa->p, ctx, |
| 381 | mont)) |
| 382 | goto err; |
| 383 | } |
| 384 | |
| 385 | /* let u1 = u1 mod q */ |
| 386 | if (!BN_mod(u1, t1, dsa->q, ctx)) |
| 387 | goto err; |
| 388 | |
| 389 | /* |
| 390 | * V is now in u1. If the signature is correct, it will be equal to R. |
| 391 | */ |
| 392 | ret = (BN_ucmp(u1, r) == 0); |
| 393 | |
| 394 | err: |
| 395 | if (ret < 0) |
| 396 | DSAerr(DSA_F_DSA_DO_VERIFY, ERR_R_BN_LIB); |
| 397 | BN_CTX_free(ctx); |
| 398 | BN_free(u1); |
| 399 | BN_free(u2); |
| 400 | BN_free(t1); |
| 401 | return ret; |
| 402 | } |
| 403 | |
| 404 | static int dsa_init(DSA *dsa) |
| 405 | { |
| 406 | dsa->flags |= DSA_FLAG_CACHE_MONT_P; |
| 407 | return 1; |
| 408 | } |
| 409 | |
| 410 | static int dsa_finish(DSA *dsa) |
| 411 | { |
| 412 | BN_MONT_CTX_free(dsa->method_mont_p); |
| 413 | return 1; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Compute the inverse of k modulo q. |
| 418 | * Since q is prime, Fermat's Little Theorem applies, which reduces this to |
| 419 | * mod-exp operation. Both the exponent and modulus are public information |
| 420 | * so a mod-exp that doesn't leak the base is sufficient. A newly allocated |
| 421 | * BIGNUM is returned which the caller must free. |
| 422 | */ |
| 423 | static BIGNUM *dsa_mod_inverse_fermat(const BIGNUM *k, const BIGNUM *q, |
| 424 | BN_CTX *ctx) |
| 425 | { |
| 426 | BIGNUM *res = NULL; |
| 427 | BIGNUM *r, *e; |
| 428 | |
| 429 | if ((r = BN_new()) == NULL) |
| 430 | return NULL; |
| 431 | |
| 432 | BN_CTX_start(ctx); |
| 433 | if ((e = BN_CTX_get(ctx)) != NULL |
| 434 | && BN_set_word(r, 2) |
| 435 | && BN_sub(e, q, r) |
| 436 | && BN_mod_exp_mont(r, k, e, q, ctx, NULL)) |
| 437 | res = r; |
| 438 | else |
| 439 | BN_free(r); |
| 440 | BN_CTX_end(ctx); |
| 441 | return res; |
| 442 | } |