yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdlib.h> |
| 11 | #include <string.h> |
| 12 | #include <openssl/crypto.h> |
| 13 | #include <openssl/err.h> |
| 14 | #include <openssl/rand.h> |
| 15 | #include "modes_local.h" |
| 16 | #include "internal/thread_once.h" |
| 17 | #include "rand_local.h" |
| 18 | |
| 19 | /* |
| 20 | * Implementation of NIST SP 800-90A CTR DRBG. |
| 21 | */ |
| 22 | |
| 23 | static void inc_128(RAND_DRBG_CTR *ctr) |
| 24 | { |
| 25 | unsigned char *p = &ctr->V[0]; |
| 26 | u32 n = 16, c = 1; |
| 27 | |
| 28 | do { |
| 29 | --n; |
| 30 | c += p[n]; |
| 31 | p[n] = (u8)c; |
| 32 | c >>= 8; |
| 33 | } while (n); |
| 34 | } |
| 35 | |
| 36 | static void ctr_XOR(RAND_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) |
| 37 | { |
| 38 | size_t i, n; |
| 39 | |
| 40 | if (in == NULL || inlen == 0) |
| 41 | return; |
| 42 | |
| 43 | /* |
| 44 | * Any zero padding will have no effect on the result as we |
| 45 | * are XORing. So just process however much input we have. |
| 46 | */ |
| 47 | n = inlen < ctr->keylen ? inlen : ctr->keylen; |
| 48 | for (i = 0; i < n; i++) |
| 49 | ctr->K[i] ^= in[i]; |
| 50 | if (inlen <= ctr->keylen) |
| 51 | return; |
| 52 | |
| 53 | n = inlen - ctr->keylen; |
| 54 | if (n > 16) { |
| 55 | /* Should never happen */ |
| 56 | n = 16; |
| 57 | } |
| 58 | for (i = 0; i < n; i++) |
| 59 | ctr->V[i] ^= in[i + ctr->keylen]; |
| 60 | } |
| 61 | |
| 62 | /* |
| 63 | * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 |
| 64 | */ |
| 65 | __owur static int ctr_BCC_block(RAND_DRBG_CTR *ctr, unsigned char *out, |
| 66 | const unsigned char *in, int len) |
| 67 | { |
| 68 | int i, outlen = AES_BLOCK_SIZE; |
| 69 | |
| 70 | for (i = 0; i < len; i++) |
| 71 | out[i] ^= in[i]; |
| 72 | |
| 73 | if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len) |
| 74 | || outlen != len) |
| 75 | return 0; |
| 76 | return 1; |
| 77 | } |
| 78 | |
| 79 | |
| 80 | /* |
| 81 | * Handle several BCC operations for as much data as we need for K and X |
| 82 | */ |
| 83 | __owur static int ctr_BCC_blocks(RAND_DRBG_CTR *ctr, const unsigned char *in) |
| 84 | { |
| 85 | unsigned char in_tmp[48]; |
| 86 | unsigned char num_of_blk = 2; |
| 87 | |
| 88 | memcpy(in_tmp, in, 16); |
| 89 | memcpy(in_tmp + 16, in, 16); |
| 90 | if (ctr->keylen != 16) { |
| 91 | memcpy(in_tmp + 32, in, 16); |
| 92 | num_of_blk = 3; |
| 93 | } |
| 94 | return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk); |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: |
| 99 | * see 10.3.1 stage 7. |
| 100 | */ |
| 101 | __owur static int ctr_BCC_init(RAND_DRBG_CTR *ctr) |
| 102 | { |
| 103 | unsigned char bltmp[48] = {0}; |
| 104 | unsigned char num_of_blk; |
| 105 | |
| 106 | memset(ctr->KX, 0, 48); |
| 107 | num_of_blk = ctr->keylen == 16 ? 2 : 3; |
| 108 | bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1; |
| 109 | bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2; |
| 110 | return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE); |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * Process several blocks into BCC algorithm, some possibly partial |
