blob: 25a1a447853a06bef4599fb8909a3f358ac62093 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 * Copyright 2005 Nokia. All rights reserved.
5 *
6 * Licensed under the OpenSSL license (the "License"). You may not use
7 * this file except in compliance with the License. You can obtain a copy
8 * in the file LICENSE in the source distribution or at
9 * https://www.openssl.org/source/license.html
10 */
11
12#include <stdio.h>
13#include "ssl_local.h"
14#include <openssl/objects.h>
15#include <openssl/x509v3.h>
16#include <openssl/rand.h>
17#include <openssl/rand_drbg.h>
18#include <openssl/ocsp.h>
19#include <openssl/dh.h>
20#include <openssl/engine.h>
21#include <openssl/async.h>
22#include <openssl/ct.h>
23#include "internal/cryptlib.h"
24#include "internal/refcount.h"
25
26const char SSL_version_str[] = OPENSSL_VERSION_TEXT;
27
28static int ssl_undefined_function_1(SSL *ssl, SSL3_RECORD *r, size_t s, int t)
29{
30 (void)r;
31 (void)s;
32 (void)t;
33 return ssl_undefined_function(ssl);
34}
35
36static int ssl_undefined_function_2(SSL *ssl, SSL3_RECORD *r, unsigned char *s,
37 int t)
38{
39 (void)r;
40 (void)s;
41 (void)t;
42 return ssl_undefined_function(ssl);
43}
44
45static int ssl_undefined_function_3(SSL *ssl, unsigned char *r,
46 unsigned char *s, size_t t, size_t *u)
47{
48 (void)r;
49 (void)s;
50 (void)t;
51 (void)u;
52 return ssl_undefined_function(ssl);
53}
54
55static int ssl_undefined_function_4(SSL *ssl, int r)
56{
57 (void)r;
58 return ssl_undefined_function(ssl);
59}
60
61static size_t ssl_undefined_function_5(SSL *ssl, const char *r, size_t s,
62 unsigned char *t)
63{
64 (void)r;
65 (void)s;
66 (void)t;
67 return ssl_undefined_function(ssl);
68}
69
70static int ssl_undefined_function_6(int r)
71{
72 (void)r;
73 return ssl_undefined_function(NULL);
74}
75
76static int ssl_undefined_function_7(SSL *ssl, unsigned char *r, size_t s,
77 const char *t, size_t u,
78 const unsigned char *v, size_t w, int x)
79{
80 (void)r;
81 (void)s;
82 (void)t;
83 (void)u;
84 (void)v;
85 (void)w;
86 (void)x;
87 return ssl_undefined_function(ssl);
88}
89
90SSL3_ENC_METHOD ssl3_undef_enc_method = {
91 ssl_undefined_function_1,
92 ssl_undefined_function_2,
93 ssl_undefined_function,
94 ssl_undefined_function_3,
95 ssl_undefined_function_4,
96 ssl_undefined_function_5,
97 NULL, /* client_finished_label */
98 0, /* client_finished_label_len */
99 NULL, /* server_finished_label */
100 0, /* server_finished_label_len */
101 ssl_undefined_function_6,
102 ssl_undefined_function_7,
103};
104
105struct ssl_async_args {
106 SSL *s;
107 void *buf;
108 size_t num;
109 enum { READFUNC, WRITEFUNC, OTHERFUNC } type;
110 union {
111 int (*func_read) (SSL *, void *, size_t, size_t *);
112 int (*func_write) (SSL *, const void *, size_t, size_t *);
113 int (*func_other) (SSL *);
114 } f;
115};
116
117static const struct {
118 uint8_t mtype;
119 uint8_t ord;
120 int nid;
121} dane_mds[] = {
122 {
123 DANETLS_MATCHING_FULL, 0, NID_undef
124 },
125 {
126 DANETLS_MATCHING_2256, 1, NID_sha256
127 },
128 {
129 DANETLS_MATCHING_2512, 2, NID_sha512
130 },
131};
132
133static int dane_ctx_enable(struct dane_ctx_st *dctx)
134{
135 const EVP_MD **mdevp;
136 uint8_t *mdord;
137 uint8_t mdmax = DANETLS_MATCHING_LAST;
138 int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */
139 size_t i;
140
141 if (dctx->mdevp != NULL)
142 return 1;
143
144 mdevp = OPENSSL_zalloc(n * sizeof(*mdevp));
145 mdord = OPENSSL_zalloc(n * sizeof(*mdord));
146
147 if (mdord == NULL || mdevp == NULL) {
148 OPENSSL_free(mdord);
149 OPENSSL_free(mdevp);
150 SSLerr(SSL_F_DANE_CTX_ENABLE, ERR_R_MALLOC_FAILURE);
151 return 0;
152 }
153
154 /* Install default entries */
155 for (i = 0; i < OSSL_NELEM(dane_mds); ++i) {
156 const EVP_MD *md;
157
158 if (dane_mds[i].nid == NID_undef ||
159 (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL)
160 continue;
161 mdevp[dane_mds[i].mtype] = md;
162 mdord[dane_mds[i].mtype] = dane_mds[i].ord;
163 }
164
165 dctx->mdevp = mdevp;
166 dctx->mdord = mdord;
167 dctx->mdmax = mdmax;
168
169 return 1;
170}
171
172static void dane_ctx_final(struct dane_ctx_st *dctx)
173{
174 OPENSSL_free(dctx->mdevp);
175 dctx->mdevp = NULL;
176
177 OPENSSL_free(dctx->mdord);
178 dctx->mdord = NULL;
179 dctx->mdmax = 0;
180}
181
182static void tlsa_free(danetls_record *t)
183{
184 if (t == NULL)
185 return;
186 OPENSSL_free(t->data);
187 EVP_PKEY_free(t->spki);
188 OPENSSL_free(t);
189}
190
191static void dane_final(SSL_DANE *dane)
192{
193 sk_danetls_record_pop_free(dane->trecs, tlsa_free);
194 dane->trecs = NULL;
195
196 sk_X509_pop_free(dane->certs, X509_free);
197 dane->certs = NULL;
198
199 X509_free(dane->mcert);
200 dane->mcert = NULL;
201 dane->mtlsa = NULL;
202 dane->mdpth = -1;
203 dane->pdpth = -1;
204}
205
206/*
207 * dane_copy - Copy dane configuration, sans verification state.
208 */
209static int ssl_dane_dup(SSL *to, SSL *from)
210{
211 int num;
212 int i;
213
214 if (!DANETLS_ENABLED(&from->dane))
215 return 1;
216
217 num = sk_danetls_record_num(from->dane.trecs);
218 dane_final(&to->dane);
219 to->dane.flags = from->dane.flags;
220 to->dane.dctx = &to->ctx->dane;
221 to->dane.trecs = sk_danetls_record_new_reserve(NULL, num);
222
223 if (to->dane.trecs == NULL) {
224 SSLerr(SSL_F_SSL_DANE_DUP, ERR_R_MALLOC_FAILURE);
225 return 0;
226 }
227
228 for (i = 0; i < num; ++i) {
229 danetls_record *t = sk_danetls_record_value(from->dane.trecs, i);
230
231 if (SSL_dane_tlsa_add(to, t->usage, t->selector, t->mtype,
232 t->data, t->dlen) <= 0)
233 return 0;
234 }
235 return 1;
236}
237
238static int dane_mtype_set(struct dane_ctx_st *dctx,
239 const EVP_MD *md, uint8_t mtype, uint8_t ord)
240{
241 int i;
242
243 if (mtype == DANETLS_MATCHING_FULL && md != NULL) {
244 SSLerr(SSL_F_DANE_MTYPE_SET, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL);
245 return 0;
246 }
247
248 if (mtype > dctx->mdmax) {
249 const EVP_MD **mdevp;
250 uint8_t *mdord;
251 int n = ((int)mtype) + 1;
252
253 mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp));
254 if (mdevp == NULL) {
255 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
256 return -1;
257 }
258 dctx->mdevp = mdevp;
259
260 mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord));
261 if (mdord == NULL) {
262 SSLerr(SSL_F_DANE_MTYPE_SET, ERR_R_MALLOC_FAILURE);
263 return -1;
264 }
265 dctx->mdord = mdord;
266
267 /* Zero-fill any gaps */
268 for (i = dctx->mdmax + 1; i < mtype; ++i) {
269 mdevp[i] = NULL;
270 mdord[i] = 0;
271 }
272
273 dctx->mdmax = mtype;
274 }
275
276 dctx->mdevp[mtype] = md;
277 /* Coerce ordinal of disabled matching types to 0 */
278 dctx->mdord[mtype] = (md == NULL) ? 0 : ord;
279
280 return 1;
281}
282
283static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype)
284{
285 if (mtype > dane->dctx->mdmax)
286 return NULL;
287 return dane->dctx->mdevp[mtype];
288}
289
290static int dane_tlsa_add(SSL_DANE *dane,
291 uint8_t usage,
292 uint8_t selector,
293 uint8_t mtype, unsigned const char *data, size_t dlen)
294{
295 danetls_record *t;
296 const EVP_MD *md = NULL;
297 int ilen = (int)dlen;
298 int i;
299 int num;
300
301 if (dane->trecs == NULL) {
302 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_NOT_ENABLED);
303 return -1;
304 }
305
306 if (ilen < 0 || dlen != (size_t)ilen) {
307 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DATA_LENGTH);
308 return 0;
309 }
310
311 if (usage > DANETLS_USAGE_LAST) {
312 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE);
313 return 0;
314 }
315
316 if (selector > DANETLS_SELECTOR_LAST) {
317 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_SELECTOR);
318 return 0;
319 }
320
321 if (mtype != DANETLS_MATCHING_FULL) {
322 md = tlsa_md_get(dane, mtype);
323 if (md == NULL) {
324 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE);
325 return 0;
326 }
327 }
328
329 if (md != NULL && dlen != (size_t)EVP_MD_size(md)) {
330 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH);
331 return 0;
332 }
333 if (!data) {
334 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_NULL_DATA);
335 return 0;
336 }
337
338 if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) {
339 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
340 return -1;
341 }
342
343 t->usage = usage;
344 t->selector = selector;
345 t->mtype = mtype;
346 t->data = OPENSSL_malloc(dlen);
347 if (t->data == NULL) {
348 tlsa_free(t);
349 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
350 return -1;
351 }
352 memcpy(t->data, data, dlen);
353 t->dlen = dlen;
354
355 /* Validate and cache full certificate or public key */
356 if (mtype == DANETLS_MATCHING_FULL) {
357 const unsigned char *p = data;
358 X509 *cert = NULL;
359 EVP_PKEY *pkey = NULL;
360
361 switch (selector) {
362 case DANETLS_SELECTOR_CERT:
363 if (!d2i_X509(&cert, &p, ilen) || p < data ||
364 dlen != (size_t)(p - data)) {
365 tlsa_free(t);
366 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
367 return 0;
368 }
369 if (X509_get0_pubkey(cert) == NULL) {
370 tlsa_free(t);
371 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_CERTIFICATE);
372 return 0;
373 }
374
375 if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) {
376 X509_free(cert);
377 break;
378 }
379
380 /*
381 * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA
382 * records that contain full certificates of trust-anchors that are
383 * not present in the wire chain. For usage PKIX-TA(0), we augment
384 * the chain with untrusted Full(0) certificates from DNS, in case
385 * they are missing from the chain.
386 */
387 if ((dane->certs == NULL &&
388 (dane->certs = sk_X509_new_null()) == NULL) ||
389 !sk_X509_push(dane->certs, cert)) {
390 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
391 X509_free(cert);
392 tlsa_free(t);
393 return -1;
394 }
395 break;
396
397 case DANETLS_SELECTOR_SPKI:
398 if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data ||
399 dlen != (size_t)(p - data)) {
400 tlsa_free(t);
401 SSLerr(SSL_F_DANE_TLSA_ADD, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY);
402 return 0;
403 }
404
405 /*
406 * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA
407 * records that contain full bare keys of trust-anchors that are
408 * not present in the wire chain.
409 */
410 if (usage == DANETLS_USAGE_DANE_TA)
411 t->spki = pkey;
412 else
413 EVP_PKEY_free(pkey);
414 break;
415 }
416 }
417
418 /*-
419 * Find the right insertion point for the new record.
420 *
421 * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that
422 * they can be processed first, as they require no chain building, and no
423 * expiration or hostname checks. Because DANE-EE(3) is numerically
424 * largest, this is accomplished via descending sort by "usage".
425 *
426 * We also sort in descending order by matching ordinal to simplify
427 * the implementation of digest agility in the verification code.
428 *
429 * The choice of order for the selector is not significant, so we
430 * use the same descending order for consistency.
431 */
432 num = sk_danetls_record_num(dane->trecs);
433 for (i = 0; i < num; ++i) {
434 danetls_record *rec = sk_danetls_record_value(dane->trecs, i);
435
436 if (rec->usage > usage)
437 continue;
438 if (rec->usage < usage)
439 break;
440 if (rec->selector > selector)
441 continue;
442 if (rec->selector < selector)
443 break;
444 if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype])
445 continue;
446 break;
447 }
448
449 if (!sk_danetls_record_insert(dane->trecs, t, i)) {
450 tlsa_free(t);
451 SSLerr(SSL_F_DANE_TLSA_ADD, ERR_R_MALLOC_FAILURE);
452 return -1;
453 }
454 dane->umask |= DANETLS_USAGE_BIT(usage);
455
456 return 1;
457}
458
459/*
460 * Return 0 if there is only one version configured and it was disabled
461 * at configure time. Return 1 otherwise.
462 */
463static int ssl_check_allowed_versions(int min_version, int max_version)
464{
465 int minisdtls = 0, maxisdtls = 0;
466
467 /* Figure out if we're doing DTLS versions or TLS versions */
468 if (min_version == DTLS1_BAD_VER
469 || min_version >> 8 == DTLS1_VERSION_MAJOR)
470 minisdtls = 1;
471 if (max_version == DTLS1_BAD_VER
472 || max_version >> 8 == DTLS1_VERSION_MAJOR)
473 maxisdtls = 1;
474 /* A wildcard version of 0 could be DTLS or TLS. */
475 if ((minisdtls && !maxisdtls && max_version != 0)
476 || (maxisdtls && !minisdtls && min_version != 0)) {
477 /* Mixing DTLS and TLS versions will lead to sadness; deny it. */
478 return 0;
479 }
480
481 if (minisdtls || maxisdtls) {
482 /* Do DTLS version checks. */
483 if (min_version == 0)
484 /* Ignore DTLS1_BAD_VER */
485 min_version = DTLS1_VERSION;
486 if (max_version == 0)
487 max_version = DTLS1_2_VERSION;
488#ifdef OPENSSL_NO_DTLS1_2
489 if (max_version == DTLS1_2_VERSION)
490 max_version = DTLS1_VERSION;
491#endif
492#ifdef OPENSSL_NO_DTLS1
493 if (min_version == DTLS1_VERSION)
494 min_version = DTLS1_2_VERSION;
495#endif
496 /* Done massaging versions; do the check. */
497 if (0
498#ifdef OPENSSL_NO_DTLS1
499 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION)
500 && DTLS_VERSION_GE(DTLS1_VERSION, max_version))
501#endif
502#ifdef OPENSSL_NO_DTLS1_2
503 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION)
504 && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version))
505#endif
506 )
507 return 0;
508 } else {
509 /* Regular TLS version checks. */
510 if (min_version == 0)
511 min_version = SSL3_VERSION;
512 if (max_version == 0)
513 max_version = TLS1_3_VERSION;
514#ifdef OPENSSL_NO_TLS1_3
515 if (max_version == TLS1_3_VERSION)
516 max_version = TLS1_2_VERSION;
517#endif
518#ifdef OPENSSL_NO_TLS1_2
519 if (max_version == TLS1_2_VERSION)
520 max_version = TLS1_1_VERSION;
521#endif
522#ifdef OPENSSL_NO_TLS1_1
523 if (max_version == TLS1_1_VERSION)
524 max_version = TLS1_VERSION;
525#endif
526#ifdef OPENSSL_NO_TLS1
527 if (max_version == TLS1_VERSION)
528 max_version = SSL3_VERSION;
529#endif
530#ifdef OPENSSL_NO_SSL3
531 if (min_version == SSL3_VERSION)
532 min_version = TLS1_VERSION;
533#endif
534#ifdef OPENSSL_NO_TLS1
535 if (min_version == TLS1_VERSION)
536 min_version = TLS1_1_VERSION;
537#endif
538#ifdef OPENSSL_NO_TLS1_1
539 if (min_version == TLS1_1_VERSION)
540 min_version = TLS1_2_VERSION;
541#endif
542#ifdef OPENSSL_NO_TLS1_2
543 if (min_version == TLS1_2_VERSION)
544 min_version = TLS1_3_VERSION;
545#endif
546 /* Done massaging versions; do the check. */
547 if (0
548#ifdef OPENSSL_NO_SSL3
549 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version)
550#endif
551#ifdef OPENSSL_NO_TLS1
552 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version)
553#endif
554#ifdef OPENSSL_NO_TLS1_1
555 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version)
556#endif
557#ifdef OPENSSL_NO_TLS1_2
558 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version)
559#endif
560#ifdef OPENSSL_NO_TLS1_3
561 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version)
562#endif
563 )
564 return 0;
565 }
566 return 1;
567}
568
569static void clear_ciphers(SSL *s)
570{
571 /* clear the current cipher */
572 ssl_clear_cipher_ctx(s);
573 ssl_clear_hash_ctx(&s->read_hash);
574 ssl_clear_hash_ctx(&s->write_hash);
575}
576
577int SSL_clear(SSL *s)
578{
579 if (s->method == NULL) {
580 SSLerr(SSL_F_SSL_CLEAR, SSL_R_NO_METHOD_SPECIFIED);
581 return 0;
582 }
583
584 if (ssl_clear_bad_session(s)) {
585 SSL_SESSION_free(s->session);
586 s->session = NULL;
587 }
588 SSL_SESSION_free(s->psksession);
589 s->psksession = NULL;
590 OPENSSL_free(s->psksession_id);
591 s->psksession_id = NULL;
592 s->psksession_id_len = 0;
593 s->hello_retry_request = 0;
594 s->sent_tickets = 0;
595
596 s->error = 0;
597 s->hit = 0;
598 s->shutdown = 0;
599
600 if (s->renegotiate) {
601 SSLerr(SSL_F_SSL_CLEAR, ERR_R_INTERNAL_ERROR);
602 return 0;
603 }
604
605 ossl_statem_clear(s);
606
607 s->version = s->method->version;
608 s->client_version = s->version;
609 s->rwstate = SSL_NOTHING;
610
611 BUF_MEM_free(s->init_buf);
612 s->init_buf = NULL;
613 clear_ciphers(s);
614 s->first_packet = 0;
615
616 s->key_update = SSL_KEY_UPDATE_NONE;
617
618 EVP_MD_CTX_free(s->pha_dgst);
619 s->pha_dgst = NULL;
620
621 /* Reset DANE verification result state */
622 s->dane.mdpth = -1;
623 s->dane.pdpth = -1;
624 X509_free(s->dane.mcert);
625 s->dane.mcert = NULL;
626 s->dane.mtlsa = NULL;
627
628 /* Clear the verification result peername */
629 X509_VERIFY_PARAM_move_peername(s->param, NULL);
630
631 /* Clear any shared connection state */
632 OPENSSL_free(s->shared_sigalgs);
633 s->shared_sigalgs = NULL;
634 s->shared_sigalgslen = 0;
635
636 /*
637 * Check to see if we were changed into a different method, if so, revert
638 * back.
