yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2002-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <assert.h> |
| 12 | #include <limits.h> |
| 13 | #include <stdio.h> |
| 14 | #include "internal/cryptlib.h" |
| 15 | #include "bn_local.h" |
| 16 | |
| 17 | #ifndef OPENSSL_NO_EC2M |
| 18 | |
| 19 | /* |
| 20 | * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should |
| 21 | * fail. |
| 22 | */ |
| 23 | # define MAX_ITERATIONS 50 |
| 24 | |
| 25 | # define SQR_nibble(w) ((((w) & 8) << 3) \ |
| 26 | | (((w) & 4) << 2) \ |
| 27 | | (((w) & 2) << 1) \ |
| 28 | | ((w) & 1)) |
| 29 | |
| 30 | |
| 31 | /* Platform-specific macros to accelerate squaring. */ |
| 32 | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
| 33 | # define SQR1(w) \ |
| 34 | SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \ |
| 35 | SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \ |
| 36 | SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \ |
| 37 | SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32) |
| 38 | # define SQR0(w) \ |
| 39 | SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \ |
| 40 | SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \ |
| 41 | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
| 42 | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
| 43 | # endif |
| 44 | # ifdef THIRTY_TWO_BIT |
| 45 | # define SQR1(w) \ |
| 46 | SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \ |
| 47 | SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16) |
| 48 | # define SQR0(w) \ |
| 49 | SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \ |
| 50 | SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) ) |
| 51 | # endif |
| 52 | |
| 53 | # if !defined(OPENSSL_BN_ASM_GF2m) |
| 54 | /* |
| 55 | * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is |
| 56 | * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that |
| 57 | * the variables have the right amount of space allocated. |
| 58 | */ |
| 59 | # ifdef THIRTY_TWO_BIT |
| 60 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
| 61 | const BN_ULONG b) |
| 62 | { |
| 63 | register BN_ULONG h, l, s; |
| 64 | BN_ULONG tab[8], top2b = a >> 30; |
| 65 | register BN_ULONG a1, a2, a4; |
| 66 | |
| 67 | a1 = a & (0x3FFFFFFF); |
| 68 | a2 = a1 << 1; |
| 69 | a4 = a2 << 1; |
| 70 | |
| 71 | tab[0] = 0; |
| 72 | tab[1] = a1; |
| 73 | tab[2] = a2; |
| 74 | tab[3] = a1 ^ a2; |
| 75 | tab[4] = a4; |
| 76 | tab[5] = a1 ^ a4; |
| 77 | tab[6] = a2 ^ a4; |
| 78 | tab[7] = a1 ^ a2 ^ a4; |
| 79 | |
| 80 | s = tab[b & 0x7]; |
| 81 | l = s; |
| 82 | s = tab[b >> 3 & 0x7]; |
| 83 | l ^= s << 3; |
| 84 | h = s >> 29; |
| 85 | s = tab[b >> 6 & 0x7]; |
| 86 | l ^= s << 6; |
| 87 | h ^= s >> 26; |
| 88 | s = tab[b >> 9 & 0x7]; |
| 89 | l ^= s << 9; |
| 90 | h ^= s >> 23; |
| 91 | s = tab[b >> 12 & 0x7]; |
| 92 | l ^= s << 12; |
| 93 | h ^= s >> 20; |
| 94 | s = tab[b >> 15 & 0x7]; |
| 95 | l ^= s << 15; |
| 96 | h ^= s >> 17; |
| 97 | s = tab[b >> 18 & 0x7]; |
| 98 | l ^= s << 18; |
| 99 | h ^= s >> 14; |
| 100 | s = tab[b >> 21 & 0x7]; |
| 101 | l ^= s << 21; |
| 102 | h ^= s >> 11; |
| 103 | s = tab[b >> 24 & 0x7]; |
| 104 | l ^= s << 24; |
| 105 | h ^= s >> 8; |
| 106 | s = tab[b >> 27 & 0x7]; |
| 107 | l ^= s << 27; |
| 108 | h ^= s >> 5; |
| 109 | s = tab[b >> 30]; |
| 110 | l ^= s << 30; |
| 111 | h ^= s >> 2; |
| 112 | |
| 113 | /* compensate for the top two bits of a */ |
| 114 | |
| 115 | if (top2b & 01) { |
| 116 | l ^= b << 30; |
| 117 | h ^= b >> 2; |
| 118 | } |
| 119 | if (top2b & 02) { |
| 120 | l ^= b << 31; |
| 121 | h ^= b >> 1; |
| 122 | } |
| 123 | |
| 124 | *r1 = h; |
| 125 | *r0 = l; |
| 126 | } |
| 127 | # endif |
| 128 | # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) |
| 129 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, |
| 130 | const BN_ULONG b) |
| 131 | { |
| 132 | register BN_ULONG h, l, s; |
| 133 | BN_ULONG tab[16], top3b = a >> 61; |
| 134 | register BN_ULONG a1, a2, a4, a8; |
| 135 | |
| 136 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); |
| 137 | a2 = a1 << 1; |
| 138 | a4 = a2 << 1; |
| 139 | a8 = a4 << 1; |
| 140 | |
| 141 | tab[0] = 0; |
| 142 | tab[1] = a1; |
| 143 | tab[2] = a2; |
| 144 | tab[3] = a1 ^ a2; |
| 145 | tab[4] = a4; |
| 146 | tab[5] = a1 ^ a4; |
| 147 | tab[6] = a2 ^ a4; |