| 115 | */ |
| 116 | __owur static int ctr_BCC_update(RAND_DRBG_CTR *ctr, |
| 117 | const unsigned char *in, size_t inlen) |
| 118 | { |
| 119 | if (in == NULL || inlen == 0) |
| 120 | return 1; |
| 121 | |
| 122 | /* If we have partial block handle it first */ |
| 123 | if (ctr->bltmp_pos) { |
| 124 | size_t left = 16 - ctr->bltmp_pos; |
| 125 | |
| 126 | /* If we now have a complete block process it */ |
| 127 | if (inlen >= left) { |
| 128 | memcpy(ctr->bltmp + ctr->bltmp_pos, in, left); |
| 129 | if (!ctr_BCC_blocks(ctr, ctr->bltmp)) |
| 130 | return 0; |
| 131 | ctr->bltmp_pos = 0; |
| 132 | inlen -= left; |
| 133 | in += left; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | /* Process zero or more complete blocks */ |
| 138 | for (; inlen >= 16; in += 16, inlen -= 16) { |
| 139 | if (!ctr_BCC_blocks(ctr, in)) |
| 140 | return 0; |
| 141 | } |
| 142 | |
| 143 | /* Copy any remaining partial block to the temporary buffer */ |
| 144 | if (inlen > 0) { |
| 145 | memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen); |
| 146 | ctr->bltmp_pos += inlen; |
| 147 | } |
| 148 | return 1; |
| 149 | } |
| 150 | |
| 151 | __owur static int ctr_BCC_final(RAND_DRBG_CTR *ctr) |
| 152 | { |
| 153 | if (ctr->bltmp_pos) { |
| 154 | memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos); |
| 155 | if (!ctr_BCC_blocks(ctr, ctr->bltmp)) |
| 156 | return 0; |
| 157 | } |
| 158 | return 1; |
| 159 | } |
| 160 | |
| 161 | __owur static int ctr_df(RAND_DRBG_CTR *ctr, |
| 162 | const unsigned char *in1, size_t in1len, |
| 163 | const unsigned char *in2, size_t in2len, |
| 164 | const unsigned char *in3, size_t in3len) |
| 165 | { |
| 166 | static unsigned char c80 = 0x80; |
| 167 | size_t inlen; |
| 168 | unsigned char *p = ctr->bltmp; |
| 169 | int outlen = AES_BLOCK_SIZE; |
| 170 | |
| 171 | if (!ctr_BCC_init(ctr)) |
| 172 | return 0; |
| 173 | if (in1 == NULL) |
| 174 | in1len = 0; |
| 175 | if (in2 == NULL) |
| 176 | in2len = 0; |
| 177 | if (in3 == NULL) |
| 178 | in3len = 0; |
| 179 | inlen = in1len + in2len + in3len; |
| 180 | /* Initialise L||N in temporary block */ |
| 181 | *p++ = (inlen >> 24) & 0xff; |
| 182 | *p++ = (inlen >> 16) & 0xff; |
| 183 | *p++ = (inlen >> 8) & 0xff; |
| 184 | *p++ = inlen & 0xff; |
| 185 | |
| 186 | /* NB keylen is at most 32 bytes */ |
| 187 | *p++ = 0; |
| 188 | *p++ = 0; |
| 189 | *p++ = 0; |
| 190 | *p = (unsigned char)((ctr->keylen + 16) & 0xff); |
| 191 | ctr->bltmp_pos = 8; |
| 192 | if (!ctr_BCC_update(ctr, in1, in1len) |
| 193 | || !ctr_BCC_update(ctr, in2, in2len) |
| 194 | || !ctr_BCC_update(ctr, in3, in3len) |
| 195 | || !ctr_BCC_update(ctr, &c80, 1) |
| 196 | || !ctr_BCC_final(ctr)) |
| 197 | return 0; |
| 198 | /* Set up key K */ |
| 199 | if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1)) |
| 200 | return 0; |
| 201 | /* X follows key K */ |
| 202 | if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen, |
| 203 | AES_BLOCK_SIZE) |
| 204 | || outlen != AES_BLOCK_SIZE) |
| 205 | return 0; |
| 206 | if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX, |
| 207 | AES_BLOCK_SIZE) |
| 208 | || outlen != AES_BLOCK_SIZE) |