639 */
640 if (s->method != s->ctx->method) {
641 s->method->ssl_free(s);
642 s->method = s->ctx->method;
643 if (!s->method->ssl_new(s))
644 return 0;
645 } else {
646 if (!s->method->ssl_clear(s))
647 return 0;
648 }
649
650 RECORD_LAYER_clear(&s->rlayer);
651
652 return 1;
653}
654
655/** Used to change an SSL_CTXs default SSL method type */
656int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth)
657{
658 STACK_OF(SSL_CIPHER) *sk;
659
660 ctx->method = meth;
661
662 if (!SSL_CTX_set_ciphersuites(ctx, TLS_DEFAULT_CIPHERSUITES)) {
663 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
664 return 0;
665 }
666 sk = ssl_create_cipher_list(ctx->method,
667 ctx->tls13_ciphersuites,
668 &(ctx->cipher_list),
669 &(ctx->cipher_list_by_id),
670 SSL_DEFAULT_CIPHER_LIST, ctx->cert);
671 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) {
672 SSLerr(SSL_F_SSL_CTX_SET_SSL_VERSION, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS);
673 return 0;
674 }
675 return 1;
676}
677
678SSL *SSL_new(SSL_CTX *ctx)
679{
680 SSL *s;
681
682 if (ctx == NULL) {
683 SSLerr(SSL_F_SSL_NEW, SSL_R_NULL_SSL_CTX);
684 return NULL;
685 }
686 if (ctx->method == NULL) {
687 SSLerr(SSL_F_SSL_NEW, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
688 return NULL;
689 }
690
691 s = OPENSSL_zalloc(sizeof(*s));
692 if (s == NULL)
693 goto err;
694
695 s->references = 1;
696 s->lock = CRYPTO_THREAD_lock_new();
697 if (s->lock == NULL) {
698 OPENSSL_free(s);
699 s = NULL;
700 goto err;
701 }
702
703 RECORD_LAYER_init(&s->rlayer, s);
704
705 s->options = ctx->options;
706 s->dane.flags = ctx->dane.flags;
707 s->min_proto_version = ctx->min_proto_version;
708 s->max_proto_version = ctx->max_proto_version;
709 s->mode = ctx->mode;
710 s->max_cert_list = ctx->max_cert_list;
711 s->max_early_data = ctx->max_early_data;
712 s->recv_max_early_data = ctx->recv_max_early_data;
713 s->num_tickets = ctx->num_tickets;
714 s->pha_enabled = ctx->pha_enabled;
715
716 /* Shallow copy of the ciphersuites stack */
717 s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites);
718 if (s->tls13_ciphersuites == NULL)
719 goto err;
720
721 /*
722 * Earlier library versions used to copy the pointer to the CERT, not
723 * its contents; only when setting new parameters for the per-SSL
724 * copy, ssl_cert_new would be called (and the direct reference to
725 * the per-SSL_CTX settings would be lost, but those still were
726 * indirectly accessed for various purposes, and for that reason they
727 * used to be known as s->ctx->default_cert). Now we don't look at the
728 * SSL_CTX's CERT after having duplicated it once.
729 */
730 s->cert = ssl_cert_dup(ctx->cert);
731 if (s->cert == NULL)
732 goto err;
733
734 RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead);
735 s->msg_callback = ctx->msg_callback;
736 s->msg_callback_arg = ctx->msg_callback_arg;
737 s->verify_mode = ctx->verify_mode;
738 s->not_resumable_session_cb = ctx->not_resumable_session_cb;
739 s->record_padding_cb = ctx->record_padding_cb;
740 s->record_padding_arg = ctx->record_padding_arg;
741 s->block_padding = ctx->block_padding;
742 s->sid_ctx_length = ctx->sid_ctx_length;
743 if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx)))
744 goto err;
745 memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
746 s->verify_callback = ctx->default_verify_callback;
747 s->generate_session_id = ctx->generate_session_id;
748
749 s->param = X509_VERIFY_PARAM_new();
750 if (s->param == NULL)
751 goto err;
752 X509_VERIFY_PARAM_inherit(s->param, ctx->param);
753 s->quiet_shutdown = ctx->quiet_shutdown;
754
755 s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode;
756 s->max_send_fragment = ctx->max_send_fragment;
757 s->split_send_fragment = ctx->split_send_fragment;
758 s->max_pipelines = ctx->max_pipelines;
759 if (s->max_pipelines > 1)
760 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
761 if (ctx->default_read_buf_len > 0)
762 SSL_set_default_read_buffer_len(s, ctx->default_read_buf_len);
763
764 SSL_CTX_up_ref(ctx);
765 s->ctx = ctx;
766 s->ext.debug_cb = 0;
767 s->ext.debug_arg = NULL;
768 s->ext.ticket_expected = 0;
769 s->ext.status_type = ctx->ext.status_type;
770 s->ext.status_expected = 0;
771 s->ext.ocsp.ids = NULL;
772 s->ext.ocsp.exts = NULL;
773 s->ext.ocsp.resp = NULL;
774 s->ext.ocsp.resp_len = 0;
775 SSL_CTX_up_ref(ctx);
776 s->session_ctx = ctx;
777#ifndef OPENSSL_NO_EC
778 if (ctx->ext.ecpointformats) {
779 s->ext.ecpointformats =
780 OPENSSL_memdup(ctx->ext.ecpointformats,
781 ctx->ext.ecpointformats_len);
782 if (!s->ext.ecpointformats) {
783 s->ext.ecpointformats_len = 0;
784 goto err;
785 }
786 s->ext.ecpointformats_len =
787 ctx->ext.ecpointformats_len;
788 }
789 if (ctx->ext.supportedgroups) {
790 s->ext.supportedgroups =
791 OPENSSL_memdup(ctx->ext.supportedgroups,
792 ctx->ext.supportedgroups_len
793 * sizeof(*ctx->ext.supportedgroups));
794 if (!s->ext.supportedgroups) {
795 s->ext.supportedgroups_len = 0;
796 goto err;
797 }
798 s->ext.supportedgroups_len = ctx->ext.supportedgroups_len;
799 }
800#endif
801#ifndef OPENSSL_NO_NEXTPROTONEG
802 s->ext.npn = NULL;
803#endif
804
805 if (s->ctx->ext.alpn) {
806 s->ext.alpn = OPENSSL_malloc(s->ctx->ext.alpn_len);
807 if (s->ext.alpn == NULL) {
808 s->ext.alpn_len = 0;
809 goto err;
810 }
811 memcpy(s->ext.alpn, s->ctx->ext.alpn, s->ctx->ext.alpn_len);
812 s->ext.alpn_len = s->ctx->ext.alpn_len;
813 }
814
815 s->verified_chain = NULL;
816 s->verify_result = X509_V_OK;
817
818 s->default_passwd_callback = ctx->default_passwd_callback;
819 s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata;
820
821 s->method = ctx->method;
822
823 s->key_update = SSL_KEY_UPDATE_NONE;
824
825 s->allow_early_data_cb = ctx->allow_early_data_cb;
826 s->allow_early_data_cb_data = ctx->allow_early_data_cb_data;
827
828 if (!s->method->ssl_new(s))
829 goto err;
830
831 s->server = (ctx->method->ssl_accept == ssl_undefined_function) ? 0 : 1;
832
833 if (!SSL_clear(s))
834 goto err;
835
836 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data))
837 goto err;
838
839#ifndef OPENSSL_NO_PSK
840 s->psk_client_callback = ctx->psk_client_callback;
841 s->psk_server_callback = ctx->psk_server_callback;
842#endif
843 s->psk_find_session_cb = ctx->psk_find_session_cb;
844 s->psk_use_session_cb = ctx->psk_use_session_cb;
845
846 s->job = NULL;
847
848#ifndef OPENSSL_NO_CT
849 if (!SSL_set_ct_validation_callback(s, ctx->ct_validation_callback,
850 ctx->ct_validation_callback_arg))
851 goto err;
852#endif
853
854 return s;
855 err:
856 SSL_free(s);
857 SSLerr(SSL_F_SSL_NEW, ERR_R_MALLOC_FAILURE);
858 return NULL;
859}
860
861int SSL_is_dtls(const SSL *s)
862{
863 return SSL_IS_DTLS(s) ? 1 : 0;
864}
865
866int SSL_up_ref(SSL *s)
867{
868 int i;
869
870 if (CRYPTO_UP_REF(&s->references, &i, s->lock) <= 0)
871 return 0;
872
873 REF_PRINT_COUNT("SSL", s);
874 REF_ASSERT_ISNT(i < 2);
875 return ((i > 1) ? 1 : 0);
876}
877
878int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
879 unsigned int sid_ctx_len)
880{
881 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
882 SSLerr(SSL_F_SSL_CTX_SET_SESSION_ID_CONTEXT,
883 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
884 return 0;
885 }
886 ctx->sid_ctx_length = sid_ctx_len;
887 memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
888
889 return 1;
890}
891
892int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
893 unsigned int sid_ctx_len)
894{
895 if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
896 SSLerr(SSL_F_SSL_SET_SESSION_ID_CONTEXT,
897 SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
898 return 0;
899 }
900 ssl->sid_ctx_length = sid_ctx_len;
901 memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
902
903 return 1;
904}
905
906int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb)
907{
908 CRYPTO_THREAD_write_lock(ctx->lock);
909 ctx->generate_session_id = cb;
910 CRYPTO_THREAD_unlock(ctx->lock);
911 return 1;
912}
913
914int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb)
915{
916 CRYPTO_THREAD_write_lock(ssl->lock);
917 ssl->generate_session_id = cb;
918 CRYPTO_THREAD_unlock(ssl->lock);
919 return 1;
920}
921
922int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
923 unsigned int id_len)
924{
925 /*
926 * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how
927 * we can "construct" a session to give us the desired check - i.e. to
928 * find if there's a session in the hash table that would conflict with
929 * any new session built out of this id/id_len and the ssl_version in use
930 * by this SSL.
931 */
932 SSL_SESSION r, *p;
933
934 if (id_len > sizeof(r.session_id))
935 return 0;
936
937 r.ssl_version = ssl->version;
938 r.session_id_length = id_len;
939 memcpy(r.session_id, id, id_len);
940
941 CRYPTO_THREAD_read_lock(ssl->session_ctx->lock);
942 p = lh_SSL_SESSION_retrieve(ssl->session_ctx->sessions, &r);
943 CRYPTO_THREAD_unlock(ssl->session_ctx->lock);
944 return (p != NULL);
945}
946
947int SSL_CTX_set_purpose(SSL_CTX *s, int purpose)
948{
949 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
950}
951
952int SSL_set_purpose(SSL *s, int purpose)
953{
954 return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
955}
956
957int SSL_CTX_set_trust(SSL_CTX *s, int trust)
958{
959 return X509_VERIFY_PARAM_set_trust(s->param, trust);
960}
961
962int SSL_set_trust(SSL *s, int trust)
963{
964 return X509_VERIFY_PARAM_set_trust(s->param, trust);
965}
966
967int SSL_set1_host(SSL *s, const char *hostname)
968{
969 return X509_VERIFY_PARAM_set1_host(s->param, hostname, 0);
970}
971
972int SSL_add1_host(SSL *s, const char *hostname)
973{
974 return X509_VERIFY_PARAM_add1_host(s->param, hostname, 0);
975}
976
977void SSL_set_hostflags(SSL *s, unsigned int flags)
978{
979 X509_VERIFY_PARAM_set_hostflags(s->param, flags);
980}
981
982const char *SSL_get0_peername(SSL *s)
983{
984 return X509_VERIFY_PARAM_get0_peername(s->param);
985}
986
987int SSL_CTX_dane_enable(SSL_CTX *ctx)
988{
989 return dane_ctx_enable(&ctx->dane);
990}
991
992unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags)
993{
994 unsigned long orig = ctx->dane.flags;
995
996 ctx->dane.flags |= flags;
997 return orig;
998}
999
1000unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags)
1001{
1002 unsigned long orig = ctx->dane.flags;
1003
1004 ctx->dane.flags &= ~flags;
1005 return orig;
1006}
1007
1008int SSL_dane_enable(SSL *s, const char *basedomain)
1009{
1010 SSL_DANE *dane = &s->dane;
1011
1012 if (s->ctx->dane.mdmax == 0) {
1013 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_CONTEXT_NOT_DANE_ENABLED);
1014 return 0;
1015 }
1016 if (dane->trecs != NULL) {
1017 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_DANE_ALREADY_ENABLED);
1018 return 0;
1019 }
1020
1021 /*
1022 * Default SNI name. This rejects empty names, while set1_host below
1023 * accepts them and disables host name checks. To avoid side-effects with
1024 * invalid input, set the SNI name first.
1025 */
1026 if (s->ext.hostname == NULL) {
1027 if (!SSL_set_tlsext_host_name(s, basedomain)) {
1028 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1029 return -1;
1030 }
1031 }
1032
1033 /* Primary RFC6125 reference identifier */
1034 if (!X509_VERIFY_PARAM_set1_host(s->param, basedomain, 0)) {
1035 SSLerr(SSL_F_SSL_DANE_ENABLE, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN);
1036 return -1;
1037 }
1038
1039 dane->mdpth = -1;
1040 dane->pdpth = -1;
1041 dane->dctx = &s->ctx->dane;
1042 dane->trecs = sk_danetls_record_new_null();
1043
1044 if (dane->trecs == NULL) {
1045 SSLerr(SSL_F_SSL_DANE_ENABLE, ERR_R_MALLOC_FAILURE);
1046 return -1;
1047 }
1048 return 1;
1049}
1050
1051unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags)
1052{
1053 unsigned long orig = ssl->dane.flags;
1054
1055 ssl->dane.flags |= flags;
1056 return orig;
1057}
1058
1059unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags)
1060{
1061 unsigned long orig = ssl->dane.flags;
1062
1063 ssl->dane.flags &= ~flags;
1064 return orig;
1065}
1066
1067int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki)
1068{
1069 SSL_DANE *dane = &s->dane;
1070
1071 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1072 return -1;
1073 if (dane->mtlsa) {
1074 if (mcert)
1075 *mcert = dane->mcert;
1076 if (mspki)
1077 *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL;
1078 }
1079 return dane->mdpth;
1080}
1081
1082int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector,
1083 uint8_t *mtype, unsigned const char **data, size_t *dlen)
1084{
1085 SSL_DANE *dane = &s->dane;
1086
1087 if (!DANETLS_ENABLED(dane) || s->verify_result != X509_V_OK)
1088 return -1;
1089 if (dane->mtlsa) {
1090 if (usage)
1091 *usage = dane->mtlsa->usage;
1092 if (selector)
1093 *selector = dane->mtlsa->selector;
1094 if (mtype)
1095 *mtype = dane->mtlsa->mtype;
1096 if (data)
1097 *data = dane->mtlsa->data;
1098 if (dlen)
1099 *dlen = dane->mtlsa->dlen;
1100 }
1101 return dane->mdpth;
1102}
1103
1104SSL_DANE *SSL_get0_dane(SSL *s)
1105{
1106 return &s->dane;
1107}
1108
1109int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector,
1110 uint8_t mtype, unsigned const char *data, size_t dlen)
1111{
1112 return dane_tlsa_add(&s->dane, usage, selector, mtype, data, dlen);
1113}
1114
1115int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype,
1116 uint8_t ord)
1117{
1118 return dane_mtype_set(&ctx->dane, md, mtype, ord);
1119}
1120
1121int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm)
1122{
1123 return X509_VERIFY_PARAM_set1(ctx->param, vpm);
1124}
1125
1126int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm)
1127{
1128 return X509_VERIFY_PARAM_set1(ssl->param, vpm);
1129}
1130
1131X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx)
1132{
1133 return ctx->param;
1134}
1135
1136X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl)
1137{
1138 return ssl->param;
1139}
1140
1141void SSL_certs_clear(SSL *s)
1142{
1143 ssl_cert_clear_certs(s->cert);
1144}
1145
1146void SSL_free(SSL *s)
1147{
1148 int i;
1149
1150 if (s == NULL)
1151 return;
1152 CRYPTO_DOWN_REF(&s->references, &i, s->lock);
1153 REF_PRINT_COUNT("SSL", s);
1154 if (i > 0)
1155 return;
1156 REF_ASSERT_ISNT(i < 0);
1157
1158 X509_VERIFY_PARAM_free(s->param);
1159 dane_final(&s->dane);
1160 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data);
1161
1162 /* Ignore return value */
1163 ssl_free_wbio_buffer(s);
1164
1165 BIO_free_all(s->wbio);
1166 BIO_free_all(s->rbio);
1167
1168 BUF_MEM_free(s->init_buf);
1169
1170 /* add extra stuff */
1171 sk_SSL_CIPHER_free(s->cipher_list);
1172 sk_SSL_CIPHER_free(s->cipher_list_by_id);
1173 sk_SSL_CIPHER_free(s->tls13_ciphersuites);
1174 sk_SSL_CIPHER_free(s->peer_ciphers);
1175
1176 /* Make the next call work :-) */
1177 if (s->session != NULL) {
1178 ssl_clear_bad_session(s);
1179 SSL_SESSION_free(s->session);
1180 }
1181 SSL_SESSION_free(s->psksession);
1182 OPENSSL_free(s->psksession_id);
1183
1184 clear_ciphers(s);
1185
1186 ssl_cert_free(s->cert);
1187 OPENSSL_free(s->shared_sigalgs);
1188 /* Free up if allocated */
1189
1190 OPENSSL_free(s->ext.hostname);
1191 SSL_CTX_free(s->session_ctx);
1192#ifndef OPENSSL_NO_EC
1193 OPENSSL_free(s->ext.ecpointformats);
1194 OPENSSL_free(s->ext.peer_ecpointformats);
1195 OPENSSL_free(s->ext.supportedgroups);
1196 OPENSSL_free(s->ext.peer_supportedgroups);
1197#endif /* OPENSSL_NO_EC */
1198 sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free);
1199#ifndef OPENSSL_NO_OCSP
1200 sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free);
1201#endif
1202#ifndef OPENSSL_NO_CT
1203 SCT_LIST_free(s->scts);
1204 OPENSSL_free(s->ext.scts);
1205#endif
1206 OPENSSL_free(s->ext.ocsp.resp);
1207 OPENSSL_free(s->ext.alpn);
1208 OPENSSL_free(s->ext.tls13_cookie);
1209 if (s->clienthello != NULL)
1210 OPENSSL_free(s->clienthello->pre_proc_exts);
1211 OPENSSL_free(s->clienthello);
1212 OPENSSL_free(s->pha_context);
1213 EVP_MD_CTX_free(s->pha_dgst);
1214
1215 sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free);
1216 sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free);
1217
1218 sk_X509_pop_free(s->verified_chain, X509_free);
1219
1220 if (s->method != NULL)
1221 s->method->ssl_free(s);
1222
1223 RECORD_LAYER_release(&s->rlayer);
1224
1225 SSL_CTX_free(s->ctx);
1226
1227 ASYNC_WAIT_CTX_free(s->waitctx);
1228
1229#if !defined(OPENSSL_NO_NEXTPROTONEG)
1230 OPENSSL_free(s->ext.npn);
1231#endif
1232
1233#ifndef OPENSSL_NO_SRTP
1234 sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles);
1235#endif
1236
1237 CRYPTO_THREAD_lock_free(s->lock);
1238
1239 OPENSSL_free(s);
1240}
1241
1242void SSL_set0_rbio(SSL *s, BIO *rbio)
1243{
1244 BIO_free_all(s->rbio);
1245 s->rbio = rbio;
1246}
1247
1248void SSL_set0_wbio(SSL *s, BIO *wbio)
1249{
1250 /*
1251 * If the output buffering BIO is still in place, remove it
1252 */
1253 if (s->bbio != NULL)
1254 s->wbio = BIO_pop(s->wbio);
1255
1256 BIO_free_all(s->wbio);
1257 s->wbio = wbio;
1258
1259 /* Re-attach |bbio| to the new |wbio|. */
1260 if (s->bbio != NULL)
1261 s->wbio = BIO_push(s->bbio, s->wbio);
1262}
1263
1264void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio)
1265{
1266 /*
1267 * For historical reasons, this function has many different cases in
1268 * ownership handling.
1269 */
1270
1271 /* If nothing has changed, do nothing */
1272 if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s))
1273 return;
1274
1275 /*
1276 * If the two arguments are equal then one fewer reference is granted by the
1277 * caller than we want to take
1278 */
1279 if (rbio != NULL && rbio == wbio)
1280 BIO_up_ref(rbio);
1281
1282 /*
1283 * If only the wbio is changed only adopt one reference.
1284 */
1285 if (rbio == SSL_get_rbio(s)) {
1286 SSL_set0_wbio(s, wbio);
1287 return;
1288 }
1289 /*
1290 * There is an asymmetry here for historical reasons. If only the rbio is
1291 * changed AND the rbio and wbio were originally different, then we only
1292 * adopt one reference.