| 148 | tab[7] = a1 ^ a2 ^ a4; |
| 149 | tab[8] = a8; |
| 150 | tab[9] = a1 ^ a8; |
| 151 | tab[10] = a2 ^ a8; |
| 152 | tab[11] = a1 ^ a2 ^ a8; |
| 153 | tab[12] = a4 ^ a8; |
| 154 | tab[13] = a1 ^ a4 ^ a8; |
| 155 | tab[14] = a2 ^ a4 ^ a8; |
| 156 | tab[15] = a1 ^ a2 ^ a4 ^ a8; |
| 157 | |
| 158 | s = tab[b & 0xF]; |
| 159 | l = s; |
| 160 | s = tab[b >> 4 & 0xF]; |
| 161 | l ^= s << 4; |
| 162 | h = s >> 60; |
| 163 | s = tab[b >> 8 & 0xF]; |
| 164 | l ^= s << 8; |
| 165 | h ^= s >> 56; |
| 166 | s = tab[b >> 12 & 0xF]; |
| 167 | l ^= s << 12; |
| 168 | h ^= s >> 52; |
| 169 | s = tab[b >> 16 & 0xF]; |
| 170 | l ^= s << 16; |
| 171 | h ^= s >> 48; |
| 172 | s = tab[b >> 20 & 0xF]; |
| 173 | l ^= s << 20; |
| 174 | h ^= s >> 44; |
| 175 | s = tab[b >> 24 & 0xF]; |
| 176 | l ^= s << 24; |
| 177 | h ^= s >> 40; |
| 178 | s = tab[b >> 28 & 0xF]; |
| 179 | l ^= s << 28; |
| 180 | h ^= s >> 36; |
| 181 | s = tab[b >> 32 & 0xF]; |
| 182 | l ^= s << 32; |
| 183 | h ^= s >> 32; |
| 184 | s = tab[b >> 36 & 0xF]; |
| 185 | l ^= s << 36; |
| 186 | h ^= s >> 28; |
| 187 | s = tab[b >> 40 & 0xF]; |
| 188 | l ^= s << 40; |
| 189 | h ^= s >> 24; |
| 190 | s = tab[b >> 44 & 0xF]; |
| 191 | l ^= s << 44; |
| 192 | h ^= s >> 20; |
| 193 | s = tab[b >> 48 & 0xF]; |
| 194 | l ^= s << 48; |
| 195 | h ^= s >> 16; |
| 196 | s = tab[b >> 52 & 0xF]; |
| 197 | l ^= s << 52; |
| 198 | h ^= s >> 12; |
| 199 | s = tab[b >> 56 & 0xF]; |
| 200 | l ^= s << 56; |
| 201 | h ^= s >> 8; |
| 202 | s = tab[b >> 60]; |
| 203 | l ^= s << 60; |
| 204 | h ^= s >> 4; |
| 205 | |
| 206 | /* compensate for the top three bits of a */ |
| 207 | |
| 208 | if (top3b & 01) { |
| 209 | l ^= b << 61; |
| 210 | h ^= b >> 3; |
| 211 | } |
| 212 | if (top3b & 02) { |
| 213 | l ^= b << 62; |
| 214 | h ^= b >> 2; |
| 215 | } |
| 216 | if (top3b & 04) { |
| 217 | l ^= b << 63; |
| 218 | h ^= b >> 1; |
| 219 | } |
| 220 | |
| 221 | *r1 = h; |
| 222 | *r0 = l; |
| 223 | } |
| 224 | # endif |
| 225 | |
| 226 | /* |
| 227 | * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, |
| 228 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST |
| 229 | * ensure that the variables have the right amount of space allocated. |
| 230 | */ |
| 231 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, |
| 232 | const BN_ULONG b1, const BN_ULONG b0) |
| 233 | { |
| 234 | BN_ULONG m1, m0; |
| 235 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ |
| 236 | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); |
| 237 | bn_GF2m_mul_1x1(r + 1, r, a0, b0); |
| 238 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); |
| 239 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ |
| 240 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ |
| 241 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ |
| 242 | } |
| 243 | # else |
| 244 | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, |
| 245 | BN_ULONG b0); |
| 246 | # endif |
| 247 | |
| 248 | /* |
| 249 | * Add polynomials a and b and store result in r; r could be a or b, a and b |
| 250 | * could be equal; r is the bitwise XOR of a and b. |
| 251 | */ |
| 252 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) |
| 253 | { |
| 254 | int i; |
| 255 | const BIGNUM *at, *bt; |
| 256 | |
| 257 | bn_check_top(a); |
| 258 | bn_check_top(b); |
| 259 | |
| 260 | if (a->top < b->top) { |
| 261 | at = b; |
| 262 | bt = a; |
| 263 | } else { |
| 264 | at = a; |
| 265 | bt = b; |
| 266 | } |
| 267 | |
| 268 | if (bn_wexpand(r, at->top) == NULL) |
| 269 | return 0; |
| 270 | |
| 271 | for (i = 0; i < bt->top; i++) { |
| 272 | r->d[i] = at->d[i] ^ bt->d[i]; |
| 273 | } |
| 274 | for (; i < at->top; i++) { |
| 275 | r->d[i] = at->d[i]; |
| 276 | } |
| 277 | |
| 278 | r->top = at->top; |
| 279 | bn_correct_top(r); |
| 280 | |
| 281 | return 1; |
| 282 | } |
| 283 | |
| 284 | /*- |
| 285 | * Some functions allow for representation of the irreducible polynomials |
| 286 | * as an int[], say p. The irreducible f(t) is then of the form: |
| 287 | * t^p[0] + t^p[1] + ... + t^p[k] |
| 288 | * where m = p[0] > p[1] > ... > p[k] = 0. |
| 289 | */ |
| 290 | |
| 291 | /* Performs modular reduction of a and store result in r. r could be a. */ |
| 292 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) |
| 293 | { |
| 294 | int j, k; |
