blob: 59af6df9c200d8631b5936470a021cb8e600fab9 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001#! /usr/bin/env perl
2# Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9
10# Ascetic x86_64 AT&T to MASM/NASM assembler translator by <appro>.
11#
12# Why AT&T to MASM and not vice versa? Several reasons. Because AT&T
13# format is way easier to parse. Because it's simpler to "gear" from
14# Unix ABI to Windows one [see cross-reference "card" at the end of
15# file]. Because Linux targets were available first...
16#
17# In addition the script also "distills" code suitable for GNU
18# assembler, so that it can be compiled with more rigid assemblers,
19# such as Solaris /usr/ccs/bin/as.
20#
21# This translator is not designed to convert *arbitrary* assembler
22# code from AT&T format to MASM one. It's designed to convert just
23# enough to provide for dual-ABI OpenSSL modules development...
24# There *are* limitations and you might have to modify your assembler
25# code or this script to achieve the desired result...
26#
27# Currently recognized limitations:
28#
29# - can't use multiple ops per line;
30#
31# Dual-ABI styling rules.
32#
33# 1. Adhere to Unix register and stack layout [see cross-reference
34# ABI "card" at the end for explanation].
35# 2. Forget about "red zone," stick to more traditional blended
36# stack frame allocation. If volatile storage is actually required
37# that is. If not, just leave the stack as is.
38# 3. Functions tagged with ".type name,@function" get crafted with
39# unified Win64 prologue and epilogue automatically. If you want
40# to take care of ABI differences yourself, tag functions as
41# ".type name,@abi-omnipotent" instead.
42# 4. To optimize the Win64 prologue you can specify number of input
43# arguments as ".type name,@function,N." Keep in mind that if N is
44# larger than 6, then you *have to* write "abi-omnipotent" code,
45# because >6 cases can't be addressed with unified prologue.
46# 5. Name local labels as .L*, do *not* use dynamic labels such as 1:
47# (sorry about latter).
48# 6. Don't use [or hand-code with .byte] "rep ret." "ret" mnemonic is
49# required to identify the spots, where to inject Win64 epilogue!
50# But on the pros, it's then prefixed with rep automatically:-)
51# 7. Stick to explicit ip-relative addressing. If you have to use
52# GOTPCREL addressing, stick to mov symbol@GOTPCREL(%rip),%r??.
53# Both are recognized and translated to proper Win64 addressing
54# modes.
55#
56# 8. In order to provide for structured exception handling unified
57# Win64 prologue copies %rsp value to %rax. For further details
58# see SEH paragraph at the end.
59# 9. .init segment is allowed to contain calls to functions only.
60# a. If function accepts more than 4 arguments *and* >4th argument
61# is declared as non 64-bit value, do clear its upper part.
62
63
64use strict;
65
66my $flavour = shift;
67my $output = shift;
68if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
69
70open STDOUT,">$output" || die "can't open $output: $!"
71 if (defined($output));
72
73my $gas=1; $gas=0 if ($output =~ /\.asm$/);
74my $elf=1; $elf=0 if (!$gas);
75my $win64=0;
76my $prefix="";
77my $decor=".L";
78
79my $masmref=8 + 50727*2**-32; # 8.00.50727 shipped with VS2005
80my $masm=0;
81my $PTR=" PTR";
82
83my $nasmref=2.03;
84my $nasm=0;
85
86if ($flavour eq "mingw64") { $gas=1; $elf=0; $win64=1;
87 $prefix=`echo __USER_LABEL_PREFIX__ | $ENV{CC} -E -P -`;
88 $prefix =~ s|\R$||; # Better chomp
89 }
90elsif ($flavour eq "macosx") { $gas=1; $elf=0; $prefix="_"; $decor="L\$"; }
91elsif ($flavour eq "masm") { $gas=0; $elf=0; $masm=$masmref; $win64=1; $decor="\$L\$"; }
92elsif ($flavour eq "nasm") { $gas=0; $elf=0; $nasm=$nasmref; $win64=1; $decor="\$L\$"; $PTR=""; }
93elsif (!$gas)
94{ if ($ENV{ASM} =~ m/nasm/ && `nasm -v` =~ m/version ([0-9]+)\.([0-9]+)/i)
95 { $nasm = $1 + $2*0.01; $PTR=""; }
96 elsif (`ml64 2>&1` =~ m/Version ([0-9]+)\.([0-9]+)(\.([0-9]+))?/)
97 { $masm = $1 + $2*2**-16 + $4*2**-32; }
98 die "no assembler found on %PATH%" if (!($nasm || $masm));
99 $win64=1;
100 $elf=0;
101 $decor="\$L\$";
102}
103
104my $current_segment;
105my $current_function;
106my %globals;
107
108{ package opcode; # pick up opcodes
109 sub re {
110 my ($class, $line) = @_;
111 my $self = {};
112 my $ret;
113
114 if ($$line =~ /^([a-z][a-z0-9]*)/i) {
115 bless $self,$class;
116 $self->{op} = $1;
117 $ret = $self;
118 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
119
120 undef $self->{sz};
121 if ($self->{op} =~ /^(movz)x?([bw]).*/) { # movz is pain...
122 $self->{op} = $1;
123 $self->{sz} = $2;
124 } elsif ($self->{op} =~ /call|jmp/) {
125 $self->{sz} = "";
126 } elsif ($self->{op} =~ /^p/ && $' !~ /^(ush|op|insrw)/) { # SSEn
127 $self->{sz} = "";
128 } elsif ($self->{op} =~ /^[vk]/) { # VEX or k* such as kmov
129 $self->{sz} = "";
130 } elsif ($self->{op} =~ /mov[dq]/ && $$line =~ /%xmm/) {
131 $self->{sz} = "";
132 } elsif ($self->{op} =~ /([a-z]{3,})([qlwb])$/) {
133 $self->{op} = $1;
134 $self->{sz} = $2;
135 }
136 }
137 $ret;
138 }
139 sub size {
140 my ($self, $sz) = @_;
141 $self->{sz} = $sz if (defined($sz) && !defined($self->{sz}));
142 $self->{sz};
143 }
144 sub out {
145 my $self = shift;
146 if ($gas) {
147 if ($self->{op} eq "movz") { # movz is pain...
148 sprintf "%s%s%s",$self->{op},$self->{sz},shift;
149 } elsif ($self->{op} =~ /^set/) {
150 "$self->{op}";
151 } elsif ($self->{op} eq "ret") {
152 my $epilogue = "";
153 if ($win64 && $current_function->{abi} eq "svr4") {
154 $epilogue = "movq 8(%rsp),%rdi\n\t" .
155 "movq 16(%rsp),%rsi\n\t";
156 }
157 $epilogue . ".byte 0xf3,0xc3";
158 } elsif ($self->{op} eq "call" && !$elf && $current_segment eq ".init") {
159 ".p2align\t3\n\t.quad";
160 } else {
161 "$self->{op}$self->{sz}";
162 }
163 } else {
164 $self->{op} =~ s/^movz/movzx/;
165 if ($self->{op} eq "ret") {
166 $self->{op} = "";
167 if ($win64 && $current_function->{abi} eq "svr4") {
168 $self->{op} = "mov rdi,QWORD$PTR\[8+rsp\]\t;WIN64 epilogue\n\t".