1293 */
1294 if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) {
1295 SSL_set0_rbio(s, rbio);
1296 return;
1297 }
1298
1299 /* Otherwise, adopt both references. */
1300 SSL_set0_rbio(s, rbio);
1301 SSL_set0_wbio(s, wbio);
1302}
1303
1304BIO *SSL_get_rbio(const SSL *s)
1305{
1306 return s->rbio;
1307}
1308
1309BIO *SSL_get_wbio(const SSL *s)
1310{
1311 if (s->bbio != NULL) {
1312 /*
1313 * If |bbio| is active, the true caller-configured BIO is its
1314 * |next_bio|.
1315 */
1316 return BIO_next(s->bbio);
1317 }
1318 return s->wbio;
1319}
1320
1321int SSL_get_fd(const SSL *s)
1322{
1323 return SSL_get_rfd(s);
1324}
1325
1326int SSL_get_rfd(const SSL *s)
1327{
1328 int ret = -1;
1329 BIO *b, *r;
1330
1331 b = SSL_get_rbio(s);
1332 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1333 if (r != NULL)
1334 BIO_get_fd(r, &ret);
1335 return ret;
1336}
1337
1338int SSL_get_wfd(const SSL *s)
1339{
1340 int ret = -1;
1341 BIO *b, *r;
1342
1343 b = SSL_get_wbio(s);
1344 r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
1345 if (r != NULL)
1346 BIO_get_fd(r, &ret);
1347 return ret;
1348}
1349
1350#ifndef OPENSSL_NO_SOCK
1351int SSL_set_fd(SSL *s, int fd)
1352{
1353 int ret = 0;
1354 BIO *bio = NULL;
1355
1356 bio = BIO_new(BIO_s_socket());
1357
1358 if (bio == NULL) {
1359 SSLerr(SSL_F_SSL_SET_FD, ERR_R_BUF_LIB);
1360 goto err;
1361 }
1362 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1363 SSL_set_bio(s, bio, bio);
1364 ret = 1;
1365 err:
1366 return ret;
1367}
1368
1369int SSL_set_wfd(SSL *s, int fd)
1370{
1371 BIO *rbio = SSL_get_rbio(s);
1372
1373 if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET
1374 || (int)BIO_get_fd(rbio, NULL) != fd) {
1375 BIO *bio = BIO_new(BIO_s_socket());
1376
1377 if (bio == NULL) {
1378 SSLerr(SSL_F_SSL_SET_WFD, ERR_R_BUF_LIB);
1379 return 0;
1380 }
1381 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1382 SSL_set0_wbio(s, bio);
1383 } else {
1384 BIO_up_ref(rbio);
1385 SSL_set0_wbio(s, rbio);
1386 }
1387 return 1;
1388}
1389
1390int SSL_set_rfd(SSL *s, int fd)
1391{
1392 BIO *wbio = SSL_get_wbio(s);
1393
1394 if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET
1395 || ((int)BIO_get_fd(wbio, NULL) != fd)) {
1396 BIO *bio = BIO_new(BIO_s_socket());
1397
1398 if (bio == NULL) {
1399 SSLerr(SSL_F_SSL_SET_RFD, ERR_R_BUF_LIB);
1400 return 0;
1401 }
1402 BIO_set_fd(bio, fd, BIO_NOCLOSE);
1403 SSL_set0_rbio(s, bio);
1404 } else {
1405 BIO_up_ref(wbio);
1406 SSL_set0_rbio(s, wbio);
1407 }
1408
1409 return 1;
1410}
1411#endif
1412
1413/* return length of latest Finished message we sent, copy to 'buf' */
1414size_t SSL_get_finished(const SSL *s, void *buf, size_t count)
1415{
1416 size_t ret = 0;
1417
1418 if (s->s3 != NULL) {
1419 ret = s->s3->tmp.finish_md_len;
1420 if (count > ret)
1421 count = ret;
1422 memcpy(buf, s->s3->tmp.finish_md, count);
1423 }
1424 return ret;
1425}
1426
1427/* return length of latest Finished message we expected, copy to 'buf' */
1428size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count)
1429{
1430 size_t ret = 0;
1431
1432 if (s->s3 != NULL) {
1433 ret = s->s3->tmp.peer_finish_md_len;
1434 if (count > ret)
1435 count = ret;
1436 memcpy(buf, s->s3->tmp.peer_finish_md, count);
1437 }
1438 return ret;
1439}
1440
1441int SSL_get_verify_mode(const SSL *s)
1442{
1443 return s->verify_mode;
1444}
1445
1446int SSL_get_verify_depth(const SSL *s)
1447{
1448 return X509_VERIFY_PARAM_get_depth(s->param);
1449}
1450
1451int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) {
1452 return s->verify_callback;
1453}
1454
1455int SSL_CTX_get_verify_mode(const SSL_CTX *ctx)
1456{
1457 return ctx->verify_mode;
1458}
1459
1460int SSL_CTX_get_verify_depth(const SSL_CTX *ctx)
1461{
1462 return X509_VERIFY_PARAM_get_depth(ctx->param);
1463}
1464
1465int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) {
1466 return ctx->default_verify_callback;
1467}
1468
1469void SSL_set_verify(SSL *s, int mode,
1470 int (*callback) (int ok, X509_STORE_CTX *ctx))
1471{
1472 s->verify_mode = mode;
1473 if (callback != NULL)
1474 s->verify_callback = callback;
1475}
1476
1477void SSL_set_verify_depth(SSL *s, int depth)
1478{
1479 X509_VERIFY_PARAM_set_depth(s->param, depth);
1480}
1481
1482void SSL_set_read_ahead(SSL *s, int yes)
1483{
1484 RECORD_LAYER_set_read_ahead(&s->rlayer, yes);
1485}
1486
1487int SSL_get_read_ahead(const SSL *s)
1488{
1489 return RECORD_LAYER_get_read_ahead(&s->rlayer);
1490}
1491
1492int SSL_pending(const SSL *s)
1493{
1494 size_t pending = s->method->ssl_pending(s);
1495
1496 /*
1497 * SSL_pending cannot work properly if read-ahead is enabled
1498 * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is
1499 * impossible to fix since SSL_pending cannot report errors that may be
1500 * observed while scanning the new data. (Note that SSL_pending() is
1501 * often used as a boolean value, so we'd better not return -1.)
1502 *
1503 * SSL_pending also cannot work properly if the value >INT_MAX. In that case
1504 * we just return INT_MAX.
1505 */
1506 return pending < INT_MAX ? (int)pending : INT_MAX;
1507}
1508
1509int SSL_has_pending(const SSL *s)
1510{
1511 /*
1512 * Similar to SSL_pending() but returns a 1 to indicate that we have
1513 * unprocessed data available or 0 otherwise (as opposed to the number of
1514 * bytes available). Unlike SSL_pending() this will take into account
1515 * read_ahead data. A 1 return simply indicates that we have unprocessed
1516 * data. That data may not result in any application data, or we may fail
1517 * to parse the records for some reason.
1518 */
1519 if (RECORD_LAYER_processed_read_pending(&s->rlayer))
1520 return 1;
1521
1522 return RECORD_LAYER_read_pending(&s->rlayer);
1523}
1524
1525X509 *SSL_get_peer_certificate(const SSL *s)
1526{
1527 X509 *r;
1528
1529 if ((s == NULL) || (s->session == NULL))
1530 r = NULL;
1531 else
1532 r = s->session->peer;
1533
1534 if (r == NULL)
1535 return r;
1536
1537 X509_up_ref(r);
1538
1539 return r;
1540}
1541
1542STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s)
1543{
1544 STACK_OF(X509) *r;
1545
1546 if ((s == NULL) || (s->session == NULL))
1547 r = NULL;
1548 else
1549 r = s->session->peer_chain;
1550
1551 /*
1552 * If we are a client, cert_chain includes the peer's own certificate; if
1553 * we are a server, it does not.
1554 */
1555
1556 return r;
1557}
1558
1559/*
1560 * Now in theory, since the calling process own 't' it should be safe to
1561 * modify. We need to be able to read f without being hassled
1562 */
1563int SSL_copy_session_id(SSL *t, const SSL *f)
1564{
1565 int i;
1566 /* Do we need to to SSL locking? */
1567 if (!SSL_set_session(t, SSL_get_session(f))) {
1568 return 0;
1569 }
1570
1571 /*
1572 * what if we are setup for one protocol version but want to talk another
1573 */
1574 if (t->method != f->method) {
1575 t->method->ssl_free(t);
1576 t->method = f->method;
1577 if (t->method->ssl_new(t) == 0)
1578 return 0;
1579 }
1580
1581 CRYPTO_UP_REF(&f->cert->references, &i, f->cert->lock);
1582 ssl_cert_free(t->cert);
1583 t->cert = f->cert;
1584 if (!SSL_set_session_id_context(t, f->sid_ctx, (int)f->sid_ctx_length)) {
1585 return 0;
1586 }
1587
1588 return 1;
1589}
1590
1591/* Fix this so it checks all the valid key/cert options */
1592int SSL_CTX_check_private_key(const SSL_CTX *ctx)
1593{
1594 if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) {
1595 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1596 return 0;
1597 }
1598 if (ctx->cert->key->privatekey == NULL) {
1599 SSLerr(SSL_F_SSL_CTX_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1600 return 0;
1601 }
1602 return X509_check_private_key
1603 (ctx->cert->key->x509, ctx->cert->key->privatekey);
1604}
1605
1606/* Fix this function so that it takes an optional type parameter */
1607int SSL_check_private_key(const SSL *ssl)
1608{
1609 if (ssl == NULL) {
1610 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, ERR_R_PASSED_NULL_PARAMETER);
1611 return 0;
1612 }
1613 if (ssl->cert->key->x509 == NULL) {
1614 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_CERTIFICATE_ASSIGNED);
1615 return 0;
1616 }
1617 if (ssl->cert->key->privatekey == NULL) {
1618 SSLerr(SSL_F_SSL_CHECK_PRIVATE_KEY, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
1619 return 0;
1620 }
1621 return X509_check_private_key(ssl->cert->key->x509,
1622 ssl->cert->key->privatekey);
1623}
1624
1625int SSL_waiting_for_async(SSL *s)
1626{
1627 if (s->job)
1628 return 1;
1629
1630 return 0;
1631}
1632
1633int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds)
1634{
1635 ASYNC_WAIT_CTX *ctx = s->waitctx;
1636
1637 if (ctx == NULL)
1638 return 0;
1639 return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds);
1640}
1641
1642int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds,
1643 OSSL_ASYNC_FD *delfd, size_t *numdelfds)
1644{
1645 ASYNC_WAIT_CTX *ctx = s->waitctx;
1646
1647 if (ctx == NULL)
1648 return 0;
1649 return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd,
1650 numdelfds);
1651}
1652
1653int SSL_accept(SSL *s)
1654{
1655 if (s->handshake_func == NULL) {
1656 /* Not properly initialized yet */
1657 SSL_set_accept_state(s);
1658 }
1659
1660 return SSL_do_handshake(s);
1661}
1662
1663int SSL_connect(SSL *s)
1664{
1665 if (s->handshake_func == NULL) {
1666 /* Not properly initialized yet */
1667 SSL_set_connect_state(s);
1668 }
1669
1670 return SSL_do_handshake(s);
1671}
1672
1673long SSL_get_default_timeout(const SSL *s)
1674{
1675 return s->method->get_timeout();
1676}
1677
1678static int ssl_start_async_job(SSL *s, struct ssl_async_args *args,
1679 int (*func) (void *))
1680{
1681 int ret;
1682 if (s->waitctx == NULL) {
1683 s->waitctx = ASYNC_WAIT_CTX_new();
1684 if (s->waitctx == NULL)
1685 return -1;
1686 }
1687
1688 s->rwstate = SSL_NOTHING;
1689 switch (ASYNC_start_job(&s->job, s->waitctx, &ret, func, args,
1690 sizeof(struct ssl_async_args))) {
1691 case ASYNC_ERR:
1692 s->rwstate = SSL_NOTHING;
1693 SSLerr(SSL_F_SSL_START_ASYNC_JOB, SSL_R_FAILED_TO_INIT_ASYNC);
1694 return -1;
1695 case ASYNC_PAUSE:
1696 s->rwstate = SSL_ASYNC_PAUSED;
1697 return -1;
1698 case ASYNC_NO_JOBS:
1699 s->rwstate = SSL_ASYNC_NO_JOBS;
1700 return -1;
1701 case ASYNC_FINISH:
1702 s->job = NULL;
1703 return ret;
1704 default:
1705 s->rwstate = SSL_NOTHING;
1706 SSLerr(SSL_F_SSL_START_ASYNC_JOB, ERR_R_INTERNAL_ERROR);
1707 /* Shouldn't happen */
1708 return -1;
1709 }
1710}
1711
1712static int ssl_io_intern(void *vargs)
1713{
1714 struct ssl_async_args *args;
1715 SSL *s;
1716 void *buf;
1717 size_t num;
1718
1719 args = (struct ssl_async_args *)vargs;
1720 s = args->s;
1721 buf = args->buf;
1722 num = args->num;
1723 switch (args->type) {
1724 case READFUNC:
1725 return args->f.func_read(s, buf, num, &s->asyncrw);
1726 case WRITEFUNC:
1727 return args->f.func_write(s, buf, num, &s->asyncrw);
1728 case OTHERFUNC:
1729 return args->f.func_other(s);
1730 }
1731 return -1;
1732}
1733
1734int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1735{
1736 if (s->handshake_func == NULL) {
1737 SSLerr(SSL_F_SSL_READ_INTERNAL, SSL_R_UNINITIALIZED);
1738 return -1;
1739 }
1740
1741 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1742 s->rwstate = SSL_NOTHING;
1743 return 0;
1744 }
1745
1746 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1747 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) {
1748 SSLerr(SSL_F_SSL_READ_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1749 return 0;
1750 }
1751 /*
1752 * If we are a client and haven't received the ServerHello etc then we
1753 * better do that
1754 */
1755 ossl_statem_check_finish_init(s, 0);
1756
1757 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1758 struct ssl_async_args args;
1759 int ret;
1760
1761 args.s = s;
1762 args.buf = buf;
1763 args.num = num;
1764 args.type = READFUNC;
1765 args.f.func_read = s->method->ssl_read;
1766
1767 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1768 *readbytes = s->asyncrw;
1769 return ret;
1770 } else {
1771 return s->method->ssl_read(s, buf, num, readbytes);
1772 }
1773}
1774
1775int SSL_read(SSL *s, void *buf, int num)
1776{
1777 int ret;
1778 size_t readbytes;
1779
1780 if (num < 0) {
1781 SSLerr(SSL_F_SSL_READ, SSL_R_BAD_LENGTH);
1782 return -1;
1783 }
1784
1785 ret = ssl_read_internal(s, buf, (size_t)num, &readbytes);
1786
1787 /*
1788 * The cast is safe here because ret should be <= INT_MAX because num is
1789 * <= INT_MAX
1790 */
1791 if (ret > 0)
1792 ret = (int)readbytes;
1793
1794 return ret;
1795}
1796
1797int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1798{
1799 int ret = ssl_read_internal(s, buf, num, readbytes);
1800
1801 if (ret < 0)
1802 ret = 0;
1803 return ret;
1804}
1805
1806int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes)
1807{
1808 int ret;
1809
1810 if (!s->server) {
1811 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1812 return SSL_READ_EARLY_DATA_ERROR;
1813 }
1814
1815 switch (s->early_data_state) {
1816 case SSL_EARLY_DATA_NONE:
1817 if (!SSL_in_before(s)) {
1818 SSLerr(SSL_F_SSL_READ_EARLY_DATA,
1819 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1820 return SSL_READ_EARLY_DATA_ERROR;
1821 }
1822 /* fall through */
1823
1824 case SSL_EARLY_DATA_ACCEPT_RETRY:
1825 s->early_data_state = SSL_EARLY_DATA_ACCEPTING;
1826 ret = SSL_accept(s);
1827 if (ret <= 0) {
1828 /* NBIO or error */
1829 s->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY;
1830 return SSL_READ_EARLY_DATA_ERROR;
1831 }
1832 /* fall through */
1833
1834 case SSL_EARLY_DATA_READ_RETRY:
1835 if (s->ext.early_data == SSL_EARLY_DATA_ACCEPTED) {
1836 s->early_data_state = SSL_EARLY_DATA_READING;
1837 ret = SSL_read_ex(s, buf, num, readbytes);
1838 /*
1839 * State machine will update early_data_state to
1840 * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData
1841 * message
1842 */
1843 if (ret > 0 || (ret <= 0 && s->early_data_state
1844 != SSL_EARLY_DATA_FINISHED_READING)) {
1845 s->early_data_state = SSL_EARLY_DATA_READ_RETRY;
1846 return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS
1847 : SSL_READ_EARLY_DATA_ERROR;
1848 }
1849 } else {
1850 s->early_data_state = SSL_EARLY_DATA_FINISHED_READING;
1851 }
1852 *readbytes = 0;
1853 return SSL_READ_EARLY_DATA_FINISH;
1854
1855 default:
1856 SSLerr(SSL_F_SSL_READ_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1857 return SSL_READ_EARLY_DATA_ERROR;
1858 }
1859}
1860
1861int SSL_get_early_data_status(const SSL *s)
1862{
1863 return s->ext.early_data;
1864}
1865
1866static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes)
1867{
1868 if (s->handshake_func == NULL) {
1869 SSLerr(SSL_F_SSL_PEEK_INTERNAL, SSL_R_UNINITIALIZED);
1870 return -1;
1871 }
1872
1873 if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
1874 return 0;
1875 }
1876 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1877 struct ssl_async_args args;
1878 int ret;
1879
1880 args.s = s;
1881 args.buf = buf;
1882 args.num = num;
1883 args.type = READFUNC;
1884 args.f.func_read = s->method->ssl_peek;
1885
1886 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1887 *readbytes = s->asyncrw;
1888 return ret;
1889 } else {
1890 return s->method->ssl_peek(s, buf, num, readbytes);
1891 }
1892}
1893
1894int SSL_peek(SSL *s, void *buf, int num)
1895{
1896 int ret;
1897 size_t readbytes;
1898
1899 if (num < 0) {
1900 SSLerr(SSL_F_SSL_PEEK, SSL_R_BAD_LENGTH);
1901 return -1;
1902 }
1903
1904 ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes);
1905
1906 /*
1907 * The cast is safe here because ret should be <= INT_MAX because num is
1908 * <= INT_MAX
1909 */
1910 if (ret > 0)
1911 ret = (int)readbytes;
1912
1913 return ret;
1914}
1915
1916
1917int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes)
1918{
1919 int ret = ssl_peek_internal(s, buf, num, readbytes);
1920
1921 if (ret < 0)
1922 ret = 0;
1923 return ret;
1924}
1925
1926int ssl_write_internal(SSL *s, const void *buf, size_t num, size_t *written)
1927{
1928 if (s->handshake_func == NULL) {
1929 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_UNINITIALIZED);
1930 return -1;
1931 }
1932
1933 if (s->shutdown & SSL_SENT_SHUTDOWN) {
1934 s->rwstate = SSL_NOTHING;
1935 SSLerr(SSL_F_SSL_WRITE_INTERNAL, SSL_R_PROTOCOL_IS_SHUTDOWN);
1936 return -1;
1937 }
1938
1939 if (s->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY
1940 || s->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY
1941 || s->early_data_state == SSL_EARLY_DATA_READ_RETRY) {
1942 SSLerr(SSL_F_SSL_WRITE_INTERNAL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1943 return 0;
1944 }
1945 /* If we are a client and haven't sent the Finished we better do that */
1946 ossl_statem_check_finish_init(s, 1);
1947
1948 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
1949 int ret;
1950 struct ssl_async_args args;
1951
1952 args.s = s;
1953 args.buf = (void *)buf;
1954 args.num = num;
1955 args.type = WRITEFUNC;
1956 args.f.func_write = s->method->ssl_write;
1957
1958 ret = ssl_start_async_job(s, &args, ssl_io_intern);
1959 *written = s->asyncrw;
1960 return ret;
1961 } else {
1962 return s->method->ssl_write(s, buf, num, written);
1963 }
1964}
1965
1966int SSL_write(SSL *s, const void *buf, int num)
1967{
1968 int ret;
1969 size_t written;
1970
1971 if (num < 0) {
1972 SSLerr(SSL_F_SSL_WRITE, SSL_R_BAD_LENGTH);
1973 return -1;
1974 }
1975
1976 ret = ssl_write_internal(s, buf, (size_t)num, &written);
1977
1978 /*
1979 * The cast is safe here because ret should be <= INT_MAX because num is
1980 * <= INT_MAX
1981 */
1982 if (ret > 0)
1983 ret = (int)written;
1984
1985 return ret;
1986}
1987
1988int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written)
1989{
1990 int ret = ssl_write_internal(s, buf, num, written);
1991
1992 if (ret < 0)
1993 ret = 0;
1994 return ret;
1995}
1996
1997int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written)
1998{
1999 int ret, early_data_state;
2000 size_t writtmp;
2001 uint32_t partialwrite;
2002
2003 switch (s->early_data_state) {
2004 case SSL_EARLY_DATA_NONE:
2005 if (s->server
2006 || !SSL_in_before(s)
2007 || ((s->session == NULL || s->session->ext.max_early_data == 0)
2008 && (s->psk_use_session_cb == NULL))) {
2009 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA,
2010 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2011 return 0;
2012 }
2013 /* fall through */
2014
2015 case SSL_EARLY_DATA_CONNECT_RETRY:
2016 s->early_data_state = SSL_EARLY_DATA_CONNECTING;
2017 ret = SSL_connect(s);
2018 if (ret <= 0) {
2019 /* NBIO or error */
2020 s->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY;
2021 return 0;
2022 }
2023 /* fall through */
2024
2025 case SSL_EARLY_DATA_WRITE_RETRY:
2026 s->early_data_state = SSL_EARLY_DATA_WRITING;
2027 /*
2028 * We disable partial write for early data because we don't keep track
2029 * of how many bytes we've written between the SSL_write_ex() call and
2030 * the flush if the flush needs to be retried)
2031 */
2032 partialwrite = s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE;
2033 s->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE;
2034 ret = SSL_write_ex(s, buf, num, &writtmp);
2035 s->mode |= partialwrite;
2036 if (!ret) {
2037 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2038 return ret;
2039 }
2040 s->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH;
2041 /* fall through */
2042
2043 case SSL_EARLY_DATA_WRITE_FLUSH:
2044 /* The buffering BIO is still in place so we need to flush it */
2045 if (statem_flush(s) != 1)
2046 return 0;
2047 *written = num;
2048 s->early_data_state = SSL_EARLY_DATA_WRITE_RETRY;
2049 return 1;
2050
2051 case SSL_EARLY_DATA_FINISHED_READING:
2052 case SSL_EARLY_DATA_READ_RETRY:
2053 early_data_state = s->early_data_state;
2054 /* We are a server writing to an unauthenticated client */
2055 s->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING;
2056 ret = SSL_write_ex(s, buf, num, written);
2057 /* The buffering BIO is still in place */
2058 if (ret)
2059 (void)BIO_flush(s->wbio);
2060 s->early_data_state = early_data_state;
2061 return ret;
2062
2063 default:
2064 SSLerr(SSL_F_SSL_WRITE_EARLY_DATA, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
2065 return 0;
2066 }
2067}
2068
2069int SSL_shutdown(SSL *s)
2070{
2071 /*
2072 * Note that this function behaves differently from what one might
2073 * expect. Return values are 0 for no success (yet), 1 for success; but
2074 * calling it once is usually not enough, even if blocking I/O is used
2075 * (see ssl3_shutdown).
