yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <openssl/bn.h> |
| 12 | #include "bn_local.h" |
| 13 | |
| 14 | /* X9.31 routines for prime derivation */ |
| 15 | |
| 16 | /* |
| 17 | * X9.31 prime derivation. This is used to generate the primes pi (p1, p2, |
| 18 | * q1, q2) from a parameter Xpi by checking successive odd integers. |
| 19 | */ |
| 20 | |
| 21 | static int bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, |
| 22 | BN_GENCB *cb) |
| 23 | { |
| 24 | int i = 0, is_prime; |
| 25 | if (!BN_copy(pi, Xpi)) |
| 26 | return 0; |
| 27 | if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) |
| 28 | return 0; |
| 29 | for (;;) { |
| 30 | i++; |
| 31 | BN_GENCB_call(cb, 0, i); |
| 32 | /* NB 27 MR is specified in X9.31 */ |
| 33 | is_prime = BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb); |
| 34 | if (is_prime < 0) |
| 35 | return 0; |
| 36 | if (is_prime) |
| 37 | break; |
| 38 | if (!BN_add_word(pi, 2)) |
| 39 | return 0; |
| 40 | } |
| 41 | BN_GENCB_call(cb, 2, i); |
| 42 | return 1; |
| 43 | } |
| 44 | |
| 45 | /* |
| 46 | * This is the main X9.31 prime derivation function. From parameters Xp1, Xp2 |
| 47 | * and Xp derive the prime p. If the parameters p1 or p2 are not NULL they |
| 48 | * will be returned too: this is needed for testing. |
| 49 | */ |
| 50 | |
| 51 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
| 52 | const BIGNUM *Xp, const BIGNUM *Xp1, |
| 53 | const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, |
| 54 | BN_GENCB *cb) |
| 55 | { |
| 56 | int ret = 0; |
| 57 | |
| 58 | BIGNUM *t, *p1p2, *pm1; |
| 59 | |
| 60 | /* Only even e supported */ |
| 61 | if (!BN_is_odd(e)) |
| 62 | return 0; |
| 63 | |
| 64 | BN_CTX_start(ctx); |
| 65 | if (p1 == NULL) |
| 66 | p1 = BN_CTX_get(ctx); |
| 67 | |
| 68 | if (p2 == NULL) |
| 69 | p2 = BN_CTX_get(ctx); |
| 70 | |
| 71 | t = BN_CTX_get(ctx); |
| 72 | |
| 73 | p1p2 = BN_CTX_get(ctx); |
| 74 | |
| 75 | pm1 = BN_CTX_get(ctx); |
| 76 | |
| 77 | if (pm1 == NULL) |
| 78 | goto err; |
| 79 | |
| 80 | if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) |
| 81 | goto err; |
| 82 | |
| 83 | if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) |
| 84 | goto err; |
| 85 | |
| 86 | if (!BN_mul(p1p2, p1, p2, ctx)) |
| 87 | goto err; |
| 88 | |
| 89 | /* First set p to value of Rp */ |
| 90 | |
| 91 | if (!BN_mod_inverse(p, p2, p1, ctx)) |
| 92 | goto err; |
| 93 | |
| 94 | if (!BN_mul(p, p, p2, ctx)) |
| 95 | goto err; |
| 96 | |
| 97 | if (!BN_mod_inverse(t, p1, p2, ctx)) |
| 98 | goto err; |
| 99 | |
| 100 | if (!BN_mul(t, t, p1, ctx)) |
| 101 | goto err; |
| 102 | |
| 103 | if (!BN_sub(p, p, t)) |
| 104 | goto err; |
| 105 | |
| 106 | if (p->neg && !BN_add(p, p, p1p2)) |
| 107 | goto err; |
| 108 | |
| 109 | /* p now equals Rp */ |
| 110 | |
| 111 | if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) |
| 112 | goto err; |
| 113 | |
| 114 | if (!BN_add(p, p, Xp)) |
| 115 | goto err; |
| 116 | |
| 117 | /* p now equals Yp0 */ |
| 118 | |
| 119 | for (;;) { |
| 120 | int i = 1; |
| 121 | BN_GENCB_call(cb, 0, i++); |
| 122 | if (!BN_copy(pm1, p)) |
| 123 | goto err; |
| 124 | if (!BN_sub_word(pm1, 1)) |
| 125 | goto err; |
| 126 | if (!BN_gcd(t, pm1, e, ctx)) |
| 127 | goto err; |
| 128 | if (BN_is_one(t)) { |
| 129 | /* |