169 "mov rsi,QWORD$PTR\[16+rsp\]\n\t";
170 }
171 $self->{op} .= "DB\t0F3h,0C3h\t\t;repret";
172 } elsif ($self->{op} =~ /^(pop|push)f/) {
173 $self->{op} .= $self->{sz};
174 } elsif ($self->{op} eq "call" && $current_segment eq ".CRT\$XCU") {
175 $self->{op} = "\tDQ";
176 }
177 $self->{op};
178 }
179 }
180 sub mnemonic {
181 my ($self, $op) = @_;
182 $self->{op}=$op if (defined($op));
183 $self->{op};
184 }
185}
186{ package const; # pick up constants, which start with $
187 sub re {
188 my ($class, $line) = @_;
189 my $self = {};
190 my $ret;
191
192 if ($$line =~ /^\$([^,]+)/) {
193 bless $self, $class;
194 $self->{value} = $1;
195 $ret = $self;
196 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
197 }
198 $ret;
199 }
200 sub out {
201 my $self = shift;
202
203 $self->{value} =~ s/\b(0b[0-1]+)/oct($1)/eig;
204 if ($gas) {
205 # Solaris /usr/ccs/bin/as can't handle multiplications
206 # in $self->{value}
207 my $value = $self->{value};
208 no warnings; # oct might complain about overflow, ignore here...
209 $value =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
210 if ($value =~ s/([0-9]+\s*[\*\/\%]\s*[0-9]+)/eval($1)/eg) {
211 $self->{value} = $value;
212 }
213 sprintf "\$%s",$self->{value};
214 } else {
215 my $value = $self->{value};
216 $value =~ s/0x([0-9a-f]+)/0$1h/ig if ($masm);
217 sprintf "%s",$value;
218 }
219 }
220}
221{ package ea; # pick up effective addresses: expr(%reg,%reg,scale)
222
223 my %szmap = ( b=>"BYTE$PTR", w=>"WORD$PTR",
224 l=>"DWORD$PTR", d=>"DWORD$PTR",
225 q=>"QWORD$PTR", o=>"OWORD$PTR",
226 x=>"XMMWORD$PTR", y=>"YMMWORD$PTR",
227 z=>"ZMMWORD$PTR" ) if (!$gas);
228
229 sub re {
230 my ($class, $line, $opcode) = @_;
231 my $self = {};
232 my $ret;
233
234 # optional * ----vvv--- appears in indirect jmp/call
235 if ($$line =~ /^(\*?)([^\(,]*)\(([%\w,]+)\)((?:{[^}]+})*)/) {
236 bless $self, $class;
237 $self->{asterisk} = $1;
238 $self->{label} = $2;
239 ($self->{base},$self->{index},$self->{scale})=split(/,/,$3);
240 $self->{scale} = 1 if (!defined($self->{scale}));
241 $self->{opmask} = $4;
242 $ret = $self;
243 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
244
245 if ($win64 && $self->{label} =~ s/\@GOTPCREL//) {
246 die if ($opcode->mnemonic() ne "mov");
247 $opcode->mnemonic("lea");
248 }
249 $self->{base} =~ s/^%//;
250 $self->{index} =~ s/^%// if (defined($self->{index}));
251 $self->{opcode} = $opcode;
252 }
253 $ret;
254 }
255 sub size {}
256 sub out {
257 my ($self, $sz) = @_;
258
259 $self->{label} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
260 $self->{label} =~ s/\.L/$decor/g;
261
262 # Silently convert all EAs to 64-bit. This is required for
263 # elder GNU assembler and results in more compact code,
264 # *but* most importantly AES module depends on this feature!
265 $self->{index} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
266 $self->{base} =~ s/^[er](.?[0-9xpi])[d]?$/r\1/;
267
268 # Solaris /usr/ccs/bin/as can't handle multiplications
269 # in $self->{label}...
270 use integer;
271 $self->{label} =~ s/(?<![\w\$\.])(0x?[0-9a-f]+)/oct($1)/egi;
272 $self->{label} =~ s/\b([0-9]+\s*[\*\/\%]\s*[0-9]+)\b/eval($1)/eg;
273
274 # Some assemblers insist on signed presentation of 32-bit
275 # offsets, but sign extension is a tricky business in perl...
276 if ((1<<31)<<1) {
277 $self->{label} =~ s/\b([0-9]+)\b/$1<<32>>32/eg;
278 } else {
279 $self->{label} =~ s/\b([0-9]+)\b/$1>>0/eg;
280 }
281
282 # if base register is %rbp or %r13, see if it's possible to
283 # flip base and index registers [for better performance]
284 if (!$self->{label} && $self->{index} && $self->{scale}==1 &&
285 $self->{base} =~ /(rbp|r13)/) {
286 $self->{base} = $self->{index}; $self->{index} = $1;
287 }
288
289 if ($gas) {
290 $self->{label} =~ s/^___imp_/__imp__/ if ($flavour eq "mingw64");
291
292 if (defined($self->{index})) {
293 sprintf "%s%s(%s,%%%s,%d)%s",
294 $self->{asterisk},$self->{label},
295 $self->{base}?"%$self->{base}":"",
296 $self->{index},$self->{scale},
297 $self->{opmask};
298 } else {
299 sprintf "%s%s(%%%s)%s", $self->{asterisk},$self->{label},
300 $self->{base},$self->{opmask};
301 }
302 } else {
303 $self->{label} =~ s/\./\$/g;
304 $self->{label} =~ s/(?<![\w\$\.])0x([0-9a-f]+)/0$1h/ig;
305 $self->{label} = "($self->{label})" if ($self->{label} =~ /[\*\+\-\/]/);
306
307 my $mnemonic = $self->{opcode}->mnemonic();
308 ($self->{asterisk}) && ($sz="q") ||
309 ($mnemonic =~ /^v?mov([qd])$/) && ($sz=$1) ||
310 ($mnemonic =~ /^v?pinsr([qdwb])$/) && ($sz=$1) ||
311 ($mnemonic =~ /^vpbroadcast([qdwb])$/) && ($sz=$1) ||
312 ($mnemonic =~ /^v(?!perm)[a-z]+[fi]128$/) && ($sz="x");
313
314 $self->{opmask} =~ s/%(k[0-7])/$1/;
315
316 if (defined($self->{index})) {
317 sprintf "%s[%s%s*%d%s]%s",$szmap{$sz},
318 $self->{label}?"$self->{label}+":"",
319 $self->{index},$self->{scale},
320 $self->{base}?"+$self->{base}":"",
321 $self->{opmask};
322 } elsif ($self->{base} eq "rip") {
323 sprintf "%s[%s]",$szmap{$sz},$self->{label};
324 } else {
325 sprintf "%s[%s%s]%s", $szmap{$sz},
326 $self->{label}?"$self->{label}+":"",
327 $self->{base},$self->{opmask};
328 }
329 }
330 }
331}
332{ package register; # pick up registers, which start with %.
