yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <openssl/err.h> |
| 12 | #include <openssl/symhacks.h> |
| 13 | |
| 14 | #include "ec_local.h" |
| 15 | |
| 16 | const EC_METHOD *EC_GFp_simple_method(void) |
| 17 | { |
| 18 | static const EC_METHOD ret = { |
| 19 | EC_FLAGS_DEFAULT_OCT, |
| 20 | NID_X9_62_prime_field, |
| 21 | ec_GFp_simple_group_init, |
| 22 | ec_GFp_simple_group_finish, |
| 23 | ec_GFp_simple_group_clear_finish, |
| 24 | ec_GFp_simple_group_copy, |
| 25 | ec_GFp_simple_group_set_curve, |
| 26 | ec_GFp_simple_group_get_curve, |
| 27 | ec_GFp_simple_group_get_degree, |
| 28 | ec_group_simple_order_bits, |
| 29 | ec_GFp_simple_group_check_discriminant, |
| 30 | ec_GFp_simple_point_init, |
| 31 | ec_GFp_simple_point_finish, |
| 32 | ec_GFp_simple_point_clear_finish, |
| 33 | ec_GFp_simple_point_copy, |
| 34 | ec_GFp_simple_point_set_to_infinity, |
| 35 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| 36 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| 37 | ec_GFp_simple_point_set_affine_coordinates, |
| 38 | ec_GFp_simple_point_get_affine_coordinates, |
| 39 | 0, 0, 0, |
| 40 | ec_GFp_simple_add, |
| 41 | ec_GFp_simple_dbl, |
| 42 | ec_GFp_simple_invert, |
| 43 | ec_GFp_simple_is_at_infinity, |
| 44 | ec_GFp_simple_is_on_curve, |
| 45 | ec_GFp_simple_cmp, |
| 46 | ec_GFp_simple_make_affine, |
| 47 | ec_GFp_simple_points_make_affine, |
| 48 | 0 /* mul */ , |
| 49 | 0 /* precompute_mult */ , |
| 50 | 0 /* have_precompute_mult */ , |
| 51 | ec_GFp_simple_field_mul, |
| 52 | ec_GFp_simple_field_sqr, |
| 53 | 0 /* field_div */ , |
| 54 | ec_GFp_simple_field_inv, |
| 55 | 0 /* field_encode */ , |
| 56 | 0 /* field_decode */ , |
| 57 | 0, /* field_set_to_one */ |
| 58 | ec_key_simple_priv2oct, |
| 59 | ec_key_simple_oct2priv, |
| 60 | 0, /* set private */ |
| 61 | ec_key_simple_generate_key, |
| 62 | ec_key_simple_check_key, |
| 63 | ec_key_simple_generate_public_key, |
| 64 | 0, /* keycopy */ |
| 65 | 0, /* keyfinish */ |
| 66 | ecdh_simple_compute_key, |
| 67 | 0, /* field_inverse_mod_ord */ |
| 68 | ec_GFp_simple_blind_coordinates, |
| 69 | ec_GFp_simple_ladder_pre, |
| 70 | ec_GFp_simple_ladder_step, |
| 71 | ec_GFp_simple_ladder_post |
| 72 | }; |
| 73 | |
| 74 | return &ret; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * Most method functions in this file are designed to work with |
| 79 | * non-trivial representations of field elements if necessary |
| 80 | * (see ecp_mont.c): while standard modular addition and subtraction |
| 81 | * are used, the field_mul and field_sqr methods will be used for |
| 82 | * multiplication, and field_encode and field_decode (if defined) |
| 83 | * will be used for converting between representations. |
| 84 | * |
| 85 | * Functions ec_GFp_simple_points_make_affine() and |
| 86 | * ec_GFp_simple_point_get_affine_coordinates() specifically assume |
| 87 | * that if a non-trivial representation is used, it is a Montgomery |
| 88 | * representation (i.e. 'encoding' means multiplying by some factor R). |
| 89 | */ |
| 90 | |
| 91 | int ec_GFp_simple_group_init(EC_GROUP *group) |
| 92 | { |
| 93 | group->field = BN_new(); |
| 94 | group->a = BN_new(); |
| 95 | group->b = BN_new(); |
| 96 | if (group->field == NULL || group->a == NULL || group->b == NULL) { |
| 97 | BN_free(group->field); |
| 98 | BN_free(group->a); |
| 99 | BN_free(group->b); |
| 100 | return 0; |
| 101 | } |
| 102 | group->a_is_minus3 = 0; |
| 103 | return 1; |
| 104 | } |
| 105 | |
| 106 | void ec_GFp_simple_group_finish(EC_GROUP *group) |
| 107 | { |
| 108 | BN_free(group->field); |
| 109 | BN_free(group->a); |
| 110 | BN_free(group->b); |
| 111 | } |
| 112 | |
| 113 | void ec_GFp_simple_group_clear_finish(EC_GROUP *group) |
| 114 | { |
| 115 | BN_clear_free(group->field); |
| 116 | BN_clear_free(group->a); |
| 117 | BN_clear_free(group->b); |
| 118 | } |
| 119 | |
| 120 | int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
| 121 | { |
| 122 | if (!BN_copy(dest->field, src->field)) |
| 123 | return 0; |
| 124 | if (!BN_copy(dest->a, src->a)) |
| 125 | return 0; |
| 126 | if (!BN_copy(dest->b, src->b)) |
| 127 | return 0; |
| 128 | |
| 129 | dest->a_is_minus3 = src->a_is_minus3; |
| 130 | |
| 131 | return 1; |
| 132 | } |
| 133 | |
| 134 | int ec_GFp_simple_group_set_curve(EC_GROUP *group, |
| 135 | const BIGNUM *p, const BIGNUM *a, |
| 136 | const BIGNUM *b, BN_CTX *ctx) |
| 137 | { |
| 138 | int ret = 0; |
| 139 | BN_CTX *new_ctx = NULL; |
| 140 | BIGNUM *tmp_a; |
| 141 | |
| 142 | /* p must be a prime > 3 */ |
| 143 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
| 144 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD); |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | if (ctx == NULL) { |
| 149 | ctx = new_ctx = BN_CTX_new(); |
| 150 | if (ctx == NULL) |
| 151 | return 0; |
| 152 | } |
| 153 | |
| 154 | BN_CTX_start(ctx); |
| 155 | tmp_a = BN_CTX_get(ctx); |
| 156 | if (tmp_a == NULL) |
| 157 | goto err; |
| 158 | |
| 159 | /* group->field */ |
| 160 | if (!BN_copy(group->field, p)) |
| 161 | goto err; |
| 162 | BN_set_negative(group->field, 0); |
| 163 | |
| 164 | /* group->a */ |
| 165 | if (!BN_nnmod(tmp_a, a, p, ctx)) |
| 166 | goto err; |
| 167 | if (group->meth->field_encode) { |
| 168 | if (!group->meth->field_encode(group, group->a, tmp_a, ctx)) |
| 169 | goto err; |
| 170 | } else if (!BN_copy(group->a, tmp_a)) |
| 171 | goto err; |
| 172 | |
| 173 | /* group->b */ |
| 174 | if (!BN_nnmod(group->b, b, p, ctx)) |
| 175 | goto err; |
| 176 | if (group->meth->field_encode) |
| 177 | if (!group->meth->field_encode(group, group->b, group->b, ctx)) |
| 178 | goto err; |
| 179 | |
| 180 | /* group->a_is_minus3 */ |
| 181 | if (!BN_add_word(tmp_a, 3)) |
| 182 | goto err; |
| 183 | group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field)); |
| 184 | |
| 185 | ret = 1; |
| 186 | |
| 187 | err: |
| 188 | BN_CTX_end(ctx); |
| 189 | BN_CTX_free(new_ctx); |
| 190 | return ret; |
| 191 | } |
| 192 | |
| 193 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| 194 | BIGNUM *b, BN_CTX *ctx) |
| 195 | { |
| 196 | int ret = 0; |
| 197 | BN_CTX *new_ctx = NULL; |
| 198 | |
| 199 | if (p != NULL) { |
| 200 | if (!BN_copy(p, group->field)) |
| 201 | return 0; |
| 202 | } |
| 203 | |
| 204 | if (a != NULL || b != NULL) { |
| 205 | if (group->meth->field_decode) { |
| 206 | if (ctx == NULL) { |
| 207 | ctx = new_ctx = BN_CTX_new(); |
| 208 | if (ctx == NULL) |
| 209 | return 0; |
| 210 | } |
| 211 | if (a != NULL) { |
| 212 | if (!group->meth->field_decode(group, a, group->a, ctx)) |
| 213 | goto err; |
| 214 | } |
| 215 | if (b != NULL) { |
| 216 | if (!group->meth->field_decode(group, b, group->b, ctx)) |
| 217 | goto err; |
| 218 | } |
| 219 | } else { |
| 220 | if (a != NULL) { |
| 221 | if (!BN_copy(a, group->a)) |
| 222 | goto err; |