2076 */
2077
2078 if (s->handshake_func == NULL) {
2079 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_UNINITIALIZED);
2080 return -1;
2081 }
2082
2083 if (!SSL_in_init(s)) {
2084 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
2085 struct ssl_async_args args;
2086
2087 memset(&args, 0, sizeof(args));
2088 args.s = s;
2089 args.type = OTHERFUNC;
2090 args.f.func_other = s->method->ssl_shutdown;
2091
2092 return ssl_start_async_job(s, &args, ssl_io_intern);
2093 } else {
2094 return s->method->ssl_shutdown(s);
2095 }
2096 } else {
2097 SSLerr(SSL_F_SSL_SHUTDOWN, SSL_R_SHUTDOWN_WHILE_IN_INIT);
2098 return -1;
2099 }
2100}
2101
2102int SSL_key_update(SSL *s, int updatetype)
2103{
2104 /*
2105 * TODO(TLS1.3): How will applications know whether TLSv1.3 has been
2106 * negotiated, and that it is appropriate to call SSL_key_update() instead
2107 * of SSL_renegotiate().
2108 */
2109 if (!SSL_IS_TLS13(s)) {
2110 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_WRONG_SSL_VERSION);
2111 return 0;
2112 }
2113
2114 if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
2115 && updatetype != SSL_KEY_UPDATE_REQUESTED) {
2116 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_INVALID_KEY_UPDATE_TYPE);
2117 return 0;
2118 }
2119
2120 if (!SSL_is_init_finished(s)) {
2121 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_STILL_IN_INIT);
2122 return 0;
2123 }
2124
2125 if (RECORD_LAYER_write_pending(&s->rlayer)) {
2126 SSLerr(SSL_F_SSL_KEY_UPDATE, SSL_R_BAD_WRITE_RETRY);
2127 return 0;
2128 }
2129
2130 ossl_statem_set_in_init(s, 1);
2131 s->key_update = updatetype;
2132 return 1;
2133}
2134
2135int SSL_get_key_update_type(const SSL *s)
2136{
2137 return s->key_update;
2138}
2139
2140int SSL_renegotiate(SSL *s)
2141{
2142 if (SSL_IS_TLS13(s)) {
2143 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_WRONG_SSL_VERSION);
2144 return 0;
2145 }
2146
2147 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2148 SSLerr(SSL_F_SSL_RENEGOTIATE, SSL_R_NO_RENEGOTIATION);
2149 return 0;
2150 }
2151
2152 s->renegotiate = 1;
2153 s->new_session = 1;
2154
2155 return s->method->ssl_renegotiate(s);
2156}
2157
2158int SSL_renegotiate_abbreviated(SSL *s)
2159{
2160 if (SSL_IS_TLS13(s)) {
2161 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_WRONG_SSL_VERSION);
2162 return 0;
2163 }
2164
2165 if ((s->options & SSL_OP_NO_RENEGOTIATION)) {
2166 SSLerr(SSL_F_SSL_RENEGOTIATE_ABBREVIATED, SSL_R_NO_RENEGOTIATION);
2167 return 0;
2168 }
2169
2170 s->renegotiate = 1;
2171 s->new_session = 0;
2172
2173 return s->method->ssl_renegotiate(s);
2174}
2175
2176int SSL_renegotiate_pending(const SSL *s)
2177{
2178 /*
2179 * becomes true when negotiation is requested; false again once a
2180 * handshake has finished
2181 */
2182 return (s->renegotiate != 0);
2183}
2184
2185long SSL_ctrl(SSL *s, int cmd, long larg, void *parg)
2186{
2187 long l;
2188
2189 switch (cmd) {
2190 case SSL_CTRL_GET_READ_AHEAD:
2191 return RECORD_LAYER_get_read_ahead(&s->rlayer);
2192 case SSL_CTRL_SET_READ_AHEAD:
2193 l = RECORD_LAYER_get_read_ahead(&s->rlayer);
2194 RECORD_LAYER_set_read_ahead(&s->rlayer, larg);
2195 return l;
2196
2197 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2198 s->msg_callback_arg = parg;
2199 return 1;
2200
2201 case SSL_CTRL_MODE:
2202 return (s->mode |= larg);
2203 case SSL_CTRL_CLEAR_MODE:
2204 return (s->mode &= ~larg);
2205 case SSL_CTRL_GET_MAX_CERT_LIST:
2206 return (long)s->max_cert_list;
2207 case SSL_CTRL_SET_MAX_CERT_LIST:
2208 if (larg < 0)
2209 return 0;
2210 l = (long)s->max_cert_list;
2211 s->max_cert_list = (size_t)larg;
2212 return l;
2213 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2214 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2215 return 0;
2216 s->max_send_fragment = larg;
2217 if (s->max_send_fragment < s->split_send_fragment)
2218 s->split_send_fragment = s->max_send_fragment;
2219 return 1;
2220 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2221 if ((size_t)larg > s->max_send_fragment || larg == 0)
2222 return 0;
2223 s->split_send_fragment = larg;
2224 return 1;
2225 case SSL_CTRL_SET_MAX_PIPELINES:
2226 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2227 return 0;
2228 s->max_pipelines = larg;
2229 if (larg > 1)
2230 RECORD_LAYER_set_read_ahead(&s->rlayer, 1);
2231 return 1;
2232 case SSL_CTRL_GET_RI_SUPPORT:
2233 if (s->s3)
2234 return s->s3->send_connection_binding;
2235 else
2236 return 0;
2237 case SSL_CTRL_CERT_FLAGS:
2238 return (s->cert->cert_flags |= larg);
2239 case SSL_CTRL_CLEAR_CERT_FLAGS:
2240 return (s->cert->cert_flags &= ~larg);
2241
2242 case SSL_CTRL_GET_RAW_CIPHERLIST:
2243 if (parg) {
2244 if (s->s3->tmp.ciphers_raw == NULL)
2245 return 0;
2246 *(unsigned char **)parg = s->s3->tmp.ciphers_raw;
2247 return (int)s->s3->tmp.ciphers_rawlen;
2248 } else {
2249 return TLS_CIPHER_LEN;
2250 }
2251 case SSL_CTRL_GET_EXTMS_SUPPORT:
2252 if (!s->session || SSL_in_init(s) || ossl_statem_get_in_handshake(s))
2253 return -1;
2254 if (s->session->flags & SSL_SESS_FLAG_EXTMS)
2255 return 1;
2256 else
2257 return 0;
2258 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2259 return ssl_check_allowed_versions(larg, s->max_proto_version)
2260 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2261 &s->min_proto_version);
2262 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2263 return s->min_proto_version;
2264 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2265 return ssl_check_allowed_versions(s->min_proto_version, larg)
2266 && ssl_set_version_bound(s->ctx->method->version, (int)larg,
2267 &s->max_proto_version);
2268 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2269 return s->max_proto_version;
2270 default:
2271 return s->method->ssl_ctrl(s, cmd, larg, parg);
2272 }
2273}
2274
2275long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void))
2276{
2277 switch (cmd) {
2278 case SSL_CTRL_SET_MSG_CALLBACK:
2279 s->msg_callback = (void (*)
2280 (int write_p, int version, int content_type,
2281 const void *buf, size_t len, SSL *ssl,
2282 void *arg))(fp);
2283 return 1;
2284
2285 default:
2286 return s->method->ssl_callback_ctrl(s, cmd, fp);
2287 }
2288}
2289
2290LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx)
2291{
2292 return ctx->sessions;
2293}
2294
2295long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg)
2296{
2297 long l;
2298 /* For some cases with ctx == NULL perform syntax checks */
2299 if (ctx == NULL) {
2300 switch (cmd) {
2301#ifndef OPENSSL_NO_EC
2302 case SSL_CTRL_SET_GROUPS_LIST:
2303 return tls1_set_groups_list(NULL, NULL, parg);
2304#endif
2305 case SSL_CTRL_SET_SIGALGS_LIST:
2306 case SSL_CTRL_SET_CLIENT_SIGALGS_LIST:
2307 return tls1_set_sigalgs_list(NULL, parg, 0);
2308 default:
2309 return 0;
2310 }
2311 }
2312
2313 switch (cmd) {
2314 case SSL_CTRL_GET_READ_AHEAD:
2315 return ctx->read_ahead;
2316 case SSL_CTRL_SET_READ_AHEAD:
2317 l = ctx->read_ahead;
2318 ctx->read_ahead = larg;
2319 return l;
2320
2321 case SSL_CTRL_SET_MSG_CALLBACK_ARG:
2322 ctx->msg_callback_arg = parg;
2323 return 1;
2324
2325 case SSL_CTRL_GET_MAX_CERT_LIST:
2326 return (long)ctx->max_cert_list;
2327 case SSL_CTRL_SET_MAX_CERT_LIST:
2328 if (larg < 0)
2329 return 0;
2330 l = (long)ctx->max_cert_list;
2331 ctx->max_cert_list = (size_t)larg;
2332 return l;
2333
2334 case SSL_CTRL_SET_SESS_CACHE_SIZE:
2335 if (larg < 0)
2336 return 0;
2337 l = (long)ctx->session_cache_size;
2338 ctx->session_cache_size = (size_t)larg;
2339 return l;
2340 case SSL_CTRL_GET_SESS_CACHE_SIZE:
2341 return (long)ctx->session_cache_size;
2342 case SSL_CTRL_SET_SESS_CACHE_MODE:
2343 l = ctx->session_cache_mode;
2344 ctx->session_cache_mode = larg;
2345 return l;
2346 case SSL_CTRL_GET_SESS_CACHE_MODE:
2347 return ctx->session_cache_mode;
2348
2349 case SSL_CTRL_SESS_NUMBER:
2350 return lh_SSL_SESSION_num_items(ctx->sessions);
2351 case SSL_CTRL_SESS_CONNECT:
2352 return tsan_load(&ctx->stats.sess_connect);
2353 case SSL_CTRL_SESS_CONNECT_GOOD:
2354 return tsan_load(&ctx->stats.sess_connect_good);
2355 case SSL_CTRL_SESS_CONNECT_RENEGOTIATE:
2356 return tsan_load(&ctx->stats.sess_connect_renegotiate);
2357 case SSL_CTRL_SESS_ACCEPT:
2358 return tsan_load(&ctx->stats.sess_accept);
2359 case SSL_CTRL_SESS_ACCEPT_GOOD:
2360 return tsan_load(&ctx->stats.sess_accept_good);
2361 case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE:
2362 return tsan_load(&ctx->stats.sess_accept_renegotiate);
2363 case SSL_CTRL_SESS_HIT:
2364 return tsan_load(&ctx->stats.sess_hit);
2365 case SSL_CTRL_SESS_CB_HIT:
2366 return tsan_load(&ctx->stats.sess_cb_hit);
2367 case SSL_CTRL_SESS_MISSES:
2368 return tsan_load(&ctx->stats.sess_miss);
2369 case SSL_CTRL_SESS_TIMEOUTS:
2370 return tsan_load(&ctx->stats.sess_timeout);
2371 case SSL_CTRL_SESS_CACHE_FULL:
2372 return tsan_load(&ctx->stats.sess_cache_full);
2373 case SSL_CTRL_MODE:
2374 return (ctx->mode |= larg);
2375 case SSL_CTRL_CLEAR_MODE:
2376 return (ctx->mode &= ~larg);
2377 case SSL_CTRL_SET_MAX_SEND_FRAGMENT:
2378 if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH)
2379 return 0;
2380 ctx->max_send_fragment = larg;
2381 if (ctx->max_send_fragment < ctx->split_send_fragment)
2382 ctx->split_send_fragment = ctx->max_send_fragment;
2383 return 1;
2384 case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT:
2385 if ((size_t)larg > ctx->max_send_fragment || larg == 0)
2386 return 0;
2387 ctx->split_send_fragment = larg;
2388 return 1;
2389 case SSL_CTRL_SET_MAX_PIPELINES:
2390 if (larg < 1 || larg > SSL_MAX_PIPELINES)
2391 return 0;
2392 ctx->max_pipelines = larg;
2393 return 1;
2394 case SSL_CTRL_CERT_FLAGS:
2395 return (ctx->cert->cert_flags |= larg);
2396 case SSL_CTRL_CLEAR_CERT_FLAGS:
2397 return (ctx->cert->cert_flags &= ~larg);
2398 case SSL_CTRL_SET_MIN_PROTO_VERSION:
2399 return ssl_check_allowed_versions(larg, ctx->max_proto_version)
2400 && ssl_set_version_bound(ctx->method->version, (int)larg,
2401 &ctx->min_proto_version);
2402 case SSL_CTRL_GET_MIN_PROTO_VERSION:
2403 return ctx->min_proto_version;
2404 case SSL_CTRL_SET_MAX_PROTO_VERSION:
2405 return ssl_check_allowed_versions(ctx->min_proto_version, larg)
2406 && ssl_set_version_bound(ctx->method->version, (int)larg,
2407 &ctx->max_proto_version);
2408 case SSL_CTRL_GET_MAX_PROTO_VERSION:
2409 return ctx->max_proto_version;
2410 default:
2411 return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
2412 }
2413}
2414
2415long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void))
2416{
2417 switch (cmd) {
2418 case SSL_CTRL_SET_MSG_CALLBACK:
2419 ctx->msg_callback = (void (*)
2420 (int write_p, int version, int content_type,
2421 const void *buf, size_t len, SSL *ssl,
2422 void *arg))(fp);
2423 return 1;
2424
2425 default:
2426 return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp);
2427 }
2428}
2429
2430int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b)
2431{
2432 if (a->id > b->id)
2433 return 1;
2434 if (a->id < b->id)
2435 return -1;
2436 return 0;
2437}
2438
2439int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap,
2440 const SSL_CIPHER *const *bp)
2441{
2442 if ((*ap)->id > (*bp)->id)
2443 return 1;
2444 if ((*ap)->id < (*bp)->id)
2445 return -1;
2446 return 0;
2447}
2448
2449/** return a STACK of the ciphers available for the SSL and in order of
2450 * preference */
2451STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s)
2452{
2453 if (s != NULL) {
2454 if (s->cipher_list != NULL) {
2455 return s->cipher_list;
2456 } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) {
2457 return s->ctx->cipher_list;
2458 }
2459 }
2460 return NULL;
2461}
2462
2463STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s)
2464{
2465 if ((s == NULL) || !s->server)
2466 return NULL;
2467 return s->peer_ciphers;
2468}
2469
2470STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s)
2471{
2472 STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers;
2473 int i;
2474
2475 ciphers = SSL_get_ciphers(s);
2476 if (!ciphers)
2477 return NULL;
2478 if (!ssl_set_client_disabled(s))
2479 return NULL;
2480 for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
2481 const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i);
2482 if (!ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) {
2483 if (!sk)
2484 sk = sk_SSL_CIPHER_new_null();
2485 if (!sk)
2486 return NULL;
2487 if (!sk_SSL_CIPHER_push(sk, c)) {
2488 sk_SSL_CIPHER_free(sk);
2489 return NULL;
2490 }
2491 }
2492 }
2493 return sk;
2494}
2495
2496/** return a STACK of the ciphers available for the SSL and in order of
2497 * algorithm id */
2498STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s)
2499{
2500 if (s != NULL) {
2501 if (s->cipher_list_by_id != NULL) {
2502 return s->cipher_list_by_id;
2503 } else if ((s->ctx != NULL) && (s->ctx->cipher_list_by_id != NULL)) {
2504 return s->ctx->cipher_list_by_id;
2505 }
2506 }
2507 return NULL;
2508}
2509
2510/** The old interface to get the same thing as SSL_get_ciphers() */
2511const char *SSL_get_cipher_list(const SSL *s, int n)
2512{
2513 const SSL_CIPHER *c;
2514 STACK_OF(SSL_CIPHER) *sk;
2515
2516 if (s == NULL)
2517 return NULL;
2518 sk = SSL_get_ciphers(s);
2519 if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n))
2520 return NULL;
2521 c = sk_SSL_CIPHER_value(sk, n);
2522 if (c == NULL)
2523 return NULL;
2524 return c->name;
2525}
2526
2527/** return a STACK of the ciphers available for the SSL_CTX and in order of
2528 * preference */
2529STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx)
2530{
2531 if (ctx != NULL)
2532 return ctx->cipher_list;
2533 return NULL;
2534}
2535
2536/*
2537 * Distinguish between ciphers controlled by set_ciphersuite() and
2538 * set_cipher_list() when counting.
