yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <time.h> |
| 12 | #include "internal/cryptlib.h" |
| 13 | #include <openssl/opensslconf.h> |
| 14 | #include "crypto/rand.h" |
| 15 | #include <openssl/engine.h> |
| 16 | #include "internal/thread_once.h" |
| 17 | #include "rand_local.h" |
| 18 | #include "e_os.h" |
| 19 | |
| 20 | #ifndef OPENSSL_NO_ENGINE |
| 21 | /* non-NULL if default_RAND_meth is ENGINE-provided */ |
| 22 | static ENGINE *funct_ref; |
| 23 | static CRYPTO_RWLOCK *rand_engine_lock; |
| 24 | #endif |
| 25 | static CRYPTO_RWLOCK *rand_meth_lock; |
| 26 | static const RAND_METHOD *default_RAND_meth; |
| 27 | static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT; |
| 28 | |
| 29 | static CRYPTO_RWLOCK *rand_nonce_lock; |
| 30 | static int rand_nonce_count; |
| 31 | |
| 32 | static int rand_inited = 0; |
| 33 | |
| 34 | #ifdef OPENSSL_RAND_SEED_RDTSC |
| 35 | /* |
| 36 | * IMPORTANT NOTE: It is not currently possible to use this code |
| 37 | * because we are not sure about the amount of randomness it provides. |
| 38 | * Some SP900 tests have been run, but there is internal skepticism. |
| 39 | * So for now this code is not used. |
| 40 | */ |
| 41 | # error "RDTSC enabled? Should not be possible!" |
| 42 | |
| 43 | /* |
| 44 | * Acquire entropy from high-speed clock |
| 45 | * |
| 46 | * Since we get some randomness from the low-order bits of the |
| 47 | * high-speed clock, it can help. |
| 48 | * |
| 49 | * Returns the total entropy count, if it exceeds the requested |
| 50 | * entropy count. Otherwise, returns an entropy count of 0. |
| 51 | */ |
| 52 | size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool) |
| 53 | { |
| 54 | unsigned char c; |
| 55 | int i; |
| 56 | |
| 57 | if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) { |
| 58 | for (i = 0; i < TSC_READ_COUNT; i++) { |
| 59 | c = (unsigned char)(OPENSSL_rdtsc() & 0xFF); |
| 60 | rand_pool_add(pool, &c, 1, 4); |
| 61 | } |
| 62 | } |
| 63 | return rand_pool_entropy_available(pool); |
| 64 | } |
| 65 | #endif |
| 66 | |
| 67 | #ifdef OPENSSL_RAND_SEED_RDCPU |
| 68 | size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len); |
| 69 | size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len); |
| 70 | |
| 71 | extern unsigned int OPENSSL_ia32cap_P[]; |
| 72 | |
| 73 | /* |
| 74 | * Acquire entropy using Intel-specific cpu instructions |
| 75 | * |
| 76 | * Uses the RDSEED instruction if available, otherwise uses |
| 77 | * RDRAND if available. |
| 78 | * |
| 79 | * For the differences between RDSEED and RDRAND, and why RDSEED |
| 80 | * is the preferred choice, see https://goo.gl/oK3KcN |
| 81 | * |
| 82 | * Returns the total entropy count, if it exceeds the requested |
| 83 | * entropy count. Otherwise, returns an entropy count of 0. |
| 84 | */ |
| 85 | size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool) |
| 86 | { |
| 87 | size_t bytes_needed; |
| 88 | unsigned char *buffer; |
| 89 | |
| 90 | bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
| 91 | if (bytes_needed > 0) { |
| 92 | buffer = rand_pool_add_begin(pool, bytes_needed); |
| 93 | |
| 94 | if (buffer != NULL) { |
| 95 | /* Whichever comes first, use RDSEED, RDRAND or nothing */ |
| 96 | if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) { |
| 97 | if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed) |
| 98 | == bytes_needed) { |
| 99 | rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); |
| 100 | } |
| 101 | } else if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) { |
| 102 | if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed) |
| 103 | == bytes_needed) { |
| 104 | rand_pool_add_end(pool, bytes_needed, 8 * bytes_needed); |
| 105 | } |
| 106 | } else { |
| 107 | rand_pool_add_end(pool, 0, 0); |
| 108 | } |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | return rand_pool_entropy_available(pool); |
| 113 | } |
| 114 | #endif |
| 115 | |
| 116 | |
| 117 | /* |
| 118 | * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks()) |
| 119 | * |