| 223 | } |
| 224 | if (b != NULL) { |
| 225 | if (!BN_copy(b, group->b)) |
| 226 | goto err; |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | ret = 1; |
| 232 | |
| 233 | err: |
| 234 | BN_CTX_free(new_ctx); |
| 235 | return ret; |
| 236 | } |
| 237 | |
| 238 | int ec_GFp_simple_group_get_degree(const EC_GROUP *group) |
| 239 | { |
| 240 | return BN_num_bits(group->field); |
| 241 | } |
| 242 | |
| 243 | int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) |
| 244 | { |
| 245 | int ret = 0; |
| 246 | BIGNUM *a, *b, *order, *tmp_1, *tmp_2; |
| 247 | const BIGNUM *p = group->field; |
| 248 | BN_CTX *new_ctx = NULL; |
| 249 | |
| 250 | if (ctx == NULL) { |
| 251 | ctx = new_ctx = BN_CTX_new(); |
| 252 | if (ctx == NULL) { |
| 253 | ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT, |
| 254 | ERR_R_MALLOC_FAILURE); |
| 255 | goto err; |
| 256 | } |
| 257 | } |
| 258 | BN_CTX_start(ctx); |
| 259 | a = BN_CTX_get(ctx); |
| 260 | b = BN_CTX_get(ctx); |
| 261 | tmp_1 = BN_CTX_get(ctx); |
| 262 | tmp_2 = BN_CTX_get(ctx); |
| 263 | order = BN_CTX_get(ctx); |
| 264 | if (order == NULL) |
| 265 | goto err; |
| 266 | |
| 267 | if (group->meth->field_decode) { |
| 268 | if (!group->meth->field_decode(group, a, group->a, ctx)) |
| 269 | goto err; |
| 270 | if (!group->meth->field_decode(group, b, group->b, ctx)) |
| 271 | goto err; |
| 272 | } else { |
| 273 | if (!BN_copy(a, group->a)) |
| 274 | goto err; |
| 275 | if (!BN_copy(b, group->b)) |
| 276 | goto err; |
| 277 | } |
| 278 | |
| 279 | /*- |
| 280 | * check the discriminant: |
| 281 | * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p) |
| 282 | * 0 =< a, b < p |
| 283 | */ |
| 284 | if (BN_is_zero(a)) { |
| 285 | if (BN_is_zero(b)) |
| 286 | goto err; |
| 287 | } else if (!BN_is_zero(b)) { |
| 288 | if (!BN_mod_sqr(tmp_1, a, p, ctx)) |
| 289 | goto err; |
| 290 | if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx)) |
| 291 | goto err; |
| 292 | if (!BN_lshift(tmp_1, tmp_2, 2)) |
| 293 | goto err; |
| 294 | /* tmp_1 = 4*a^3 */ |
| 295 | |
| 296 | if (!BN_mod_sqr(tmp_2, b, p, ctx)) |
| 297 | goto err; |
| 298 | if (!BN_mul_word(tmp_2, 27)) |
| 299 | goto err; |
| 300 | /* tmp_2 = 27*b^2 */ |
| 301 | |
| 302 | if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx)) |
| 303 | goto err; |
| 304 | if (BN_is_zero(a)) |
| 305 | goto err; |
| 306 | } |
| 307 | ret = 1; |
| 308 | |
| 309 | err: |
| 310 | BN_CTX_end(ctx); |
| 311 | BN_CTX_free(new_ctx); |
| 312 | return ret; |
| 313 | } |
| 314 | |
| 315 | int ec_GFp_simple_point_init(EC_POINT *point) |
| 316 | { |
| 317 | point->X = BN_new(); |
| 318 | point->Y = BN_new(); |
| 319 | point->Z = BN_new(); |
| 320 | point->Z_is_one = 0; |
| 321 | |
| 322 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) { |
| 323 | BN_free(point->X); |
| 324 | BN_free(point->Y); |
| 325 | BN_free(point->Z); |
| 326 | return 0; |
| 327 | } |
| 328 | return 1; |
| 329 | } |
| 330 | |
| 331 | void ec_GFp_simple_point_finish(EC_POINT *point) |
| 332 | { |
| 333 | BN_free(point->X); |
| 334 | BN_free(point->Y); |
| 335 | BN_free(point->Z); |
| 336 | } |
| 337 | |
| 338 | void ec_GFp_simple_point_clear_finish(EC_POINT *point) |
| 339 | { |
| 340 | BN_clear_free(point->X); |
| 341 | BN_clear_free(point->Y); |
| 342 | BN_clear_free(point->Z); |
| 343 | point->Z_is_one = 0; |
| 344 | } |
| 345 | |
| 346 | int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
| 347 | { |
| 348 | if (!BN_copy(dest->X, src->X)) |
| 349 | return 0; |
| 350 | if (!BN_copy(dest->Y, src->Y)) |
| 351 | return 0; |
| 352 | if (!BN_copy(dest->Z, src->Z)) |
| 353 | return 0; |
| 354 | dest->Z_is_one = src->Z_is_one; |
| 355 | dest->curve_name = src->curve_name; |
| 356 | |
| 357 | return 1; |
| 358 | } |
| 359 | |
| 360 | int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
| 361 | EC_POINT *point) |
| 362 | { |
| 363 | point->Z_is_one = 0; |
| 364 | BN_zero(point->Z); |
| 365 | return 1; |
| 366 | } |
| 367 | |
| 368 | int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| 369 | EC_POINT *point, |
| 370 | const BIGNUM *x, |
| 371 | const BIGNUM *y, |
| 372 | const BIGNUM *z, |
| 373 | BN_CTX *ctx) |
| 374 | { |
| 375 | BN_CTX *new_ctx = NULL; |
| 376 | int ret = 0; |
| 377 | |
| 378 | if (ctx == NULL) { |
| 379 | ctx = new_ctx = BN_CTX_new(); |
| 380 | if (ctx == NULL) |
| 381 | return 0; |
| 382 | } |
| 383 | |
| 384 | if (x != NULL) { |
| 385 | if (!BN_nnmod(point->X, x, group->field, ctx)) |
| 386 | goto err; |
| 387 | if (group->meth->field_encode) { |
| 388 | if (!group->meth->field_encode(group, point->X, point->X, ctx)) |
| 389 | goto err; |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | if (y != NULL) { |
| 394 | if (!BN_nnmod(point->Y, y, group->field, ctx)) |
| 395 | goto err; |
| 396 | if (group->meth->field_encode) { |
| 397 | if (!group->meth->field_encode(group, point->Y, point->Y, ctx)) |
| 398 | goto err; |
| 399 | } |
| 400 | } |
| 401 | |
| 402 | if (z != NULL) { |
| 403 | int Z_is_one; |
| 404 | |
| 405 | if (!BN_nnmod(point->Z, z, group->field, ctx)) |
| 406 | goto err; |
| 407 | Z_is_one = BN_is_one(point->Z); |
| 408 | if (group->meth->field_encode) { |
| 409 | if (Z_is_one && (group->meth->field_set_to_one != 0)) { |
| 410 | if (!group->meth->field_set_to_one(group, point->Z, ctx)) |
| 411 | goto err; |
| 412 | } else { |
| 413 | if (!group-> |
| 414 | meth->field_encode(group, point->Z, point->Z, ctx)) |
| 415 | goto err; |
| 416 | } |
| 417 | } |
| 418 | point->Z_is_one = Z_is_one; |
| 419 | } |
| 420 | |
| 421 | ret = 1; |
| 422 | |
| 423 | err: |
| 424 | BN_CTX_free(new_ctx); |
| 425 | return ret; |
| 426 | } |
| 427 | |
| 428 | int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| 429 | const EC_POINT *point, |
| 430 | BIGNUM *x, BIGNUM *y, |
| 431 | BIGNUM *z, BN_CTX *ctx) |
| 432 | { |
| 433 | BN_CTX *new_ctx = NULL; |
| 434 | int ret = 0; |
| 435 | |
| 436 | if (group->meth->field_decode != 0) { |
| 437 | if (ctx == NULL) { |
| 438 | ctx = new_ctx = BN_CTX_new(); |
| 439 | if (ctx == NULL) |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | if (x != NULL) { |
| 444 | if (!group->meth->field_decode(group, x, point->X, ctx)) |
| 445 | goto err; |
| 446 | } |
| 447 | if (y != NULL) { |
| 448 | if (!group->meth->field_decode(group, y, point->Y, ctx)) |
| 449 | goto err; |
| 450 | } |
| 451 | if (z != NULL) { |
| 452 | if (!group->meth->field_decode(group, z, point->Z, ctx)) |
| 453 | goto err; |
| 454 | } |
| 455 | } else { |
| 456 | if (x != NULL) { |
| 457 | if (!BN_copy(x, point->X)) |
| 458 | goto err; |
| 459 | } |
| 460 | if (y != NULL) { |
| 461 | if (!BN_copy(y, point->Y)) |
| 462 | goto err; |
| 463 | } |
| 464 | if (z != NULL) { |
| 465 | if (!BN_copy(z, point->Z)) |
| 466 | goto err; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | ret = 1; |
