yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | #! /usr/bin/env perl |
| 2 | # Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | # |
| 4 | # Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | # this file except in compliance with the License. You can obtain a copy |
| 6 | # in the file LICENSE in the source distribution or at |
| 7 | # https://www.openssl.org/source/license.html |
| 8 | |
| 9 | |
| 10 | # ==================================================================== |
| 11 | # [Re]written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| 12 | # project. The module is, however, dual licensed under OpenSSL and |
| 13 | # CRYPTOGAMS licenses depending on where you obtain it. For further |
| 14 | # details see http://www.openssl.org/~appro/cryptogams/. |
| 15 | # ==================================================================== |
| 16 | |
| 17 | # At some point it became apparent that the original SSLeay RC4 |
| 18 | # assembler implementation performs suboptimally on latest IA-32 |
| 19 | # microarchitectures. After re-tuning performance has changed as |
| 20 | # following: |
| 21 | # |
| 22 | # Pentium -10% |
| 23 | # Pentium III +12% |
| 24 | # AMD +50%(*) |
| 25 | # P4 +250%(**) |
| 26 | # |
| 27 | # (*) This number is actually a trade-off:-) It's possible to |
| 28 | # achieve +72%, but at the cost of -48% off PIII performance. |
| 29 | # In other words code performing further 13% faster on AMD |
| 30 | # would perform almost 2 times slower on Intel PIII... |
| 31 | # For reference! This code delivers ~80% of rc4-amd64.pl |
| 32 | # performance on the same Opteron machine. |
| 33 | # (**) This number requires compressed key schedule set up by |
| 34 | # RC4_set_key [see commentary below for further details]. |
| 35 | |
| 36 | # May 2011 |
| 37 | # |
| 38 | # Optimize for Core2 and Westmere [and incidentally Opteron]. Current |
| 39 | # performance in cycles per processed byte (less is better) and |
| 40 | # improvement relative to previous version of this module is: |
| 41 | # |
| 42 | # Pentium 10.2 # original numbers |
| 43 | # Pentium III 7.8(*) |
| 44 | # Intel P4 7.5 |
| 45 | # |
| 46 | # Opteron 6.1/+20% # new MMX numbers |
| 47 | # Core2 5.3/+67%(**) |
| 48 | # Westmere 5.1/+94%(**) |
| 49 | # Sandy Bridge 5.0/+8% |
| 50 | # Atom 12.6/+6% |
| 51 | # VIA Nano 6.4/+9% |
| 52 | # Ivy Bridge 4.9/±0% |
| 53 | # Bulldozer 4.9/+15% |
| 54 | # |
| 55 | # (*) PIII can actually deliver 6.6 cycles per byte with MMX code, |
| 56 | # but this specific code performs poorly on Core2. And vice |
| 57 | # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs |
| 58 | # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU |
| 59 | # [anymore], I chose to discard PIII-specific code path and opt |
| 60 | # for original IALU-only code, which is why MMX/SSE code path |
| 61 | # is guarded by SSE2 bit (see below), not MMX/SSE. |
| 62 | # (**) Performance vs. block size on Core2 and Westmere had a maximum |
| 63 | # at ... 64 bytes block size. And it was quite a maximum, 40-60% |
| 64 | # in comparison to largest 8KB block size. Above improvement |
| 65 | # coefficients are for the largest block size. |
| 66 | |