| 120 | * If the DRBG has a parent, then the required amount of entropy input |
| 121 | * is fetched using the parent's RAND_DRBG_generate(). |
| 122 | * |
| 123 | * Otherwise, the entropy is polled from the system entropy sources |
| 124 | * using rand_pool_acquire_entropy(). |
| 125 | * |
| 126 | * If a random pool has been added to the DRBG using RAND_add(), then |
| 127 | * its entropy will be used up first. |
| 128 | */ |
| 129 | size_t rand_drbg_get_entropy(RAND_DRBG *drbg, |
| 130 | unsigned char **pout, |
| 131 | int entropy, size_t min_len, size_t max_len, |
| 132 | int prediction_resistance) |
| 133 | { |
| 134 | size_t ret = 0; |
| 135 | size_t entropy_available = 0; |
| 136 | RAND_POOL *pool; |
| 137 | |
| 138 | if (drbg->parent != NULL && drbg->strength > drbg->parent->strength) { |
| 139 | /* |
| 140 | * We currently don't support the algorithm from NIST SP 800-90C |
| 141 | * 10.1.2 to use a weaker DRBG as source |
| 142 | */ |
| 143 | RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, RAND_R_PARENT_STRENGTH_TOO_WEAK); |
| 144 | return 0; |
| 145 | } |
| 146 | |
| 147 | if (drbg->seed_pool != NULL) { |
| 148 | pool = drbg->seed_pool; |
| 149 | pool->entropy_requested = entropy; |
| 150 | } else { |
| 151 | pool = rand_pool_new(entropy, drbg->secure, min_len, max_len); |
| 152 | if (pool == NULL) |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | if (drbg->parent != NULL) { |
| 157 | size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); |
| 158 | unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed); |
| 159 | |
| 160 | if (buffer != NULL) { |
| 161 | size_t bytes = 0; |
| 162 | |
| 163 | /* |
| 164 | * Get random data from parent. Include our address as additional input, |
| 165 | * in order to provide some additional distinction between different |
| 166 | * DRBG child instances. |
| 167 | * Our lock is already held, but we need to lock our parent before |
| 168 | * generating bits from it. (Note: taking the lock will be a no-op |
| 169 | * if locking if drbg->parent->lock == NULL.) |
| 170 | */ |
| 171 | rand_drbg_lock(drbg->parent); |
| 172 | if (RAND_DRBG_generate(drbg->parent, |
| 173 | buffer, bytes_needed, |
| 174 | prediction_resistance, |
| 175 | (unsigned char *)&drbg, sizeof(drbg)) != 0) |
| 176 | bytes = bytes_needed; |
| 177 | rand_drbg_unlock(drbg->parent); |
| 178 | |
| 179 | rand_pool_add_end(pool, bytes, 8 * bytes); |
| 180 | entropy_available = rand_pool_entropy_available(pool); |
| 181 | } |
| 182 | |
| 183 | } else { |
| 184 | if (prediction_resistance) { |
| 185 | /* |
| 186 | * We don't have any entropy sources that comply with the NIST |
| 187 | * standard to provide prediction resistance (see NIST SP 800-90C, |
| 188 | * Section 5.4). |
| 189 | */ |
| 190 | RANDerr(RAND_F_RAND_DRBG_GET_ENTROPY, |
| 191 | RAND_R_PREDICTION_RESISTANCE_NOT_SUPPORTED); |
| 192 | goto err; |
| 193 | } |
| 194 | |
| 195 | /* Get entropy by polling system entropy sources. */ |
| 196 | entropy_available = rand_pool_acquire_entropy(pool); |
| 197 | } |
| 198 | |
| 199 | if (entropy_available > 0) { |
| 200 | ret = rand_pool_length(pool); |
| 201 | *pout = rand_pool_detach(pool); |
| 202 | } |
| 203 | |
| 204 | err: |
| 205 | if (drbg->seed_pool == NULL) |
| 206 | rand_pool_free(pool); |
| 207 | return ret; |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks()) |
| 212 | * |
| 213 | */ |
| 214 | void rand_drbg_cleanup_entropy(RAND_DRBG *drbg, |
| 215 | unsigned char *out, size_t outlen) |
| 216 | { |
| 217 | if (drbg->seed_pool == NULL) { |
| 218 | if (drbg->secure) |
| 219 | OPENSSL_secure_clear_free(out, outlen); |
| 220 | else |
| 221 | OPENSSL_clear_free(out, outlen); |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | |
| 226 | /* |
| 227 | * Implements the get_nonce() callback (see RAND_DRBG_set_callbacks()) |
| 228 | * |
| 229 | */ |
| 230 | size_t rand_drbg_get_nonce(RAND_DRBG *drbg, |
| 231 | unsigned char **pout, |
| 232 | int entropy, size_t min_len, size_t max_len) |
| 233 | { |
| 234 | size_t ret = 0; |
| 235 | RAND_POOL *pool; |