333 sub re {
334 my ($class, $line, $opcode) = @_;
335 my $self = {};
336 my $ret;
337
338 # optional * ----vvv--- appears in indirect jmp/call
339 if ($$line =~ /^(\*?)%(\w+)((?:{[^}]+})*)/) {
340 bless $self,$class;
341 $self->{asterisk} = $1;
342 $self->{value} = $2;
343 $self->{opmask} = $3;
344 $opcode->size($self->size());
345 $ret = $self;
346 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
347 }
348 $ret;
349 }
350 sub size {
351 my $self = shift;
352 my $ret;
353
354 if ($self->{value} =~ /^r[\d]+b$/i) { $ret="b"; }
355 elsif ($self->{value} =~ /^r[\d]+w$/i) { $ret="w"; }
356 elsif ($self->{value} =~ /^r[\d]+d$/i) { $ret="l"; }
357 elsif ($self->{value} =~ /^r[\w]+$/i) { $ret="q"; }
358 elsif ($self->{value} =~ /^[a-d][hl]$/i){ $ret="b"; }
359 elsif ($self->{value} =~ /^[\w]{2}l$/i) { $ret="b"; }
360 elsif ($self->{value} =~ /^[\w]{2}$/i) { $ret="w"; }
361 elsif ($self->{value} =~ /^e[a-z]{2}$/i){ $ret="l"; }
362
363 $ret;
364 }
365 sub out {
366 my $self = shift;
367 if ($gas) { sprintf "%s%%%s%s", $self->{asterisk},
368 $self->{value},
369 $self->{opmask}; }
370 else { $self->{opmask} =~ s/%(k[0-7])/$1/;
371 $self->{value}.$self->{opmask}; }
372 }
373}
374{ package label; # pick up labels, which end with :
375 sub re {
376 my ($class, $line) = @_;
377 my $self = {};
378 my $ret;
379
380 if ($$line =~ /(^[\.\w]+)\:/) {
381 bless $self,$class;
382 $self->{value} = $1;
383 $ret = $self;
384 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
385
386 $self->{value} =~ s/^\.L/$decor/;
387 }
388 $ret;
389 }
390 sub out {
391 my $self = shift;
392
393 if ($gas) {
394 my $func = ($globals{$self->{value}} or $self->{value}) . ":";
395 if ($win64 && $current_function->{name} eq $self->{value}
396 && $current_function->{abi} eq "svr4") {
397 $func .= "\n";
398 $func .= " movq %rdi,8(%rsp)\n";
399 $func .= " movq %rsi,16(%rsp)\n";
400 $func .= " movq %rsp,%rax\n";
401 $func .= "${decor}SEH_begin_$current_function->{name}:\n";
402 my $narg = $current_function->{narg};
403 $narg=6 if (!defined($narg));
404 $func .= " movq %rcx,%rdi\n" if ($narg>0);
405 $func .= " movq %rdx,%rsi\n" if ($narg>1);
406 $func .= " movq %r8,%rdx\n" if ($narg>2);
407 $func .= " movq %r9,%rcx\n" if ($narg>3);
408 $func .= " movq 40(%rsp),%r8\n" if ($narg>4);
409 $func .= " movq 48(%rsp),%r9\n" if ($narg>5);
410 }
411 $func;
412 } elsif ($self->{value} ne "$current_function->{name}") {
413 # Make all labels in masm global.
414 $self->{value} .= ":" if ($masm);
415 $self->{value} . ":";
416 } elsif ($win64 && $current_function->{abi} eq "svr4") {
417 my $func = "$current_function->{name}" .
418 ($nasm ? ":" : "\tPROC $current_function->{scope}") .
419 "\n";
420 $func .= " mov QWORD$PTR\[8+rsp\],rdi\t;WIN64 prologue\n";
421 $func .= " mov QWORD$PTR\[16+rsp\],rsi\n";
422 $func .= " mov rax,rsp\n";
423 $func .= "${decor}SEH_begin_$current_function->{name}:";
424 $func .= ":" if ($masm);
425 $func .= "\n";
426 my $narg = $current_function->{narg};
427 $narg=6 if (!defined($narg));
428 $func .= " mov rdi,rcx\n" if ($narg>0);
429 $func .= " mov rsi,rdx\n" if ($narg>1);
430 $func .= " mov rdx,r8\n" if ($narg>2);
431 $func .= " mov rcx,r9\n" if ($narg>3);
432 $func .= " mov r8,QWORD$PTR\[40+rsp\]\n" if ($narg>4);
433 $func .= " mov r9,QWORD$PTR\[48+rsp\]\n" if ($narg>5);
434 $func .= "\n";
435 } else {
436 "$current_function->{name}".
437 ($nasm ? ":" : "\tPROC $current_function->{scope}");
438 }
439 }
440}
441{ package expr; # pick up expressions
442 sub re {
443 my ($class, $line, $opcode) = @_;
444 my $self = {};
445 my $ret;
446
447 if ($$line =~ /(^[^,]+)/) {
448 bless $self,$class;
449 $self->{value} = $1;
450 $ret = $self;
451 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
452
453 $self->{value} =~ s/\@PLT// if (!$elf);
454 $self->{value} =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
455 $self->{value} =~ s/\.L/$decor/g;
456 $self->{opcode} = $opcode;
457 }
458 $ret;
459 }
460 sub out {
461 my $self = shift;
462 if ($nasm && $self->{opcode}->mnemonic()=~m/^j(?![re]cxz)/) {
463 "NEAR ".$self->{value};
464 } else {
465 $self->{value};
466 }
467 }
468}
469{ package cfi_directive;
470 # CFI directives annotate instructions that are significant for
471 # stack unwinding procedure compliant with DWARF specification,
472 # see http://dwarfstd.org/. Besides naturally expected for this
473 # script platform-specific filtering function, this module adds
474 # three auxiliary synthetic directives not recognized by [GNU]
475 # assembler:
476 #
477 # - .cfi_push to annotate push instructions in prologue, which
478 # translates to .cfi_adjust_cfa_offset (if needed) and
479 # .cfi_offset;
480 # - .cfi_pop to annotate pop instructions in epilogue, which
481 # translates to .cfi_adjust_cfa_offset (if needed) and
482 # .cfi_restore;
483 # - [and most notably] .cfi_cfa_expression which encodes
484 # DW_CFA_def_cfa_expression and passes it to .cfi_escape as
485 # byte vector;
486 #
487 # CFA expressions were introduced in DWARF specification version
488 # 3 and describe how to deduce CFA, Canonical Frame Address. This
489 # becomes handy if your stack frame is variable and you can't
490 # spare register for [previous] frame pointer. Suggested directive
491 # syntax is made-up mix of DWARF operator suffixes [subset of]
492 # and references to registers with optional bias. Following example
493 # describes offloaded *original* stack pointer at specific offset
494 # from *current* stack pointer:
495 #
496 # .cfi_cfa_expression %rsp+40,deref,+8
497 #
498 # Final +8 has everything to do with the fact that CFA is defined
499 # as reference to top of caller's stack, and on x86_64 call to
500 # subroutine pushes 8-byte return address. In other words original
501 # stack pointer upon entry to a subroutine is 8 bytes off from CFA.
502
503 # Below constants are taken from "DWARF Expressions" section of the
504 # DWARF specification, section is numbered 7.7 in versions 3 and 4.