| 295 | int n, dN, d0, d1; |
| 296 | BN_ULONG zz, *z; |
| 297 | |
| 298 | bn_check_top(a); |
| 299 | |
| 300 | if (!p[0]) { |
| 301 | /* reduction mod 1 => return 0 */ |
| 302 | BN_zero(r); |
| 303 | return 1; |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Since the algorithm does reduction in the r value, if a != r, copy the |
| 308 | * contents of a into r so we can do reduction in r. |
| 309 | */ |
| 310 | if (a != r) { |
| 311 | if (!bn_wexpand(r, a->top)) |
| 312 | return 0; |
| 313 | for (j = 0; j < a->top; j++) { |
| 314 | r->d[j] = a->d[j]; |
| 315 | } |
| 316 | r->top = a->top; |
| 317 | } |
| 318 | z = r->d; |
| 319 | |
| 320 | /* start reduction */ |
| 321 | dN = p[0] / BN_BITS2; |
| 322 | for (j = r->top - 1; j > dN;) { |
| 323 | zz = z[j]; |
| 324 | if (z[j] == 0) { |
| 325 | j--; |
| 326 | continue; |
| 327 | } |
| 328 | z[j] = 0; |
| 329 | |
| 330 | for (k = 1; p[k] != 0; k++) { |
| 331 | /* reducing component t^p[k] */ |
| 332 | n = p[0] - p[k]; |
| 333 | d0 = n % BN_BITS2; |
| 334 | d1 = BN_BITS2 - d0; |
| 335 | n /= BN_BITS2; |
| 336 | z[j - n] ^= (zz >> d0); |
| 337 | if (d0) |
| 338 | z[j - n - 1] ^= (zz << d1); |
| 339 | } |
| 340 | |
| 341 | /* reducing component t^0 */ |
| 342 | n = dN; |
| 343 | d0 = p[0] % BN_BITS2; |
| 344 | d1 = BN_BITS2 - d0; |
| 345 | z[j - n] ^= (zz >> d0); |
| 346 | if (d0) |
| 347 | z[j - n - 1] ^= (zz << d1); |
| 348 | } |
| 349 | |
| 350 | /* final round of reduction */ |
| 351 | while (j == dN) { |
| 352 | |
| 353 | d0 = p[0] % BN_BITS2; |
| 354 | zz = z[dN] >> d0; |
| 355 | if (zz == 0) |
| 356 | break; |
| 357 | d1 = BN_BITS2 - d0; |
| 358 | |
| 359 | /* clear up the top d1 bits */ |
| 360 | if (d0) |
| 361 | z[dN] = (z[dN] << d1) >> d1; |
| 362 | else |
| 363 | z[dN] = 0; |
| 364 | z[0] ^= zz; /* reduction t^0 component */ |
| 365 | |
| 366 | for (k = 1; p[k] != 0; k++) { |
| 367 | BN_ULONG tmp_ulong; |
| 368 | |
| 369 | /* reducing component t^p[k] */ |
| 370 | n = p[k] / BN_BITS2; |
| 371 | d0 = p[k] % BN_BITS2; |
| 372 | d1 = BN_BITS2 - d0; |
| 373 | z[n] ^= (zz << d0); |
| 374 | if (d0 && (tmp_ulong = zz >> d1)) |
| 375 | z[n + 1] ^= tmp_ulong; |
| 376 | } |
| 377 | |
| 378 | } |
| 379 | |
| 380 | bn_correct_top(r); |
| 381 | return 1; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Performs modular reduction of a by p and store result in r. r could be a. |
| 386 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper |
| 387 | * function is only provided for convenience; for best performance, use the |
| 388 | * BN_GF2m_mod_arr function. |
| 389 | */ |
| 390 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) |
| 391 | { |
| 392 | int ret = 0; |
| 393 | int arr[6]; |
| 394 | bn_check_top(a); |
| 395 | bn_check_top(p); |
| 396 | ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr)); |
| 397 | if (!ret || ret > (int)OSSL_NELEM(arr)) { |
| 398 | BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH); |
| 399 | return 0; |
| 400 | } |
| 401 | ret = BN_GF2m_mod_arr(r, a, arr); |
| 402 | bn_check_top(r); |
| 403 | return ret; |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * Compute the product of two polynomials a and b, reduce modulo p, and store |
| 408 | * the result in r. r could be a or b; a could be b. |
| 409 | */ |
| 410 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 411 | const int p[], BN_CTX *ctx) |
| 412 | { |
| 413 | int zlen, i, j, k, ret = 0; |
| 414 | BIGNUM *s; |
| 415 | BN_ULONG x1, x0, y1, y0, zz[4]; |
| 416 | |
| 417 | bn_check_top(a); |
| 418 | bn_check_top(b); |
| 419 | |
| 420 | if (a == b) { |
| 421 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); |
| 422 | } |
| 423 | |
| 424 | BN_CTX_start(ctx); |
| 425 | if ((s = BN_CTX_get(ctx)) == NULL) |
| 426 | goto err; |
| 427 | |
| 428 | zlen = a->top + b->top + 4; |
| 429 | if (!bn_wexpand(s, zlen)) |
| 430 | goto err; |
| 431 | s->top = zlen; |
| 432 | |
| 433 | for (i = 0; i < zlen; i++) |
| 434 | s->d[i] = 0; |
| 435 | |
| 436 | for (j = 0; j < b->top; j += 2) { |
| 437 | y0 = b->d[j]; |
| 438 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; |
| 439 | for (i = 0; i < a->top; i += 2) { |
| 440 | x0 = a->d[i]; |
| 441 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; |
| 442 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); |
| 443 | for (k = 0; k < 4; k++) |