| 236 | |
| 237 | struct { |
| 238 | void * instance; |
| 239 | int count; |
| 240 | } data; |
| 241 | |
| 242 | memset(&data, 0, sizeof(data)); |
| 243 | pool = rand_pool_new(0, 0, min_len, max_len); |
| 244 | if (pool == NULL) |
| 245 | return 0; |
| 246 | |
| 247 | if (rand_pool_add_nonce_data(pool) == 0) |
| 248 | goto err; |
| 249 | |
| 250 | data.instance = drbg; |
| 251 | CRYPTO_atomic_add(&rand_nonce_count, 1, &data.count, rand_nonce_lock); |
| 252 | |
| 253 | if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0) |
| 254 | goto err; |
| 255 | |
| 256 | ret = rand_pool_length(pool); |
| 257 | *pout = rand_pool_detach(pool); |
| 258 | |
| 259 | err: |
| 260 | rand_pool_free(pool); |
| 261 | |
| 262 | return ret; |
| 263 | } |
| 264 | |
| 265 | /* |
| 266 | * Implements the cleanup_nonce() callback (see RAND_DRBG_set_callbacks()) |
| 267 | * |
| 268 | */ |
| 269 | void rand_drbg_cleanup_nonce(RAND_DRBG *drbg, |
| 270 | unsigned char *out, size_t outlen) |
| 271 | { |
| 272 | OPENSSL_clear_free(out, outlen); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Generate additional data that can be used for the drbg. The data does |
| 277 | * not need to contain entropy, but it's useful if it contains at least |
| 278 | * some bits that are unpredictable. |
| 279 | * |
| 280 | * Returns 0 on failure. |
| 281 | * |
| 282 | * On success it allocates a buffer at |*pout| and returns the length of |
| 283 | * the data. The buffer should get freed using OPENSSL_secure_clear_free(). |
| 284 | */ |
| 285 | size_t rand_drbg_get_additional_data(RAND_POOL *pool, unsigned char **pout) |
| 286 | { |
| 287 | size_t ret = 0; |
| 288 | |
| 289 | if (rand_pool_add_additional_data(pool) == 0) |
| 290 | goto err; |
| 291 | |
| 292 | ret = rand_pool_length(pool); |
| 293 | *pout = rand_pool_detach(pool); |
| 294 | |
| 295 | err: |
| 296 | return ret; |
| 297 | } |
| 298 | |
| 299 | void rand_drbg_cleanup_additional_data(RAND_POOL *pool, unsigned char *out) |
| 300 | { |
| 301 | rand_pool_reattach(pool, out); |
| 302 | } |
| 303 | |
| 304 | DEFINE_RUN_ONCE_STATIC(do_rand_init) |
| 305 | { |
| 306 | #ifndef OPENSSL_NO_ENGINE |
| 307 | rand_engine_lock = CRYPTO_THREAD_lock_new(); |
| 308 | if (rand_engine_lock == NULL) |
| 309 | return 0; |
| 310 | #endif |
| 311 | |
| 312 | rand_meth_lock = CRYPTO_THREAD_lock_new(); |
| 313 | if (rand_meth_lock == NULL) |
| 314 | goto err1; |
| 315 | |
| 316 | rand_nonce_lock = CRYPTO_THREAD_lock_new(); |
| 317 | if (rand_nonce_lock == NULL) |
| 318 | goto err2; |
| 319 | |
| 320 | if (!rand_pool_init()) |
| 321 | goto err3; |
| 322 | |
| 323 | rand_inited = 1; |
| 324 | return 1; |
| 325 | |
| 326 | err3: |
| 327 | CRYPTO_THREAD_lock_free(rand_nonce_lock); |
| 328 | rand_nonce_lock = NULL; |
| 329 | err2: |
| 330 | CRYPTO_THREAD_lock_free(rand_meth_lock); |
| 331 | rand_meth_lock = NULL; |
| 332 | err1: |
| 333 | #ifndef OPENSSL_NO_ENGINE |
| 334 | CRYPTO_THREAD_lock_free(rand_engine_lock); |
| 335 | rand_engine_lock = NULL; |
| 336 | #endif |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | void rand_cleanup_int(void) |
| 341 | { |
| 342 | const RAND_METHOD *meth = default_RAND_meth; |
| 343 | |
| 344 | if (!rand_inited) |
| 345 | return; |
| 346 | |
| 347 | if (meth != NULL && meth->cleanup != NULL) |
| 348 | meth->cleanup(); |
| 349 | RAND_set_rand_method(NULL); |
| 350 | rand_pool_cleanup(); |
| 351 | #ifndef OPENSSL_NO_ENGINE |
| 352 | CRYPTO_THREAD_lock_free(rand_engine_lock); |
| 353 | rand_engine_lock = NULL; |
| 354 | #endif |
| 355 | CRYPTO_THREAD_lock_free(rand_meth_lock); |
| 356 | rand_meth_lock = NULL; |
| 357 | CRYPTO_THREAD_lock_free(rand_nonce_lock); |
| 358 | rand_nonce_lock = NULL; |
| 359 | rand_inited = 0; |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * RAND_close_seed_files() ensures that any seed file descriptors are |
| 364 | * closed after use. |
| 365 | */ |
| 366 | void RAND_keep_random_devices_open(int keep) |
| 367 | { |
| 368 | if (RUN_ONCE(&rand_init, do_rand_init)) |
| 369 | rand_pool_keep_random_devices_open(keep); |