2539 */
2540static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk)
2541{
2542 int i, num = 0;
2543 const SSL_CIPHER *c;
2544
2545 if (sk == NULL)
2546 return 0;
2547 for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) {
2548 c = sk_SSL_CIPHER_value(sk, i);
2549 if (c->min_tls >= TLS1_3_VERSION)
2550 continue;
2551 num++;
2552 }
2553 return num;
2554}
2555
2556/** specify the ciphers to be used by default by the SSL_CTX */
2557int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str)
2558{
2559 STACK_OF(SSL_CIPHER) *sk;
2560
2561 sk = ssl_create_cipher_list(ctx->method, ctx->tls13_ciphersuites,
2562 &ctx->cipher_list, &ctx->cipher_list_by_id, str,
2563 ctx->cert);
2564 /*
2565 * ssl_create_cipher_list may return an empty stack if it was unable to
2566 * find a cipher matching the given rule string (for example if the rule
2567 * string specifies a cipher which has been disabled). This is not an
2568 * error as far as ssl_create_cipher_list is concerned, and hence
2569 * ctx->cipher_list and ctx->cipher_list_by_id has been updated.
2570 */
2571 if (sk == NULL)
2572 return 0;
2573 else if (cipher_list_tls12_num(sk) == 0) {
2574 SSLerr(SSL_F_SSL_CTX_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2575 return 0;
2576 }
2577 return 1;
2578}
2579
2580/** specify the ciphers to be used by the SSL */
2581int SSL_set_cipher_list(SSL *s, const char *str)
2582{
2583 STACK_OF(SSL_CIPHER) *sk;
2584
2585 sk = ssl_create_cipher_list(s->ctx->method, s->tls13_ciphersuites,
2586 &s->cipher_list, &s->cipher_list_by_id, str,
2587 s->cert);
2588 /* see comment in SSL_CTX_set_cipher_list */
2589 if (sk == NULL)
2590 return 0;
2591 else if (cipher_list_tls12_num(sk) == 0) {
2592 SSLerr(SSL_F_SSL_SET_CIPHER_LIST, SSL_R_NO_CIPHER_MATCH);
2593 return 0;
2594 }
2595 return 1;
2596}
2597
2598char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size)
2599{
2600 char *p;
2601 STACK_OF(SSL_CIPHER) *clntsk, *srvrsk;
2602 const SSL_CIPHER *c;
2603 int i;
2604
2605 if (!s->server
2606 || s->peer_ciphers == NULL
2607 || size < 2)
2608 return NULL;
2609
2610 p = buf;
2611 clntsk = s->peer_ciphers;
2612 srvrsk = SSL_get_ciphers(s);
2613 if (clntsk == NULL || srvrsk == NULL)
2614 return NULL;
2615
2616 if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0)
2617 return NULL;
2618
2619 for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) {
2620 int n;
2621
2622 c = sk_SSL_CIPHER_value(clntsk, i);
2623 if (sk_SSL_CIPHER_find(srvrsk, c) < 0)
2624 continue;
2625
2626 n = strlen(c->name);
2627 if (n + 1 > size) {
2628 if (p != buf)
2629 --p;
2630 *p = '\0';
2631 return buf;
2632 }
2633 strcpy(p, c->name);
2634 p += n;
2635 *(p++) = ':';
2636 size -= n + 1;
2637 }
2638 p[-1] = '\0';
2639 return buf;
2640}
2641
2642/**
2643 * Return the requested servername (SNI) value. Note that the behaviour varies
2644 * depending on:
2645 * - whether this is called by the client or the server,
2646 * - if we are before or during/after the handshake,
2647 * - if a resumption or normal handshake is being attempted/has occurred
2648 * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3
2649 *
2650 * Note that only the host_name type is defined (RFC 3546).
2651 */
2652const char *SSL_get_servername(const SSL *s, const int type)
2653{
2654 /*
2655 * If we don't know if we are the client or the server yet then we assume
2656 * client.
2657 */
2658 int server = s->handshake_func == NULL ? 0 : s->server;
2659 if (type != TLSEXT_NAMETYPE_host_name)
2660 return NULL;
2661
2662 if (server) {
2663 /**
2664 * Server side
2665 * In TLSv1.3 on the server SNI is not associated with the session
2666 * but in TLSv1.2 or below it is.
2667 *
2668 * Before the handshake:
2669 * - return NULL
2670 *
2671 * During/after the handshake (TLSv1.2 or below resumption occurred):
2672 * - If a servername was accepted by the server in the original
2673 * handshake then it will return that servername, or NULL otherwise.
2674 *
2675 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2676 * - The function will return the servername requested by the client in
2677 * this handshake or NULL if none was requested.
2678 */
2679 if (s->hit && !SSL_IS_TLS13(s))
2680 return s->session->ext.hostname;
2681 } else {
2682 /**
2683 * Client side
2684 *
2685 * Before the handshake:
2686 * - If a servername has been set via a call to
2687 * SSL_set_tlsext_host_name() then it will return that servername
2688 * - If one has not been set, but a TLSv1.2 resumption is being
2689 * attempted and the session from the original handshake had a
2690 * servername accepted by the server then it will return that
2691 * servername
2692 * - Otherwise it returns NULL
2693 *
2694 * During/after the handshake (TLSv1.2 or below resumption occurred):
2695 * - If the session from the original handshake had a servername accepted
2696 * by the server then it will return that servername.
2697 * - Otherwise it returns the servername set via
2698 * SSL_set_tlsext_host_name() (or NULL if it was not called).
2699 *
2700 * During/after the handshake (TLSv1.2 or below resumption did not occur):
2701 * - It will return the servername set via SSL_set_tlsext_host_name()
2702 * (or NULL if it was not called).
2703 */
2704 if (SSL_in_before(s)) {
2705 if (s->ext.hostname == NULL
2706 && s->session != NULL
2707 && s->session->ssl_version != TLS1_3_VERSION)
2708 return s->session->ext.hostname;
2709 } else {
2710 if (!SSL_IS_TLS13(s) && s->hit && s->session->ext.hostname != NULL)
2711 return s->session->ext.hostname;
2712 }
2713 }
2714
2715 return s->ext.hostname;
2716}
2717
2718int SSL_get_servername_type(const SSL *s)
2719{
2720 if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL)
2721 return TLSEXT_NAMETYPE_host_name;
2722 return -1;
2723}
2724
2725/*
2726 * SSL_select_next_proto implements the standard protocol selection. It is
2727 * expected that this function is called from the callback set by
2728 * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a
2729 * vector of 8-bit, length prefixed byte strings. The length byte itself is
2730 * not included in the length. A byte string of length 0 is invalid. No byte
2731 * string may be truncated. The current, but experimental algorithm for
2732 * selecting the protocol is: 1) If the server doesn't support NPN then this
2733 * is indicated to the callback. In this case, the client application has to
2734 * abort the connection or have a default application level protocol. 2) If
2735 * the server supports NPN, but advertises an empty list then the client
2736 * selects the first protocol in its list, but indicates via the API that this
2737 * fallback case was enacted. 3) Otherwise, the client finds the first
2738 * protocol in the server's list that it supports and selects this protocol.
2739 * This is because it's assumed that the server has better information about
2740 * which protocol a client should use. 4) If the client doesn't support any
2741 * of the server's advertised protocols, then this is treated the same as
2742 * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was
2743 * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
2744 */
2745int SSL_select_next_proto(unsigned char **out, unsigned char *outlen,
2746 const unsigned char *server,
2747 unsigned int server_len,
2748 const unsigned char *client, unsigned int client_len)
2749{
2750 unsigned int i, j;
2751 const unsigned char *result;
2752 int status = OPENSSL_NPN_UNSUPPORTED;
2753
2754 /*
2755 * For each protocol in server preference order, see if we support it.
2756 */
2757 for (i = 0; i < server_len;) {
2758 for (j = 0; j < client_len;) {
2759 if (server[i] == client[j] &&
2760 memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
2761 /* We found a match */
2762 result = &server[i];
2763 status = OPENSSL_NPN_NEGOTIATED;
2764 goto found;
2765 }
2766 j += client[j];
2767 j++;
2768 }
2769 i += server[i];
2770 i++;
2771 }
2772
2773 /* There's no overlap between our protocols and the server's list. */
2774 result = client;
2775 status = OPENSSL_NPN_NO_OVERLAP;
2776
2777 found:
2778 *out = (unsigned char *)result + 1;
2779 *outlen = result[0];
2780 return status;
2781}
2782
2783#ifndef OPENSSL_NO_NEXTPROTONEG
2784/*
2785 * SSL_get0_next_proto_negotiated sets *data and *len to point to the
2786 * client's requested protocol for this connection and returns 0. If the
2787 * client didn't request any protocol, then *data is set to NULL. Note that
2788 * the client can request any protocol it chooses. The value returned from
2789 * this function need not be a member of the list of supported protocols
2790 * provided by the callback.
2791 */
2792void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data,
2793 unsigned *len)
2794{
2795 *data = s->ext.npn;
2796 if (!*data) {
2797 *len = 0;
2798 } else {
2799 *len = (unsigned int)s->ext.npn_len;
2800 }
2801}
2802
2803/*
2804 * SSL_CTX_set_npn_advertised_cb sets a callback that is called when
2805 * a TLS server needs a list of supported protocols for Next Protocol
2806 * Negotiation. The returned list must be in wire format. The list is
2807 * returned by setting |out| to point to it and |outlen| to its length. This
2808 * memory will not be modified, but one should assume that the SSL* keeps a
2809 * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it
2810 * wishes to advertise. Otherwise, no such extension will be included in the
2811 * ServerHello.
2812 */
2813void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx,
2814 SSL_CTX_npn_advertised_cb_func cb,
2815 void *arg)
2816{
2817 ctx->ext.npn_advertised_cb = cb;
2818 ctx->ext.npn_advertised_cb_arg = arg;
2819}
2820
2821/*
2822 * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
2823 * client needs to select a protocol from the server's provided list. |out|
2824 * must be set to point to the selected protocol (which may be within |in|).
2825 * The length of the protocol name must be written into |outlen|. The
2826 * server's advertised protocols are provided in |in| and |inlen|. The
2827 * callback can assume that |in| is syntactically valid. The client must
2828 * select a protocol. It is fatal to the connection if this callback returns
2829 * a value other than SSL_TLSEXT_ERR_OK.
2830 */
2831void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx,
2832 SSL_CTX_npn_select_cb_func cb,
2833 void *arg)
2834{
2835 ctx->ext.npn_select_cb = cb;
2836 ctx->ext.npn_select_cb_arg = arg;
2837}
2838#endif
2839
2840static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len)
2841{
2842 unsigned int idx;
2843
2844 if (protos_len < 2 || protos == NULL)
2845 return 0;
2846
2847 for (idx = 0; idx < protos_len; idx += protos[idx] + 1) {
2848 if (protos[idx] == 0)
2849 return 0;
2850 }
2851 return idx == protos_len;
2852}
2853/*
2854 * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|.
2855 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2856 * length-prefixed strings). Returns 0 on success.
2857 */
2858int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos,
2859 unsigned int protos_len)
2860{
2861 unsigned char *alpn;
2862
2863 if (protos_len == 0 || protos == NULL) {
2864 OPENSSL_free(ctx->ext.alpn);
2865 ctx->ext.alpn = NULL;
2866 ctx->ext.alpn_len = 0;
2867 return 0;
2868 }
2869 /* Not valid per RFC */
2870 if (!alpn_value_ok(protos, protos_len))
2871 return 1;
2872
2873 alpn = OPENSSL_memdup(protos, protos_len);
2874 if (alpn == NULL) {
2875 SSLerr(SSL_F_SSL_CTX_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2876 return 1;
2877 }
2878 OPENSSL_free(ctx->ext.alpn);
2879 ctx->ext.alpn = alpn;
2880 ctx->ext.alpn_len = protos_len;
2881
2882 return 0;
2883}
2884
2885/*
2886 * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|.
2887 * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit
2888 * length-prefixed strings). Returns 0 on success.
2889 */
2890int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos,
2891 unsigned int protos_len)
2892{
2893 unsigned char *alpn;
2894
2895 if (protos_len == 0 || protos == NULL) {
2896 OPENSSL_free(ssl->ext.alpn);
2897 ssl->ext.alpn = NULL;
2898 ssl->ext.alpn_len = 0;
2899 return 0;
2900 }
2901 /* Not valid per RFC */
2902 if (!alpn_value_ok(protos, protos_len))
2903 return 1;
2904
2905 alpn = OPENSSL_memdup(protos, protos_len);
2906 if (alpn == NULL) {
2907 SSLerr(SSL_F_SSL_SET_ALPN_PROTOS, ERR_R_MALLOC_FAILURE);
2908 return 1;
2909 }
2910 OPENSSL_free(ssl->ext.alpn);
2911 ssl->ext.alpn = alpn;
2912 ssl->ext.alpn_len = protos_len;
2913
2914 return 0;
2915}
2916
2917/*
2918 * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is
2919 * called during ClientHello processing in order to select an ALPN protocol
2920 * from the client's list of offered protocols.
2921 */
2922void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
2923 SSL_CTX_alpn_select_cb_func cb,
2924 void *arg)
2925{
2926 ctx->ext.alpn_select_cb = cb;
2927 ctx->ext.alpn_select_cb_arg = arg;
2928}
2929
2930/*
2931 * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
2932 * On return it sets |*data| to point to |*len| bytes of protocol name
2933 * (not including the leading length-prefix byte). If the server didn't
2934 * respond with a negotiated protocol then |*len| will be zero.
2935 */
2936void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data,
2937 unsigned int *len)
2938{
2939 *data = NULL;
2940 if (ssl->s3)
2941 *data = ssl->s3->alpn_selected;
2942 if (*data == NULL)
2943 *len = 0;
2944 else
2945 *len = (unsigned int)ssl->s3->alpn_selected_len;
2946}
2947
2948int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen,
2949 const char *label, size_t llen,
2950 const unsigned char *context, size_t contextlen,
2951 int use_context)
2952{
2953 if (s->session == NULL
2954 || (s->version < TLS1_VERSION && s->version != DTLS1_BAD_VER))
2955 return -1;
2956
2957 return s->method->ssl3_enc->export_keying_material(s, out, olen, label,
2958 llen, context,
2959 contextlen, use_context);
2960}
2961
2962int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen,
2963 const char *label, size_t llen,
2964 const unsigned char *context,
2965 size_t contextlen)
2966{
2967 if (s->version != TLS1_3_VERSION)
2968 return 0;
2969
2970 return tls13_export_keying_material_early(s, out, olen, label, llen,
2971 context, contextlen);
2972}
2973
2974static unsigned long ssl_session_hash(const SSL_SESSION *a)
2975{
2976 const unsigned char *session_id = a->session_id;
2977 unsigned long l;
2978 unsigned char tmp_storage[4];
2979
2980 if (a->session_id_length < sizeof(tmp_storage)) {
2981 memset(tmp_storage, 0, sizeof(tmp_storage));
2982 memcpy(tmp_storage, a->session_id, a->session_id_length);
2983 session_id = tmp_storage;
2984 }
2985
2986 l = (unsigned long)
2987 ((unsigned long)session_id[0]) |
2988 ((unsigned long)session_id[1] << 8L) |
2989 ((unsigned long)session_id[2] << 16L) |
2990 ((unsigned long)session_id[3] << 24L);
2991 return l;
2992}
2993
2994/*
2995 * NB: If this function (or indeed the hash function which uses a sort of
2996 * coarser function than this one) is changed, ensure
2997 * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on
2998 * being able to construct an SSL_SESSION that will collide with any existing
2999 * session with a matching session ID.
3000 */
3001static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b)
3002{
3003 if (a->ssl_version != b->ssl_version)
3004 return 1;
3005 if (a->session_id_length != b->session_id_length)
3006 return 1;
3007 return memcmp(a->session_id, b->session_id, a->session_id_length);
3008}
3009
3010/*
3011 * These wrapper functions should remain rather than redeclaring
3012 * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each
3013 * variable. The reason is that the functions aren't static, they're exposed
3014 * via ssl.h.
3015 */
3016
3017SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth)
3018{
3019 SSL_CTX *ret = NULL;
3020
3021 if (meth == NULL) {
3022 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_NULL_SSL_METHOD_PASSED);
3023 return NULL;
3024 }
3025
3026 if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL))
3027 return NULL;
3028
3029 if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
3030 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
3031 goto err;
3032 }
3033 ret = OPENSSL_zalloc(sizeof(*ret));
3034 if (ret == NULL)
3035 goto err;
3036
3037 ret->method = meth;
3038 ret->min_proto_version = 0;
3039 ret->max_proto_version = 0;
3040 ret->mode = SSL_MODE_AUTO_RETRY;
3041 ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
3042 ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3043 /* We take the system default. */
3044 ret->session_timeout = meth->get_timeout();
3045 ret->references = 1;
3046 ret->lock = CRYPTO_THREAD_lock_new();
3047 if (ret->lock == NULL) {
3048 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3049 OPENSSL_free(ret);
3050 return NULL;
3051 }
3052 ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3053 ret->verify_mode = SSL_VERIFY_NONE;
3054 if ((ret->cert = ssl_cert_new()) == NULL)
3055 goto err;
3056
3057 ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
3058 if (ret->sessions == NULL)
3059 goto err;
3060 ret->cert_store = X509_STORE_new();
3061 if (ret->cert_store == NULL)
3062 goto err;
3063#ifndef OPENSSL_NO_CT
3064 ret->ctlog_store = CTLOG_STORE_new();
3065 if (ret->ctlog_store == NULL)
3066 goto err;
3067#endif
3068
3069 if (!SSL_CTX_set_ciphersuites(ret, TLS_DEFAULT_CIPHERSUITES))
3070 goto err;
3071
3072 if (!ssl_create_cipher_list(ret->method,
3073 ret->tls13_ciphersuites,
3074 &ret->cipher_list, &ret->cipher_list_by_id,
3075 SSL_DEFAULT_CIPHER_LIST, ret->cert)
3076 || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) {
3077 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_LIBRARY_HAS_NO_CIPHERS);
3078 goto err2;
3079 }
3080
3081 ret->param = X509_VERIFY_PARAM_new();
3082 if (ret->param == NULL)
3083 goto err;
3084
3085 if ((ret->md5 = EVP_get_digestbyname("ssl3-md5")) == NULL) {
3086 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_MD5_ROUTINES);
3087 goto err2;
3088 }
3089 if ((ret->sha1 = EVP_get_digestbyname("ssl3-sha1")) == NULL) {
3090 SSLerr(SSL_F_SSL_CTX_NEW, SSL_R_UNABLE_TO_LOAD_SSL3_SHA1_ROUTINES);
3091 goto err2;
3092 }
3093
3094 if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL)
3095 goto err;
3096
3097 if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL)
3098 goto err;
3099
3100 if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data))
3101 goto err;
3102
3103 if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL)
3104 goto err;
3105
3106 /* No compression for DTLS */
3107 if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS))
3108 ret->comp_methods = SSL_COMP_get_compression_methods();
3109
3110 ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3111 ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3112
3113 /* Setup RFC5077 ticket keys */
3114 if ((RAND_bytes(ret->ext.tick_key_name,
3115 sizeof(ret->ext.tick_key_name)) <= 0)
3116 || (RAND_priv_bytes(ret->ext.secure->tick_hmac_key,
3117 sizeof(ret->ext.secure->tick_hmac_key)) <= 0)
3118 || (RAND_priv_bytes(ret->ext.secure->tick_aes_key,
3119 sizeof(ret->ext.secure->tick_aes_key)) <= 0))
3120 ret->options |= SSL_OP_NO_TICKET;
3121
3122 if (RAND_priv_bytes(ret->ext.cookie_hmac_key,
3123 sizeof(ret->ext.cookie_hmac_key)) <= 0)
3124 goto err;
3125
3126#ifndef OPENSSL_NO_SRP
3127 if (!SSL_CTX_SRP_CTX_init(ret))
3128 goto err;
3129#endif
3130#ifndef OPENSSL_NO_ENGINE
3131# ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO
3132# define eng_strx(x) #x
3133# define eng_str(x) eng_strx(x)
3134 /* Use specific client engine automatically... ignore errors */
3135 {
3136 ENGINE *eng;
3137 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3138 if (!eng) {
3139 ERR_clear_error();
3140 ENGINE_load_builtin_engines();
3141 eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO));
3142 }
3143 if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng))
3144 ERR_clear_error();
3145 }
3146# endif
3147#endif
3148 /*
3149 * Default is to connect to non-RI servers. When RI is more widely
3150 * deployed might change this.
3151 */
3152 ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
3153 /*
3154 * Disable compression by default to prevent CRIME. Applications can
3155 * re-enable compression by configuring
3156 * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION);
3157 * or by using the SSL_CONF library. Similarly we also enable TLSv1.3
3158 * middlebox compatibility by default. This may be disabled by default in
3159 * a later OpenSSL version.