| 209 | return 0; |
| 210 | if (ctr->keylen != 16) |
| 211 | if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen, |
| 212 | ctr->KX + 16, AES_BLOCK_SIZE) |
| 213 | || outlen != AES_BLOCK_SIZE) |
| 214 | return 0; |
| 215 | return 1; |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * NB the no-df Update in SP800-90A specifies a constant input length |
| 220 | * of seedlen, however other uses of this algorithm pad the input with |
| 221 | * zeroes if necessary and have up to two parameters XORed together, |
| 222 | * so we handle both cases in this function instead. |
| 223 | */ |
| 224 | __owur static int ctr_update(RAND_DRBG *drbg, |
| 225 | const unsigned char *in1, size_t in1len, |
| 226 | const unsigned char *in2, size_t in2len, |
| 227 | const unsigned char *nonce, size_t noncelen) |
| 228 | { |
| 229 | RAND_DRBG_CTR *ctr = &drbg->data.ctr; |
| 230 | int outlen = AES_BLOCK_SIZE; |
| 231 | unsigned char V_tmp[48], out[48]; |
| 232 | unsigned char len; |
| 233 | |
| 234 | /* correct key is already set up. */ |
| 235 | memcpy(V_tmp, ctr->V, 16); |
| 236 | inc_128(ctr); |
| 237 | memcpy(V_tmp + 16, ctr->V, 16); |
| 238 | if (ctr->keylen == 16) { |
| 239 | len = 32; |
| 240 | } else { |
| 241 | inc_128(ctr); |
| 242 | memcpy(V_tmp + 32, ctr->V, 16); |
| 243 | len = 48; |
| 244 | } |
| 245 | if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len) |
| 246 | || outlen != len) |
| 247 | return 0; |
| 248 | memcpy(ctr->K, out, ctr->keylen); |
| 249 | memcpy(ctr->V, out + ctr->keylen, 16); |
| 250 | |
| 251 | if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { |
| 252 | /* If no input reuse existing derived value */ |
| 253 | if (in1 != NULL || nonce != NULL || in2 != NULL) |
| 254 | if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len)) |
| 255 | return 0; |
| 256 | /* If this a reuse input in1len != 0 */ |
| 257 | if (in1len) |
| 258 | ctr_XOR(ctr, ctr->KX, drbg->seedlen); |
| 259 | } else { |
| 260 | ctr_XOR(ctr, in1, in1len); |
| 261 | ctr_XOR(ctr, in2, in2len); |
| 262 | } |
| 263 | |
| 264 | if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1) |
| 265 | || !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1)) |
| 266 | return 0; |
| 267 | return 1; |
| 268 | } |
| 269 | |
| 270 | __owur static int drbg_ctr_instantiate(RAND_DRBG *drbg, |
| 271 | const unsigned char *entropy, size_t entropylen, |
| 272 | const unsigned char *nonce, size_t noncelen, |
| 273 | const unsigned char *pers, size_t perslen) |
| 274 | { |
| 275 | RAND_DRBG_CTR *ctr = &drbg->data.ctr; |
| 276 | |
| 277 | if (entropy == NULL) |
| 278 | return 0; |
| 279 | |
| 280 | memset(ctr->K, 0, sizeof(ctr->K)); |
| 281 | memset(ctr->V, 0, sizeof(ctr->V)); |
| 282 | if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)) |
| 283 | return 0; |
| 284 | |
| 285 | inc_128(ctr); |
| 286 | if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen)) |
| 287 | return 0; |
| 288 | return 1; |
| 289 | } |
| 290 | |
| 291 | __owur static int drbg_ctr_reseed(RAND_DRBG *drbg, |
| 292 | const unsigned char *entropy, size_t entropylen, |
| 293 | const unsigned char *adin, size_t adinlen) |