| 370 | } |
| 371 | |
| 372 | /* |
| 373 | * RAND_poll() reseeds the default RNG using random input |
| 374 | * |
| 375 | * The random input is obtained from polling various entropy |
| 376 | * sources which depend on the operating system and are |
| 377 | * configurable via the --with-rand-seed configure option. |
| 378 | */ |
| 379 | int RAND_poll(void) |
| 380 | { |
| 381 | int ret = 0; |
| 382 | |
| 383 | RAND_POOL *pool = NULL; |
| 384 | |
| 385 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 386 | |
| 387 | if (meth == NULL) |
| 388 | return 0; |
| 389 | |
| 390 | if (meth == RAND_OpenSSL()) { |
| 391 | /* fill random pool and seed the master DRBG */ |
| 392 | RAND_DRBG *drbg = RAND_DRBG_get0_master(); |
| 393 | |
| 394 | if (drbg == NULL) |
| 395 | return 0; |
| 396 | |
| 397 | rand_drbg_lock(drbg); |
| 398 | ret = rand_drbg_restart(drbg, NULL, 0, 0); |
| 399 | rand_drbg_unlock(drbg); |
| 400 | |
| 401 | return ret; |
| 402 | |
| 403 | } else { |
| 404 | /* fill random pool and seed the current legacy RNG */ |
| 405 | pool = rand_pool_new(RAND_DRBG_STRENGTH, 1, |
| 406 | (RAND_DRBG_STRENGTH + 7) / 8, |
| 407 | RAND_POOL_MAX_LENGTH); |
| 408 | if (pool == NULL) |
| 409 | return 0; |
| 410 | |
| 411 | if (rand_pool_acquire_entropy(pool) == 0) |
| 412 | goto err; |
| 413 | |
| 414 | if (meth->add == NULL |
| 415 | || meth->add(rand_pool_buffer(pool), |
| 416 | rand_pool_length(pool), |
| 417 | (rand_pool_entropy(pool) / 8.0)) == 0) |
| 418 | goto err; |
| 419 | |
| 420 | ret = 1; |
| 421 | } |
| 422 | |
| 423 | err: |
| 424 | rand_pool_free(pool); |
| 425 | return ret; |
| 426 | } |
| 427 | |
| 428 | /* |
| 429 | * Allocate memory and initialize a new random pool |
| 430 | */ |
| 431 | |
| 432 | RAND_POOL *rand_pool_new(int entropy_requested, int secure, |
| 433 | size_t min_len, size_t max_len) |
| 434 | { |
| 435 | RAND_POOL *pool; |
| 436 | size_t min_alloc_size = RAND_POOL_MIN_ALLOCATION(secure); |
| 437 | |
| 438 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
| 439 | return NULL; |
| 440 | |
| 441 | pool = OPENSSL_zalloc(sizeof(*pool)); |
| 442 | if (pool == NULL) { |
| 443 | RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); |
| 444 | return NULL; |
| 445 | } |
| 446 | |
| 447 | pool->min_len = min_len; |
| 448 | pool->max_len = (max_len > RAND_POOL_MAX_LENGTH) ? |
| 449 | RAND_POOL_MAX_LENGTH : max_len; |
| 450 | pool->alloc_len = min_len < min_alloc_size ? min_alloc_size : min_len; |
| 451 | if (pool->alloc_len > pool->max_len) |
| 452 | pool->alloc_len = pool->max_len; |
| 453 | |
| 454 | if (secure) |
| 455 | pool->buffer = OPENSSL_secure_zalloc(pool->alloc_len); |
| 456 | else |
| 457 | pool->buffer = OPENSSL_zalloc(pool->alloc_len); |
| 458 | |
| 459 | if (pool->buffer == NULL) { |
| 460 | RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE); |
| 461 | goto err; |
| 462 | } |
| 463 | |
| 464 | pool->entropy_requested = entropy_requested; |
| 465 | pool->secure = secure; |
| 466 | |
| 467 | return pool; |
| 468 | |
| 469 | err: |
| 470 | OPENSSL_free(pool); |
| 471 | return NULL; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Attach new random pool to the given buffer |
| 476 | * |
| 477 | * This function is intended to be used only for feeding random data |
| 478 | * provided by RAND_add() and RAND_seed() into the <master> DRBG. |
| 479 | */ |
| 480 | RAND_POOL *rand_pool_attach(const unsigned char *buffer, size_t len, |
| 481 | size_t entropy) |
| 482 | { |
| 483 | RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool)); |
| 484 | |
| 485 | if (pool == NULL) { |
| 486 | RANDerr(RAND_F_RAND_POOL_ATTACH, ERR_R_MALLOC_FAILURE); |
| 487 | return NULL; |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * The const needs to be cast away, but attached buffers will not be |
| 492 | * modified (in contrary to allocated buffers which are zeroed and |
| 493 | * freed in the end). |
| 494 | */ |
| 495 | pool->buffer = (unsigned char *) buffer; |
| 496 | pool->len = len; |
| 497 | |
| 498 | pool->attached = 1; |