| 471 | |
| 472 | err: |
| 473 | BN_CTX_free(new_ctx); |
| 474 | return ret; |
| 475 | } |
| 476 | |
| 477 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| 478 | EC_POINT *point, |
| 479 | const BIGNUM *x, |
| 480 | const BIGNUM *y, BN_CTX *ctx) |
| 481 | { |
| 482 | if (x == NULL || y == NULL) { |
| 483 | /* |
| 484 | * unlike for projective coordinates, we do not tolerate this |
| 485 | */ |
| 486 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES, |
| 487 | ERR_R_PASSED_NULL_PARAMETER); |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y, |
| 492 | BN_value_one(), ctx); |
| 493 | } |
| 494 | |
| 495 | int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group, |
| 496 | const EC_POINT *point, |
| 497 | BIGNUM *x, BIGNUM *y, |
| 498 | BN_CTX *ctx) |
| 499 | { |
| 500 | BN_CTX *new_ctx = NULL; |
| 501 | BIGNUM *Z, *Z_1, *Z_2, *Z_3; |
| 502 | const BIGNUM *Z_; |
| 503 | int ret = 0; |
| 504 | |
| 505 | if (EC_POINT_is_at_infinity(group, point)) { |
| 506 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| 507 | EC_R_POINT_AT_INFINITY); |
| 508 | return 0; |
| 509 | } |
| 510 | |
| 511 | if (ctx == NULL) { |
| 512 | ctx = new_ctx = BN_CTX_new(); |
| 513 | if (ctx == NULL) |
| 514 | return 0; |
| 515 | } |
| 516 | |
| 517 | BN_CTX_start(ctx); |
| 518 | Z = BN_CTX_get(ctx); |
| 519 | Z_1 = BN_CTX_get(ctx); |
| 520 | Z_2 = BN_CTX_get(ctx); |
| 521 | Z_3 = BN_CTX_get(ctx); |
| 522 | if (Z_3 == NULL) |
| 523 | goto err; |
| 524 | |
| 525 | /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */ |
| 526 | |
| 527 | if (group->meth->field_decode) { |
| 528 | if (!group->meth->field_decode(group, Z, point->Z, ctx)) |
| 529 | goto err; |
| 530 | Z_ = Z; |
| 531 | } else { |
| 532 | Z_ = point->Z; |
| 533 | } |
| 534 | |
| 535 | if (BN_is_one(Z_)) { |
| 536 | if (group->meth->field_decode) { |
| 537 | if (x != NULL) { |
| 538 | if (!group->meth->field_decode(group, x, point->X, ctx)) |
| 539 | goto err; |
| 540 | } |
| 541 | if (y != NULL) { |
| 542 | if (!group->meth->field_decode(group, y, point->Y, ctx)) |
| 543 | goto err; |
| 544 | } |
| 545 | } else { |
| 546 | if (x != NULL) { |
| 547 | if (!BN_copy(x, point->X)) |
| 548 | goto err; |
| 549 | } |
| 550 | if (y != NULL) { |
| 551 | if (!BN_copy(y, point->Y)) |
| 552 | goto err; |
| 553 | } |
| 554 | } |
| 555 | } else { |
| 556 | if (!group->meth->field_inv(group, Z_1, Z_, ctx)) { |
| 557 | ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| 558 | ERR_R_BN_LIB); |
| 559 | goto err; |
| 560 | } |
| 561 | |
| 562 | if (group->meth->field_encode == 0) { |
| 563 | /* field_sqr works on standard representation */ |
| 564 | if (!group->meth->field_sqr(group, Z_2, Z_1, ctx)) |
| 565 | goto err; |
| 566 | } else { |
| 567 | if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx)) |
| 568 | goto err; |
| 569 | } |
| 570 | |
| 571 | if (x != NULL) { |
| 572 | /* |
| 573 | * in the Montgomery case, field_mul will cancel out Montgomery |
| 574 | * factor in X: |
| 575 | */ |
| 576 | if (!group->meth->field_mul(group, x, point->X, Z_2, ctx)) |
| 577 | goto err; |
| 578 | } |
| 579 | |
| 580 | if (y != NULL) { |
| 581 | if (group->meth->field_encode == 0) { |
| 582 | /* |
| 583 | * field_mul works on standard representation |
| 584 | */ |
| 585 | if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx)) |
| 586 | goto err; |
| 587 | } else { |
| 588 | if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx)) |
| 589 | goto err; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * in the Montgomery case, field_mul will cancel out Montgomery |
| 594 | * factor in Y: |
| 595 | */ |
| 596 | if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx)) |
| 597 | goto err; |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | ret = 1; |
| 602 | |
| 603 | err: |
| 604 | BN_CTX_end(ctx); |
| 605 | BN_CTX_free(new_ctx); |
| 606 | return ret; |
| 607 | } |
| 608 | |
| 609 | int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 610 | const EC_POINT *b, BN_CTX *ctx) |
| 611 | { |
| 612 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 613 | const BIGNUM *, BN_CTX *); |
| 614 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 615 | const BIGNUM *p; |
| 616 | BN_CTX *new_ctx = NULL; |
| 617 | BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; |
| 618 | int ret = 0; |
| 619 | |
| 620 | if (a == b) |
| 621 | return EC_POINT_dbl(group, r, a, ctx); |
| 622 | if (EC_POINT_is_at_infinity(group, a)) |
| 623 | return EC_POINT_copy(r, b); |
| 624 | if (EC_POINT_is_at_infinity(group, b)) |
| 625 | return EC_POINT_copy(r, a); |
| 626 | |
| 627 | field_mul = group->meth->field_mul; |
| 628 | field_sqr = group->meth->field_sqr; |
| 629 | p = group->field; |
| 630 | |
| 631 | if (ctx == NULL) { |
| 632 | ctx = new_ctx = BN_CTX_new(); |
| 633 | if (ctx == NULL) |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | BN_CTX_start(ctx); |
| 638 | n0 = BN_CTX_get(ctx); |
| 639 | n1 = BN_CTX_get(ctx); |
| 640 | n2 = BN_CTX_get(ctx); |
| 641 | n3 = BN_CTX_get(ctx); |
| 642 | n4 = BN_CTX_get(ctx); |
| 643 | n5 = BN_CTX_get(ctx); |
| 644 | n6 = BN_CTX_get(ctx); |
| 645 | if (n6 == NULL) |
| 646 | goto end; |
| 647 | |
| 648 | /* |
| 649 | * Note that in this function we must not read components of 'a' or 'b' |
| 650 | * once we have written the corresponding components of 'r'. ('r' might |
| 651 | * be one of 'a' or 'b'.) |
| 652 | */ |
| 653 | |
| 654 | /* n1, n2 */ |
| 655 | if (b->Z_is_one) { |
| 656 | if (!BN_copy(n1, a->X)) |
| 657 | goto end; |
| 658 | if (!BN_copy(n2, a->Y)) |
| 659 | goto end; |
| 660 | /* n1 = X_a */ |
| 661 | /* n2 = Y_a */ |
| 662 | } else { |
| 663 | if (!field_sqr(group, n0, b->Z, ctx)) |
| 664 | goto end; |
| 665 | if (!field_mul(group, n1, a->X, n0, ctx)) |
| 666 | goto end; |
| 667 | /* n1 = X_a * Z_b^2 */ |
| 668 | |
| 669 | if (!field_mul(group, n0, n0, b->Z, ctx)) |
| 670 | goto end; |
| 671 | if (!field_mul(group, n2, a->Y, n0, ctx)) |
| 672 | goto end; |
| 673 | /* n2 = Y_a * Z_b^3 */ |
| 674 | } |
| 675 | |
| 676 | /* n3, n4 */ |
| 677 | if (a->Z_is_one) { |
| 678 | if (!BN_copy(n3, b->X)) |
| 679 | goto end; |
| 680 | if (!BN_copy(n4, b->Y)) |
| 681 | goto end; |
| 682 | /* n3 = X_b */ |
| 683 | /* n4 = Y_b */ |
| 684 | } else { |
| 685 | if (!field_sqr(group, n0, a->Z, ctx)) |
| 686 | goto end; |
| 687 | if (!field_mul(group, n3, b->X, n0, ctx)) |
| 688 | goto end; |
| 689 | /* n3 = X_b * Z_a^2 */ |
| 690 | |
| 691 | if (!field_mul(group, n0, n0, a->Z, ctx)) |
| 692 | goto end; |
| 693 | if (!field_mul(group, n4, b->Y, n0, ctx)) |
| 694 | goto end; |
| 695 | /* n4 = Y_b * Z_a^3 */ |
| 696 | } |
| 697 | |
| 698 | /* n5, n6 */ |
| 699 | if (!BN_mod_sub_quick(n5, n1, n3, p)) |
| 700 | goto end; |
| 701 | if (!BN_mod_sub_quick(n6, n2, n4, p)) |
| 702 | goto end; |
| 703 | /* n5 = n1 - n3 */ |
| 704 | /* n6 = n2 - n4 */ |