| 67 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| 68 | push(@INC,"${dir}","${dir}../../perlasm"); |
| 69 | require "x86asm.pl"; |
| 70 | |
| 71 | $output=pop; |
| 72 | open STDOUT,">$output"; |
| 73 | |
| 74 | &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); |
| 75 | |
| 76 | $xx="eax"; |
| 77 | $yy="ebx"; |
| 78 | $tx="ecx"; |
| 79 | $ty="edx"; |
| 80 | $inp="esi"; |
| 81 | $out="ebp"; |
| 82 | $dat="edi"; |
| 83 | |
| 84 | sub RC4_loop { |
| 85 | my $i=shift; |
| 86 | my $func = ($i==0)?*mov:*or; |
| 87 | |
| 88 | &add (&LB($yy),&LB($tx)); |
| 89 | &mov ($ty,&DWP(0,$dat,$yy,4)); |
| 90 | &mov (&DWP(0,$dat,$yy,4),$tx); |
| 91 | &mov (&DWP(0,$dat,$xx,4),$ty); |
| 92 | &add ($ty,$tx); |
| 93 | &inc (&LB($xx)); |
| 94 | &and ($ty,0xff); |
| 95 | &ror ($out,8) if ($i!=0); |
| 96 | if ($i<3) { |
| 97 | &mov ($tx,&DWP(0,$dat,$xx,4)); |
| 98 | } else { |
| 99 | &mov ($tx,&wparam(3)); # reload [re-biased] out |
| 100 | } |
| 101 | &$func ($out,&DWP(0,$dat,$ty,4)); |
| 102 | } |
| 103 | |
| 104 | if ($alt=0) { |
| 105 | # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron, |
| 106 | # but ~40% slower on Core2 and Westmere... Attempt to add movz |
| 107 | # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet |
| 108 | # on Core2 with movz it's almost 20% slower than below alternative |
| 109 | # code... Yes, it's a total mess... |
| 110 | my @XX=($xx,$out); |
| 111 | $RC4_loop_mmx = sub { # SSE actually... |
| 112 | my $i=shift; |
| 113 | my $j=$i<=0?0:$i>>1; |
| 114 | my $mm=$i<=0?"mm0":"mm".($i&1); |
| 115 | |
| 116 | &add (&LB($yy),&LB($tx)); |
| 117 | &lea (@XX[1],&DWP(1,@XX[0])); |
| 118 | &pxor ("mm2","mm0") if ($i==0); |
| 119 | &psllq ("mm1",8) if ($i==0); |
| 120 | &and (@XX[1],0xff); |
| 121 | &pxor ("mm0","mm0") if ($i<=0); |
| 122 | &mov ($ty,&DWP(0,$dat,$yy,4)); |
| 123 | &mov (&DWP(0,$dat,$yy,4),$tx); |
| 124 | &pxor ("mm1","mm2") if ($i==0); |
| 125 | &mov (&DWP(0,$dat,$XX[0],4),$ty); |
| 126 | &add (&LB($ty),&LB($tx)); |
| 127 | &movd (@XX[0],"mm7") if ($i==0); |
| 128 | &mov ($tx,&DWP(0,$dat,@XX[1],4)); |
| 129 | &pxor ("mm1","mm1") if ($i==1); |
| 130 | &movq ("mm2",&QWP(0,$inp)) if ($i==1); |
| 131 | &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0); |
| 132 | &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j); |
| 133 | |
| 134 | push (@XX,shift(@XX)) if ($i>=0); |
| 135 | } |
| 136 | } else { |
| 137 | # Using pinsrw here improves performance on Intel CPUs by 2-3%, but |
| 138 | # brings down AMD by 7%... |
| 139 | $RC4_loop_mmx = sub { |
| 140 | my $i=shift; |
| 141 | |
| 142 | &add (&LB($yy),&LB($tx)); |
| 143 | &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1); |
| 144 | &mov ($ty,&DWP(0,$dat,$yy,4)); |
| 145 | &mov (&DWP(0,$dat,$yy,4),$tx); |
| 146 | &mov (&DWP(0,$dat,$xx,4),$ty); |
| 147 | &inc ($xx); |
| 148 | &add ($ty,$tx); |
| 149 | &movz ($xx,&LB($xx)); # (*) |
| 150 | &movz ($ty,&LB($ty)); # (*) |
| 151 | &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0); |
| 152 | &movq ("mm0",&QWP(0,$inp)) if ($i<=0); |
| 153 | &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0); |
| 154 | &mov ($tx,&DWP(0,$dat,$xx,4)); |
| 155 | &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4)); |
| 156 | |
| 157 | # (*) This is the key to Core2 and Westmere performance. |