| 499 | |
| 500 | pool->min_len = pool->max_len = pool->alloc_len = pool->len; |
| 501 | pool->entropy = entropy; |
| 502 | |
| 503 | return pool; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * Free |pool|, securely erasing its buffer. |
| 508 | */ |
| 509 | void rand_pool_free(RAND_POOL *pool) |
| 510 | { |
| 511 | if (pool == NULL) |
| 512 | return; |
| 513 | |
| 514 | /* |
| 515 | * Although it would be advisable from a cryptographical viewpoint, |
| 516 | * we are not allowed to clear attached buffers, since they are passed |
| 517 | * to rand_pool_attach() as `const unsigned char*`. |
| 518 | * (see corresponding comment in rand_pool_attach()). |
| 519 | */ |
| 520 | if (!pool->attached) { |
| 521 | if (pool->secure) |
| 522 | OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len); |
| 523 | else |
| 524 | OPENSSL_clear_free(pool->buffer, pool->alloc_len); |
| 525 | } |
| 526 | |
| 527 | OPENSSL_free(pool); |
| 528 | } |
| 529 | |
| 530 | /* |
| 531 | * Return the |pool|'s buffer to the caller (readonly). |
| 532 | */ |
| 533 | const unsigned char *rand_pool_buffer(RAND_POOL *pool) |
| 534 | { |
| 535 | return pool->buffer; |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * Return the |pool|'s entropy to the caller. |
| 540 | */ |
| 541 | size_t rand_pool_entropy(RAND_POOL *pool) |
| 542 | { |
| 543 | return pool->entropy; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * Return the |pool|'s buffer length to the caller. |
| 548 | */ |
| 549 | size_t rand_pool_length(RAND_POOL *pool) |
| 550 | { |
| 551 | return pool->len; |
| 552 | } |
| 553 | |
| 554 | /* |
| 555 | * Detach the |pool| buffer and return it to the caller. |
| 556 | * It's the responsibility of the caller to free the buffer |
| 557 | * using OPENSSL_secure_clear_free() or to re-attach it |
| 558 | * again to the pool using rand_pool_reattach(). |
| 559 | */ |
| 560 | unsigned char *rand_pool_detach(RAND_POOL *pool) |
| 561 | { |
| 562 | unsigned char *ret = pool->buffer; |
| 563 | pool->buffer = NULL; |
| 564 | pool->entropy = 0; |
| 565 | return ret; |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * Re-attach the |pool| buffer. It is only allowed to pass |
| 570 | * the |buffer| which was previously detached from the same pool. |
| 571 | */ |
| 572 | void rand_pool_reattach(RAND_POOL *pool, unsigned char *buffer) |
| 573 | { |
| 574 | pool->buffer = buffer; |
| 575 | OPENSSL_cleanse(pool->buffer, pool->len); |
| 576 | pool->len = 0; |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * If |entropy_factor| bits contain 1 bit of entropy, how many bytes does one |
| 581 | * need to obtain at least |bits| bits of entropy? |
| 582 | */ |
| 583 | #define ENTROPY_TO_BYTES(bits, entropy_factor) \ |
| 584 | (((bits) * (entropy_factor) + 7) / 8) |
| 585 | |
| 586 | |
| 587 | /* |
| 588 | * Checks whether the |pool|'s entropy is available to the caller. |
| 589 | * This is the case when entropy count and buffer length are high enough. |
| 590 | * Returns |
| 591 | * |
| 592 | * |entropy| if the entropy count and buffer size is large enough |
| 593 | * 0 otherwise |
| 594 | */ |
| 595 | size_t rand_pool_entropy_available(RAND_POOL *pool) |
| 596 | { |
| 597 | if (pool->entropy < pool->entropy_requested) |
| 598 | return 0; |
| 599 | |
| 600 | if (pool->len < pool->min_len) |
| 601 | return 0; |
| 602 | |
| 603 | return pool->entropy; |
| 604 | } |
| 605 | |
| 606 | /* |
| 607 | * Returns the (remaining) amount of entropy needed to fill |
| 608 | * the random pool. |
| 609 | */ |
| 610 | |
| 611 | size_t rand_pool_entropy_needed(RAND_POOL *pool) |
| 612 | { |
| 613 | if (pool->entropy < pool->entropy_requested) |
| 614 | return pool->entropy_requested - pool->entropy; |
| 615 | |
| 616 | return 0; |
| 617 | } |
| 618 | |
| 619 | /* Increase the allocation size -- not usable for an attached pool */ |
| 620 | static int rand_pool_grow(RAND_POOL *pool, size_t len) |
| 621 | { |
| 622 | if (len > pool->alloc_len - pool->len) { |
| 623 | unsigned char *p; |
| 624 | const size_t limit = pool->max_len / 2; |