505 my %DW_OP_simple = ( # no-arg operators, mapped directly
506 deref => 0x06, dup => 0x12,
507 drop => 0x13, over => 0x14,
508 pick => 0x15, swap => 0x16,
509 rot => 0x17, xderef => 0x18,
510
511 abs => 0x19, and => 0x1a,
512 div => 0x1b, minus => 0x1c,
513 mod => 0x1d, mul => 0x1e,
514 neg => 0x1f, not => 0x20,
515 or => 0x21, plus => 0x22,
516 shl => 0x24, shr => 0x25,
517 shra => 0x26, xor => 0x27,
518 );
519
520 my %DW_OP_complex = ( # used in specific subroutines
521 constu => 0x10, # uleb128
522 consts => 0x11, # sleb128
523 plus_uconst => 0x23, # uleb128
524 lit0 => 0x30, # add 0-31 to opcode
525 reg0 => 0x50, # add 0-31 to opcode
526 breg0 => 0x70, # add 0-31 to opcole, sleb128
527 regx => 0x90, # uleb28
528 fbreg => 0x91, # sleb128
529 bregx => 0x92, # uleb128, sleb128
530 piece => 0x93, # uleb128
531 );
532
533 # Following constants are defined in x86_64 ABI supplement, for
534 # example available at https://www.uclibc.org/docs/psABI-x86_64.pdf,
535 # see section 3.7 "Stack Unwind Algorithm".
536 my %DW_reg_idx = (
537 "%rax"=>0, "%rdx"=>1, "%rcx"=>2, "%rbx"=>3,
538 "%rsi"=>4, "%rdi"=>5, "%rbp"=>6, "%rsp"=>7,
539 "%r8" =>8, "%r9" =>9, "%r10"=>10, "%r11"=>11,
540 "%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
541 );
542
543 my ($cfa_reg, $cfa_rsp);
544 my @cfa_stack;
545
546 # [us]leb128 format is variable-length integer representation base
547 # 2^128, with most significant bit of each byte being 0 denoting
548 # *last* most significant digit. See "Variable Length Data" in the
549 # DWARF specification, numbered 7.6 at least in versions 3 and 4.
550 sub sleb128 {
551 use integer; # get right shift extend sign
552
553 my $val = shift;
554 my $sign = ($val < 0) ? -1 : 0;
555 my @ret = ();
556
557 while(1) {
558 push @ret, $val&0x7f;
559
560 # see if remaining bits are same and equal to most
561 # significant bit of the current digit, if so, it's
562 # last digit...
563 last if (($val>>6) == $sign);
564
565 @ret[-1] |= 0x80;
566 $val >>= 7;
567 }
568
569 return @ret;
570 }
571 sub uleb128 {
572 my $val = shift;
573 my @ret = ();
574
575 while(1) {
576 push @ret, $val&0x7f;
577
578 # see if it's last significant digit...
579 last if (($val >>= 7) == 0);
580
581 @ret[-1] |= 0x80;
582 }
583
584 return @ret;
585 }
586 sub const {
587 my $val = shift;
588
589 if ($val >= 0 && $val < 32) {
590 return ($DW_OP_complex{lit0}+$val);
591 }
592 return ($DW_OP_complex{consts}, sleb128($val));
593 }
594 sub reg {
595 my $val = shift;
596
597 return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
598
599 my $reg = $DW_reg_idx{$1};
600 my $off = eval ("0 $2 $3");
601
602 return (($DW_OP_complex{breg0} + $reg), sleb128($off));
603 # Yes, we use DW_OP_bregX+0 to push register value and not
604 # DW_OP_regX, because latter would require even DW_OP_piece,
605 # which would be a waste under the circumstances. If you have
606 # to use DWP_OP_reg, use "regx:N"...
607 }
608 sub cfa_expression {
609 my $line = shift;
610 my @ret;
611
612 foreach my $token (split(/,\s*/,$line)) {
613 if ($token =~ /^%r/) {
614 push @ret,reg($token);
615 } elsif ($token =~ /((?:0x)?[0-9a-f]+)\((%r\w+)\)/) {
616 push @ret,reg("$2+$1");
617 } elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
618 my $i = 1*eval($2);
619 push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
620 } elsif (my $i = 1*eval($token) or $token eq "0") {
621 if ($token =~ /^\+/) {
622 push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
623 } else {
624 push @ret,const($i);
625 }
626 } else {
627 push @ret,$DW_OP_simple{$token};
628 }
629 }
630
631 # Finally we return DW_CFA_def_cfa_expression, 15, followed by
632 # length of the expression and of course the expression itself.
633 return (15,scalar(@ret),@ret);
634 }
635 sub re {
636 my ($class, $line) = @_;
637 my $self = {};
638 my $ret;
639
640 if ($$line =~ s/^\s*\.cfi_(\w+)\s*//) {
641 bless $self,$class;
642 $ret = $self;
643 undef $self->{value};
644 my $dir = $1;
645
646 SWITCH: for ($dir) {
647 # What is $cfa_rsp? Effectively it's difference between %rsp
648 # value and current CFA, Canonical Frame Address, which is
649 # why it starts with -8. Recall that CFA is top of caller's
650 # stack...
651 /startproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
652 /endproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", 0);
653 # .cfi_remember_state directives that are not
654 # matched with .cfi_restore_state are
655 # unnecessary.
656 die "unpaired .cfi_remember_state" if (@cfa_stack);
657 last;
658 };
659 /def_cfa_register/
660 && do { $cfa_reg = $$line; last; };
661 /def_cfa_offset/
662 && do { $cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
663 last;
664 };
665 /adjust_cfa_offset/
666 && do { $cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
667 last;
668 };
669 /def_cfa/ && do { if ($$line =~ /(%r\w+)\s*,\s*(.+)/) {
670 $cfa_reg = $1;
671 $cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
672 }
673 last;
674 };
675 /push/ && do { $dir = undef;
676 $cfa_rsp -= 8;
677 if ($cfa_reg eq "%rsp") {
678 $self->{value} = ".cfi_adjust_cfa_offset\t8\n";
679 }
680 $self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
681 last;
682 };
683 /pop/ && do { $dir = undef;
684 $cfa_rsp += 8;
685 if ($cfa_reg eq "%rsp") {
686 $self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
687 }
688 $self->{value} .= ".cfi_restore\t$$line";
689 last;
690 };
691 /cfa_expression/
692 && do { $dir = undef;
693 $self->{value} = ".cfi_escape\t" .
694 join(",", map(sprintf("0x%02x", $_),
695 cfa_expression($$line)));
696 last;
697 };
698 /remember_state/
699 && do { push @cfa_stack, [$cfa_reg, $cfa_rsp];
700 last;
701 };
702 /restore_state/
703 && do { ($cfa_reg, $cfa_rsp) = @{pop @cfa_stack};
704 last;
705 };
706 }
707
708 $self->{value} = ".cfi_$dir\t$$line" if ($dir);
709
710 $$line = "";
711 }
712
713 return $ret;
714 }
715 sub out {
716 my $self = shift;
717 return ($elf ? $self->{value} : undef);
718 }
719}
720{ package directive; # pick up directives, which start with .