3160 */
3161 ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT;
3162
3163 ret->ext.status_type = TLSEXT_STATUSTYPE_nothing;
3164
3165 /*
3166 * We cannot usefully set a default max_early_data here (which gets
3167 * propagated in SSL_new(), for the following reason: setting the
3168 * SSL field causes tls_construct_stoc_early_data() to tell the
3169 * client that early data will be accepted when constructing a TLS 1.3
3170 * session ticket, and the client will accordingly send us early data
3171 * when using that ticket (if the client has early data to send).
3172 * However, in order for the early data to actually be consumed by
3173 * the application, the application must also have calls to
3174 * SSL_read_early_data(); otherwise we'll just skip past the early data
3175 * and ignore it. So, since the application must add calls to
3176 * SSL_read_early_data(), we also require them to add
3177 * calls to SSL_CTX_set_max_early_data() in order to use early data,
3178 * eliminating the bandwidth-wasting early data in the case described
3179 * above.
3180 */
3181 ret->max_early_data = 0;
3182
3183 /*
3184 * Default recv_max_early_data is a fully loaded single record. Could be
3185 * split across multiple records in practice. We set this differently to
3186 * max_early_data so that, in the default case, we do not advertise any
3187 * support for early_data, but if a client were to send us some (e.g.
3188 * because of an old, stale ticket) then we will tolerate it and skip over
3189 * it.
3190 */
3191 ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH;
3192
3193 /* By default we send two session tickets automatically in TLSv1.3 */
3194 ret->num_tickets = 2;
3195
3196 ssl_ctx_system_config(ret);
3197
3198 return ret;
3199 err:
3200 SSLerr(SSL_F_SSL_CTX_NEW, ERR_R_MALLOC_FAILURE);
3201 err2:
3202 SSL_CTX_free(ret);
3203 return NULL;
3204}
3205
3206int SSL_CTX_up_ref(SSL_CTX *ctx)
3207{
3208 int i;
3209
3210 if (CRYPTO_UP_REF(&ctx->references, &i, ctx->lock) <= 0)
3211 return 0;
3212
3213 REF_PRINT_COUNT("SSL_CTX", ctx);
3214 REF_ASSERT_ISNT(i < 2);
3215 return ((i > 1) ? 1 : 0);
3216}
3217
3218void SSL_CTX_free(SSL_CTX *a)
3219{
3220 int i;
3221
3222 if (a == NULL)
3223 return;
3224
3225 CRYPTO_DOWN_REF(&a->references, &i, a->lock);
3226 REF_PRINT_COUNT("SSL_CTX", a);
3227 if (i > 0)
3228 return;
3229 REF_ASSERT_ISNT(i < 0);
3230
3231 X509_VERIFY_PARAM_free(a->param);
3232 dane_ctx_final(&a->dane);
3233
3234 /*
3235 * Free internal session cache. However: the remove_cb() may reference
3236 * the ex_data of SSL_CTX, thus the ex_data store can only be removed
3237 * after the sessions were flushed.
3238 * As the ex_data handling routines might also touch the session cache,
3239 * the most secure solution seems to be: empty (flush) the cache, then
3240 * free ex_data, then finally free the cache.
3241 * (See ticket [openssl.org #212].)
3242 */
3243 if (a->sessions != NULL)
3244 SSL_CTX_flush_sessions(a, 0);
3245
3246 CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data);
3247 lh_SSL_SESSION_free(a->sessions);
3248 X509_STORE_free(a->cert_store);
3249#ifndef OPENSSL_NO_CT
3250 CTLOG_STORE_free(a->ctlog_store);
3251#endif
3252 sk_SSL_CIPHER_free(a->cipher_list);
3253 sk_SSL_CIPHER_free(a->cipher_list_by_id);
3254 sk_SSL_CIPHER_free(a->tls13_ciphersuites);
3255 ssl_cert_free(a->cert);
3256 sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free);
3257 sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free);
3258 sk_X509_pop_free(a->extra_certs, X509_free);
3259 a->comp_methods = NULL;
3260#ifndef OPENSSL_NO_SRTP
3261 sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles);
3262#endif
3263#ifndef OPENSSL_NO_SRP
3264 SSL_CTX_SRP_CTX_free(a);
3265#endif
3266#ifndef OPENSSL_NO_ENGINE
3267 ENGINE_finish(a->client_cert_engine);
3268#endif
3269
3270#ifndef OPENSSL_NO_EC
3271 OPENSSL_free(a->ext.ecpointformats);
3272 OPENSSL_free(a->ext.supportedgroups);
3273#endif
3274 OPENSSL_free(a->ext.alpn);
3275 OPENSSL_secure_free(a->ext.secure);
3276
3277 CRYPTO_THREAD_lock_free(a->lock);
3278
3279 OPENSSL_free(a);
3280}
3281
3282void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb)
3283{
3284 ctx->default_passwd_callback = cb;
3285}
3286
3287void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u)
3288{
3289 ctx->default_passwd_callback_userdata = u;
3290}
3291
3292pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx)
3293{
3294 return ctx->default_passwd_callback;
3295}
3296
3297void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx)
3298{
3299 return ctx->default_passwd_callback_userdata;
3300}
3301
3302void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb)
3303{
3304 s->default_passwd_callback = cb;
3305}
3306
3307void SSL_set_default_passwd_cb_userdata(SSL *s, void *u)
3308{
3309 s->default_passwd_callback_userdata = u;
3310}
3311
3312pem_password_cb *SSL_get_default_passwd_cb(SSL *s)
3313{
3314 return s->default_passwd_callback;
3315}
3316
3317void *SSL_get_default_passwd_cb_userdata(SSL *s)
3318{
3319 return s->default_passwd_callback_userdata;
3320}
3321
3322void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
3323 int (*cb) (X509_STORE_CTX *, void *),
3324 void *arg)
3325{
3326 ctx->app_verify_callback = cb;
3327 ctx->app_verify_arg = arg;
3328}
3329
3330void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
3331 int (*cb) (int, X509_STORE_CTX *))
3332{
3333 ctx->verify_mode = mode;
3334 ctx->default_verify_callback = cb;
3335}
3336
3337void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth)
3338{
3339 X509_VERIFY_PARAM_set_depth(ctx->param, depth);
3340}
3341
3342void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg)
3343{
3344 ssl_cert_set_cert_cb(c->cert, cb, arg);
3345}
3346
3347void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg)
3348{
3349 ssl_cert_set_cert_cb(s->cert, cb, arg);
3350}
3351
3352void ssl_set_masks(SSL *s)
3353{
3354 CERT *c = s->cert;
3355 uint32_t *pvalid = s->s3->tmp.valid_flags;
3356 int rsa_enc, rsa_sign, dh_tmp, dsa_sign;
3357 unsigned long mask_k, mask_a;
3358#ifndef OPENSSL_NO_EC
3359 int have_ecc_cert, ecdsa_ok;
3360#endif
3361 if (c == NULL)
3362 return;
3363
3364#ifndef OPENSSL_NO_DH
3365 dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto);
3366#else
3367 dh_tmp = 0;
3368#endif
3369
3370 rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3371 rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID;
3372 dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID;
3373#ifndef OPENSSL_NO_EC
3374 have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID;
3375#endif
3376 mask_k = 0;
3377 mask_a = 0;
3378
3379#ifdef CIPHER_DEBUG
3380 fprintf(stderr, "dht=%d re=%d rs=%d ds=%d\n",
3381 dh_tmp, rsa_enc, rsa_sign, dsa_sign);
3382#endif
3383
3384#ifndef OPENSSL_NO_GOST
3385 if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) {
3386 mask_k |= SSL_kGOST;
3387 mask_a |= SSL_aGOST12;
3388 }
3389 if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) {
3390 mask_k |= SSL_kGOST;
3391 mask_a |= SSL_aGOST12;
3392 }
3393 if (ssl_has_cert(s, SSL_PKEY_GOST01)) {
3394 mask_k |= SSL_kGOST;
3395 mask_a |= SSL_aGOST01;
3396 }
3397#endif
3398
3399 if (rsa_enc)
3400 mask_k |= SSL_kRSA;
3401
3402 if (dh_tmp)
3403 mask_k |= SSL_kDHE;
3404
3405 /*
3406 * If we only have an RSA-PSS certificate allow RSA authentication
3407 * if TLS 1.2 and peer supports it.
3408 */
3409
3410 if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN)
3411 && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN
3412 && TLS1_get_version(s) == TLS1_2_VERSION))
3413 mask_a |= SSL_aRSA;
3414
3415 if (dsa_sign) {
3416 mask_a |= SSL_aDSS;
3417 }
3418
3419 mask_a |= SSL_aNULL;
3420
3421 /*
3422 * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites
3423 * depending on the key usage extension.
3424 */
3425#ifndef OPENSSL_NO_EC
3426 if (have_ecc_cert) {
3427 uint32_t ex_kusage;
3428 ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509);
3429 ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE;
3430 if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN))
3431 ecdsa_ok = 0;
3432 if (ecdsa_ok)
3433 mask_a |= SSL_aECDSA;
3434 }
3435 /* Allow Ed25519 for TLS 1.2 if peer supports it */
3436 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519)
3437 && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN
3438 && TLS1_get_version(s) == TLS1_2_VERSION)
3439 mask_a |= SSL_aECDSA;
3440
3441 /* Allow Ed448 for TLS 1.2 if peer supports it */
3442 if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448)
3443 && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN
3444 && TLS1_get_version(s) == TLS1_2_VERSION)
3445 mask_a |= SSL_aECDSA;
3446#endif
3447
3448#ifndef OPENSSL_NO_EC
3449 mask_k |= SSL_kECDHE;
3450#endif
3451
3452#ifndef OPENSSL_NO_PSK
3453 mask_k |= SSL_kPSK;
3454 mask_a |= SSL_aPSK;
3455 if (mask_k & SSL_kRSA)
3456 mask_k |= SSL_kRSAPSK;
3457 if (mask_k & SSL_kDHE)
3458 mask_k |= SSL_kDHEPSK;
3459 if (mask_k & SSL_kECDHE)
3460 mask_k |= SSL_kECDHEPSK;
3461#endif
3462
3463 s->s3->tmp.mask_k = mask_k;
3464 s->s3->tmp.mask_a = mask_a;
3465}
3466
3467#ifndef OPENSSL_NO_EC
3468
3469int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL *s)
3470{
3471 if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aECDSA) {
3472 /* key usage, if present, must allow signing */
3473 if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) {
3474 SSLerr(SSL_F_SSL_CHECK_SRVR_ECC_CERT_AND_ALG,
3475 SSL_R_ECC_CERT_NOT_FOR_SIGNING);
3476 return 0;
3477 }
3478 }
3479 return 1; /* all checks are ok */
3480}
3481
3482#endif
3483
3484int ssl_get_server_cert_serverinfo(SSL *s, const unsigned char **serverinfo,
3485 size_t *serverinfo_length)
3486{
3487 CERT_PKEY *cpk = s->s3->tmp.cert;
3488 *serverinfo_length = 0;
3489
3490 if (cpk == NULL || cpk->serverinfo == NULL)
3491 return 0;
3492
3493 *serverinfo = cpk->serverinfo;
3494 *serverinfo_length = cpk->serverinfo_length;
3495 return 1;
3496}
3497
3498void ssl_update_cache(SSL *s, int mode)
3499{
3500 int i;
3501
3502 /*
3503 * If the session_id_length is 0, we are not supposed to cache it, and it
3504 * would be rather hard to do anyway :-)
3505 */
3506 if (s->session->session_id_length == 0)
3507 return;
3508
3509 /*
3510 * If sid_ctx_length is 0 there is no specific application context
3511 * associated with this session, so when we try to resume it and
3512 * SSL_VERIFY_PEER is requested to verify the client identity, we have no
3513 * indication that this is actually a session for the proper application
3514 * context, and the *handshake* will fail, not just the resumption attempt.
3515 * Do not cache (on the server) these sessions that are not resumable
3516 * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set).
3517 */
3518 if (s->server && s->session->sid_ctx_length == 0
3519 && (s->verify_mode & SSL_VERIFY_PEER) != 0)
3520 return;
3521
3522 i = s->session_ctx->session_cache_mode;
3523 if ((i & mode) != 0
3524 && (!s->hit || SSL_IS_TLS13(s))) {
3525 /*
3526 * Add the session to the internal cache. In server side TLSv1.3 we
3527 * normally don't do this because by default it's a full stateless ticket
3528 * with only a dummy session id so there is no reason to cache it,
3529 * unless:
3530 * - we are doing early_data, in which case we cache so that we can
3531 * detect replays
3532 * - the application has set a remove_session_cb so needs to know about
3533 * session timeout events
3534 * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket
3535 */
3536 if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0
3537 && (!SSL_IS_TLS13(s)
3538 || !s->server
3539 || (s->max_early_data > 0
3540 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0)
3541 || s->session_ctx->remove_session_cb != NULL
3542 || (s->options & SSL_OP_NO_TICKET) != 0))
3543 SSL_CTX_add_session(s->session_ctx, s->session);
3544
3545 /*
3546 * Add the session to the external cache. We do this even in server side
3547 * TLSv1.3 without early data because some applications just want to
3548 * know about the creation of a session and aren't doing a full cache.
3549 */
3550 if (s->session_ctx->new_session_cb != NULL) {
3551 SSL_SESSION_up_ref(s->session);
3552 if (!s->session_ctx->new_session_cb(s, s->session))
3553 SSL_SESSION_free(s->session);
3554 }
3555 }
3556
3557 /* auto flush every 255 connections */
3558 if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) {
3559 TSAN_QUALIFIER int *stat;
3560 if (mode & SSL_SESS_CACHE_CLIENT)
3561 stat = &s->session_ctx->stats.sess_connect_good;
3562 else
3563 stat = &s->session_ctx->stats.sess_accept_good;
3564 if ((tsan_load(stat) & 0xff) == 0xff)
3565 SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL));
3566 }
3567}
3568
3569const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx)
3570{
3571 return ctx->method;
3572}
3573
3574const SSL_METHOD *SSL_get_ssl_method(const SSL *s)
3575{
3576 return s->method;
3577}
3578
3579int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth)
3580{
3581 int ret = 1;
3582
3583 if (s->method != meth) {
3584 const SSL_METHOD *sm = s->method;
3585 int (*hf) (SSL *) = s->handshake_func;
3586
3587 if (sm->version == meth->version)
3588 s->method = meth;
3589 else {
3590 sm->ssl_free(s);
3591 s->method = meth;
3592 ret = s->method->ssl_new(s);
3593 }
3594
3595 if (hf == sm->ssl_connect)
3596 s->handshake_func = meth->ssl_connect;
3597 else if (hf == sm->ssl_accept)
3598 s->handshake_func = meth->ssl_accept;
3599 }
3600 return ret;
3601}
3602
3603int SSL_get_error(const SSL *s, int i)
3604{
3605 int reason;
3606 unsigned long l;
3607 BIO *bio;
3608
3609 if (i > 0)
3610 return SSL_ERROR_NONE;
3611
3612 /*
3613 * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
3614 * where we do encode the error
3615 */
3616 if ((l = ERR_peek_error()) != 0) {
3617 if (ERR_GET_LIB(l) == ERR_LIB_SYS)
3618 return SSL_ERROR_SYSCALL;
3619 else
3620 return SSL_ERROR_SSL;
3621 }
3622
3623 if (SSL_want_read(s)) {
3624 bio = SSL_get_rbio(s);
3625 if (BIO_should_read(bio))
3626 return SSL_ERROR_WANT_READ;
3627 else if (BIO_should_write(bio))
3628 /*
3629 * This one doesn't make too much sense ... We never try to write
3630 * to the rbio, and an application program where rbio and wbio
3631 * are separate couldn't even know what it should wait for.
3632 * However if we ever set s->rwstate incorrectly (so that we have
3633 * SSL_want_read(s) instead of SSL_want_write(s)) and rbio and
3634 * wbio *are* the same, this test works around that bug; so it
3635 * might be safer to keep it.
3636 */
3637 return SSL_ERROR_WANT_WRITE;
3638 else if (BIO_should_io_special(bio)) {
3639 reason = BIO_get_retry_reason(bio);
3640 if (reason == BIO_RR_CONNECT)
3641 return SSL_ERROR_WANT_CONNECT;
3642 else if (reason == BIO_RR_ACCEPT)
3643 return SSL_ERROR_WANT_ACCEPT;
3644 else
3645 return SSL_ERROR_SYSCALL; /* unknown */
3646 }
3647 }
3648
3649 if (SSL_want_write(s)) {
3650 /* Access wbio directly - in order to use the buffered bio if present */
3651 bio = s->wbio;
3652 if (BIO_should_write(bio))
3653 return SSL_ERROR_WANT_WRITE;
3654 else if (BIO_should_read(bio))
3655 /*
3656 * See above (SSL_want_read(s) with BIO_should_write(bio))
3657 */
3658 return SSL_ERROR_WANT_READ;
3659 else if (BIO_should_io_special(bio)) {
3660 reason = BIO_get_retry_reason(bio);
3661 if (reason == BIO_RR_CONNECT)
3662 return SSL_ERROR_WANT_CONNECT;
3663 else if (reason == BIO_RR_ACCEPT)
3664 return SSL_ERROR_WANT_ACCEPT;
3665 else
3666 return SSL_ERROR_SYSCALL;
3667 }
3668 }
3669 if (SSL_want_x509_lookup(s))
3670 return SSL_ERROR_WANT_X509_LOOKUP;
3671 if (SSL_want_async(s))
3672 return SSL_ERROR_WANT_ASYNC;
3673 if (SSL_want_async_job(s))
3674 return SSL_ERROR_WANT_ASYNC_JOB;
3675 if (SSL_want_client_hello_cb(s))
3676 return SSL_ERROR_WANT_CLIENT_HELLO_CB;
3677
3678 if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
3679 (s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY))
3680 return SSL_ERROR_ZERO_RETURN;
3681
3682 return SSL_ERROR_SYSCALL;
3683}
3684
3685static int ssl_do_handshake_intern(void *vargs)
3686{
3687 struct ssl_async_args *args;
3688 SSL *s;
3689
3690 args = (struct ssl_async_args *)vargs;
3691 s = args->s;
3692
3693 return s->handshake_func(s);
3694}
3695
3696int SSL_do_handshake(SSL *s)
3697{
3698 int ret = 1;
3699
3700 if (s->handshake_func == NULL) {
3701 SSLerr(SSL_F_SSL_DO_HANDSHAKE, SSL_R_CONNECTION_TYPE_NOT_SET);
3702 return -1;
3703 }
3704
3705 ossl_statem_check_finish_init(s, -1);
3706
3707 s->method->ssl_renegotiate_check(s, 0);
3708
3709 if (SSL_in_init(s) || SSL_in_before(s)) {
3710 if ((s->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) {
3711 struct ssl_async_args args;
3712
3713 memset(&args, 0, sizeof(args));
3714 args.s = s;
3715
3716 ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern);
3717 } else {
3718 ret = s->handshake_func(s);
3719 }
3720 }
3721 return ret;
3722}
3723
3724void SSL_set_accept_state(SSL *s)
3725{
3726 s->server = 1;
3727 s->shutdown = 0;
3728 ossl_statem_clear(s);
3729 s->handshake_func = s->method->ssl_accept;
3730 clear_ciphers(s);
3731}
3732
3733void SSL_set_connect_state(SSL *s)
3734{
3735 s->server = 0;
3736 s->shutdown = 0;
3737 ossl_statem_clear(s);
3738 s->handshake_func = s->method->ssl_connect;
3739 clear_ciphers(s);
3740}
3741
3742int ssl_undefined_function(SSL *s)
3743{
3744 SSLerr(SSL_F_SSL_UNDEFINED_FUNCTION, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3745 return 0;
3746}
3747
3748int ssl_undefined_void_function(void)
3749{
3750 SSLerr(SSL_F_SSL_UNDEFINED_VOID_FUNCTION,
3751 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3752 return 0;
3753}
3754
3755int ssl_undefined_const_function(const SSL *s)
3756{
3757 return 0;
3758}
3759
3760const SSL_METHOD *ssl_bad_method(int ver)
3761{
3762 SSLerr(SSL_F_SSL_BAD_METHOD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
3763 return NULL;
3764}
3765
3766const char *ssl_protocol_to_string(int version)
3767{
3768 switch(version)
3769 {
3770 case TLS1_3_VERSION:
3771 return "TLSv1.3";
3772
3773 case TLS1_2_VERSION:
3774 return "TLSv1.2";
3775
3776 case TLS1_1_VERSION:
3777 return "TLSv1.1";
3778
3779 case TLS1_VERSION:
3780 return "TLSv1";
3781
3782 case SSL3_VERSION:
3783 return "SSLv3";
3784
3785 case DTLS1_BAD_VER:
3786 return "DTLSv0.9";
3787
3788 case DTLS1_VERSION:
3789 return "DTLSv1";
3790
3791 case DTLS1_2_VERSION:
3792 return "DTLSv1.2";
3793
3794 default:
3795 return "unknown";
3796 }
3797}
3798
3799const char *SSL_get_version(const SSL *s)
3800{
3801 return ssl_protocol_to_string(s->version);
3802}
3803
3804static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src)
3805{
3806 STACK_OF(X509_NAME) *sk;
3807 X509_NAME *xn;
3808 int i;
3809
3810 if (src == NULL) {
3811 *dst = NULL;
3812 return 1;
3813 }
3814
3815 if ((sk = sk_X509_NAME_new_null()) == NULL)
3816 return 0;
3817 for (i = 0; i < sk_X509_NAME_num(src); i++) {
3818 xn = X509_NAME_dup(sk_X509_NAME_value(src, i));
3819 if (xn == NULL) {
3820 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3821 return 0;
3822 }
3823 if (sk_X509_NAME_insert(sk, xn, i) == 0) {
3824 X509_NAME_free(xn);
3825 sk_X509_NAME_pop_free(sk, X509_NAME_free);
3826 return 0;
3827 }
3828 }
3829 *dst = sk;
3830
3831 return 1;
3832}
3833
3834SSL *SSL_dup(SSL *s)
3835{
3836 SSL *ret;
3837 int i;
3838
3839 /* If we're not quiescent, just up_ref! */
3840 if (!SSL_in_init(s) || !SSL_in_before(s)) {
3841 CRYPTO_UP_REF(&s->references, &i, s->lock);
3842 return s;
3843 }
3844
3845 /*
3846 * Otherwise, copy configuration state, and session if set.