| 625 | size_t newlen = pool->alloc_len; |
| 626 | |
| 627 | if (pool->attached || len > pool->max_len - pool->len) { |
| 628 | RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_INTERNAL_ERROR); |
| 629 | return 0; |
| 630 | } |
| 631 | |
| 632 | do |
| 633 | newlen = newlen < limit ? newlen * 2 : pool->max_len; |
| 634 | while (len > newlen - pool->len); |
| 635 | |
| 636 | if (pool->secure) |
| 637 | p = OPENSSL_secure_zalloc(newlen); |
| 638 | else |
| 639 | p = OPENSSL_zalloc(newlen); |
| 640 | if (p == NULL) { |
| 641 | RANDerr(RAND_F_RAND_POOL_GROW, ERR_R_MALLOC_FAILURE); |
| 642 | return 0; |
| 643 | } |
| 644 | memcpy(p, pool->buffer, pool->len); |
| 645 | if (pool->secure) |
| 646 | OPENSSL_secure_clear_free(pool->buffer, pool->alloc_len); |
| 647 | else |
| 648 | OPENSSL_clear_free(pool->buffer, pool->alloc_len); |
| 649 | pool->buffer = p; |
| 650 | pool->alloc_len = newlen; |
| 651 | } |
| 652 | return 1; |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * Returns the number of bytes needed to fill the pool, assuming |
| 657 | * the input has 1 / |entropy_factor| entropy bits per data bit. |
| 658 | * In case of an error, 0 is returned. |
| 659 | */ |
| 660 | |
| 661 | size_t rand_pool_bytes_needed(RAND_POOL *pool, unsigned int entropy_factor) |
| 662 | { |
| 663 | size_t bytes_needed; |
| 664 | size_t entropy_needed = rand_pool_entropy_needed(pool); |
| 665 | |
| 666 | if (entropy_factor < 1) { |
| 667 | RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE); |
| 668 | return 0; |
| 669 | } |
| 670 | |
| 671 | bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_factor); |
| 672 | |
| 673 | if (bytes_needed > pool->max_len - pool->len) { |
| 674 | /* not enough space left */ |
| 675 | RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW); |
| 676 | return 0; |
| 677 | } |
| 678 | |
| 679 | if (pool->len < pool->min_len && |
| 680 | bytes_needed < pool->min_len - pool->len) |
| 681 | /* to meet the min_len requirement */ |
| 682 | bytes_needed = pool->min_len - pool->len; |
| 683 | |
| 684 | /* |
| 685 | * Make sure the buffer is large enough for the requested amount |
| 686 | * of data. This guarantees that existing code patterns where |
| 687 | * rand_pool_add_begin, rand_pool_add_end or rand_pool_add |
| 688 | * are used to collect entropy data without any error handling |
| 689 | * whatsoever, continue to be valid. |
| 690 | * Furthermore if the allocation here fails once, make sure that |
| 691 | * we don't fall back to a less secure or even blocking random source, |
| 692 | * as that could happen by the existing code patterns. |
| 693 | * This is not a concern for additional data, therefore that |
| 694 | * is not needed if rand_pool_grow fails in other places. |
| 695 | */ |
| 696 | if (!rand_pool_grow(pool, bytes_needed)) { |
| 697 | /* persistent error for this pool */ |
| 698 | pool->max_len = pool->len = 0; |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | return bytes_needed; |
| 703 | } |
| 704 | |
| 705 | /* Returns the remaining number of bytes available */ |
| 706 | size_t rand_pool_bytes_remaining(RAND_POOL *pool) |
| 707 | { |
| 708 | return pool->max_len - pool->len; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * Add random bytes to the random pool. |
| 713 | * |
| 714 | * It is expected that the |buffer| contains |len| bytes of |
| 715 | * random input which contains at least |entropy| bits of |
| 716 | * randomness. |
| 717 | * |
| 718 | * Returns 1 if the added amount is adequate, otherwise 0 |
| 719 | */ |
| 720 | int rand_pool_add(RAND_POOL *pool, |
| 721 | const unsigned char *buffer, size_t len, size_t entropy) |
| 722 | { |
| 723 | if (len > pool->max_len - pool->len) { |
| 724 | RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG); |
| 725 | return 0; |
| 726 | } |
| 727 | |
| 728 | if (pool->buffer == NULL) { |
| 729 | RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR); |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | if (len > 0) { |
| 734 | /* |