721 sub re {
722 my ($class, $line) = @_;
723 my $self = {};
724 my $ret;
725 my $dir;
726
727 # chain-call to cfi_directive
728 $ret = cfi_directive->re($line) and return $ret;
729
730 if ($$line =~ /^\s*(\.\w+)/) {
731 bless $self,$class;
732 $dir = $1;
733 $ret = $self;
734 undef $self->{value};
735 $$line = substr($$line,@+[0]); $$line =~ s/^\s+//;
736
737 SWITCH: for ($dir) {
738 /\.global|\.globl|\.extern/
739 && do { $globals{$$line} = $prefix . $$line;
740 $$line = $globals{$$line} if ($prefix);
741 last;
742 };
743 /\.type/ && do { my ($sym,$type,$narg) = split(',',$$line);
744 if ($type eq "\@function") {
745 undef $current_function;
746 $current_function->{name} = $sym;
747 $current_function->{abi} = "svr4";
748 $current_function->{narg} = $narg;
749 $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
750 } elsif ($type eq "\@abi-omnipotent") {
751 undef $current_function;
752 $current_function->{name} = $sym;
753 $current_function->{scope} = defined($globals{$sym})?"PUBLIC":"PRIVATE";
754 }
755 $$line =~ s/\@abi\-omnipotent/\@function/;
756 $$line =~ s/\@function.*/\@function/;
757 last;
758 };
759 /\.asciz/ && do { if ($$line =~ /^"(.*)"$/) {
760 $dir = ".byte";
761 $$line = join(",",unpack("C*",$1),0);
762 }
763 last;
764 };
765 /\.rva|\.long|\.quad/
766 && do { $$line =~ s/([_a-z][_a-z0-9]*)/$globals{$1} or $1/gei;
767 $$line =~ s/\.L/$decor/g;
768 last;
769 };
770 }
771
772 if ($gas) {
773 $self->{value} = $dir . "\t" . $$line;
774
775 if ($dir =~ /\.extern/) {
776 $self->{value} = ""; # swallow extern
777 } elsif (!$elf && $dir =~ /\.type/) {
778 $self->{value} = "";
779 $self->{value} = ".def\t" . ($globals{$1} or $1) . ";\t" .
780 (defined($globals{$1})?".scl 2;":".scl 3;") .
781 "\t.type 32;\t.endef"
782 if ($win64 && $$line =~ /([^,]+),\@function/);
783 } elsif (!$elf && $dir =~ /\.size/) {
784 $self->{value} = "";
785 if (defined($current_function)) {
786 $self->{value} .= "${decor}SEH_end_$current_function->{name}:"
787 if ($win64 && $current_function->{abi} eq "svr4");
788 undef $current_function;
789 }
790 } elsif (!$elf && $dir =~ /\.align/) {
791 $self->{value} = ".p2align\t" . (log($$line)/log(2));
792 } elsif ($dir eq ".section") {
793 $current_segment=$$line;
794 if (!$elf && $current_segment eq ".init") {
795 if ($flavour eq "macosx") { $self->{value} = ".mod_init_func"; }
796 elsif ($flavour eq "mingw64") { $self->{value} = ".section\t.ctors"; }
797 }
798 } elsif ($dir =~ /\.(text|data)/) {
799 $current_segment=".$1";
800 } elsif ($dir =~ /\.hidden/) {
801 if ($flavour eq "macosx") { $self->{value} = ".private_extern\t$prefix$$line"; }
802 elsif ($flavour eq "mingw64") { $self->{value} = ""; }
803 } elsif ($dir =~ /\.comm/) {
804 $self->{value} = "$dir\t$prefix$$line";
805 $self->{value} =~ s|,([0-9]+),([0-9]+)$|",$1,".log($2)/log(2)|e if ($flavour eq "macosx");
806 }
807 $$line = "";
808 return $self;
809 }
810
811 # non-gas case or nasm/masm
812 SWITCH: for ($dir) {
813 /\.text/ && do { my $v=undef;
814 if ($nasm) {
815 $v="section .text code align=64\n";
816 } else {
817 $v="$current_segment\tENDS\n" if ($current_segment);
818 $current_segment = ".text\$";
819 $v.="$current_segment\tSEGMENT ";
820 $v.=$masm>=$masmref ? "ALIGN(256)" : "PAGE";
821 $v.=" 'CODE'";
822 }
823 $self->{value} = $v;
824 last;
825 };
826 /\.data/ && do { my $v=undef;
827 if ($nasm) {
828 $v="section .data data align=8\n";
829 } else {
830 $v="$current_segment\tENDS\n" if ($current_segment);
831 $current_segment = "_DATA";
832 $v.="$current_segment\tSEGMENT";
833 }
834 $self->{value} = $v;
835 last;
836 };
837 /\.section/ && do { my $v=undef;
838 $$line =~ s/([^,]*).*/$1/;
839 $$line = ".CRT\$XCU" if ($$line eq ".init");
840 if ($nasm) {
841 $v="section $$line";
842 if ($$line=~/\.([px])data/) {
843 $v.=" rdata align=";
844 $v.=$1 eq "p"? 4 : 8;
845 } elsif ($$line=~/\.CRT\$/i) {
846 $v.=" rdata align=8";
847 }
848 } else {
849 $v="$current_segment\tENDS\n" if ($current_segment);
850 $v.="$$line\tSEGMENT";
851 if ($$line=~/\.([px])data/) {
852 $v.=" READONLY";
853 $v.=" ALIGN(".($1 eq "p" ? 4 : 8).")" if ($masm>=$masmref);
854 } elsif ($$line=~/\.CRT\$/i) {
855 $v.=" READONLY ";
856 $v.=$masm>=$masmref ? "ALIGN(8)" : "DWORD";
857 }
858 }
859 $current_segment = $$line;
860 $self->{value} = $v;
861 last;
862 };
863 /\.extern/ && do { $self->{value} = "EXTERN\t".$$line;
864 $self->{value} .= ":NEAR" if ($masm);
865 last;
866 };
867 /\.globl|.global/
868 && do { $self->{value} = $masm?"PUBLIC":"global";
869 $self->{value} .= "\t".$$line;
870 last;
871 };
872 /\.size/ && do { if (defined($current_function)) {
873 undef $self->{value};
874 if ($current_function->{abi} eq "svr4") {
875 $self->{value}="${decor}SEH_end_$current_function->{name}:";
876 $self->{value}.=":\n" if($masm);
877 }
878 $self->{value}.="$current_function->{name}\tENDP" if($masm && $current_function->{name});
879 undef $current_function;
880 }
881 last;
882 };
883 /\.align/ && do { my $max = ($masm && $masm>=$masmref) ? 256 : 4096;
884 $self->{value} = "ALIGN\t".($$line>$max?$max:$$line);
885 last;
886 };
887 /\.(value|long|rva|quad)/
888 && do { my $sz = substr($1,0,1);
889 my @arr = split(/,\s*/,$$line);
890 my $last = pop(@arr);
891 my $conv = sub { my $var=shift;
892 $var=~s/^(0b[0-1]+)/oct($1)/eig;
893 $var=~s/^0x([0-9a-f]+)/0$1h/ig if ($masm);
894 if ($sz eq "D" && ($current_segment=~/.[px]data/ || $dir eq ".rva"))
895 { $var=~s/^([_a-z\$\@][_a-z0-9\$\@]*)/$nasm?"$1 wrt ..imagebase":"imagerel $1"/egi; }
896 $var;
897 };
898
899 $sz =~ tr/bvlrq/BWDDQ/;
900 $self->{value} = "\tD$sz\t";
901 for (@arr) { $self->{value} .= &$conv($_).","; }
902 $self->{value} .= &$conv($last);
903 last;
904 };
905 /\.byte/ && do { my @str=split(/,\s*/,$$line);
906 map(s/(0b[0-1]+)/oct($1)/eig,@str);
907 map(s/0x([0-9a-f]+)/0$1h/ig,@str) if ($masm);
908 while ($#str>15) {
909 $self->{value}.="DB\t"
910 .join(",",@str[0..15])."\n";
911 foreach (0..15) { shift @str; }
912 }
913 $self->{value}.="DB\t"
914 .join(",",@str) if (@str);
915 last;
916 };
917 /\.comm/ && do { my @str=split(/,\s*/,$$line);
918 my $v=undef;
919 if ($nasm) {
920 $v.="common $prefix@str[0] @str[1]";
921 } else {
922 $v="$current_segment\tENDS\n" if ($current_segment);
923 $current_segment = "_DATA";
924 $v.="$current_segment\tSEGMENT\n";
925 $v.="COMM @str[0]:DWORD:".@str[1]/4;
926 }
927 $self->{value} = $v;
928 last;
929 };
930 }
931 $$line = "";
932 }
933
934 $ret;
935 }
936 sub out {
937 my $self = shift;
938 $self->{value};
939 }
940}
941
942# Upon initial x86_64 introduction SSE>2 extensions were not introduced
943# yet. In order not to be bothered by tracing exact assembler versions,
944# but at the same time to provide a bare security minimum of AES-NI, we
945# hard-code some instructions. Extensions past AES-NI on the other hand
946# are traced by examining assembler version in individual perlasm
947# modules...