| 705 | |
| 706 | if (BN_is_zero(n5)) { |
| 707 | if (BN_is_zero(n6)) { |
| 708 | /* a is the same point as b */ |
| 709 | BN_CTX_end(ctx); |
| 710 | ret = EC_POINT_dbl(group, r, a, ctx); |
| 711 | ctx = NULL; |
| 712 | goto end; |
| 713 | } else { |
| 714 | /* a is the inverse of b */ |
| 715 | BN_zero(r->Z); |
| 716 | r->Z_is_one = 0; |
| 717 | ret = 1; |
| 718 | goto end; |
| 719 | } |
| 720 | } |
| 721 | |
| 722 | /* 'n7', 'n8' */ |
| 723 | if (!BN_mod_add_quick(n1, n1, n3, p)) |
| 724 | goto end; |
| 725 | if (!BN_mod_add_quick(n2, n2, n4, p)) |
| 726 | goto end; |
| 727 | /* 'n7' = n1 + n3 */ |
| 728 | /* 'n8' = n2 + n4 */ |
| 729 | |
| 730 | /* Z_r */ |
| 731 | if (a->Z_is_one && b->Z_is_one) { |
| 732 | if (!BN_copy(r->Z, n5)) |
| 733 | goto end; |
| 734 | } else { |
| 735 | if (a->Z_is_one) { |
| 736 | if (!BN_copy(n0, b->Z)) |
| 737 | goto end; |
| 738 | } else if (b->Z_is_one) { |
| 739 | if (!BN_copy(n0, a->Z)) |
| 740 | goto end; |
| 741 | } else { |
| 742 | if (!field_mul(group, n0, a->Z, b->Z, ctx)) |
| 743 | goto end; |
| 744 | } |
| 745 | if (!field_mul(group, r->Z, n0, n5, ctx)) |
| 746 | goto end; |
| 747 | } |
| 748 | r->Z_is_one = 0; |
| 749 | /* Z_r = Z_a * Z_b * n5 */ |
| 750 | |
| 751 | /* X_r */ |
| 752 | if (!field_sqr(group, n0, n6, ctx)) |
| 753 | goto end; |
| 754 | if (!field_sqr(group, n4, n5, ctx)) |
| 755 | goto end; |
| 756 | if (!field_mul(group, n3, n1, n4, ctx)) |
| 757 | goto end; |
| 758 | if (!BN_mod_sub_quick(r->X, n0, n3, p)) |
| 759 | goto end; |
| 760 | /* X_r = n6^2 - n5^2 * 'n7' */ |
| 761 | |
| 762 | /* 'n9' */ |
| 763 | if (!BN_mod_lshift1_quick(n0, r->X, p)) |
| 764 | goto end; |
| 765 | if (!BN_mod_sub_quick(n0, n3, n0, p)) |
| 766 | goto end; |
| 767 | /* n9 = n5^2 * 'n7' - 2 * X_r */ |
| 768 | |
| 769 | /* Y_r */ |
| 770 | if (!field_mul(group, n0, n0, n6, ctx)) |
| 771 | goto end; |
| 772 | if (!field_mul(group, n5, n4, n5, ctx)) |
| 773 | goto end; /* now n5 is n5^3 */ |
| 774 | if (!field_mul(group, n1, n2, n5, ctx)) |
| 775 | goto end; |
| 776 | if (!BN_mod_sub_quick(n0, n0, n1, p)) |
| 777 | goto end; |
| 778 | if (BN_is_odd(n0)) |
| 779 | if (!BN_add(n0, n0, p)) |
| 780 | goto end; |
| 781 | /* now 0 <= n0 < 2*p, and n0 is even */ |
| 782 | if (!BN_rshift1(r->Y, n0)) |
| 783 | goto end; |
| 784 | /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */ |
| 785 | |
| 786 | ret = 1; |
| 787 | |
| 788 | end: |
| 789 | BN_CTX_end(ctx); |
| 790 | BN_CTX_free(new_ctx); |
| 791 | return ret; |
| 792 | } |
| 793 | |
| 794 | int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 795 | BN_CTX *ctx) |
| 796 | { |
| 797 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 798 | const BIGNUM *, BN_CTX *); |
| 799 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 800 | const BIGNUM *p; |
| 801 | BN_CTX *new_ctx = NULL; |
| 802 | BIGNUM *n0, *n1, *n2, *n3; |
| 803 | int ret = 0; |
| 804 | |
| 805 | if (EC_POINT_is_at_infinity(group, a)) { |
| 806 | BN_zero(r->Z); |
| 807 | r->Z_is_one = 0; |
| 808 | return 1; |
| 809 | } |
| 810 | |
| 811 | field_mul = group->meth->field_mul; |
| 812 | field_sqr = group->meth->field_sqr; |
| 813 | p = group->field; |
| 814 | |
| 815 | if (ctx == NULL) { |
| 816 | ctx = new_ctx = BN_CTX_new(); |
| 817 | if (ctx == NULL) |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | BN_CTX_start(ctx); |
| 822 | n0 = BN_CTX_get(ctx); |
| 823 | n1 = BN_CTX_get(ctx); |
| 824 | n2 = BN_CTX_get(ctx); |
| 825 | n3 = BN_CTX_get(ctx); |
| 826 | if (n3 == NULL) |
| 827 | goto err; |
| 828 | |
| 829 | /* |
| 830 | * Note that in this function we must not read components of 'a' once we |
| 831 | * have written the corresponding components of 'r'. ('r' might the same |
| 832 | * as 'a'.) |
| 833 | */ |
| 834 | |
| 835 | /* n1 */ |
| 836 | if (a->Z_is_one) { |
| 837 | if (!field_sqr(group, n0, a->X, ctx)) |
| 838 | goto err; |
| 839 | if (!BN_mod_lshift1_quick(n1, n0, p)) |
| 840 | goto err; |
| 841 | if (!BN_mod_add_quick(n0, n0, n1, p)) |
| 842 | goto err; |
| 843 | if (!BN_mod_add_quick(n1, n0, group->a, p)) |
| 844 | goto err; |
| 845 | /* n1 = 3 * X_a^2 + a_curve */ |
| 846 | } else if (group->a_is_minus3) { |
| 847 | if (!field_sqr(group, n1, a->Z, ctx)) |
| 848 | goto err; |
| 849 | if (!BN_mod_add_quick(n0, a->X, n1, p)) |
| 850 | goto err; |
| 851 | if (!BN_mod_sub_quick(n2, a->X, n1, p)) |
| 852 | goto err; |
| 853 | if (!field_mul(group, n1, n0, n2, ctx)) |
| 854 | goto err; |
| 855 | if (!BN_mod_lshift1_quick(n0, n1, p)) |
| 856 | goto err; |
| 857 | if (!BN_mod_add_quick(n1, n0, n1, p)) |
| 858 | goto err; |
| 859 | /*- |
| 860 | * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) |
| 861 | * = 3 * X_a^2 - 3 * Z_a^4 |
| 862 | */ |
| 863 | } else { |
| 864 | if (!field_sqr(group, n0, a->X, ctx)) |
| 865 | goto err; |
| 866 | if (!BN_mod_lshift1_quick(n1, n0, p)) |
| 867 | goto err; |
| 868 | if (!BN_mod_add_quick(n0, n0, n1, p)) |
| 869 | goto err; |
| 870 | if (!field_sqr(group, n1, a->Z, ctx)) |
| 871 | goto err; |
| 872 | if (!field_sqr(group, n1, n1, ctx)) |
| 873 | goto err; |
| 874 | if (!field_mul(group, n1, n1, group->a, ctx)) |
| 875 | goto err; |
| 876 | if (!BN_mod_add_quick(n1, n1, n0, p)) |
| 877 | goto err; |
| 878 | /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */ |
| 879 | } |
| 880 | |
| 881 | /* Z_r */ |
| 882 | if (a->Z_is_one) { |
| 883 | if (!BN_copy(n0, a->Y)) |
| 884 | goto err; |
| 885 | } else { |
| 886 | if (!field_mul(group, n0, a->Y, a->Z, ctx)) |
| 887 | goto err; |
| 888 | } |
| 889 | if (!BN_mod_lshift1_quick(r->Z, n0, p)) |
| 890 | goto err; |
| 891 | r->Z_is_one = 0; |
| 892 | /* Z_r = 2 * Y_a * Z_a */ |
| 893 | |
| 894 | /* n2 */ |
| 895 | if (!field_sqr(group, n3, a->Y, ctx)) |
| 896 | goto err; |
| 897 | if (!field_mul(group, n2, a->X, n3, ctx)) |
| 898 | goto err; |
| 899 | if (!BN_mod_lshift_quick(n2, n2, 2, p)) |
| 900 | goto err; |
| 901 | /* n2 = 4 * X_a * Y_a^2 */ |
| 902 | |
| 903 | /* X_r */ |
| 904 | if (!BN_mod_lshift1_quick(n0, n2, p)) |
| 905 | goto err; |
| 906 | if (!field_sqr(group, r->X, n1, ctx)) |
| 907 | goto err; |
| 908 | if (!BN_mod_sub_quick(r->X, r->X, n0, p)) |
| 909 | goto err; |
| 910 | /* X_r = n1^2 - 2 * n2 */ |
| 911 | |
| 912 | /* n3 */ |
| 913 | if (!field_sqr(group, n0, n3, ctx)) |
| 914 | goto err; |
| 915 | if (!BN_mod_lshift_quick(n3, n0, 3, p)) |
| 916 | goto err; |
| 917 | /* n3 = 8 * Y_a^4 */ |
| 918 | |
| 919 | /* Y_r */ |
| 920 | if (!BN_mod_sub_quick(n0, n2, r->X, p)) |
| 921 | goto err; |
| 922 | if (!field_mul(group, n0, n1, n0, ctx)) |
| 923 | goto err; |
| 924 | if (!BN_mod_sub_quick(r->Y, n0, n3, p)) |
| 925 | goto err; |
| 926 | /* Y_r = n1 * (n2 - X_r) - n3 */ |
| 927 | |
| 928 | ret = 1; |
| 929 | |
| 930 | err: |
| 931 | BN_CTX_end(ctx); |
| 932 | BN_CTX_free(new_ctx); |
| 933 | return ret; |
| 934 | } |