| 294 | { |
| 295 | RAND_DRBG_CTR *ctr = &drbg->data.ctr; |
| 296 | |
| 297 | if (entropy == NULL) |
| 298 | return 0; |
| 299 | |
| 300 | inc_128(ctr); |
| 301 | if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0)) |
| 302 | return 0; |
| 303 | return 1; |
| 304 | } |
| 305 | |
| 306 | static void ctr96_inc(unsigned char *counter) |
| 307 | { |
| 308 | u32 n = 12, c = 1; |
| 309 | |
| 310 | do { |
| 311 | --n; |
| 312 | c += counter[n]; |
| 313 | counter[n] = (u8)c; |
| 314 | c >>= 8; |
| 315 | } while (n); |
| 316 | } |
| 317 | |
| 318 | __owur static int drbg_ctr_generate(RAND_DRBG *drbg, |
| 319 | unsigned char *out, size_t outlen, |
| 320 | const unsigned char *adin, size_t adinlen) |
| 321 | { |
| 322 | RAND_DRBG_CTR *ctr = &drbg->data.ctr; |
| 323 | unsigned int ctr32, blocks; |
| 324 | int outl, buflen; |
| 325 | |
| 326 | if (adin != NULL && adinlen != 0) { |
| 327 | inc_128(ctr); |
| 328 | |
| 329 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) |
| 330 | return 0; |
| 331 | /* This means we reuse derived value */ |
| 332 | if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { |
| 333 | adin = NULL; |
| 334 | adinlen = 1; |
| 335 | } |
| 336 | } else { |
| 337 | adinlen = 0; |
| 338 | } |
| 339 | |
| 340 | inc_128(ctr); |
| 341 | |
| 342 | if (outlen == 0) { |
| 343 | inc_128(ctr); |
| 344 | |
| 345 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) |
| 346 | return 0; |
| 347 | return 1; |
| 348 | } |
| 349 | |
| 350 | memset(out, 0, outlen); |
| 351 | |
| 352 | do { |
| 353 | if (!EVP_CipherInit_ex(ctr->ctx_ctr, |
| 354 | NULL, NULL, NULL, ctr->V, -1)) |
| 355 | return 0; |
| 356 | |
| 357 | /*- |
| 358 | * outlen has type size_t while EVP_CipherUpdate takes an |
| 359 | * int argument and thus cannot be guaranteed to process more |
| 360 | * than 2^31-1 bytes at a time. We process such huge generate |
| 361 | * requests in 2^30 byte chunks, which is the greatest multiple |
| 362 | * of AES block size lower than or equal to 2^31-1. |
| 363 | */ |
| 364 | buflen = outlen > (1U << 30) ? (1U << 30) : outlen; |
| 365 | blocks = (buflen + 15) / 16; |
| 366 | |
| 367 | ctr32 = GETU32(ctr->V + 12) + blocks; |
| 368 | if (ctr32 < blocks) { |
| 369 | /* 32-bit counter overflow into V. */ |
| 370 | if (ctr32 != 0) { |
| 371 | blocks -= ctr32; |
| 372 | buflen = blocks * 16; |
| 373 | ctr32 = 0; |
| 374 | } |
| 375 | ctr96_inc(ctr->V); |
| 376 | } |
| 377 | PUTU32(ctr->V + 12, ctr32); |
| 378 | |
| 379 | if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen) |
| 380 | || outl != buflen) |
| 381 | return 0; |
| 382 | |
| 383 | out += buflen; |
| 384 | outlen -= buflen; |
| 385 | } while (outlen); |
| 386 | |
| 387 | if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) |
| 388 | return 0; |
| 389 | return 1; |
| 390 | } |
| 391 | |
| 392 | static int drbg_ctr_uninstantiate(RAND_DRBG *drbg) |
| 393 | { |
| 394 | EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_ecb); |
| 395 | EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_ctr); |
| 396 | EVP_CIPHER_CTX_free(drbg->data.ctr.ctx_df); |
| 397 | OPENSSL_cleanse(&drbg->data.ctr, sizeof(drbg->data.ctr)); |