948
949my %regrm = ( "%eax"=>0, "%ecx"=>1, "%edx"=>2, "%ebx"=>3,
950 "%esp"=>4, "%ebp"=>5, "%esi"=>6, "%edi"=>7 );
951
952sub rex {
953 my $opcode=shift;
954 my ($dst,$src,$rex)=@_;
955
956 $rex|=0x04 if($dst>=8);
957 $rex|=0x01 if($src>=8);
958 push @$opcode,($rex|0x40) if ($rex);
959}
960
961my $movq = sub { # elderly gas can't handle inter-register movq
962 my $arg = shift;
963 my @opcode=(0x66);
964 if ($arg =~ /%xmm([0-9]+),\s*%r(\w+)/) {
965 my ($src,$dst)=($1,$2);
966 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
967 rex(\@opcode,$src,$dst,0x8);
968 push @opcode,0x0f,0x7e;
969 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
970 @opcode;
971 } elsif ($arg =~ /%r(\w+),\s*%xmm([0-9]+)/) {
972 my ($src,$dst)=($2,$1);
973 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
974 rex(\@opcode,$src,$dst,0x8);
975 push @opcode,0x0f,0x6e;
976 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
977 @opcode;
978 } else {
979 ();
980 }
981};
982
983my $pextrd = sub {
984 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*(%\w+)/) {
985 my @opcode=(0x66);
986 my $imm=$1;
987 my $src=$2;
988 my $dst=$3;
989 if ($dst =~ /%r([0-9]+)d/) { $dst = $1; }
990 elsif ($dst =~ /%e/) { $dst = $regrm{$dst}; }
991 rex(\@opcode,$src,$dst);
992 push @opcode,0x0f,0x3a,0x16;
993 push @opcode,0xc0|(($src&7)<<3)|($dst&7); # ModR/M
994 push @opcode,$imm;
995 @opcode;
996 } else {
997 ();
998 }
999};
1000
1001my $pinsrd = sub {
1002 if (shift =~ /\$([0-9]+),\s*(%\w+),\s*%xmm([0-9]+)/) {
1003 my @opcode=(0x66);
1004 my $imm=$1;
1005 my $src=$2;
1006 my $dst=$3;
1007 if ($src =~ /%r([0-9]+)/) { $src = $1; }
1008 elsif ($src =~ /%e/) { $src = $regrm{$src}; }
1009 rex(\@opcode,$dst,$src);
1010 push @opcode,0x0f,0x3a,0x22;
1011 push @opcode,0xc0|(($dst&7)<<3)|($src&7); # ModR/M
1012 push @opcode,$imm;
1013 @opcode;
1014 } else {
1015 ();
1016 }
1017};
1018
1019my $pshufb = sub {
1020 if (shift =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1021 my @opcode=(0x66);
1022 rex(\@opcode,$2,$1);
1023 push @opcode,0x0f,0x38,0x00;
1024 push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
1025 @opcode;
1026 } else {
1027 ();
1028 }
1029};
1030
1031my $palignr = sub {
1032 if (shift =~ /\$([0-9]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1033 my @opcode=(0x66);
1034 rex(\@opcode,$3,$2);
1035 push @opcode,0x0f,0x3a,0x0f;
1036 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1037 push @opcode,$1;
1038 @opcode;
1039 } else {
1040 ();
1041 }
1042};
1043
1044my $pclmulqdq = sub {
1045 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1046 my @opcode=(0x66);
1047 rex(\@opcode,$3,$2);
1048 push @opcode,0x0f,0x3a,0x44;
1049 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1050 my $c=$1;
1051 push @opcode,$c=~/^0/?oct($c):$c;
1052 @opcode;
1053 } else {
1054 ();
1055 }
1056};
1057
1058my $rdrand = sub {
1059 if (shift =~ /%[er](\w+)/) {
1060 my @opcode=();
1061 my $dst=$1;
1062 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1063 rex(\@opcode,0,$dst,8);
1064 push @opcode,0x0f,0xc7,0xf0|($dst&7);
1065 @opcode;
1066 } else {
1067 ();
1068 }
1069};
1070
1071my $rdseed = sub {
1072 if (shift =~ /%[er](\w+)/) {
1073 my @opcode=();
1074 my $dst=$1;
1075 if ($dst !~ /[0-9]+/) { $dst = $regrm{"%e$dst"}; }
1076 rex(\@opcode,0,$dst,8);
1077 push @opcode,0x0f,0xc7,0xf8|($dst&7);
1078 @opcode;
1079 } else {
1080 ();
1081 }
1082};
1083
1084# Not all AVX-capable assemblers recognize AMD XOP extension. Since we
1085# are using only two instructions hand-code them in order to be excused
1086# from chasing assembler versions...