| 935 | |
| 936 | int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| 937 | { |
| 938 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) |
| 939 | /* point is its own inverse */ |
| 940 | return 1; |
| 941 | |
| 942 | return BN_usub(point->Y, group->field, point->Y); |
| 943 | } |
| 944 | |
| 945 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) |
| 946 | { |
| 947 | return BN_is_zero(point->Z); |
| 948 | } |
| 949 | |
| 950 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| 951 | BN_CTX *ctx) |
| 952 | { |
| 953 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 954 | const BIGNUM *, BN_CTX *); |
| 955 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 956 | const BIGNUM *p; |
| 957 | BN_CTX *new_ctx = NULL; |
| 958 | BIGNUM *rh, *tmp, *Z4, *Z6; |
| 959 | int ret = -1; |
| 960 | |
| 961 | if (EC_POINT_is_at_infinity(group, point)) |
| 962 | return 1; |
| 963 | |
| 964 | field_mul = group->meth->field_mul; |
| 965 | field_sqr = group->meth->field_sqr; |
| 966 | p = group->field; |
| 967 | |
| 968 | if (ctx == NULL) { |
| 969 | ctx = new_ctx = BN_CTX_new(); |
| 970 | if (ctx == NULL) |
| 971 | return -1; |
| 972 | } |
| 973 | |
| 974 | BN_CTX_start(ctx); |
| 975 | rh = BN_CTX_get(ctx); |
| 976 | tmp = BN_CTX_get(ctx); |
| 977 | Z4 = BN_CTX_get(ctx); |
| 978 | Z6 = BN_CTX_get(ctx); |
| 979 | if (Z6 == NULL) |
| 980 | goto err; |
| 981 | |
| 982 | /*- |
| 983 | * We have a curve defined by a Weierstrass equation |
| 984 | * y^2 = x^3 + a*x + b. |
| 985 | * The point to consider is given in Jacobian projective coordinates |
| 986 | * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
| 987 | * Substituting this and multiplying by Z^6 transforms the above equation into |
| 988 | * Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
| 989 | * To test this, we add up the right-hand side in 'rh'. |
| 990 | */ |
| 991 | |
| 992 | /* rh := X^2 */ |
| 993 | if (!field_sqr(group, rh, point->X, ctx)) |
| 994 | goto err; |
| 995 | |
| 996 | if (!point->Z_is_one) { |
| 997 | if (!field_sqr(group, tmp, point->Z, ctx)) |
| 998 | goto err; |
| 999 | if (!field_sqr(group, Z4, tmp, ctx)) |
| 1000 | goto err; |
| 1001 | if (!field_mul(group, Z6, Z4, tmp, ctx)) |
| 1002 | goto err; |
| 1003 | |
| 1004 | /* rh := (rh + a*Z^4)*X */ |
| 1005 | if (group->a_is_minus3) { |
| 1006 | if (!BN_mod_lshift1_quick(tmp, Z4, p)) |
| 1007 | goto err; |
| 1008 | if (!BN_mod_add_quick(tmp, tmp, Z4, p)) |
| 1009 | goto err; |
| 1010 | if (!BN_mod_sub_quick(rh, rh, tmp, p)) |
| 1011 | goto err; |
| 1012 | if (!field_mul(group, rh, rh, point->X, ctx)) |
| 1013 | goto err; |
| 1014 | } else { |
| 1015 | if (!field_mul(group, tmp, Z4, group->a, ctx)) |
| 1016 | goto err; |
| 1017 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
| 1018 | goto err; |
| 1019 | if (!field_mul(group, rh, rh, point->X, ctx)) |
| 1020 | goto err; |
| 1021 | } |
| 1022 | |
| 1023 | /* rh := rh + b*Z^6 */ |
| 1024 | if (!field_mul(group, tmp, group->b, Z6, ctx)) |
| 1025 | goto err; |
| 1026 | if (!BN_mod_add_quick(rh, rh, tmp, p)) |
| 1027 | goto err; |
| 1028 | } else { |
| 1029 | /* point->Z_is_one */ |
| 1030 | |
| 1031 | /* rh := (rh + a)*X */ |
| 1032 | if (!BN_mod_add_quick(rh, rh, group->a, p)) |
| 1033 | goto err; |
| 1034 | if (!field_mul(group, rh, rh, point->X, ctx)) |
| 1035 | goto err; |
| 1036 | /* rh := rh + b */ |
| 1037 | if (!BN_mod_add_quick(rh, rh, group->b, p)) |
| 1038 | goto err; |
| 1039 | } |
| 1040 | |
| 1041 | /* 'lh' := Y^2 */ |
| 1042 | if (!field_sqr(group, tmp, point->Y, ctx)) |
| 1043 | goto err; |
| 1044 | |
| 1045 | ret = (0 == BN_ucmp(tmp, rh)); |
| 1046 | |
| 1047 | err: |
| 1048 | BN_CTX_end(ctx); |
| 1049 | BN_CTX_free(new_ctx); |
| 1050 | return ret; |
| 1051 | } |
| 1052 | |
| 1053 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
| 1054 | const EC_POINT *b, BN_CTX *ctx) |
| 1055 | { |
| 1056 | /*- |
| 1057 | * return values: |
| 1058 | * -1 error |
| 1059 | * 0 equal (in affine coordinates) |
| 1060 | * 1 not equal |
| 1061 | */ |
| 1062 | |
| 1063 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 1064 | const BIGNUM *, BN_CTX *); |
| 1065 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 1066 | BN_CTX *new_ctx = NULL; |
| 1067 | BIGNUM *tmp1, *tmp2, *Za23, *Zb23; |
| 1068 | const BIGNUM *tmp1_, *tmp2_; |
| 1069 | int ret = -1; |
| 1070 | |
| 1071 | if (EC_POINT_is_at_infinity(group, a)) { |
| 1072 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
| 1073 | } |
| 1074 | |
| 1075 | if (EC_POINT_is_at_infinity(group, b)) |
| 1076 | return 1; |
| 1077 | |
| 1078 | if (a->Z_is_one && b->Z_is_one) { |
| 1079 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; |
| 1080 | } |
| 1081 | |
| 1082 | field_mul = group->meth->field_mul; |
| 1083 | field_sqr = group->meth->field_sqr; |
| 1084 | |
| 1085 | if (ctx == NULL) { |
| 1086 | ctx = new_ctx = BN_CTX_new(); |
| 1087 | if (ctx == NULL) |
| 1088 | return -1; |
| 1089 | } |
| 1090 | |
| 1091 | BN_CTX_start(ctx); |
| 1092 | tmp1 = BN_CTX_get(ctx); |
| 1093 | tmp2 = BN_CTX_get(ctx); |
| 1094 | Za23 = BN_CTX_get(ctx); |
| 1095 | Zb23 = BN_CTX_get(ctx); |
| 1096 | if (Zb23 == NULL) |
| 1097 | goto end; |
| 1098 | |
| 1099 | /*- |
| 1100 | * We have to decide whether |
| 1101 | * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
| 1102 | * or equivalently, whether |
| 1103 | * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
| 1104 | */ |
| 1105 | |
| 1106 | if (!b->Z_is_one) { |
| 1107 | if (!field_sqr(group, Zb23, b->Z, ctx)) |
| 1108 | goto end; |
| 1109 | if (!field_mul(group, tmp1, a->X, Zb23, ctx)) |
| 1110 | goto end; |
| 1111 | tmp1_ = tmp1; |
| 1112 | } else |
| 1113 | tmp1_ = a->X; |
| 1114 | if (!a->Z_is_one) { |
| 1115 | if (!field_sqr(group, Za23, a->Z, ctx)) |
| 1116 | goto end; |
| 1117 | if (!field_mul(group, tmp2, b->X, Za23, ctx)) |
| 1118 | goto end; |
| 1119 | tmp2_ = tmp2; |
| 1120 | } else |
| 1121 | tmp2_ = b->X; |
| 1122 | |
| 1123 | /* compare X_a*Z_b^2 with X_b*Z_a^2 */ |
| 1124 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
| 1125 | ret = 1; /* points differ */ |
| 1126 | goto end; |
| 1127 | } |
| 1128 | |
| 1129 | if (!b->Z_is_one) { |
| 1130 | if (!field_mul(group, Zb23, Zb23, b->Z, ctx)) |
| 1131 | goto end; |
| 1132 | if (!field_mul(group, tmp1, a->Y, Zb23, ctx)) |
| 1133 | goto end; |
| 1134 | /* tmp1_ = tmp1 */ |
| 1135 | } else |
| 1136 | tmp1_ = a->Y; |
| 1137 | if (!a->Z_is_one) { |
| 1138 | if (!field_mul(group, Za23, Za23, a->Z, ctx)) |
| 1139 | goto end; |
| 1140 | if (!field_mul(group, tmp2, b->Y, Za23, ctx)) |
| 1141 | goto end; |
| 1142 | /* tmp2_ = tmp2 */ |
| 1143 | } else |
| 1144 | tmp2_ = b->Y; |
| 1145 | |
| 1146 | /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */ |
| 1147 | if (BN_cmp(tmp1_, tmp2_) != 0) { |
| 1148 | ret = 1; /* points differ */ |
| 1149 | goto end; |