| 130 | * X9.31 specifies 8 MR and 1 Lucas test or any prime test |
| 131 | * offering similar or better guarantees 50 MR is considerably |
| 132 | * better. |
| 133 | */ |
| 134 | int r = BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb); |
| 135 | if (r < 0) |
| 136 | goto err; |
| 137 | if (r) |
| 138 | break; |
| 139 | } |
| 140 | if (!BN_add(p, p, p1p2)) |
| 141 | goto err; |
| 142 | } |
| 143 | |
| 144 | BN_GENCB_call(cb, 3, 0); |
| 145 | |
| 146 | ret = 1; |
| 147 | |
| 148 | err: |
| 149 | |
| 150 | BN_CTX_end(ctx); |
| 151 | |
| 152 | return ret; |
| 153 | } |
| 154 | |
| 155 | /* |
| 156 | * Generate pair of parameters Xp, Xq for X9.31 prime generation. Note: nbits |
| 157 | * parameter is sum of number of bits in both. |
| 158 | */ |
| 159 | |
| 160 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) |
| 161 | { |
| 162 | BIGNUM *t; |
| 163 | int i; |
| 164 | /* |
| 165 | * Number of bits for each prime is of the form 512+128s for s = 0, 1, |
| 166 | * ... |
| 167 | */ |
| 168 | if ((nbits < 1024) || (nbits & 0xff)) |
| 169 | return 0; |
| 170 | nbits >>= 1; |
| 171 | /* |
| 172 | * The random value Xp must be between sqrt(2) * 2^(nbits-1) and 2^nbits |
| 173 | * - 1. By setting the top two bits we ensure that the lower bound is |
| 174 | * exceeded. |
| 175 | */ |
| 176 | if (!BN_priv_rand(Xp, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) |
| 177 | goto err; |
| 178 | |
| 179 | BN_CTX_start(ctx); |
| 180 | t = BN_CTX_get(ctx); |
| 181 | if (t == NULL) |
| 182 | goto err; |
| 183 | |
| 184 | for (i = 0; i < 1000; i++) { |
| 185 | if (!BN_priv_rand(Xq, nbits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) |
| 186 | goto err; |
| 187 | |
| 188 | /* Check that |Xp - Xq| > 2^(nbits - 100) */ |
| 189 | if (!BN_sub(t, Xp, Xq)) |
| 190 | goto err; |
| 191 | if (BN_num_bits(t) > (nbits - 100)) |
| 192 | break; |
| 193 | } |
| 194 | |
| 195 | BN_CTX_end(ctx); |
| 196 | |
| 197 | if (i < 1000) |
| 198 | return 1; |
| 199 | |
| 200 | return 0; |
| 201 | |
| 202 | err: |
| 203 | BN_CTX_end(ctx); |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 and |
| 209 | * Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL the |
| 210 | * relevant parameter will be stored in it. Due to the fact that |Xp - Xq| > |
| 211 | * 2^(nbits - 100) must be satisfied Xp and Xq are generated using the |
| 212 | * previous function and supplied as input. |
| 213 | */ |
| 214 | |
| 215 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, |
| 216 | BIGNUM *Xp1, BIGNUM *Xp2, |
| 217 | const BIGNUM *Xp, |
| 218 | const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) |
| 219 | { |
| 220 | int ret = 0; |
| 221 | |
| 222 | BN_CTX_start(ctx); |
| 223 | if (Xp1 == NULL) |
| 224 | Xp1 = BN_CTX_get(ctx); |
| 225 | if (Xp2 == NULL) |
| 226 | Xp2 = BN_CTX_get(ctx); |
| 227 | if (Xp1 == NULL || Xp2 == NULL) |
| 228 | goto error; |
| 229 | |
| 230 | if (!BN_priv_rand(Xp1, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) |
| 231 | goto error; |
| 232 | if (!BN_priv_rand(Xp2, 101, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY)) |
| 233 | goto error; |
| 234 | if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) |
| 235 | goto error; |
| 236 | |
| 237 | ret = 1; |
| 238 | |
| 239 | error: |
| 240 | BN_CTX_end(ctx); |
| 241 | |
| 242 | return ret; |
| 243 | |
| 244 | } |