1087
1088sub rxb {
1089 my $opcode=shift;
1090 my ($dst,$src1,$src2,$rxb)=@_;
1091
1092 $rxb|=0x7<<5;
1093 $rxb&=~(0x04<<5) if($dst>=8);
1094 $rxb&=~(0x01<<5) if($src1>=8);
1095 $rxb&=~(0x02<<5) if($src2>=8);
1096 push @$opcode,$rxb;
1097}
1098
1099my $vprotd = sub {
1100 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1101 my @opcode=(0x8f);
1102 rxb(\@opcode,$3,$2,-1,0x08);
1103 push @opcode,0x78,0xc2;
1104 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1105 my $c=$1;
1106 push @opcode,$c=~/^0/?oct($c):$c;
1107 @opcode;
1108 } else {
1109 ();
1110 }
1111};
1112
1113my $vprotq = sub {
1114 if (shift =~ /\$([x0-9a-f]+),\s*%xmm([0-9]+),\s*%xmm([0-9]+)/) {
1115 my @opcode=(0x8f);
1116 rxb(\@opcode,$3,$2,-1,0x08);
1117 push @opcode,0x78,0xc3;
1118 push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
1119 my $c=$1;
1120 push @opcode,$c=~/^0/?oct($c):$c;
1121 @opcode;
1122 } else {
1123 ();
1124 }
1125};
1126
1127# Intel Control-flow Enforcement Technology extension. All functions and
1128# indirect branch targets will have to start with this instruction...
1129
1130my $endbranch = sub {
1131 (0xf3,0x0f,0x1e,0xfa);
1132};
1133
1134########################################################################
1135
1136if ($nasm) {
1137 print <<___;
1138default rel
1139%define XMMWORD
1140%define YMMWORD
1141%define ZMMWORD
1142___
1143} elsif ($masm) {
1144 print <<___;
1145OPTION DOTNAME
1146___
1147}
1148while(defined(my $line=<>)) {
1149
1150 $line =~ s|\R$||; # Better chomp
1151
1152 $line =~ s|[#!].*$||; # get rid of asm-style comments...
1153 $line =~ s|/\*.*\*/||; # ... and C-style comments...
1154 $line =~ s|^\s+||; # ... and skip white spaces in beginning
1155 $line =~ s|\s+$||; # ... and at the end
1156
1157 if (my $label=label->re(\$line)) { print $label->out(); }
1158
1159 if (my $directive=directive->re(\$line)) {
1160 printf "%s",$directive->out();
1161 } elsif (my $opcode=opcode->re(\$line)) {
1162 my $asm = eval("\$".$opcode->mnemonic());
1163
1164 if ((ref($asm) eq 'CODE') && scalar(my @bytes=&$asm($line))) {
1165 print $gas?".byte\t":"DB\t",join(',',@bytes),"\n";
1166 next;
1167 }
1168
1169 my @args;
1170 ARGUMENT: while (1) {
1171 my $arg;
1172
1173 ($arg=register->re(\$line, $opcode))||
1174 ($arg=const->re(\$line)) ||
1175 ($arg=ea->re(\$line, $opcode)) ||
1176 ($arg=expr->re(\$line, $opcode)) ||
1177 last ARGUMENT;
1178
1179 push @args,$arg;
1180
1181 last ARGUMENT if ($line !~ /^,/);
1182
1183 $line =~ s/^,\s*//;
1184 } # ARGUMENT:
1185
1186 if ($#args>=0) {
1187 my $insn;
1188 my $sz=$opcode->size();
1189
1190 if ($gas) {
1191 $insn = $opcode->out($#args>=1?$args[$#args]->size():$sz);
1192 @args = map($_->out($sz),@args);
1193 printf "\t%s\t%s",$insn,join(",",@args);
1194 } else {
1195 $insn = $opcode->out();
1196 foreach (@args) {
1197 my $arg = $_->out();
1198 # $insn.=$sz compensates for movq, pinsrw, ...
1199 if ($arg =~ /^xmm[0-9]+$/) { $insn.=$sz; $sz="x" if(!$sz); last; }
1200 if ($arg =~ /^ymm[0-9]+$/) { $insn.=$sz; $sz="y" if(!$sz); last; }
1201 if ($arg =~ /^zmm[0-9]+$/) { $insn.=$sz; $sz="z" if(!$sz); last; }
1202 if ($arg =~ /^mm[0-9]+$/) { $insn.=$sz; $sz="q" if(!$sz); last; }
1203 }
1204 @args = reverse(@args);
1205 undef $sz if ($nasm && $opcode->mnemonic() eq "lea");
1206 printf "\t%s\t%s",$insn,join(",",map($_->out($sz),@args));
1207 }
1208 } else {
1209 printf "\t%s",$opcode->out();
1210 }
1211 }
1212
1213 print $line,"\n";
1214}
1215
1216print "\n$current_segment\tENDS\n" if ($current_segment && $masm);
1217print "END\n" if ($masm);
1218
1219close STDOUT or die "error closing STDOUT: $!";
1220
1221 #################################################
1222# Cross-reference x86_64 ABI "card"
1223#
1224# Unix Win64
1225# %rax * *
1226# %rbx - -
1227# %rcx #4 #1
1228# %rdx #3 #2
1229# %rsi #2 -
1230# %rdi #1 -
1231# %rbp - -
1232# %rsp - -
1233# %r8 #5 #3
1234# %r9 #6 #4
1235# %r10 * *
1236# %r11 * *
1237# %r12 - -
1238# %r13 - -
1239# %r14 - -
1240# %r15 - -
1241#
1242# (*) volatile register
1243# (-) preserved by callee
1244# (#) Nth argument, volatile
1245#
1246# In Unix terms top of stack is argument transfer area for arguments
1247# which could not be accommodated in registers. Or in other words 7th
1248# [integer] argument resides at 8(%rsp) upon function entry point.
1249# 128 bytes above %rsp constitute a "red zone" which is not touched
1250# by signal handlers and can be used as temporal storage without
1251# allocating a frame.
1252#
1253# In Win64 terms N*8 bytes on top of stack is argument transfer area,
1254# which belongs to/can be overwritten by callee. N is the number of
1255# arguments passed to callee, *but* not less than 4! This means that
1256# upon function entry point 5th argument resides at 40(%rsp), as well
1257# as that 32 bytes from 8(%rsp) can always be used as temporal
1258# storage [without allocating a frame]. One can actually argue that
1259# one can assume a "red zone" above stack pointer under Win64 as well.
1260# Point is that at apparently no occasion Windows kernel would alter
1261# the area above user stack pointer in true asynchronous manner...
1262#
1263# All the above means that if assembler programmer adheres to Unix
1264# register and stack layout, but disregards the "red zone" existence,
1265# it's possible to use following prologue and epilogue to "gear" from
1266# Unix to Win64 ABI in leaf functions with not more than 6 arguments.
1267#
1268# omnipotent_function:
1269# ifdef WIN64
1270# movq %rdi,8(%rsp)
1271# movq %rsi,16(%rsp)
1272# movq %rcx,%rdi ; if 1st argument is actually present
1273# movq %rdx,%rsi ; if 2nd argument is actually ...
1274# movq %r8,%rdx ; if 3rd argument is ...
1275# movq %r9,%rcx ; if 4th argument ...
1276# movq 40(%rsp),%r8 ; if 5th ...
1277# movq 48(%rsp),%r9 ; if 6th ...
1278# endif
1279# ...
1280# ifdef WIN64
1281# movq 8(%rsp),%rdi
1282# movq 16(%rsp),%rsi
1283# endif
1284# ret
1285#
1286 #################################################
1287# Win64 SEH, Structured Exception Handling.