| 1150 | } |
| 1151 | |
| 1152 | /* points are equal */ |
| 1153 | ret = 0; |
| 1154 | |
| 1155 | end: |
| 1156 | BN_CTX_end(ctx); |
| 1157 | BN_CTX_free(new_ctx); |
| 1158 | return ret; |
| 1159 | } |
| 1160 | |
| 1161 | int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
| 1162 | BN_CTX *ctx) |
| 1163 | { |
| 1164 | BN_CTX *new_ctx = NULL; |
| 1165 | BIGNUM *x, *y; |
| 1166 | int ret = 0; |
| 1167 | |
| 1168 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
| 1169 | return 1; |
| 1170 | |
| 1171 | if (ctx == NULL) { |
| 1172 | ctx = new_ctx = BN_CTX_new(); |
| 1173 | if (ctx == NULL) |
| 1174 | return 0; |
| 1175 | } |
| 1176 | |
| 1177 | BN_CTX_start(ctx); |
| 1178 | x = BN_CTX_get(ctx); |
| 1179 | y = BN_CTX_get(ctx); |
| 1180 | if (y == NULL) |
| 1181 | goto err; |
| 1182 | |
| 1183 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
| 1184 | goto err; |
| 1185 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) |
| 1186 | goto err; |
| 1187 | if (!point->Z_is_one) { |
| 1188 | ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR); |
| 1189 | goto err; |
| 1190 | } |
| 1191 | |
| 1192 | ret = 1; |
| 1193 | |
| 1194 | err: |
| 1195 | BN_CTX_end(ctx); |
| 1196 | BN_CTX_free(new_ctx); |
| 1197 | return ret; |
| 1198 | } |
| 1199 | |
| 1200 | int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, |
| 1201 | EC_POINT *points[], BN_CTX *ctx) |
| 1202 | { |
| 1203 | BN_CTX *new_ctx = NULL; |
| 1204 | BIGNUM *tmp, *tmp_Z; |
| 1205 | BIGNUM **prod_Z = NULL; |
| 1206 | size_t i; |
| 1207 | int ret = 0; |
| 1208 | |
| 1209 | if (num == 0) |
| 1210 | return 1; |
| 1211 | |
| 1212 | if (ctx == NULL) { |
| 1213 | ctx = new_ctx = BN_CTX_new(); |
| 1214 | if (ctx == NULL) |
| 1215 | return 0; |
| 1216 | } |
| 1217 | |
| 1218 | BN_CTX_start(ctx); |
| 1219 | tmp = BN_CTX_get(ctx); |
| 1220 | tmp_Z = BN_CTX_get(ctx); |
| 1221 | if (tmp_Z == NULL) |
| 1222 | goto err; |
| 1223 | |
| 1224 | prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); |
| 1225 | if (prod_Z == NULL) |
| 1226 | goto err; |
| 1227 | for (i = 0; i < num; i++) { |
| 1228 | prod_Z[i] = BN_new(); |
| 1229 | if (prod_Z[i] == NULL) |
| 1230 | goto err; |
| 1231 | } |
| 1232 | |
| 1233 | /* |
| 1234 | * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, |
| 1235 | * skipping any zero-valued inputs (pretend that they're 1). |
| 1236 | */ |
| 1237 | |
| 1238 | if (!BN_is_zero(points[0]->Z)) { |
| 1239 | if (!BN_copy(prod_Z[0], points[0]->Z)) |
| 1240 | goto err; |
| 1241 | } else { |
| 1242 | if (group->meth->field_set_to_one != 0) { |
| 1243 | if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) |
| 1244 | goto err; |
| 1245 | } else { |
| 1246 | if (!BN_one(prod_Z[0])) |
| 1247 | goto err; |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | for (i = 1; i < num; i++) { |
| 1252 | if (!BN_is_zero(points[i]->Z)) { |
| 1253 | if (!group-> |
| 1254 | meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z, |
| 1255 | ctx)) |
| 1256 | goto err; |
| 1257 | } else { |
| 1258 | if (!BN_copy(prod_Z[i], prod_Z[i - 1])) |
| 1259 | goto err; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | /* |
| 1264 | * Now use a single explicit inversion to replace every non-zero |
| 1265 | * points[i]->Z by its inverse. |
| 1266 | */ |
| 1267 | |
| 1268 | if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) { |
| 1269 | ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB); |
| 1270 | goto err; |
| 1271 | } |
| 1272 | if (group->meth->field_encode != 0) { |
| 1273 | /* |
| 1274 | * In the Montgomery case, we just turned R*H (representing H) into |
| 1275 | * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to |
| 1276 | * multiply by the Montgomery factor twice. |
| 1277 | */ |
| 1278 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) |
| 1279 | goto err; |
| 1280 | if (!group->meth->field_encode(group, tmp, tmp, ctx)) |
| 1281 | goto err; |
| 1282 | } |
| 1283 | |
| 1284 | for (i = num - 1; i > 0; --i) { |
| 1285 | /* |
| 1286 | * Loop invariant: tmp is the product of the inverses of points[0]->Z |
| 1287 | * .. points[i]->Z (zero-valued inputs skipped). |
| 1288 | */ |
| 1289 | if (!BN_is_zero(points[i]->Z)) { |
| 1290 | /* |
| 1291 | * Set tmp_Z to the inverse of points[i]->Z (as product of Z |
| 1292 | * inverses 0 .. i, Z values 0 .. i - 1). |
| 1293 | */ |
| 1294 | if (!group-> |
| 1295 | meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) |
| 1296 | goto err; |
| 1297 | /* |
| 1298 | * Update tmp to satisfy the loop invariant for i - 1. |
| 1299 | */ |
| 1300 | if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx)) |
| 1301 | goto err; |
| 1302 | /* Replace points[i]->Z by its inverse. */ |
| 1303 | if (!BN_copy(points[i]->Z, tmp_Z)) |
| 1304 | goto err; |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | if (!BN_is_zero(points[0]->Z)) { |
| 1309 | /* Replace points[0]->Z by its inverse. */ |
| 1310 | if (!BN_copy(points[0]->Z, tmp)) |
| 1311 | goto err; |
| 1312 | } |
| 1313 | |
| 1314 | /* Finally, fix up the X and Y coordinates for all points. */ |
| 1315 | |
| 1316 | for (i = 0; i < num; i++) { |
| 1317 | EC_POINT *p = points[i]; |
| 1318 | |
| 1319 | if (!BN_is_zero(p->Z)) { |
| 1320 | /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */ |
| 1321 | |
| 1322 | if (!group->meth->field_sqr(group, tmp, p->Z, ctx)) |
| 1323 | goto err; |
| 1324 | if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx)) |
| 1325 | goto err; |
| 1326 | |
| 1327 | if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx)) |
| 1328 | goto err; |
| 1329 | if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx)) |
| 1330 | goto err; |
| 1331 | |
| 1332 | if (group->meth->field_set_to_one != 0) { |
| 1333 | if (!group->meth->field_set_to_one(group, p->Z, ctx)) |
| 1334 | goto err; |
| 1335 | } else { |
| 1336 | if (!BN_one(p->Z)) |
| 1337 | goto err; |
| 1338 | } |
| 1339 | p->Z_is_one = 1; |
| 1340 | } |
| 1341 | } |
| 1342 | |
| 1343 | ret = 1; |
| 1344 | |
| 1345 | err: |
| 1346 | BN_CTX_end(ctx); |
| 1347 | BN_CTX_free(new_ctx); |
| 1348 | if (prod_Z != NULL) { |
| 1349 | for (i = 0; i < num; i++) { |
| 1350 | if (prod_Z[i] == NULL) |
| 1351 | break; |
| 1352 | BN_clear_free(prod_Z[i]); |
| 1353 | } |
| 1354 | OPENSSL_free(prod_Z); |
| 1355 | } |
| 1356 | return ret; |
| 1357 | } |
| 1358 | |
| 1359 | int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| 1360 | const BIGNUM *b, BN_CTX *ctx) |
| 1361 | { |
| 1362 | return BN_mod_mul(r, a, b, group->field, ctx); |
| 1363 | } |
| 1364 | |
| 1365 | int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| 1366 | BN_CTX *ctx) |
| 1367 | { |
| 1368 | return BN_mod_sqr(r, a, group->field, ctx); |
| 1369 | } |
| 1370 | |
| 1371 | /*- |
| 1372 | * Computes the multiplicative inverse of a in GF(p), storing the result in r. |