| 398 | return 1; |
| 399 | } |
| 400 | |
| 401 | static RAND_DRBG_METHOD drbg_ctr_meth = { |
| 402 | drbg_ctr_instantiate, |
| 403 | drbg_ctr_reseed, |
| 404 | drbg_ctr_generate, |
| 405 | drbg_ctr_uninstantiate |
| 406 | }; |
| 407 | |
| 408 | int drbg_ctr_init(RAND_DRBG *drbg) |
| 409 | { |
| 410 | RAND_DRBG_CTR *ctr = &drbg->data.ctr; |
| 411 | size_t keylen; |
| 412 | |
| 413 | switch (drbg->type) { |
| 414 | default: |
| 415 | /* This can't happen, but silence the compiler warning. */ |
| 416 | return 0; |
| 417 | case NID_aes_128_ctr: |
| 418 | keylen = 16; |
| 419 | ctr->cipher_ecb = EVP_aes_128_ecb(); |
| 420 | ctr->cipher_ctr = EVP_aes_128_ctr(); |
| 421 | break; |
| 422 | case NID_aes_192_ctr: |
| 423 | keylen = 24; |
| 424 | ctr->cipher_ecb = EVP_aes_192_ecb(); |
| 425 | ctr->cipher_ctr = EVP_aes_192_ctr(); |
| 426 | break; |
| 427 | case NID_aes_256_ctr: |
| 428 | keylen = 32; |
| 429 | ctr->cipher_ecb = EVP_aes_256_ecb(); |
| 430 | ctr->cipher_ctr = EVP_aes_256_ctr(); |
| 431 | break; |
| 432 | } |
| 433 | |
| 434 | drbg->meth = &drbg_ctr_meth; |
| 435 | |
| 436 | ctr->keylen = keylen; |
| 437 | if (ctr->ctx_ecb == NULL) |
| 438 | ctr->ctx_ecb = EVP_CIPHER_CTX_new(); |
| 439 | if (ctr->ctx_ctr == NULL) |
| 440 | ctr->ctx_ctr = EVP_CIPHER_CTX_new(); |
| 441 | if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL |
| 442 | || !EVP_CipherInit_ex(ctr->ctx_ecb, |
| 443 | ctr->cipher_ecb, NULL, NULL, NULL, 1) |
| 444 | || !EVP_CipherInit_ex(ctr->ctx_ctr, |
| 445 | ctr->cipher_ctr, NULL, NULL, NULL, 1)) |
| 446 | return 0; |
| 447 | |
| 448 | drbg->meth = &drbg_ctr_meth; |
| 449 | drbg->strength = keylen * 8; |
| 450 | drbg->seedlen = keylen + 16; |
| 451 | |
| 452 | if ((drbg->flags & RAND_DRBG_FLAG_CTR_NO_DF) == 0) { |
| 453 | /* df initialisation */ |
| 454 | static const unsigned char df_key[32] = { |
| 455 | 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 456 | 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 457 | 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 458 | 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f |
| 459 | }; |
| 460 | |
| 461 | if (ctr->ctx_df == NULL) |
| 462 | ctr->ctx_df = EVP_CIPHER_CTX_new(); |
| 463 | if (ctr->ctx_df == NULL) |
| 464 | return 0; |
| 465 | /* Set key schedule for df_key */ |
| 466 | if (!EVP_CipherInit_ex(ctr->ctx_df, |
| 467 | ctr->cipher_ecb, NULL, df_key, NULL, 1)) |
| 468 | return 0; |
| 469 | |
| 470 | drbg->min_entropylen = ctr->keylen; |
| 471 | drbg->max_entropylen = DRBG_MAX_LENGTH; |
| 472 | drbg->min_noncelen = drbg->min_entropylen / 2; |
| 473 | drbg->max_noncelen = DRBG_MAX_LENGTH; |
| 474 | drbg->max_perslen = DRBG_MAX_LENGTH; |
| 475 | drbg->max_adinlen = DRBG_MAX_LENGTH; |
| 476 | } else { |
| 477 | drbg->min_entropylen = drbg->seedlen; |
| 478 | drbg->max_entropylen = drbg->seedlen; |
| 479 | /* Nonce not used */ |
| 480 | drbg->min_noncelen = 0; |
| 481 | drbg->max_noncelen = 0; |
| 482 | drbg->max_perslen = drbg->seedlen; |
| 483 | drbg->max_adinlen = drbg->seedlen; |
| 484 | } |
| 485 | |
| 486 | drbg->max_request = 1 << 16; |
| 487 | |
| 488 | return 1; |
| 489 | } |