| 444 | s->d[i + j + k] ^= zz[k]; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | bn_correct_top(s); |
| 449 | if (BN_GF2m_mod_arr(r, s, p)) |
| 450 | ret = 1; |
| 451 | bn_check_top(r); |
| 452 | |
| 453 | err: |
| 454 | BN_CTX_end(ctx); |
| 455 | return ret; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * Compute the product of two polynomials a and b, reduce modulo p, and store |
| 460 | * the result in r. r could be a or b; a could equal b. This function calls |
| 461 | * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is |
| 462 | * only provided for convenience; for best performance, use the |
| 463 | * BN_GF2m_mod_mul_arr function. |
| 464 | */ |
| 465 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 466 | const BIGNUM *p, BN_CTX *ctx) |
| 467 | { |
| 468 | int ret = 0; |
| 469 | const int max = BN_num_bits(p) + 1; |
| 470 | int *arr = NULL; |
| 471 | bn_check_top(a); |
| 472 | bn_check_top(b); |
| 473 | bn_check_top(p); |
| 474 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) |
| 475 | goto err; |
| 476 | ret = BN_GF2m_poly2arr(p, arr, max); |
| 477 | if (!ret || ret > max) { |
| 478 | BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH); |
| 479 | goto err; |
| 480 | } |
| 481 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); |
| 482 | bn_check_top(r); |
| 483 | err: |
| 484 | OPENSSL_free(arr); |
| 485 | return ret; |
| 486 | } |
| 487 | |
| 488 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ |
| 489 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
| 490 | BN_CTX *ctx) |
| 491 | { |
| 492 | int i, ret = 0; |
| 493 | BIGNUM *s; |
| 494 | |
| 495 | bn_check_top(a); |
| 496 | BN_CTX_start(ctx); |
| 497 | if ((s = BN_CTX_get(ctx)) == NULL) |
| 498 | goto err; |
| 499 | if (!bn_wexpand(s, 2 * a->top)) |
| 500 | goto err; |
| 501 | |
| 502 | for (i = a->top - 1; i >= 0; i--) { |
| 503 | s->d[2 * i + 1] = SQR1(a->d[i]); |
| 504 | s->d[2 * i] = SQR0(a->d[i]); |
| 505 | } |
| 506 | |
| 507 | s->top = 2 * a->top; |
| 508 | bn_correct_top(s); |
| 509 | if (!BN_GF2m_mod_arr(r, s, p)) |
| 510 | goto err; |
| 511 | bn_check_top(r); |
| 512 | ret = 1; |
| 513 | err: |
| 514 | BN_CTX_end(ctx); |
| 515 | return ret; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Square a, reduce the result mod p, and store it in a. r could be a. This |
| 520 | * function calls down to the BN_GF2m_mod_sqr_arr implementation; this |
| 521 | * wrapper function is only provided for convenience; for best performance, |
| 522 | * use the BN_GF2m_mod_sqr_arr function. |
| 523 | */ |
| 524 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| 525 | { |
| 526 | int ret = 0; |
| 527 | const int max = BN_num_bits(p) + 1; |
| 528 | int *arr = NULL; |
| 529 | |
| 530 | bn_check_top(a); |
| 531 | bn_check_top(p); |
| 532 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) |
| 533 | goto err; |
| 534 | ret = BN_GF2m_poly2arr(p, arr, max); |
| 535 | if (!ret || ret > max) { |
| 536 | BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH); |
| 537 | goto err; |
| 538 | } |
| 539 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); |
| 540 | bn_check_top(r); |
| 541 | err: |
| 542 | OPENSSL_free(arr); |
| 543 | return ret; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * Invert a, reduce modulo p, and store the result in r. r could be a. Uses |
| 548 | * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D., |
| 549 | * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic |
| 550 | * Curve Cryptography Over Binary Fields". |
| 551 | */ |
| 552 | static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a, |
| 553 | const BIGNUM *p, BN_CTX *ctx) |
| 554 | { |
| 555 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; |
| 556 | int ret = 0; |
| 557 | |
| 558 | bn_check_top(a); |
| 559 | bn_check_top(p); |
| 560 | |
| 561 | BN_CTX_start(ctx); |
| 562 | |
| 563 | b = BN_CTX_get(ctx); |
| 564 | c = BN_CTX_get(ctx); |
| 565 | u = BN_CTX_get(ctx); |
| 566 | v = BN_CTX_get(ctx); |
| 567 | if (v == NULL) |
| 568 | goto err; |
| 569 | |
| 570 | if (!BN_GF2m_mod(u, a, p)) |
| 571 | goto err; |
| 572 | if (BN_is_zero(u)) |
| 573 | goto err; |
| 574 | |
| 575 | if (!BN_copy(v, p)) |
| 576 | goto err; |
| 577 | # if 0 |
| 578 | if (!BN_one(b)) |
| 579 | goto err; |
| 580 | |