| 1373 | * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. |
| 1374 | * Since we don't have a Mont structure here, SCA hardening is with blinding. |
| 1375 | * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.) |
| 1376 | */ |
| 1377 | int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| 1378 | BN_CTX *ctx) |
| 1379 | { |
| 1380 | BIGNUM *e = NULL; |
| 1381 | BN_CTX *new_ctx = NULL; |
| 1382 | int ret = 0; |
| 1383 | |
| 1384 | if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) |
| 1385 | return 0; |
| 1386 | |
| 1387 | BN_CTX_start(ctx); |
| 1388 | if ((e = BN_CTX_get(ctx)) == NULL) |
| 1389 | goto err; |
| 1390 | |
| 1391 | do { |
| 1392 | if (!BN_priv_rand_range(e, group->field)) |
| 1393 | goto err; |
| 1394 | } while (BN_is_zero(e)); |
| 1395 | |
| 1396 | /* r := a * e */ |
| 1397 | if (!group->meth->field_mul(group, r, a, e, ctx)) |
| 1398 | goto err; |
| 1399 | /* r := 1/(a * e) */ |
| 1400 | if (!BN_mod_inverse(r, r, group->field, ctx)) { |
| 1401 | ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT); |
| 1402 | goto err; |
| 1403 | } |
| 1404 | /* r := e/(a * e) = 1/a */ |
| 1405 | if (!group->meth->field_mul(group, r, r, e, ctx)) |
| 1406 | goto err; |
| 1407 | |
| 1408 | ret = 1; |
| 1409 | |
| 1410 | err: |
| 1411 | BN_CTX_end(ctx); |
| 1412 | BN_CTX_free(new_ctx); |
| 1413 | return ret; |
| 1414 | } |
| 1415 | |
| 1416 | /*- |
| 1417 | * Apply randomization of EC point projective coordinates: |
| 1418 | * |
| 1419 | * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z) |
| 1420 | * lambda = [1,group->field) |
| 1421 | * |
| 1422 | */ |
| 1423 | int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p, |
| 1424 | BN_CTX *ctx) |
| 1425 | { |
| 1426 | int ret = 0; |
| 1427 | BIGNUM *lambda = NULL; |
| 1428 | BIGNUM *temp = NULL; |
| 1429 | |
| 1430 | BN_CTX_start(ctx); |
| 1431 | lambda = BN_CTX_get(ctx); |
| 1432 | temp = BN_CTX_get(ctx); |
| 1433 | if (temp == NULL) { |
| 1434 | ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE); |
| 1435 | goto end; |
| 1436 | } |
| 1437 | |
| 1438 | /*- |
| 1439 | * Make sure lambda is not zero. |
| 1440 | * If the RNG fails, we cannot blind but nevertheless want |
| 1441 | * code to continue smoothly and not clobber the error stack. |
| 1442 | */ |
| 1443 | do { |
| 1444 | ERR_set_mark(); |
| 1445 | ret = BN_priv_rand_range(lambda, group->field); |
| 1446 | ERR_pop_to_mark(); |
| 1447 | if (ret == 0) { |
| 1448 | ret = 1; |
| 1449 | goto end; |
| 1450 | } |
| 1451 | } while (BN_is_zero(lambda)); |
| 1452 | |
| 1453 | /* if field_encode defined convert between representations */ |
| 1454 | if ((group->meth->field_encode != NULL |
| 1455 | && !group->meth->field_encode(group, lambda, lambda, ctx)) |
| 1456 | || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx) |
| 1457 | || !group->meth->field_sqr(group, temp, lambda, ctx) |
| 1458 | || !group->meth->field_mul(group, p->X, p->X, temp, ctx) |
| 1459 | || !group->meth->field_mul(group, temp, temp, lambda, ctx) |
| 1460 | || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx)) |
| 1461 | goto end; |
| 1462 | |
| 1463 | p->Z_is_one = 0; |
| 1464 | ret = 1; |
| 1465 | |
| 1466 | end: |
| 1467 | BN_CTX_end(ctx); |
| 1468 | return ret; |
| 1469 | } |
| 1470 | |
| 1471 | /*- |
| 1472 | * Input: |
| 1473 | * - p: affine coordinates |
| 1474 | * |
| 1475 | * Output: |
| 1476 | * - s := p, r := 2p: blinded projective (homogeneous) coordinates |
| 1477 | * |
| 1478 | * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve |
| 1479 | * multiplication resistant against side channel attacks" appendix, described at |
| 1480 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2 |
| 1481 | * simplified for Z1=1. |
| 1482 | * |
| 1483 | * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z) |
| 1484 | * for any non-zero \lambda that holds for projective (homogeneous) coords. |
| 1485 | */ |
| 1486 | int ec_GFp_simple_ladder_pre(const EC_GROUP *group, |
| 1487 | EC_POINT *r, EC_POINT *s, |
| 1488 | EC_POINT *p, BN_CTX *ctx) |
| 1489 | { |
| 1490 | BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL; |
| 1491 | |
| 1492 | t1 = s->Z; |
| 1493 | t2 = r->Z; |
| 1494 | t3 = s->X; |
| 1495 | t4 = r->X; |
| 1496 | t5 = s->Y; |
| 1497 | |
| 1498 | if (!p->Z_is_one /* r := 2p */ |
| 1499 | || !group->meth->field_sqr(group, t3, p->X, ctx) |
| 1500 | || !BN_mod_sub_quick(t4, t3, group->a, group->field) |
| 1501 | || !group->meth->field_sqr(group, t4, t4, ctx) |
| 1502 | || !group->meth->field_mul(group, t5, p->X, group->b, ctx) |
| 1503 | || !BN_mod_lshift_quick(t5, t5, 3, group->field) |
| 1504 | /* r->X coord output */ |
| 1505 | || !BN_mod_sub_quick(r->X, t4, t5, group->field) |
| 1506 | || !BN_mod_add_quick(t1, t3, group->a, group->field) |
| 1507 | || !group->meth->field_mul(group, t2, p->X, t1, ctx) |
| 1508 | || !BN_mod_add_quick(t2, group->b, t2, group->field) |
| 1509 | /* r->Z coord output */ |
| 1510 | || !BN_mod_lshift_quick(r->Z, t2, 2, group->field)) |
| 1511 | return 0; |
| 1512 | |
| 1513 | /* make sure lambda (r->Y here for storage) is not zero */ |
| 1514 | do { |
| 1515 | if (!BN_priv_rand_range(r->Y, group->field)) |
| 1516 | return 0; |
| 1517 | } while (BN_is_zero(r->Y)); |
| 1518 | |
| 1519 | /* make sure lambda (s->Z here for storage) is not zero */ |
| 1520 | do { |
| 1521 | if (!BN_priv_rand_range(s->Z, group->field)) |
| 1522 | return 0; |
| 1523 | } while (BN_is_zero(s->Z)); |
| 1524 | |
| 1525 | /* if field_encode defined convert between representations */ |
| 1526 | if (group->meth->field_encode != NULL |
| 1527 | && (!group->meth->field_encode(group, r->Y, r->Y, ctx) |
| 1528 | || !group->meth->field_encode(group, s->Z, s->Z, ctx))) |
| 1529 | return 0; |
| 1530 | |
| 1531 | /* blind r and s independently */ |
| 1532 | if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx) |
| 1533 | || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx) |
| 1534 | || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */ |
| 1535 | return 0; |
| 1536 | |
| 1537 | r->Z_is_one = 0; |
| 1538 | s->Z_is_one = 0; |
| 1539 | |
| 1540 | return 1; |
| 1541 | } |
| 1542 | |
| 1543 | /*- |
| 1544 | * Input: |
| 1545 | * - s, r: projective (homogeneous) coordinates |
| 1546 | * - p: affine coordinates |
| 1547 | * |
| 1548 | * Output: |
| 1549 | * - s := r + s, r := 2r: projective (homogeneous) coordinates |
| 1550 | * |
| 1551 | * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi |
| 1552 | * "A fast parallel elliptic curve multiplication resistant against side channel |
| 1553 | * attacks", as described at |
| 1554 | * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4 |
| 1555 | */ |
| 1556 | int ec_GFp_simple_ladder_step(const EC_GROUP *group, |
| 1557 | EC_POINT *r, EC_POINT *s, |
| 1558 | EC_POINT *p, BN_CTX *ctx) |
| 1559 | { |
| 1560 | int ret = 0; |