| 158 | # Without movz out-of-order execution logic confuses |
| 159 | # itself and fails to reorder loads and stores. Problem |
| 160 | # appears to be fixed in Sandy Bridge... |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | &external_label("OPENSSL_ia32cap_P"); |
| 165 | |
| 166 | # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); |
| 167 | &function_begin("RC4"); |
| 168 | &mov ($dat,&wparam(0)); # load key schedule pointer |
| 169 | &mov ($ty, &wparam(1)); # load len |
| 170 | &mov ($inp,&wparam(2)); # load inp |
| 171 | &mov ($out,&wparam(3)); # load out |
| 172 | |
| 173 | &xor ($xx,$xx); # avoid partial register stalls |
| 174 | &xor ($yy,$yy); |
| 175 | |
| 176 | &cmp ($ty,0); # safety net |
| 177 | &je (&label("abort")); |
| 178 | |
| 179 | &mov (&LB($xx),&BP(0,$dat)); # load key->x |
| 180 | &mov (&LB($yy),&BP(4,$dat)); # load key->y |
| 181 | &add ($dat,8); |
| 182 | |
| 183 | &lea ($tx,&DWP(0,$inp,$ty)); |
| 184 | &sub ($out,$inp); # re-bias out |
| 185 | &mov (&wparam(1),$tx); # save input+len |
| 186 | |
| 187 | &inc (&LB($xx)); |
| 188 | |
| 189 | # detect compressed key schedule... |
| 190 | &cmp (&DWP(256,$dat),-1); |
| 191 | &je (&label("RC4_CHAR")); |
| 192 | |
| 193 | &mov ($tx,&DWP(0,$dat,$xx,4)); |
| 194 | |
| 195 | &and ($ty,-4); # how many 4-byte chunks? |
| 196 | &jz (&label("loop1")); |
| 197 | |
| 198 | &mov (&wparam(3),$out); # $out as accumulator in these loops |
| 199 | if ($x86only) { |
| 200 | &jmp (&label("go4loop4")); |
| 201 | } else { |
| 202 | &test ($ty,-8); |
| 203 | &jz (&label("go4loop4")); |
| 204 | |
| 205 | &picmeup($out,"OPENSSL_ia32cap_P"); |
| 206 | &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX] |
| 207 | &jnc (&label("go4loop4")); |
| 208 | |
| 209 | &mov ($out,&wparam(3)) if (!$alt); |
| 210 | &movd ("mm7",&wparam(3)) if ($alt); |
| 211 | &and ($ty,-8); |
| 212 | &lea ($ty,&DWP(-8,$inp,$ty)); |
| 213 | &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8 |
| 214 | |
| 215 | &$RC4_loop_mmx(-1); |
| 216 | &jmp(&label("loop_mmx_enter")); |
| 217 | |
| 218 | &set_label("loop_mmx",16); |
| 219 | &$RC4_loop_mmx(0); |
| 220 | &set_label("loop_mmx_enter"); |
| 221 | for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); } |
| 222 | &mov ($ty,$yy); |
| 223 | &xor ($yy,$yy); # this is second key to Core2 |
| 224 | &mov (&LB($yy),&LB($ty)); # and Westmere performance... |
| 225 | &cmp ($inp,&DWP(-4,$dat)); |
| 226 | &lea ($inp,&DWP(8,$inp)); |
| 227 | &jb (&label("loop_mmx")); |
| 228 | |
| 229 | if ($alt) { |
| 230 | &movd ($out,"mm7"); |
| 231 | &pxor ("mm2","mm0"); |
| 232 | &psllq ("mm1",8); |
| 233 | &pxor ("mm1","mm2"); |
| 234 | &movq (&QWP(-8,$out,$inp),"mm1"); |
| 235 | } else { |
| 236 | &psllq ("mm1",56); |
| 237 | &pxor ("mm2","mm1"); |
| 238 | &movq (&QWP(-8,$out,$inp),"mm2"); |
| 239 | } |
| 240 | &emms (); |
| 241 | |
| 242 | &cmp ($inp,&wparam(1)); # compare to input+len |
| 243 | &je (&label("done")); |
| 244 | &jmp (&label("loop1")); |
| 245 | } |
| 246 | |
| 247 | &set_label("go4loop4",16); |
| 248 | &lea ($ty,&DWP(-4,$inp,$ty)); |
| 249 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4 |
| 250 | |
| 251 | &set_label("loop4"); |
| 252 | for ($i=0;$i<4;$i++) { RC4_loop($i); } |