3847 */
3848 if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL)
3849 return NULL;
3850
3851 if (s->session != NULL) {
3852 /*
3853 * Arranges to share the same session via up_ref. This "copies"
3854 * session-id, SSL_METHOD, sid_ctx, and 'cert'
3855 */
3856 if (!SSL_copy_session_id(ret, s))
3857 goto err;
3858 } else {
3859 /*
3860 * No session has been established yet, so we have to expect that
3861 * s->cert or ret->cert will be changed later -- they should not both
3862 * point to the same object, and thus we can't use
3863 * SSL_copy_session_id.
3864 */
3865 if (!SSL_set_ssl_method(ret, s->method))
3866 goto err;
3867
3868 if (s->cert != NULL) {
3869 ssl_cert_free(ret->cert);
3870 ret->cert = ssl_cert_dup(s->cert);
3871 if (ret->cert == NULL)
3872 goto err;
3873 }
3874
3875 if (!SSL_set_session_id_context(ret, s->sid_ctx,
3876 (int)s->sid_ctx_length))
3877 goto err;
3878 }
3879
3880 if (!ssl_dane_dup(ret, s))
3881 goto err;
3882 ret->version = s->version;
3883 ret->options = s->options;
3884 ret->min_proto_version = s->min_proto_version;
3885 ret->max_proto_version = s->max_proto_version;
3886 ret->mode = s->mode;
3887 SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s));
3888 SSL_set_read_ahead(ret, SSL_get_read_ahead(s));
3889 ret->msg_callback = s->msg_callback;
3890 ret->msg_callback_arg = s->msg_callback_arg;
3891 SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s));
3892 SSL_set_verify_depth(ret, SSL_get_verify_depth(s));
3893 ret->generate_session_id = s->generate_session_id;
3894
3895 SSL_set_info_callback(ret, SSL_get_info_callback(s));
3896
3897 /* copy app data, a little dangerous perhaps */
3898 if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data))
3899 goto err;
3900
3901 ret->server = s->server;
3902 if (s->handshake_func) {
3903 if (s->server)
3904 SSL_set_accept_state(ret);
3905 else
3906 SSL_set_connect_state(ret);
3907 }
3908 ret->shutdown = s->shutdown;
3909 ret->hit = s->hit;
3910
3911 ret->default_passwd_callback = s->default_passwd_callback;
3912 ret->default_passwd_callback_userdata = s->default_passwd_callback_userdata;
3913
3914 X509_VERIFY_PARAM_inherit(ret->param, s->param);
3915
3916 /* dup the cipher_list and cipher_list_by_id stacks */
3917 if (s->cipher_list != NULL) {
3918 if ((ret->cipher_list = sk_SSL_CIPHER_dup(s->cipher_list)) == NULL)
3919 goto err;
3920 }
3921 if (s->cipher_list_by_id != NULL)
3922 if ((ret->cipher_list_by_id = sk_SSL_CIPHER_dup(s->cipher_list_by_id))
3923 == NULL)
3924 goto err;
3925
3926 /* Dup the client_CA list */
3927 if (!dup_ca_names(&ret->ca_names, s->ca_names)
3928 || !dup_ca_names(&ret->client_ca_names, s->client_ca_names))
3929 goto err;
3930
3931 return ret;
3932
3933 err:
3934 SSL_free(ret);
3935 return NULL;
3936}
3937
3938void ssl_clear_cipher_ctx(SSL *s)
3939{
3940 if (s->enc_read_ctx != NULL) {
3941 EVP_CIPHER_CTX_free(s->enc_read_ctx);
3942 s->enc_read_ctx = NULL;
3943 }
3944 if (s->enc_write_ctx != NULL) {
3945 EVP_CIPHER_CTX_free(s->enc_write_ctx);
3946 s->enc_write_ctx = NULL;
3947 }
3948#ifndef OPENSSL_NO_COMP
3949 COMP_CTX_free(s->expand);
3950 s->expand = NULL;
3951 COMP_CTX_free(s->compress);
3952 s->compress = NULL;
3953#endif
3954}
3955
3956X509 *SSL_get_certificate(const SSL *s)
3957{
3958 if (s->cert != NULL)
3959 return s->cert->key->x509;
3960 else
3961 return NULL;
3962}
3963
3964EVP_PKEY *SSL_get_privatekey(const SSL *s)
3965{
3966 if (s->cert != NULL)
3967 return s->cert->key->privatekey;
3968 else
3969 return NULL;
3970}
3971
3972X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx)
3973{
3974 if (ctx->cert != NULL)
3975 return ctx->cert->key->x509;
3976 else
3977 return NULL;
3978}
3979
3980EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx)
3981{
3982 if (ctx->cert != NULL)
3983 return ctx->cert->key->privatekey;
3984 else
3985 return NULL;
3986}
3987
3988const SSL_CIPHER *SSL_get_current_cipher(const SSL *s)
3989{
3990 if ((s->session != NULL) && (s->session->cipher != NULL))
3991 return s->session->cipher;
3992 return NULL;
3993}
3994
3995const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s)
3996{
3997 return s->s3->tmp.new_cipher;
3998}
3999
4000const COMP_METHOD *SSL_get_current_compression(const SSL *s)
4001{
4002#ifndef OPENSSL_NO_COMP
4003 return s->compress ? COMP_CTX_get_method(s->compress) : NULL;
4004#else
4005 return NULL;
4006#endif
4007}
4008
4009const COMP_METHOD *SSL_get_current_expansion(const SSL *s)
4010{
4011#ifndef OPENSSL_NO_COMP
4012 return s->expand ? COMP_CTX_get_method(s->expand) : NULL;
4013#else
4014 return NULL;
4015#endif
4016}
4017
4018int ssl_init_wbio_buffer(SSL *s)
4019{
4020 BIO *bbio;
4021
4022 if (s->bbio != NULL) {
4023 /* Already buffered. */
4024 return 1;
4025 }
4026
4027 bbio = BIO_new(BIO_f_buffer());
4028 if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) {
4029 BIO_free(bbio);
4030 SSLerr(SSL_F_SSL_INIT_WBIO_BUFFER, ERR_R_BUF_LIB);
4031 return 0;
4032 }
4033 s->bbio = bbio;
4034 s->wbio = BIO_push(bbio, s->wbio);
4035
4036 return 1;
4037}
4038
4039int ssl_free_wbio_buffer(SSL *s)
4040{
4041 /* callers ensure s is never null */
4042 if (s->bbio == NULL)
4043 return 1;
4044
4045 s->wbio = BIO_pop(s->wbio);
4046 BIO_free(s->bbio);
4047 s->bbio = NULL;
4048
4049 return 1;
4050}
4051
4052void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode)
4053{
4054 ctx->quiet_shutdown = mode;
4055}
4056
4057int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx)
4058{
4059 return ctx->quiet_shutdown;
4060}
4061
4062void SSL_set_quiet_shutdown(SSL *s, int mode)
4063{
4064 s->quiet_shutdown = mode;
4065}
4066
4067int SSL_get_quiet_shutdown(const SSL *s)
4068{
4069 return s->quiet_shutdown;
4070}
4071
4072void SSL_set_shutdown(SSL *s, int mode)
4073{
4074 s->shutdown = mode;
4075}
4076
4077int SSL_get_shutdown(const SSL *s)
4078{
4079 return s->shutdown;
4080}
4081
4082int SSL_version(const SSL *s)
4083{
4084 return s->version;
4085}
4086
4087int SSL_client_version(const SSL *s)
4088{
4089 return s->client_version;
4090}
4091
4092SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl)
4093{
4094 return ssl->ctx;
4095}
4096
4097SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx)
4098{
4099 CERT *new_cert;
4100 if (ssl->ctx == ctx)
4101 return ssl->ctx;
4102 if (ctx == NULL)
4103 ctx = ssl->session_ctx;
4104 new_cert = ssl_cert_dup(ctx->cert);
4105 if (new_cert == NULL) {
4106 return NULL;
4107 }
4108
4109 if (!custom_exts_copy_flags(&new_cert->custext, &ssl->cert->custext)) {
4110 ssl_cert_free(new_cert);
4111 return NULL;
4112 }
4113
4114 ssl_cert_free(ssl->cert);
4115 ssl->cert = new_cert;
4116
4117 /*
4118 * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH),
4119 * so setter APIs must prevent invalid lengths from entering the system.
4120 */
4121 if (!ossl_assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)))
4122 return NULL;
4123
4124 /*
4125 * If the session ID context matches that of the parent SSL_CTX,
4126 * inherit it from the new SSL_CTX as well. If however the context does
4127 * not match (i.e., it was set per-ssl with SSL_set_session_id_context),
4128 * leave it unchanged.
4129 */
4130 if ((ssl->ctx != NULL) &&
4131 (ssl->sid_ctx_length == ssl->ctx->sid_ctx_length) &&
4132 (memcmp(ssl->sid_ctx, ssl->ctx->sid_ctx, ssl->sid_ctx_length) == 0)) {
4133 ssl->sid_ctx_length = ctx->sid_ctx_length;
4134 memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
4135 }
4136
4137 SSL_CTX_up_ref(ctx);
4138 SSL_CTX_free(ssl->ctx); /* decrement reference count */
4139 ssl->ctx = ctx;
4140
4141 return ssl->ctx;
4142}
4143
4144int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx)
4145{
4146 return X509_STORE_set_default_paths(ctx->cert_store);
4147}
4148
4149int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx)
4150{
4151 X509_LOOKUP *lookup;
4152
4153 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir());
4154 if (lookup == NULL)
4155 return 0;
4156 X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT);
4157
4158 /* Clear any errors if the default directory does not exist */
4159 ERR_clear_error();
4160
4161 return 1;
4162}
4163
4164int SSL_CTX_set_default_verify_file(SSL_CTX *ctx)
4165{
4166 X509_LOOKUP *lookup;
4167
4168 lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file());
4169 if (lookup == NULL)
4170 return 0;
4171
4172 X509_LOOKUP_load_file(lookup, NULL, X509_FILETYPE_DEFAULT);
4173
4174 /* Clear any errors if the default file does not exist */
4175 ERR_clear_error();
4176
4177 return 1;
4178}
4179
4180int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
4181 const char *CApath)
4182{
4183 return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
4184}
4185
4186void SSL_set_info_callback(SSL *ssl,
4187 void (*cb) (const SSL *ssl, int type, int val))
4188{
4189 ssl->info_callback = cb;
4190}
4191
4192/*
4193 * One compiler (Diab DCC) doesn't like argument names in returned function
4194 * pointer.
4195 */
4196void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ ,
4197 int /* type */ ,
4198 int /* val */ ) {
4199 return ssl->info_callback;
4200}
4201
4202void SSL_set_verify_result(SSL *ssl, long arg)
4203{
4204 ssl->verify_result = arg;
4205}
4206
4207long SSL_get_verify_result(const SSL *ssl)
4208{
4209 return ssl->verify_result;
4210}
4211
4212size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen)
4213{
4214 if (outlen == 0)
4215 return sizeof(ssl->s3->client_random);
4216 if (outlen > sizeof(ssl->s3->client_random))
4217 outlen = sizeof(ssl->s3->client_random);
4218 memcpy(out, ssl->s3->client_random, outlen);
4219 return outlen;
4220}
4221
4222size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen)
4223{
4224 if (outlen == 0)
4225 return sizeof(ssl->s3->server_random);
4226 if (outlen > sizeof(ssl->s3->server_random))
4227 outlen = sizeof(ssl->s3->server_random);
4228 memcpy(out, ssl->s3->server_random, outlen);
4229 return outlen;
4230}
4231
4232size_t SSL_SESSION_get_master_key(const SSL_SESSION *session,
4233 unsigned char *out, size_t outlen)
4234{
4235 if (outlen == 0)
4236 return session->master_key_length;
4237 if (outlen > session->master_key_length)
4238 outlen = session->master_key_length;
4239 memcpy(out, session->master_key, outlen);
4240 return outlen;
4241}
4242
4243int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in,
4244 size_t len)
4245{
4246 if (len > sizeof(sess->master_key))
4247 return 0;
4248
4249 memcpy(sess->master_key, in, len);
4250 sess->master_key_length = len;
4251 return 1;
4252}
4253
4254
4255int SSL_set_ex_data(SSL *s, int idx, void *arg)
4256{
4257 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4258}
4259
4260void *SSL_get_ex_data(const SSL *s, int idx)
4261{
4262 return CRYPTO_get_ex_data(&s->ex_data, idx);
4263}
4264
4265int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg)
4266{
4267 return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
4268}
4269
4270void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx)
4271{
4272 return CRYPTO_get_ex_data(&s->ex_data, idx);
4273}
4274
4275X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx)
4276{
4277 return ctx->cert_store;
4278}
4279
4280void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store)
4281{
4282 X509_STORE_free(ctx->cert_store);
4283 ctx->cert_store = store;
4284}
4285
4286void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store)
4287{
4288 if (store != NULL)
4289 X509_STORE_up_ref(store);
4290 SSL_CTX_set_cert_store(ctx, store);
4291}
4292
4293int SSL_want(const SSL *s)
4294{
4295 return s->rwstate;
4296}
4297
4298/**
4299 * \brief Set the callback for generating temporary DH keys.
4300 * \param ctx the SSL context.
4301 * \param dh the callback
4302 */
4303
4304#ifndef OPENSSL_NO_DH
4305void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
4306 DH *(*dh) (SSL *ssl, int is_export,
4307 int keylength))
4308{
4309 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4310}
4311
4312void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*dh) (SSL *ssl, int is_export,
4313 int keylength))
4314{
4315 SSL_callback_ctrl(ssl, SSL_CTRL_SET_TMP_DH_CB, (void (*)(void))dh);
4316}
4317#endif
4318
4319#ifndef OPENSSL_NO_PSK
4320int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint)
4321{
4322 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4323 SSLerr(SSL_F_SSL_CTX_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4324 return 0;
4325 }
4326 OPENSSL_free(ctx->cert->psk_identity_hint);
4327 if (identity_hint != NULL) {
4328 ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4329 if (ctx->cert->psk_identity_hint == NULL)
4330 return 0;
4331 } else
4332 ctx->cert->psk_identity_hint = NULL;
4333 return 1;
4334}
4335
4336int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint)
4337{
4338 if (s == NULL)
4339 return 0;
4340
4341 if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
4342 SSLerr(SSL_F_SSL_USE_PSK_IDENTITY_HINT, SSL_R_DATA_LENGTH_TOO_LONG);
4343 return 0;
4344 }
4345 OPENSSL_free(s->cert->psk_identity_hint);
4346 if (identity_hint != NULL) {
4347 s->cert->psk_identity_hint = OPENSSL_strdup(identity_hint);
4348 if (s->cert->psk_identity_hint == NULL)
4349 return 0;
4350 } else
4351 s->cert->psk_identity_hint = NULL;
4352 return 1;
4353}
4354
4355const char *SSL_get_psk_identity_hint(const SSL *s)
4356{
4357 if (s == NULL || s->session == NULL)
4358 return NULL;
4359 return s->session->psk_identity_hint;
4360}
4361
4362const char *SSL_get_psk_identity(const SSL *s)
4363{
4364 if (s == NULL || s->session == NULL)
4365 return NULL;
4366 return s->session->psk_identity;
4367}
4368
4369void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb)
4370{
4371 s->psk_client_callback = cb;
4372}
4373
4374void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb)
4375{
4376 ctx->psk_client_callback = cb;
4377}
4378
4379void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb)
4380{
4381 s->psk_server_callback = cb;
4382}
4383
4384void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb)
4385{
4386 ctx->psk_server_callback = cb;
4387}
4388#endif
4389
4390void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb)
4391{
4392 s->psk_find_session_cb = cb;
4393}
4394
4395void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx,
4396 SSL_psk_find_session_cb_func cb)
4397{
4398 ctx->psk_find_session_cb = cb;
4399}
4400
4401void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb)
4402{
4403 s->psk_use_session_cb = cb;
4404}
4405
4406void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx,
4407 SSL_psk_use_session_cb_func cb)
4408{
4409 ctx->psk_use_session_cb = cb;
4410}
4411
4412void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
4413 void (*cb) (int write_p, int version,
4414 int content_type, const void *buf,
4415 size_t len, SSL *ssl, void *arg))
4416{
4417 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4418}
4419
4420void SSL_set_msg_callback(SSL *ssl,
4421 void (*cb) (int write_p, int version,
4422 int content_type, const void *buf,
4423 size_t len, SSL *ssl, void *arg))
4424{
4425 SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb);
4426}
4427
4428void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx,
4429 int (*cb) (SSL *ssl,
4430 int
4431 is_forward_secure))
4432{
4433 SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4434 (void (*)(void))cb);
4435}
4436
4437void SSL_set_not_resumable_session_callback(SSL *ssl,
4438 int (*cb) (SSL *ssl,
4439 int is_forward_secure))
4440{
4441 SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB,
4442 (void (*)(void))cb);
4443}
4444
4445void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx,
4446 size_t (*cb) (SSL *ssl, int type,
4447 size_t len, void *arg))
4448{
4449 ctx->record_padding_cb = cb;
4450}
4451
4452void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg)
4453{
4454 ctx->record_padding_arg = arg;
4455}
4456
4457void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx)
4458{
4459 return ctx->record_padding_arg;
4460}
4461
4462int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size)
4463{
4464 /* block size of 0 or 1 is basically no padding */
4465 if (block_size == 1)
4466 ctx->block_padding = 0;
4467 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4468 ctx->block_padding = block_size;
4469 else
4470 return 0;
4471 return 1;
4472}
4473
4474void SSL_set_record_padding_callback(SSL *ssl,
4475 size_t (*cb) (SSL *ssl, int type,
4476 size_t len, void *arg))
4477{
4478 ssl->record_padding_cb = cb;
4479}
4480
4481void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg)
4482{
4483 ssl->record_padding_arg = arg;
4484}
4485
4486void *SSL_get_record_padding_callback_arg(const SSL *ssl)
4487{
4488 return ssl->record_padding_arg;
4489}
4490
4491int SSL_set_block_padding(SSL *ssl, size_t block_size)
4492{
4493 /* block size of 0 or 1 is basically no padding */
4494 if (block_size == 1)
4495 ssl->block_padding = 0;
4496 else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH)
4497 ssl->block_padding = block_size;
4498 else
4499 return 0;
4500 return 1;
4501}
4502
4503int SSL_set_num_tickets(SSL *s, size_t num_tickets)
4504{
4505 s->num_tickets = num_tickets;
4506
4507 return 1;
4508}
4509
4510size_t SSL_get_num_tickets(const SSL *s)
4511{
4512 return s->num_tickets;
4513}
4514
4515int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets)
4516{
4517 ctx->num_tickets = num_tickets;
4518
4519 return 1;
4520}
4521
4522size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx)
4523{
4524 return ctx->num_tickets;
4525}
4526
4527/*
4528 * Allocates new EVP_MD_CTX and sets pointer to it into given pointer
4529 * variable, freeing EVP_MD_CTX previously stored in that variable, if any.