| 581 | while (1) { |
| 582 | while (!BN_is_odd(u)) { |
| 583 | if (BN_is_zero(u)) |
| 584 | goto err; |
| 585 | if (!BN_rshift1(u, u)) |
| 586 | goto err; |
| 587 | if (BN_is_odd(b)) { |
| 588 | if (!BN_GF2m_add(b, b, p)) |
| 589 | goto err; |
| 590 | } |
| 591 | if (!BN_rshift1(b, b)) |
| 592 | goto err; |
| 593 | } |
| 594 | |
| 595 | if (BN_abs_is_word(u, 1)) |
| 596 | break; |
| 597 | |
| 598 | if (BN_num_bits(u) < BN_num_bits(v)) { |
| 599 | tmp = u; |
| 600 | u = v; |
| 601 | v = tmp; |
| 602 | tmp = b; |
| 603 | b = c; |
| 604 | c = tmp; |
| 605 | } |
| 606 | |
| 607 | if (!BN_GF2m_add(u, u, v)) |
| 608 | goto err; |
| 609 | if (!BN_GF2m_add(b, b, c)) |
| 610 | goto err; |
| 611 | } |
| 612 | # else |
| 613 | { |
| 614 | int i; |
| 615 | int ubits = BN_num_bits(u); |
| 616 | int vbits = BN_num_bits(v); /* v is copy of p */ |
| 617 | int top = p->top; |
| 618 | BN_ULONG *udp, *bdp, *vdp, *cdp; |
| 619 | |
| 620 | if (!bn_wexpand(u, top)) |
| 621 | goto err; |
| 622 | udp = u->d; |
| 623 | for (i = u->top; i < top; i++) |
| 624 | udp[i] = 0; |
| 625 | u->top = top; |
| 626 | if (!bn_wexpand(b, top)) |
| 627 | goto err; |
| 628 | bdp = b->d; |
| 629 | bdp[0] = 1; |
| 630 | for (i = 1; i < top; i++) |
| 631 | bdp[i] = 0; |
| 632 | b->top = top; |
| 633 | if (!bn_wexpand(c, top)) |
| 634 | goto err; |
| 635 | cdp = c->d; |
| 636 | for (i = 0; i < top; i++) |
| 637 | cdp[i] = 0; |
| 638 | c->top = top; |
| 639 | vdp = v->d; /* It pays off to "cache" *->d pointers, |
| 640 | * because it allows optimizer to be more |
| 641 | * aggressive. But we don't have to "cache" |
| 642 | * p->d, because *p is declared 'const'... */ |
| 643 | while (1) { |
| 644 | while (ubits && !(udp[0] & 1)) { |
| 645 | BN_ULONG u0, u1, b0, b1, mask; |
| 646 | |
| 647 | u0 = udp[0]; |
| 648 | b0 = bdp[0]; |
| 649 | mask = (BN_ULONG)0 - (b0 & 1); |
| 650 | b0 ^= p->d[0] & mask; |
| 651 | for (i = 0; i < top - 1; i++) { |
| 652 | u1 = udp[i + 1]; |
| 653 | udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2; |
| 654 | u0 = u1; |
| 655 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); |
| 656 | bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2; |
| 657 | b0 = b1; |
| 658 | } |
| 659 | udp[i] = u0 >> 1; |
| 660 | bdp[i] = b0 >> 1; |
| 661 | ubits--; |
| 662 | } |
| 663 | |
| 664 | if (ubits <= BN_BITS2) { |
| 665 | if (udp[0] == 0) /* poly was reducible */ |
| 666 | goto err; |
| 667 | if (udp[0] == 1) |
| 668 | break; |
| 669 | } |
| 670 | |
| 671 | if (ubits < vbits) { |
| 672 | i = ubits; |
| 673 | ubits = vbits; |
| 674 | vbits = i; |
| 675 | tmp = u; |
| 676 | u = v; |
| 677 | v = tmp; |
| 678 | tmp = b; |
| 679 | b = c; |
| 680 | c = tmp; |
| 681 | udp = vdp; |
| 682 | vdp = v->d; |
| 683 | bdp = cdp; |
| 684 | cdp = c->d; |
| 685 | } |
| 686 | for (i = 0; i < top; i++) { |
| 687 | udp[i] ^= vdp[i]; |
| 688 | bdp[i] ^= cdp[i]; |
| 689 | } |
| 690 | if (ubits == vbits) { |
| 691 | BN_ULONG ul; |
| 692 | int utop = (ubits - 1) / BN_BITS2; |
| 693 | |
| 694 | while ((ul = udp[utop]) == 0 && utop) |
| 695 | utop--; |
| 696 | ubits = utop * BN_BITS2 + BN_num_bits_word(ul); |
| 697 | } |
| 698 | } |
| 699 | bn_correct_top(b); |
| 700 | } |
| 701 | # endif |
| 702 | |
| 703 | if (!BN_copy(r, b)) |
| 704 | goto err; |
| 705 | bn_check_top(r); |
| 706 | ret = 1; |
| 707 | |
| 708 | err: |
| 709 | # ifdef BN_DEBUG /* BN_CTX_end would complain about the |
| 710 | * expanded form */ |
| 711 | bn_correct_top(c); |
| 712 | bn_correct_top(u); |
| 713 | bn_correct_top(v); |
| 714 | # endif |
| 715 | BN_CTX_end(ctx); |
| 716 | return ret; |
| 717 | } |
| 718 | |
| 719 | /*- |
| 720 | * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling. |
| 721 | * This is not constant time. |
| 722 | * But it does eliminate first order deduction on the input. |
| 723 | */ |
| 724 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| 725 | { |
| 726 | BIGNUM *b = NULL; |
| 727 | int ret = 0; |
| 728 | |
| 729 | BN_CTX_start(ctx); |
| 730 | if ((b = BN_CTX_get(ctx)) == NULL) |
| 731 | goto err; |
| 732 | |
| 733 | /* generate blinding value */ |
| 734 | do { |
| 735 | if (!BN_priv_rand(b, BN_num_bits(p) - 1, |
| 736 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) |
| 737 | goto err; |
| 738 | } while (BN_is_zero(b)); |
| 739 | |
| 740 | /* r := a * b */ |