| 253 | &ror ($out,8); |
| 254 | &xor ($out,&DWP(0,$inp)); |
| 255 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 |
| 256 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here |
| 257 | &lea ($inp,&DWP(4,$inp)); |
| 258 | &mov ($tx,&DWP(0,$dat,$xx,4)); |
| 259 | &jb (&label("loop4")); |
| 260 | |
| 261 | &cmp ($inp,&wparam(1)); # compare to input+len |
| 262 | &je (&label("done")); |
| 263 | &mov ($out,&wparam(3)); # restore $out |
| 264 | |
| 265 | &set_label("loop1",16); |
| 266 | &add (&LB($yy),&LB($tx)); |
| 267 | &mov ($ty,&DWP(0,$dat,$yy,4)); |
| 268 | &mov (&DWP(0,$dat,$yy,4),$tx); |
| 269 | &mov (&DWP(0,$dat,$xx,4),$ty); |
| 270 | &add ($ty,$tx); |
| 271 | &inc (&LB($xx)); |
| 272 | &and ($ty,0xff); |
| 273 | &mov ($ty,&DWP(0,$dat,$ty,4)); |
| 274 | &xor (&LB($ty),&BP(0,$inp)); |
| 275 | &lea ($inp,&DWP(1,$inp)); |
| 276 | &mov ($tx,&DWP(0,$dat,$xx,4)); |
| 277 | &cmp ($inp,&wparam(1)); # compare to input+len |
| 278 | &mov (&BP(-1,$out,$inp),&LB($ty)); |
| 279 | &jb (&label("loop1")); |
| 280 | |
| 281 | &jmp (&label("done")); |
| 282 | |
| 283 | # this is essentially Intel P4 specific codepath... |
| 284 | &set_label("RC4_CHAR",16); |
| 285 | &movz ($tx,&BP(0,$dat,$xx)); |
| 286 | # strangely enough unrolled loop performs over 20% slower... |
| 287 | &set_label("cloop1"); |
| 288 | &add (&LB($yy),&LB($tx)); |
| 289 | &movz ($ty,&BP(0,$dat,$yy)); |
| 290 | &mov (&BP(0,$dat,$yy),&LB($tx)); |
| 291 | &mov (&BP(0,$dat,$xx),&LB($ty)); |
| 292 | &add (&LB($ty),&LB($tx)); |
| 293 | &movz ($ty,&BP(0,$dat,$ty)); |
| 294 | &add (&LB($xx),1); |
| 295 | &xor (&LB($ty),&BP(0,$inp)); |
| 296 | &lea ($inp,&DWP(1,$inp)); |
| 297 | &movz ($tx,&BP(0,$dat,$xx)); |
| 298 | &cmp ($inp,&wparam(1)); |
| 299 | &mov (&BP(-1,$out,$inp),&LB($ty)); |
| 300 | &jb (&label("cloop1")); |
| 301 | |
| 302 | &set_label("done"); |
| 303 | &dec (&LB($xx)); |
| 304 | &mov (&DWP(-4,$dat),$yy); # save key->y |
| 305 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x |
| 306 | &set_label("abort"); |
| 307 | &function_end("RC4"); |
| 308 | |
| 309 | ######################################################################## |
| 310 | |
| 311 | $inp="esi"; |
| 312 | $out="edi"; |
| 313 | $idi="ebp"; |
| 314 | $ido="ecx"; |
| 315 | $idx="edx"; |
| 316 | |
| 317 | # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); |
| 318 | &function_begin("RC4_set_key"); |
| 319 | &mov ($out,&wparam(0)); # load key |
| 320 | &mov ($idi,&wparam(1)); # load len |
| 321 | &mov ($inp,&wparam(2)); # load data |
| 322 | &picmeup($idx,"OPENSSL_ia32cap_P"); |
| 323 | |
| 324 | &lea ($out,&DWP(2*4,$out)); # &key->data |
| 325 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end |
| 326 | &neg ($idi); |
| 327 | &xor ("eax","eax"); |
| 328 | &mov (&DWP(-4,$out),$idi); # borrow key->y |
| 329 | |
| 330 | &bt (&DWP(0,$idx),20); # check for bit#20 |
| 331 | &jc (&label("c1stloop")); |
| 332 | |
| 333 | &set_label("w1stloop",16); |
| 334 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; |
| 335 | &add (&LB("eax"),1); # i++; |
| 336 | &jnc (&label("w1stloop")); |
| 337 | |
| 338 | &xor ($ido,$ido); |
| 339 | &xor ($idx,$idx); |
| 340 | |
| 341 | &set_label("w2ndloop",16); |
| 342 | &mov ("eax",&DWP(0,$out,$ido,4)); |