| 735 | * This is to protect us from accidentally passing the buffer |
| 736 | * returned from rand_pool_add_begin. |
| 737 | * The check for alloc_len makes sure we do not compare the |
| 738 | * address of the end of the allocated memory to something |
| 739 | * different, since that comparison would have an |
| 740 | * indeterminate result. |
| 741 | */ |
| 742 | if (pool->alloc_len > pool->len && pool->buffer + pool->len == buffer) { |
| 743 | RANDerr(RAND_F_RAND_POOL_ADD, ERR_R_INTERNAL_ERROR); |
| 744 | return 0; |
| 745 | } |
| 746 | /* |
| 747 | * We have that only for cases when a pool is used to collect |
| 748 | * additional data. |
| 749 | * For entropy data, as long as the allocation request stays within |
| 750 | * the limits given by rand_pool_bytes_needed this rand_pool_grow |
| 751 | * below is guaranteed to succeed, thus no allocation happens. |
| 752 | */ |
| 753 | if (!rand_pool_grow(pool, len)) |
| 754 | return 0; |
| 755 | memcpy(pool->buffer + pool->len, buffer, len); |
| 756 | pool->len += len; |
| 757 | pool->entropy += entropy; |
| 758 | } |
| 759 | |
| 760 | return 1; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * Start to add random bytes to the random pool in-place. |
| 765 | * |
| 766 | * Reserves the next |len| bytes for adding random bytes in-place |
| 767 | * and returns a pointer to the buffer. |
| 768 | * The caller is allowed to copy up to |len| bytes into the buffer. |
| 769 | * If |len| == 0 this is considered a no-op and a NULL pointer |
| 770 | * is returned without producing an error message. |
| 771 | * |
| 772 | * After updating the buffer, rand_pool_add_end() needs to be called |
| 773 | * to finish the update operation (see next comment). |
| 774 | */ |
| 775 | unsigned char *rand_pool_add_begin(RAND_POOL *pool, size_t len) |
| 776 | { |
| 777 | if (len == 0) |
| 778 | return NULL; |
| 779 | |
| 780 | if (len > pool->max_len - pool->len) { |
| 781 | RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW); |
| 782 | return NULL; |
| 783 | } |
| 784 | |
| 785 | if (pool->buffer == NULL) { |
| 786 | RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, ERR_R_INTERNAL_ERROR); |
| 787 | return NULL; |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | * As long as the allocation request stays within the limits given |
| 792 | * by rand_pool_bytes_needed this rand_pool_grow below is guaranteed |
| 793 | * to succeed, thus no allocation happens. |
| 794 | * We have that only for cases when a pool is used to collect |
| 795 | * additional data. Then the buffer might need to grow here, |
| 796 | * and of course the caller is responsible to check the return |
| 797 | * value of this function. |
| 798 | */ |
| 799 | if (!rand_pool_grow(pool, len)) |
| 800 | return NULL; |
| 801 | |
| 802 | return pool->buffer + pool->len; |
| 803 | } |
| 804 | |
| 805 | /* |
| 806 | * Finish to add random bytes to the random pool in-place. |
| 807 | * |
| 808 | * Finishes an in-place update of the random pool started by |
| 809 | * rand_pool_add_begin() (see previous comment). |
| 810 | * It is expected that |len| bytes of random input have been added |
| 811 | * to the buffer which contain at least |entropy| bits of randomness. |
| 812 | * It is allowed to add less bytes than originally reserved. |
| 813 | */ |
| 814 | int rand_pool_add_end(RAND_POOL *pool, size_t len, size_t entropy) |
| 815 | { |
| 816 | if (len > pool->alloc_len - pool->len) { |
| 817 | RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW); |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | if (len > 0) { |
| 822 | pool->len += len; |
| 823 | pool->entropy += entropy; |
| 824 | } |
| 825 | |
| 826 | return 1; |
| 827 | } |
| 828 | |
| 829 | int RAND_set_rand_method(const RAND_METHOD *meth) |
| 830 | { |
| 831 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
| 832 | return 0; |
| 833 | |
| 834 | CRYPTO_THREAD_write_lock(rand_meth_lock); |
| 835 | #ifndef OPENSSL_NO_ENGINE |
| 836 | ENGINE_finish(funct_ref); |
| 837 | funct_ref = NULL; |
| 838 | #endif |