| 741 | if (!BN_GF2m_mod_mul(r, a, b, p, ctx)) |
| 742 | goto err; |
| 743 | |
| 744 | /* r := 1/(a * b) */ |
| 745 | if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx)) |
| 746 | goto err; |
| 747 | |
| 748 | /* r := b/(a * b) = 1/a */ |
| 749 | if (!BN_GF2m_mod_mul(r, r, b, p, ctx)) |
| 750 | goto err; |
| 751 | |
| 752 | ret = 1; |
| 753 | |
| 754 | err: |
| 755 | BN_CTX_end(ctx); |
| 756 | return ret; |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * Invert xx, reduce modulo p, and store the result in r. r could be xx. |
| 761 | * This function calls down to the BN_GF2m_mod_inv implementation; this |
| 762 | * wrapper function is only provided for convenience; for best performance, |
| 763 | * use the BN_GF2m_mod_inv function. |
| 764 | */ |
| 765 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], |
| 766 | BN_CTX *ctx) |
| 767 | { |
| 768 | BIGNUM *field; |
| 769 | int ret = 0; |
| 770 | |
| 771 | bn_check_top(xx); |
| 772 | BN_CTX_start(ctx); |
| 773 | if ((field = BN_CTX_get(ctx)) == NULL) |
| 774 | goto err; |
| 775 | if (!BN_GF2m_arr2poly(p, field)) |
| 776 | goto err; |
| 777 | |
| 778 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); |
| 779 | bn_check_top(r); |
| 780 | |
| 781 | err: |
| 782 | BN_CTX_end(ctx); |
| 783 | return ret; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Divide y by x, reduce modulo p, and store the result in r. r could be x |
| 788 | * or y, x could equal y. |
| 789 | */ |
| 790 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, |
| 791 | const BIGNUM *p, BN_CTX *ctx) |
| 792 | { |
| 793 | BIGNUM *xinv = NULL; |
| 794 | int ret = 0; |
| 795 | |
| 796 | bn_check_top(y); |
| 797 | bn_check_top(x); |
| 798 | bn_check_top(p); |
| 799 | |
| 800 | BN_CTX_start(ctx); |
| 801 | xinv = BN_CTX_get(ctx); |
| 802 | if (xinv == NULL) |
| 803 | goto err; |
| 804 | |
| 805 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) |
| 806 | goto err; |
| 807 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) |
| 808 | goto err; |
| 809 | bn_check_top(r); |
| 810 | ret = 1; |
| 811 | |
| 812 | err: |
| 813 | BN_CTX_end(ctx); |
| 814 | return ret; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx |
| 819 | * * or yy, xx could equal yy. This function calls down to the |
| 820 | * BN_GF2m_mod_div implementation; this wrapper function is only provided for |
| 821 | * convenience; for best performance, use the BN_GF2m_mod_div function. |
| 822 | */ |
| 823 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, |
| 824 | const int p[], BN_CTX *ctx) |
| 825 | { |
| 826 | BIGNUM *field; |
| 827 | int ret = 0; |
| 828 | |
| 829 | bn_check_top(yy); |
| 830 | bn_check_top(xx); |
| 831 | |
| 832 | BN_CTX_start(ctx); |
| 833 | if ((field = BN_CTX_get(ctx)) == NULL) |
| 834 | goto err; |
| 835 | if (!BN_GF2m_arr2poly(p, field)) |
| 836 | goto err; |
| 837 | |
| 838 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); |
| 839 | bn_check_top(r); |
| 840 | |
| 841 | err: |
| 842 | BN_CTX_end(ctx); |
| 843 | return ret; |
| 844 | } |
| 845 | |
| 846 | /* |
| 847 | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
| 848 | * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE |
| 849 | * P1363. |
| 850 | */ |
| 851 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 852 | const int p[], BN_CTX *ctx) |
| 853 | { |
| 854 | int ret = 0, i, n; |
| 855 | BIGNUM *u; |
| 856 | |
| 857 | bn_check_top(a); |
| 858 | bn_check_top(b); |
| 859 | |
| 860 | if (BN_is_zero(b)) |
| 861 | return BN_one(r); |
| 862 | |
| 863 | if (BN_abs_is_word(b, 1)) |
| 864 | return (BN_copy(r, a) != NULL); |
| 865 | |
| 866 | BN_CTX_start(ctx); |
| 867 | if ((u = BN_CTX_get(ctx)) == NULL) |
| 868 | goto err; |
| 869 | |
| 870 | if (!BN_GF2m_mod_arr(u, a, p)) |
| 871 | goto err; |
| 872 | |
| 873 | n = BN_num_bits(b) - 1; |
| 874 | for (i = n - 1; i >= 0; i--) { |
| 875 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) |
| 876 | goto err; |
| 877 | if (BN_is_bit_set(b, i)) { |
| 878 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) |
| 879 | goto err; |
| 880 | } |
| 881 | } |
| 882 | if (!BN_copy(r, u)) |
| 883 | goto err; |
| 884 | bn_check_top(r); |
| 885 | ret = 1; |
| 886 | err: |
| 887 | BN_CTX_end(ctx); |
| 888 | return ret; |
| 889 | } |
| 890 | |
| 891 | /* |