| 1561 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL; |
| 1562 | |
| 1563 | BN_CTX_start(ctx); |
| 1564 | t0 = BN_CTX_get(ctx); |
| 1565 | t1 = BN_CTX_get(ctx); |
| 1566 | t2 = BN_CTX_get(ctx); |
| 1567 | t3 = BN_CTX_get(ctx); |
| 1568 | t4 = BN_CTX_get(ctx); |
| 1569 | t5 = BN_CTX_get(ctx); |
| 1570 | t6 = BN_CTX_get(ctx); |
| 1571 | |
| 1572 | if (t6 == NULL |
| 1573 | || !group->meth->field_mul(group, t6, r->X, s->X, ctx) |
| 1574 | || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx) |
| 1575 | || !group->meth->field_mul(group, t4, r->X, s->Z, ctx) |
| 1576 | || !group->meth->field_mul(group, t3, r->Z, s->X, ctx) |
| 1577 | || !group->meth->field_mul(group, t5, group->a, t0, ctx) |
| 1578 | || !BN_mod_add_quick(t5, t6, t5, group->field) |
| 1579 | || !BN_mod_add_quick(t6, t3, t4, group->field) |
| 1580 | || !group->meth->field_mul(group, t5, t6, t5, ctx) |
| 1581 | || !group->meth->field_sqr(group, t0, t0, ctx) |
| 1582 | || !BN_mod_lshift_quick(t2, group->b, 2, group->field) |
| 1583 | || !group->meth->field_mul(group, t0, t2, t0, ctx) |
| 1584 | || !BN_mod_lshift1_quick(t5, t5, group->field) |
| 1585 | || !BN_mod_sub_quick(t3, t4, t3, group->field) |
| 1586 | /* s->Z coord output */ |
| 1587 | || !group->meth->field_sqr(group, s->Z, t3, ctx) |
| 1588 | || !group->meth->field_mul(group, t4, s->Z, p->X, ctx) |
| 1589 | || !BN_mod_add_quick(t0, t0, t5, group->field) |
| 1590 | /* s->X coord output */ |
| 1591 | || !BN_mod_sub_quick(s->X, t0, t4, group->field) |
| 1592 | || !group->meth->field_sqr(group, t4, r->X, ctx) |
| 1593 | || !group->meth->field_sqr(group, t5, r->Z, ctx) |
| 1594 | || !group->meth->field_mul(group, t6, t5, group->a, ctx) |
| 1595 | || !BN_mod_add_quick(t1, r->X, r->Z, group->field) |
| 1596 | || !group->meth->field_sqr(group, t1, t1, ctx) |
| 1597 | || !BN_mod_sub_quick(t1, t1, t4, group->field) |
| 1598 | || !BN_mod_sub_quick(t1, t1, t5, group->field) |
| 1599 | || !BN_mod_sub_quick(t3, t4, t6, group->field) |
| 1600 | || !group->meth->field_sqr(group, t3, t3, ctx) |
| 1601 | || !group->meth->field_mul(group, t0, t5, t1, ctx) |
| 1602 | || !group->meth->field_mul(group, t0, t2, t0, ctx) |
| 1603 | /* r->X coord output */ |
| 1604 | || !BN_mod_sub_quick(r->X, t3, t0, group->field) |
| 1605 | || !BN_mod_add_quick(t3, t4, t6, group->field) |
| 1606 | || !group->meth->field_sqr(group, t4, t5, ctx) |
| 1607 | || !group->meth->field_mul(group, t4, t4, t2, ctx) |
| 1608 | || !group->meth->field_mul(group, t1, t1, t3, ctx) |
| 1609 | || !BN_mod_lshift1_quick(t1, t1, group->field) |
| 1610 | /* r->Z coord output */ |
| 1611 | || !BN_mod_add_quick(r->Z, t4, t1, group->field)) |
| 1612 | goto err; |
| 1613 | |
| 1614 | ret = 1; |
| 1615 | |
| 1616 | err: |
| 1617 | BN_CTX_end(ctx); |
| 1618 | return ret; |
| 1619 | } |
| 1620 | |
| 1621 | /*- |
| 1622 | * Input: |
| 1623 | * - s, r: projective (homogeneous) coordinates |
| 1624 | * - p: affine coordinates |
| 1625 | * |
| 1626 | * Output: |
| 1627 | * - r := (x,y): affine coordinates |
| 1628 | * |
| 1629 | * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass |
| 1630 | * Elliptic Curves and Side-Channel Attacks", modified to work in mixed |
| 1631 | * projective coords, i.e. p is affine and (r,s) in projective (homogeneous) |
| 1632 | * coords, and return r in affine coordinates. |
| 1633 | * |
| 1634 | * X4 = two*Y1*X2*Z3*Z2; |
| 1635 | * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2); |
| 1636 | * Z4 = two*Y1*Z3*SQR(Z2); |
| 1637 | * |
| 1638 | * Z4 != 0 because: |
| 1639 | * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch); |
| 1640 | * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch); |
| 1641 | * - Y1==0 implies p has order 2, so either r or s are infinity and handled by |
| 1642 | * one of the BN_is_zero(...) branches. |
| 1643 | */ |
| 1644 | int ec_GFp_simple_ladder_post(const EC_GROUP *group, |
| 1645 | EC_POINT *r, EC_POINT *s, |
| 1646 | EC_POINT *p, BN_CTX *ctx) |
| 1647 | { |
| 1648 | int ret = 0; |
| 1649 | BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL; |
| 1650 | |
| 1651 | if (BN_is_zero(r->Z)) |
| 1652 | return EC_POINT_set_to_infinity(group, r); |
| 1653 | |
| 1654 | if (BN_is_zero(s->Z)) { |
| 1655 | if (!EC_POINT_copy(r, p) |
| 1656 | || !EC_POINT_invert(group, r, ctx)) |
| 1657 | return 0; |
| 1658 | return 1; |
| 1659 | } |
| 1660 | |
| 1661 | BN_CTX_start(ctx); |
| 1662 | t0 = BN_CTX_get(ctx); |
| 1663 | t1 = BN_CTX_get(ctx); |
| 1664 | t2 = BN_CTX_get(ctx); |
| 1665 | t3 = BN_CTX_get(ctx); |
| 1666 | t4 = BN_CTX_get(ctx); |
| 1667 | t5 = BN_CTX_get(ctx); |
| 1668 | t6 = BN_CTX_get(ctx); |
| 1669 | |
| 1670 | if (t6 == NULL |
| 1671 | || !BN_mod_lshift1_quick(t4, p->Y, group->field) |
| 1672 | || !group->meth->field_mul(group, t6, r->X, t4, ctx) |
| 1673 | || !group->meth->field_mul(group, t6, s->Z, t6, ctx) |
| 1674 | || !group->meth->field_mul(group, t5, r->Z, t6, ctx) |
| 1675 | || !BN_mod_lshift1_quick(t1, group->b, group->field) |
| 1676 | || !group->meth->field_mul(group, t1, s->Z, t1, ctx) |
| 1677 | || !group->meth->field_sqr(group, t3, r->Z, ctx) |
| 1678 | || !group->meth->field_mul(group, t2, t3, t1, ctx) |
| 1679 | || !group->meth->field_mul(group, t6, r->Z, group->a, ctx) |
| 1680 | || !group->meth->field_mul(group, t1, p->X, r->X, ctx) |
| 1681 | || !BN_mod_add_quick(t1, t1, t6, group->field) |
| 1682 | || !group->meth->field_mul(group, t1, s->Z, t1, ctx) |
| 1683 | || !group->meth->field_mul(group, t0, p->X, r->Z, ctx) |
| 1684 | || !BN_mod_add_quick(t6, r->X, t0, group->field) |
| 1685 | || !group->meth->field_mul(group, t6, t6, t1, ctx) |
| 1686 | || !BN_mod_add_quick(t6, t6, t2, group->field) |
| 1687 | || !BN_mod_sub_quick(t0, t0, r->X, group->field) |
| 1688 | || !group->meth->field_sqr(group, t0, t0, ctx) |
| 1689 | || !group->meth->field_mul(group, t0, t0, s->X, ctx) |
| 1690 | || !BN_mod_sub_quick(t0, t6, t0, group->field) |
| 1691 | || !group->meth->field_mul(group, t1, s->Z, t4, ctx) |
| 1692 | || !group->meth->field_mul(group, t1, t3, t1, ctx) |
| 1693 | || (group->meth->field_decode != NULL |
| 1694 | && !group->meth->field_decode(group, t1, t1, ctx)) |
| 1695 | || !group->meth->field_inv(group, t1, t1, ctx) |
| 1696 | || (group->meth->field_encode != NULL |
| 1697 | && !group->meth->field_encode(group, t1, t1, ctx)) |
| 1698 | || !group->meth->field_mul(group, r->X, t5, t1, ctx) |
| 1699 | || !group->meth->field_mul(group, r->Y, t0, t1, ctx)) |
| 1700 | goto err; |
| 1701 | |
| 1702 | if (group->meth->field_set_to_one != NULL) { |
| 1703 | if (!group->meth->field_set_to_one(group, r->Z, ctx)) |
| 1704 | goto err; |
| 1705 | } else { |
| 1706 | if (!BN_one(r->Z)) |
| 1707 | goto err; |
| 1708 | } |
| 1709 | |
| 1710 | r->Z_is_one = 1; |
| 1711 | ret = 1; |
| 1712 | |
| 1713 | err: |
| 1714 | BN_CTX_end(ctx); |
| 1715 | return ret; |
| 1716 | } |