| 839 | default_RAND_meth = meth; |
| 840 | CRYPTO_THREAD_unlock(rand_meth_lock); |
| 841 | return 1; |
| 842 | } |
| 843 | |
| 844 | const RAND_METHOD *RAND_get_rand_method(void) |
| 845 | { |
| 846 | const RAND_METHOD *tmp_meth = NULL; |
| 847 | |
| 848 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
| 849 | return NULL; |
| 850 | |
| 851 | CRYPTO_THREAD_write_lock(rand_meth_lock); |
| 852 | if (default_RAND_meth == NULL) { |
| 853 | #ifndef OPENSSL_NO_ENGINE |
| 854 | ENGINE *e; |
| 855 | |
| 856 | /* If we have an engine that can do RAND, use it. */ |
| 857 | if ((e = ENGINE_get_default_RAND()) != NULL |
| 858 | && (tmp_meth = ENGINE_get_RAND(e)) != NULL) { |
| 859 | funct_ref = e; |
| 860 | default_RAND_meth = tmp_meth; |
| 861 | } else { |
| 862 | ENGINE_finish(e); |
| 863 | default_RAND_meth = &rand_meth; |
| 864 | } |
| 865 | #else |
| 866 | default_RAND_meth = &rand_meth; |
| 867 | #endif |
| 868 | } |
| 869 | tmp_meth = default_RAND_meth; |
| 870 | CRYPTO_THREAD_unlock(rand_meth_lock); |
| 871 | return tmp_meth; |
| 872 | } |
| 873 | |
| 874 | #ifndef OPENSSL_NO_ENGINE |
| 875 | int RAND_set_rand_engine(ENGINE *engine) |
| 876 | { |
| 877 | const RAND_METHOD *tmp_meth = NULL; |
| 878 | |
| 879 | if (!RUN_ONCE(&rand_init, do_rand_init)) |
| 880 | return 0; |
| 881 | |
| 882 | if (engine != NULL) { |
| 883 | if (!ENGINE_init(engine)) |
| 884 | return 0; |
| 885 | tmp_meth = ENGINE_get_RAND(engine); |
| 886 | if (tmp_meth == NULL) { |
| 887 | ENGINE_finish(engine); |
| 888 | return 0; |
| 889 | } |
| 890 | } |
| 891 | CRYPTO_THREAD_write_lock(rand_engine_lock); |
| 892 | /* This function releases any prior ENGINE so call it first */ |
| 893 | RAND_set_rand_method(tmp_meth); |
| 894 | funct_ref = engine; |
| 895 | CRYPTO_THREAD_unlock(rand_engine_lock); |
| 896 | return 1; |
| 897 | } |
| 898 | #endif |
| 899 | |
| 900 | void RAND_seed(const void *buf, int num) |
| 901 | { |
| 902 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 903 | |
| 904 | if (meth != NULL && meth->seed != NULL) |
| 905 | meth->seed(buf, num); |
| 906 | } |
| 907 | |
| 908 | void RAND_add(const void *buf, int num, double randomness) |
| 909 | { |
| 910 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 911 | |
| 912 | if (meth != NULL && meth->add != NULL) |
| 913 | meth->add(buf, num, randomness); |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * This function is not part of RAND_METHOD, so if we're not using |
| 918 | * the default method, then just call RAND_bytes(). Otherwise make |
| 919 | * sure we're instantiated and use the private DRBG. |
| 920 | */ |
| 921 | int RAND_priv_bytes(unsigned char *buf, int num) |
| 922 | { |
| 923 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 924 | RAND_DRBG *drbg; |
| 925 | |
| 926 | if (meth != NULL && meth != RAND_OpenSSL()) |
| 927 | return RAND_bytes(buf, num); |
| 928 | |
| 929 | drbg = RAND_DRBG_get0_private(); |
| 930 | if (drbg != NULL) |
| 931 | return RAND_DRBG_bytes(drbg, buf, num); |
| 932 | |
| 933 | return 0; |
| 934 | } |
| 935 | |
| 936 | int RAND_bytes(unsigned char *buf, int num) |
| 937 | { |
| 938 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 939 | |
| 940 | if (meth != NULL && meth->bytes != NULL) |
| 941 | return meth->bytes(buf, num); |
| 942 | RANDerr(RAND_F_RAND_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); |
| 943 | return -1; |
| 944 | } |
| 945 | |
| 946 | #if OPENSSL_API_COMPAT < 0x10100000L |
| 947 | int RAND_pseudo_bytes(unsigned char *buf, int num) |
| 948 | { |
| 949 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 950 | |
| 951 | if (meth != NULL && meth->pseudorand != NULL) |
| 952 | return meth->pseudorand(buf, num); |
| 953 | RANDerr(RAND_F_RAND_PSEUDO_BYTES, RAND_R_FUNC_NOT_IMPLEMENTED); |
| 954 | return -1; |
| 955 | } |
| 956 | #endif |
| 957 | |
| 958 | int RAND_status(void) |
| 959 | { |
| 960 | const RAND_METHOD *meth = RAND_get_rand_method(); |
| 961 | |
| 962 | if (meth != NULL && meth->status != NULL) |
| 963 | return meth->status(); |
| 964 | return 0; |
| 965 | } |