| 892 | * Compute the bth power of a, reduce modulo p, and store the result in r. r |
| 893 | * could be a. This function calls down to the BN_GF2m_mod_exp_arr |
| 894 | * implementation; this wrapper function is only provided for convenience; |
| 895 | * for best performance, use the BN_GF2m_mod_exp_arr function. |
| 896 | */ |
| 897 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 898 | const BIGNUM *p, BN_CTX *ctx) |
| 899 | { |
| 900 | int ret = 0; |
| 901 | const int max = BN_num_bits(p) + 1; |
| 902 | int *arr = NULL; |
| 903 | bn_check_top(a); |
| 904 | bn_check_top(b); |
| 905 | bn_check_top(p); |
| 906 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) |
| 907 | goto err; |
| 908 | ret = BN_GF2m_poly2arr(p, arr, max); |
| 909 | if (!ret || ret > max) { |
| 910 | BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH); |
| 911 | goto err; |
| 912 | } |
| 913 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); |
| 914 | bn_check_top(r); |
| 915 | err: |
| 916 | OPENSSL_free(arr); |
| 917 | return ret; |
| 918 | } |
| 919 | |
| 920 | /* |
| 921 | * Compute the square root of a, reduce modulo p, and store the result in r. |
| 922 | * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363. |
| 923 | */ |
| 924 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], |
| 925 | BN_CTX *ctx) |
| 926 | { |
| 927 | int ret = 0; |
| 928 | BIGNUM *u; |
| 929 | |
| 930 | bn_check_top(a); |
| 931 | |
| 932 | if (!p[0]) { |
| 933 | /* reduction mod 1 => return 0 */ |
| 934 | BN_zero(r); |
| 935 | return 1; |
| 936 | } |
| 937 | |
| 938 | BN_CTX_start(ctx); |
| 939 | if ((u = BN_CTX_get(ctx)) == NULL) |
| 940 | goto err; |
| 941 | |
| 942 | if (!BN_set_bit(u, p[0] - 1)) |
| 943 | goto err; |
| 944 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); |
| 945 | bn_check_top(r); |
| 946 | |
| 947 | err: |
| 948 | BN_CTX_end(ctx); |
| 949 | return ret; |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * Compute the square root of a, reduce modulo p, and store the result in r. |
| 954 | * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr |
| 955 | * implementation; this wrapper function is only provided for convenience; |
| 956 | * for best performance, use the BN_GF2m_mod_sqrt_arr function. |
| 957 | */ |
| 958 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| 959 | { |
| 960 | int ret = 0; |
| 961 | const int max = BN_num_bits(p) + 1; |
| 962 | int *arr = NULL; |
| 963 | bn_check_top(a); |
| 964 | bn_check_top(p); |
| 965 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) |
| 966 | goto err; |
| 967 | ret = BN_GF2m_poly2arr(p, arr, max); |
| 968 | if (!ret || ret > max) { |
| 969 | BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH); |
| 970 | goto err; |
| 971 | } |
| 972 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); |
| 973 | bn_check_top(r); |
| 974 | err: |
| 975 | OPENSSL_free(arr); |
| 976 | return ret; |
| 977 | } |
| 978 | |
| 979 | /* |
| 980 | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
| 981 | * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363. |
| 982 | */ |
| 983 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], |
| 984 | BN_CTX *ctx) |
| 985 | { |
| 986 | int ret = 0, count = 0, j; |
| 987 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; |
| 988 | |
| 989 | bn_check_top(a_); |
| 990 | |
| 991 | if (!p[0]) { |
| 992 | /* reduction mod 1 => return 0 */ |
| 993 | BN_zero(r); |
| 994 | return 1; |
| 995 | } |
| 996 | |
| 997 | BN_CTX_start(ctx); |
| 998 | a = BN_CTX_get(ctx); |
| 999 | z = BN_CTX_get(ctx); |
| 1000 | w = BN_CTX_get(ctx); |
| 1001 | if (w == NULL) |
| 1002 | goto err; |
| 1003 | |
| 1004 | if (!BN_GF2m_mod_arr(a, a_, p)) |
| 1005 | goto err; |
| 1006 | |
| 1007 | if (BN_is_zero(a)) { |
| 1008 | BN_zero(r); |
| 1009 | ret = 1; |
| 1010 | goto err; |
| 1011 | } |
| 1012 | |
| 1013 | if (p[0] & 0x1) { /* m is odd */ |
| 1014 | /* compute half-trace of a */ |
| 1015 | if (!BN_copy(z, a)) |
| 1016 | goto err; |
| 1017 | for (j = 1; j <= (p[0] - 1) / 2; j++) { |
| 1018 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
| 1019 | goto err; |
| 1020 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
| 1021 | goto err; |
| 1022 | if (!BN_GF2m_add(z, z, a)) |
| 1023 | goto err; |
| 1024 | } |
| 1025 | |
| 1026 | } else { /* m is even */ |
| 1027 | |