1288#
1289# Unlike on Unix systems(*) lack of Win64 stack unwinding information
1290# has undesired side-effect at run-time: if an exception is raised in
1291# assembler subroutine such as those in question (basically we're
1292# referring to segmentation violations caused by malformed input
1293# parameters), the application is briskly terminated without invoking
1294# any exception handlers, most notably without generating memory dump
1295# or any user notification whatsoever. This poses a problem. It's
1296# possible to address it by registering custom language-specific
1297# handler that would restore processor context to the state at
1298# subroutine entry point and return "exception is not handled, keep
1299# unwinding" code. Writing such handler can be a challenge... But it's
1300# doable, though requires certain coding convention. Consider following
1301# snippet:
1302#
1303# .type function,@function
1304# function:
1305# movq %rsp,%rax # copy rsp to volatile register
1306# pushq %r15 # save non-volatile registers
1307# pushq %rbx
1308# pushq %rbp
1309# movq %rsp,%r11
1310# subq %rdi,%r11 # prepare [variable] stack frame
1311# andq $-64,%r11
1312# movq %rax,0(%r11) # check for exceptions
1313# movq %r11,%rsp # allocate [variable] stack frame
1314# movq %rax,0(%rsp) # save original rsp value
1315# magic_point:
1316# ...
1317# movq 0(%rsp),%rcx # pull original rsp value
1318# movq -24(%rcx),%rbp # restore non-volatile registers
1319# movq -16(%rcx),%rbx
1320# movq -8(%rcx),%r15
1321# movq %rcx,%rsp # restore original rsp
1322# magic_epilogue:
1323# ret
1324# .size function,.-function
1325#
1326# The key is that up to magic_point copy of original rsp value remains
1327# in chosen volatile register and no non-volatile register, except for
1328# rsp, is modified. While past magic_point rsp remains constant till
1329# the very end of the function. In this case custom language-specific
1330# exception handler would look like this:
1331#
1332# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1333# CONTEXT *context,DISPATCHER_CONTEXT *disp)
1334# { ULONG64 *rsp = (ULONG64 *)context->Rax;
1335# ULONG64 rip = context->Rip;
1336#
1337# if (rip >= magic_point)
1338# { rsp = (ULONG64 *)context->Rsp;
1339# if (rip < magic_epilogue)
1340# { rsp = (ULONG64 *)rsp[0];
1341# context->Rbp = rsp[-3];
1342# context->Rbx = rsp[-2];
1343# context->R15 = rsp[-1];
1344# }
1345# }
1346# context->Rsp = (ULONG64)rsp;
1347# context->Rdi = rsp[1];
1348# context->Rsi = rsp[2];
1349#
1350# memcpy (disp->ContextRecord,context,sizeof(CONTEXT));
1351# RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp->ImageBase,
1352# dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
1353# &disp->HandlerData,&disp->EstablisherFrame,NULL);
1354# return ExceptionContinueSearch;
1355# }
1356#
1357# It's appropriate to implement this handler in assembler, directly in
1358# function's module. In order to do that one has to know members'
1359# offsets in CONTEXT and DISPATCHER_CONTEXT structures and some constant
1360# values. Here they are:
1361#
1362# CONTEXT.Rax 120
1363# CONTEXT.Rcx 128
1364# CONTEXT.Rdx 136
1365# CONTEXT.Rbx 144
1366# CONTEXT.Rsp 152
1367# CONTEXT.Rbp 160
1368# CONTEXT.Rsi 168
1369# CONTEXT.Rdi 176
1370# CONTEXT.R8 184
1371# CONTEXT.R9 192
1372# CONTEXT.R10 200
1373# CONTEXT.R11 208
1374# CONTEXT.R12 216
1375# CONTEXT.R13 224
1376# CONTEXT.R14 232
1377# CONTEXT.R15 240
1378# CONTEXT.Rip 248
1379# CONTEXT.Xmm6 512
1380# sizeof(CONTEXT) 1232
1381# DISPATCHER_CONTEXT.ControlPc 0
1382# DISPATCHER_CONTEXT.ImageBase 8
1383# DISPATCHER_CONTEXT.FunctionEntry 16
1384# DISPATCHER_CONTEXT.EstablisherFrame 24
1385# DISPATCHER_CONTEXT.TargetIp 32
1386# DISPATCHER_CONTEXT.ContextRecord 40
1387# DISPATCHER_CONTEXT.LanguageHandler 48
1388# DISPATCHER_CONTEXT.HandlerData 56
1389# UNW_FLAG_NHANDLER 0
1390# ExceptionContinueSearch 1
1391#
1392# In order to tie the handler to the function one has to compose
1393# couple of structures: one for .xdata segment and one for .pdata.
1394#
1395# UNWIND_INFO structure for .xdata segment would be
1396#
1397# function_unwind_info:
1398# .byte 9,0,0,0
1399# .rva handler
1400#
1401# This structure designates exception handler for a function with
1402# zero-length prologue, no stack frame or frame register.
1403#
1404# To facilitate composing of .pdata structures, auto-generated "gear"
1405# prologue copies rsp value to rax and denotes next instruction with
1406# .LSEH_begin_{function_name} label. This essentially defines the SEH
1407# styling rule mentioned in the beginning. Position of this label is
1408# chosen in such manner that possible exceptions raised in the "gear"
1409# prologue would be accounted to caller and unwound from latter's frame.
1410# End of function is marked with respective .LSEH_end_{function_name}
1411# label. To summarize, .pdata segment would contain
1412#
1413# .rva .LSEH_begin_function
1414# .rva .LSEH_end_function
1415# .rva function_unwind_info
1416#
1417# Reference to function_unwind_info from .xdata segment is the anchor.
1418# In case you wonder why references are 32-bit .rvas and not 64-bit
1419# .quads. References put into these two segments are required to be
1420# *relative* to the base address of the current binary module, a.k.a.
1421# image base. No Win64 module, be it .exe or .dll, can be larger than
1422# 2GB and thus such relative references can be and are accommodated in
1423# 32 bits.
1424#
1425# Having reviewed the example function code, one can argue that "movq
1426# %rsp,%rax" above is redundant. It is not! Keep in mind that on Unix
1427# rax would contain an undefined value. If this "offends" you, use
1428# another register and refrain from modifying rax till magic_point is
1429# reached, i.e. as if it was a non-volatile register. If more registers
1430# are required prior [variable] frame setup is completed, note that
1431# nobody says that you can have only one "magic point." You can
1432# "liberate" non-volatile registers by denoting last stack off-load
1433# instruction and reflecting it in finer grade unwind logic in handler.
1434# After all, isn't it why it's called *language-specific* handler...
1435#
1436# SE handlers are also involved in unwinding stack when executable is
1437# profiled or debugged. Profiling implies additional limitations that
1438# are too subtle to discuss here. For now it's sufficient to say that
1439# in order to simplify handlers one should either a) offload original
1440# %rsp to stack (like discussed above); or b) if you have a register to
1441# spare for frame pointer, choose volatile one.
1442#
1443# (*) Note that we're talking about run-time, not debug-time. Lack of
1444# unwind information makes debugging hard on both Windows and
1445# Unix. "Unlike" refers to the fact that on Unix signal handler
1446# will always be invoked, core dumped and appropriate exit code
1447# returned to parent (for user notification).