| 343 | &add (&LB($idx),&BP(0,$inp,$idi)); |
| 344 | &add (&LB($idx),&LB("eax")); |
| 345 | &add ($idi,1); |
| 346 | &mov ("ebx",&DWP(0,$out,$idx,4)); |
| 347 | &jnz (&label("wnowrap")); |
| 348 | &mov ($idi,&DWP(-4,$out)); |
| 349 | &set_label("wnowrap"); |
| 350 | &mov (&DWP(0,$out,$idx,4),"eax"); |
| 351 | &mov (&DWP(0,$out,$ido,4),"ebx"); |
| 352 | &add (&LB($ido),1); |
| 353 | &jnc (&label("w2ndloop")); |
| 354 | &jmp (&label("exit")); |
| 355 | |
| 356 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core |
| 357 | # [including EM64T] was found to perform poorly with above "32-bit" key |
| 358 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded |
| 359 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, |
| 360 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit |
| 361 | # schedule for x86[_64], because non-P4 implementations suffer from |
| 362 | # significant performance losses then, e.g. PIII exhibits >2x |
| 363 | # deterioration, and so does Opteron. In order to assure optimal |
| 364 | # all-round performance, we detect P4 at run-time and set up compressed |
| 365 | # key schedule, which is recognized by RC4 procedure. |
| 366 | |
| 367 | &set_label("c1stloop",16); |
| 368 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; |
| 369 | &add (&LB("eax"),1); # i++; |
| 370 | &jnc (&label("c1stloop")); |
| 371 | |
| 372 | &xor ($ido,$ido); |
| 373 | &xor ($idx,$idx); |
| 374 | &xor ("ebx","ebx"); |
| 375 | |
| 376 | &set_label("c2ndloop",16); |
| 377 | &mov (&LB("eax"),&BP(0,$out,$ido)); |
| 378 | &add (&LB($idx),&BP(0,$inp,$idi)); |
| 379 | &add (&LB($idx),&LB("eax")); |
| 380 | &add ($idi,1); |
| 381 | &mov (&LB("ebx"),&BP(0,$out,$idx)); |
| 382 | &jnz (&label("cnowrap")); |
| 383 | &mov ($idi,&DWP(-4,$out)); |
| 384 | &set_label("cnowrap"); |
| 385 | &mov (&BP(0,$out,$idx),&LB("eax")); |
| 386 | &mov (&BP(0,$out,$ido),&LB("ebx")); |
| 387 | &add (&LB($ido),1); |
| 388 | &jnc (&label("c2ndloop")); |
| 389 | |
| 390 | &mov (&DWP(256,$out),-1); # mark schedule as compressed |
| 391 | |
| 392 | &set_label("exit"); |
| 393 | &xor ("eax","eax"); |
| 394 | &mov (&DWP(-8,$out),"eax"); # key->x=0; |
| 395 | &mov (&DWP(-4,$out),"eax"); # key->y=0; |
| 396 | &function_end("RC4_set_key"); |
| 397 | |
| 398 | # const char *RC4_options(void); |
| 399 | &function_begin_B("RC4_options"); |
| 400 | &call (&label("pic_point")); |
| 401 | &set_label("pic_point"); |
| 402 | &blindpop("eax"); |
| 403 | &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); |
| 404 | &picmeup("edx","OPENSSL_ia32cap_P"); |
| 405 | &mov ("edx",&DWP(0,"edx")); |
| 406 | &bt ("edx",20); |
| 407 | &jc (&label("1xchar")); |
| 408 | &bt ("edx",26); |
| 409 | &jnc (&label("ret")); |
| 410 | &add ("eax",25); |
| 411 | &ret (); |
| 412 | &set_label("1xchar"); |
| 413 | &add ("eax",12); |
| 414 | &set_label("ret"); |
| 415 | &ret (); |
| 416 | &set_label("opts",64); |
| 417 | &asciz ("rc4(4x,int)"); |
| 418 | &asciz ("rc4(1x,char)"); |
| 419 | &asciz ("rc4(8x,mmx)"); |
| 420 | &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); |
| 421 | &align (64); |
| 422 | &function_end_B("RC4_options"); |
| 423 | |
| 424 | &asm_finish(); |
| 425 | |
| 426 | close STDOUT or die "error closing STDOUT: $!"; |