| 1028 | rho = BN_CTX_get(ctx); |
| 1029 | w2 = BN_CTX_get(ctx); |
| 1030 | tmp = BN_CTX_get(ctx); |
| 1031 | if (tmp == NULL) |
| 1032 | goto err; |
| 1033 | do { |
| 1034 | if (!BN_priv_rand(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) |
| 1035 | goto err; |
| 1036 | if (!BN_GF2m_mod_arr(rho, rho, p)) |
| 1037 | goto err; |
| 1038 | BN_zero(z); |
| 1039 | if (!BN_copy(w, rho)) |
| 1040 | goto err; |
| 1041 | for (j = 1; j <= p[0] - 1; j++) { |
| 1042 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) |
| 1043 | goto err; |
| 1044 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) |
| 1045 | goto err; |
| 1046 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) |
| 1047 | goto err; |
| 1048 | if (!BN_GF2m_add(z, z, tmp)) |
| 1049 | goto err; |
| 1050 | if (!BN_GF2m_add(w, w2, rho)) |
| 1051 | goto err; |
| 1052 | } |
| 1053 | count++; |
| 1054 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); |
| 1055 | if (BN_is_zero(w)) { |
| 1056 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_TOO_MANY_ITERATIONS); |
| 1057 | goto err; |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) |
| 1062 | goto err; |
| 1063 | if (!BN_GF2m_add(w, z, w)) |
| 1064 | goto err; |
| 1065 | if (BN_GF2m_cmp(w, a)) { |
| 1066 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); |
| 1067 | goto err; |
| 1068 | } |
| 1069 | |
| 1070 | if (!BN_copy(r, z)) |
| 1071 | goto err; |
| 1072 | bn_check_top(r); |
| 1073 | |
| 1074 | ret = 1; |
| 1075 | |
| 1076 | err: |
| 1077 | BN_CTX_end(ctx); |
| 1078 | return ret; |
| 1079 | } |
| 1080 | |
| 1081 | /* |
| 1082 | * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns |
| 1083 | * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr |
| 1084 | * implementation; this wrapper function is only provided for convenience; |
| 1085 | * for best performance, use the BN_GF2m_mod_solve_quad_arr function. |
| 1086 | */ |
| 1087 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 1088 | BN_CTX *ctx) |
| 1089 | { |
| 1090 | int ret = 0; |
| 1091 | const int max = BN_num_bits(p) + 1; |
| 1092 | int *arr = NULL; |
| 1093 | bn_check_top(a); |
| 1094 | bn_check_top(p); |
| 1095 | if ((arr = OPENSSL_malloc(sizeof(*arr) * max)) == NULL) |
| 1096 | goto err; |
| 1097 | ret = BN_GF2m_poly2arr(p, arr, max); |
| 1098 | if (!ret || ret > max) { |
| 1099 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH); |
| 1100 | goto err; |
| 1101 | } |
| 1102 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); |
| 1103 | bn_check_top(r); |
| 1104 | err: |
| 1105 | OPENSSL_free(arr); |
| 1106 | return ret; |
| 1107 | } |
| 1108 | |
| 1109 | /* |
| 1110 | * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i * |
| 1111 | * x^i) into an array of integers corresponding to the bits with non-zero |
| 1112 | * coefficient. Array is terminated with -1. Up to max elements of the array |
| 1113 | * will be filled. Return value is total number of array elements that would |
| 1114 | * be filled if array was large enough. |
| 1115 | */ |
| 1116 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) |
| 1117 | { |
| 1118 | int i, j, k = 0; |
| 1119 | BN_ULONG mask; |
| 1120 | |
| 1121 | if (BN_is_zero(a)) |
| 1122 | return 0; |
| 1123 | |
| 1124 | for (i = a->top - 1; i >= 0; i--) { |
| 1125 | if (!a->d[i]) |
| 1126 | /* skip word if a->d[i] == 0 */ |
| 1127 | continue; |
| 1128 | mask = BN_TBIT; |
| 1129 | for (j = BN_BITS2 - 1; j >= 0; j--) { |
| 1130 | if (a->d[i] & mask) { |
| 1131 | if (k < max) |
| 1132 | p[k] = BN_BITS2 * i + j; |
| 1133 | k++; |
| 1134 | } |
| 1135 | mask >>= 1; |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | if (k < max) { |
| 1140 | p[k] = -1; |
| 1141 | k++; |
| 1142 | } |
| 1143 | |
| 1144 | return k; |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * Convert the coefficient array representation of a polynomial to a |
| 1149 | * bit-string. The array must be terminated by -1. |
| 1150 | */ |
| 1151 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a) |
| 1152 | { |
| 1153 | int i; |
| 1154 | |
| 1155 | bn_check_top(a); |
| 1156 | BN_zero(a); |
| 1157 | for (i = 0; p[i] != -1; i++) { |
| 1158 | if (BN_set_bit(a, p[i]) == 0) |
| 1159 | return 0; |
| 1160 | } |
| 1161 | bn_check_top(a); |
| 1162 | |
| 1163 | return 1; |
| 1164 | } |
| 1165 | |
| 1166 | #endif |