4530 * If EVP_MD pointer is passed, initializes ctx with this |md|.
4531 * Returns the newly allocated ctx;
4532 */
4533
4534EVP_MD_CTX *ssl_replace_hash(EVP_MD_CTX **hash, const EVP_MD *md)
4535{
4536 ssl_clear_hash_ctx(hash);
4537 *hash = EVP_MD_CTX_new();
4538 if (*hash == NULL || (md && EVP_DigestInit_ex(*hash, md, NULL) <= 0)) {
4539 EVP_MD_CTX_free(*hash);
4540 *hash = NULL;
4541 return NULL;
4542 }
4543 return *hash;
4544}
4545
4546void ssl_clear_hash_ctx(EVP_MD_CTX **hash)
4547{
4548
4549 EVP_MD_CTX_free(*hash);
4550 *hash = NULL;
4551}
4552
4553/* Retrieve handshake hashes */
4554int ssl_handshake_hash(SSL *s, unsigned char *out, size_t outlen,
4555 size_t *hashlen)
4556{
4557 EVP_MD_CTX *ctx = NULL;
4558 EVP_MD_CTX *hdgst = s->s3->handshake_dgst;
4559 int hashleni = EVP_MD_CTX_size(hdgst);
4560 int ret = 0;
4561
4562 if (hashleni < 0 || (size_t)hashleni > outlen) {
4563 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4564 ERR_R_INTERNAL_ERROR);
4565 goto err;
4566 }
4567
4568 ctx = EVP_MD_CTX_new();
4569 if (ctx == NULL) {
4570 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4571 ERR_R_INTERNAL_ERROR);
4572 goto err;
4573 }
4574
4575 if (!EVP_MD_CTX_copy_ex(ctx, hdgst)
4576 || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) {
4577 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_HANDSHAKE_HASH,
4578 ERR_R_INTERNAL_ERROR);
4579 goto err;
4580 }
4581
4582 *hashlen = hashleni;
4583
4584 ret = 1;
4585 err:
4586 EVP_MD_CTX_free(ctx);
4587 return ret;
4588}
4589
4590int SSL_session_reused(const SSL *s)
4591{
4592 return s->hit;
4593}
4594
4595int SSL_is_server(const SSL *s)
4596{
4597 return s->server;
4598}
4599
4600#if OPENSSL_API_COMPAT < 0x10100000L
4601void SSL_set_debug(SSL *s, int debug)
4602{
4603 /* Old function was do-nothing anyway... */
4604 (void)s;
4605 (void)debug;
4606}
4607#endif
4608
4609void SSL_set_security_level(SSL *s, int level)
4610{
4611 s->cert->sec_level = level;
4612}
4613
4614int SSL_get_security_level(const SSL *s)
4615{
4616 return s->cert->sec_level;
4617}
4618
4619void SSL_set_security_callback(SSL *s,
4620 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4621 int op, int bits, int nid,
4622 void *other, void *ex))
4623{
4624 s->cert->sec_cb = cb;
4625}
4626
4627int (*SSL_get_security_callback(const SSL *s)) (const SSL *s,
4628 const SSL_CTX *ctx, int op,
4629 int bits, int nid, void *other,
4630 void *ex) {
4631 return s->cert->sec_cb;
4632}
4633
4634void SSL_set0_security_ex_data(SSL *s, void *ex)
4635{
4636 s->cert->sec_ex = ex;
4637}
4638
4639void *SSL_get0_security_ex_data(const SSL *s)
4640{
4641 return s->cert->sec_ex;
4642}
4643
4644void SSL_CTX_set_security_level(SSL_CTX *ctx, int level)
4645{
4646 ctx->cert->sec_level = level;
4647}
4648
4649int SSL_CTX_get_security_level(const SSL_CTX *ctx)
4650{
4651 return ctx->cert->sec_level;
4652}
4653
4654void SSL_CTX_set_security_callback(SSL_CTX *ctx,
4655 int (*cb) (const SSL *s, const SSL_CTX *ctx,
4656 int op, int bits, int nid,
4657 void *other, void *ex))
4658{
4659 ctx->cert->sec_cb = cb;
4660}
4661
4662int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s,
4663 const SSL_CTX *ctx,
4664 int op, int bits,
4665 int nid,
4666 void *other,
4667 void *ex) {
4668 return ctx->cert->sec_cb;
4669}
4670
4671void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex)
4672{
4673 ctx->cert->sec_ex = ex;
4674}
4675
4676void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx)
4677{
4678 return ctx->cert->sec_ex;
4679}
4680
4681/*
4682 * Get/Set/Clear options in SSL_CTX or SSL, formerly macros, now functions that
4683 * can return unsigned long, instead of the generic long return value from the
4684 * control interface.
4685 */
4686unsigned long SSL_CTX_get_options(const SSL_CTX *ctx)
4687{
4688 return ctx->options;
4689}
4690
4691unsigned long SSL_get_options(const SSL *s)
4692{
4693 return s->options;
4694}
4695
4696unsigned long SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op)
4697{
4698 return ctx->options |= op;
4699}
4700
4701unsigned long SSL_set_options(SSL *s, unsigned long op)
4702{
4703 return s->options |= op;
4704}
4705
4706unsigned long SSL_CTX_clear_options(SSL_CTX *ctx, unsigned long op)
4707{
4708 return ctx->options &= ~op;
4709}
4710
4711unsigned long SSL_clear_options(SSL *s, unsigned long op)
4712{
4713 return s->options &= ~op;
4714}
4715
4716STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s)
4717{
4718 return s->verified_chain;
4719}
4720
4721IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id);
4722
4723#ifndef OPENSSL_NO_CT
4724
4725/*
4726 * Moves SCTs from the |src| stack to the |dst| stack.
4727 * The source of each SCT will be set to |origin|.
4728 * If |dst| points to a NULL pointer, a new stack will be created and owned by
4729 * the caller.
4730 * Returns the number of SCTs moved, or a negative integer if an error occurs.
4731 */
4732static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src,
4733 sct_source_t origin)
4734{
4735 int scts_moved = 0;
4736 SCT *sct = NULL;
4737
4738 if (*dst == NULL) {
4739 *dst = sk_SCT_new_null();
4740 if (*dst == NULL) {
4741 SSLerr(SSL_F_CT_MOVE_SCTS, ERR_R_MALLOC_FAILURE);
4742 goto err;
4743 }
4744 }
4745
4746 while ((sct = sk_SCT_pop(src)) != NULL) {
4747 if (SCT_set_source(sct, origin) != 1)
4748 goto err;
4749
4750 if (sk_SCT_push(*dst, sct) <= 0)
4751 goto err;
4752 scts_moved += 1;
4753 }
4754
4755 return scts_moved;
4756 err:
4757 if (sct != NULL)
4758 sk_SCT_push(src, sct); /* Put the SCT back */
4759 return -1;
4760}
4761
4762/*
4763 * Look for data collected during ServerHello and parse if found.
4764 * Returns the number of SCTs extracted.
4765 */
4766static int ct_extract_tls_extension_scts(SSL *s)
4767{
4768 int scts_extracted = 0;
4769
4770 if (s->ext.scts != NULL) {
4771 const unsigned char *p = s->ext.scts;
4772 STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len);
4773
4774 scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION);
4775
4776 SCT_LIST_free(scts);
4777 }
4778
4779 return scts_extracted;
4780}
4781
4782/*
4783 * Checks for an OCSP response and then attempts to extract any SCTs found if it
4784 * contains an SCT X509 extension. They will be stored in |s->scts|.
4785 * Returns:
4786 * - The number of SCTs extracted, assuming an OCSP response exists.
4787 * - 0 if no OCSP response exists or it contains no SCTs.
4788 * - A negative integer if an error occurs.
4789 */
4790static int ct_extract_ocsp_response_scts(SSL *s)
4791{
4792# ifndef OPENSSL_NO_OCSP
4793 int scts_extracted = 0;
4794 const unsigned char *p;
4795 OCSP_BASICRESP *br = NULL;
4796 OCSP_RESPONSE *rsp = NULL;
4797 STACK_OF(SCT) *scts = NULL;
4798 int i;
4799
4800 if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0)
4801 goto err;
4802
4803 p = s->ext.ocsp.resp;
4804 rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len);
4805 if (rsp == NULL)
4806 goto err;
4807
4808 br = OCSP_response_get1_basic(rsp);
4809 if (br == NULL)
4810 goto err;
4811
4812 for (i = 0; i < OCSP_resp_count(br); ++i) {
4813 OCSP_SINGLERESP *single = OCSP_resp_get0(br, i);
4814
4815 if (single == NULL)
4816 continue;
4817
4818 scts =
4819 OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL);
4820 scts_extracted =
4821 ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE);
4822 if (scts_extracted < 0)
4823 goto err;
4824 }
4825 err:
4826 SCT_LIST_free(scts);
4827 OCSP_BASICRESP_free(br);
4828 OCSP_RESPONSE_free(rsp);
4829 return scts_extracted;
4830# else
4831 /* Behave as if no OCSP response exists */
4832 return 0;
4833# endif
4834}
4835
4836/*
4837 * Attempts to extract SCTs from the peer certificate.
4838 * Return the number of SCTs extracted, or a negative integer if an error
4839 * occurs.
4840 */
4841static int ct_extract_x509v3_extension_scts(SSL *s)
4842{
4843 int scts_extracted = 0;
4844 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4845
4846 if (cert != NULL) {
4847 STACK_OF(SCT) *scts =
4848 X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL);
4849
4850 scts_extracted =
4851 ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION);
4852
4853 SCT_LIST_free(scts);
4854 }
4855
4856 return scts_extracted;
4857}
4858
4859/*
4860 * Attempts to find all received SCTs by checking TLS extensions, the OCSP
4861 * response (if it exists) and X509v3 extensions in the certificate.
4862 * Returns NULL if an error occurs.
4863 */
4864const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s)
4865{
4866 if (!s->scts_parsed) {
4867 if (ct_extract_tls_extension_scts(s) < 0 ||
4868 ct_extract_ocsp_response_scts(s) < 0 ||
4869 ct_extract_x509v3_extension_scts(s) < 0)
4870 goto err;
4871
4872 s->scts_parsed = 1;
4873 }
4874 return s->scts;
4875 err:
4876 return NULL;
4877}
4878
4879static int ct_permissive(const CT_POLICY_EVAL_CTX * ctx,
4880 const STACK_OF(SCT) *scts, void *unused_arg)
4881{
4882 return 1;
4883}
4884
4885static int ct_strict(const CT_POLICY_EVAL_CTX * ctx,
4886 const STACK_OF(SCT) *scts, void *unused_arg)
4887{
4888 int count = scts != NULL ? sk_SCT_num(scts) : 0;
4889 int i;
4890
4891 for (i = 0; i < count; ++i) {
4892 SCT *sct = sk_SCT_value(scts, i);
4893 int status = SCT_get_validation_status(sct);
4894
4895 if (status == SCT_VALIDATION_STATUS_VALID)
4896 return 1;
4897 }
4898 SSLerr(SSL_F_CT_STRICT, SSL_R_NO_VALID_SCTS);
4899 return 0;
4900}
4901
4902int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback,
4903 void *arg)
4904{
4905 /*
4906 * Since code exists that uses the custom extension handler for CT, look
4907 * for this and throw an error if they have already registered to use CT.
4908 */
4909 if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx,
4910 TLSEXT_TYPE_signed_certificate_timestamp))
4911 {
4912 SSLerr(SSL_F_SSL_SET_CT_VALIDATION_CALLBACK,
4913 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4914 return 0;
4915 }
4916
4917 if (callback != NULL) {
4918 /*
4919 * If we are validating CT, then we MUST accept SCTs served via OCSP
4920 */
4921 if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp))
4922 return 0;
4923 }
4924
4925 s->ct_validation_callback = callback;
4926 s->ct_validation_callback_arg = arg;
4927
4928 return 1;
4929}
4930
4931int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx,
4932 ssl_ct_validation_cb callback, void *arg)
4933{
4934 /*
4935 * Since code exists that uses the custom extension handler for CT, look for
4936 * this and throw an error if they have already registered to use CT.
4937 */
4938 if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx,
4939 TLSEXT_TYPE_signed_certificate_timestamp))
4940 {
4941 SSLerr(SSL_F_SSL_CTX_SET_CT_VALIDATION_CALLBACK,
4942 SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED);
4943 return 0;
4944 }
4945
4946 ctx->ct_validation_callback = callback;
4947 ctx->ct_validation_callback_arg = arg;
4948 return 1;
4949}
4950
4951int SSL_ct_is_enabled(const SSL *s)
4952{
4953 return s->ct_validation_callback != NULL;
4954}
4955
4956int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx)
4957{
4958 return ctx->ct_validation_callback != NULL;
4959}
4960
4961int ssl_validate_ct(SSL *s)
4962{
4963 int ret = 0;
4964 X509 *cert = s->session != NULL ? s->session->peer : NULL;
4965 X509 *issuer;
4966 SSL_DANE *dane = &s->dane;
4967 CT_POLICY_EVAL_CTX *ctx = NULL;
4968 const STACK_OF(SCT) *scts;
4969
4970 /*
4971 * If no callback is set, the peer is anonymous, or its chain is invalid,
4972 * skip SCT validation - just return success. Applications that continue
4973 * handshakes without certificates, with unverified chains, or pinned leaf
4974 * certificates are outside the scope of the WebPKI and CT.
4975 *
4976 * The above exclusions notwithstanding the vast majority of peers will
4977 * have rather ordinary certificate chains validated by typical
4978 * applications that perform certificate verification and therefore will
4979 * process SCTs when enabled.
4980 */
4981 if (s->ct_validation_callback == NULL || cert == NULL ||
4982 s->verify_result != X509_V_OK ||
4983 s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1)
4984 return 1;
4985
4986 /*
4987 * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3)
4988 * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2
4989 */
4990 if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) {
4991 switch (dane->mtlsa->usage) {
4992 case DANETLS_USAGE_DANE_TA:
4993 case DANETLS_USAGE_DANE_EE:
4994 return 1;
4995 }
4996 }
4997
4998 ctx = CT_POLICY_EVAL_CTX_new();
4999 if (ctx == NULL) {
5000 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_VALIDATE_CT,
5001 ERR_R_MALLOC_FAILURE);
5002 goto end;
5003 }
5004
5005 issuer = sk_X509_value(s->verified_chain, 1);
5006 CT_POLICY_EVAL_CTX_set1_cert(ctx, cert);
5007 CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer);
5008 CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, s->ctx->ctlog_store);
5009 CT_POLICY_EVAL_CTX_set_time(
5010 ctx, (uint64_t)SSL_SESSION_get_time(SSL_get0_session(s)) * 1000);
5011
5012 scts = SSL_get0_peer_scts(s);
5013
5014 /*
5015 * This function returns success (> 0) only when all the SCTs are valid, 0
5016 * when some are invalid, and < 0 on various internal errors (out of
5017 * memory, etc.). Having some, or even all, invalid SCTs is not sufficient
5018 * reason to abort the handshake, that decision is up to the callback.
5019 * Therefore, we error out only in the unexpected case that the return
5020 * value is negative.
5021 *
5022 * XXX: One might well argue that the return value of this function is an
5023 * unfortunate design choice. Its job is only to determine the validation
5024 * status of each of the provided SCTs. So long as it correctly separates
5025 * the wheat from the chaff it should return success. Failure in this case
5026 * ought to correspond to an inability to carry out its duties.
5027 */
5028 if (SCT_LIST_validate(scts, ctx) < 0) {
5029 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5030 SSL_R_SCT_VERIFICATION_FAILED);
5031 goto end;
5032 }
5033
5034 ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg);
5035 if (ret < 0)
5036 ret = 0; /* This function returns 0 on failure */
5037 if (!ret)
5038 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_SSL_VALIDATE_CT,
5039 SSL_R_CALLBACK_FAILED);
5040
5041 end:
5042 CT_POLICY_EVAL_CTX_free(ctx);
5043 /*
5044 * With SSL_VERIFY_NONE the session may be cached and re-used despite a
5045 * failure return code here. Also the application may wish the complete
5046 * the handshake, and then disconnect cleanly at a higher layer, after
5047 * checking the verification status of the completed connection.
5048 *
5049 * We therefore force a certificate verification failure which will be
5050 * visible via SSL_get_verify_result() and cached as part of any resumed
5051 * session.
5052 *
5053 * Note: the permissive callback is for information gathering only, always
5054 * returns success, and does not affect verification status. Only the
5055 * strict callback or a custom application-specified callback can trigger
5056 * connection failure or record a verification error.
5057 */
5058 if (ret <= 0)
5059 s->verify_result = X509_V_ERR_NO_VALID_SCTS;
5060 return ret;
5061}
5062
5063int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode)
5064{
5065 switch (validation_mode) {
5066 default:
5067 SSLerr(SSL_F_SSL_CTX_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5068 return 0;
5069 case SSL_CT_VALIDATION_PERMISSIVE:
5070 return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL);
5071 case SSL_CT_VALIDATION_STRICT:
5072 return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL);
5073 }
5074}
5075
5076int SSL_enable_ct(SSL *s, int validation_mode)
5077{
5078 switch (validation_mode) {
5079 default:
5080 SSLerr(SSL_F_SSL_ENABLE_CT, SSL_R_INVALID_CT_VALIDATION_TYPE);
5081 return 0;
5082 case SSL_CT_VALIDATION_PERMISSIVE:
5083 return SSL_set_ct_validation_callback(s, ct_permissive, NULL);
5084 case SSL_CT_VALIDATION_STRICT:
5085 return SSL_set_ct_validation_callback(s, ct_strict, NULL);
5086 }
5087}
5088
5089int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx)
5090{
5091 return CTLOG_STORE_load_default_file(ctx->ctlog_store);
5092}
5093
5094int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path)
5095{
5096 return CTLOG_STORE_load_file(ctx->ctlog_store, path);
5097}
5098
5099void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE * logs)
5100{
5101 CTLOG_STORE_free(ctx->ctlog_store);
5102 ctx->ctlog_store = logs;
5103}
5104
5105const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx)
5106{
5107 return ctx->ctlog_store;
5108}
5109
5110#endif /* OPENSSL_NO_CT */
5111
5112void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb,
5113 void *arg)
5114{
5115 c->client_hello_cb = cb;
5116 c->client_hello_cb_arg = arg;
5117}
5118
5119int SSL_client_hello_isv2(SSL *s)
5120{
5121 if (s->clienthello == NULL)
5122 return 0;
5123 return s->clienthello->isv2;
5124}
5125
5126unsigned int SSL_client_hello_get0_legacy_version(SSL *s)
5127{
5128 if (s->clienthello == NULL)
5129 return 0;
5130 return s->clienthello->legacy_version;
5131}
5132
5133size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out)
5134{
5135 if (s->clienthello == NULL)
5136 return 0;
5137 if (out != NULL)
5138 *out = s->clienthello->random;
5139 return SSL3_RANDOM_SIZE;
5140}
5141
5142size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out)
5143{
5144 if (s->clienthello == NULL)
5145 return 0;
5146 if (out != NULL)
5147 *out = s->clienthello->session_id;
5148 return s->clienthello->session_id_len;
5149}
5150
5151size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out)
5152{
5153 if (s->clienthello == NULL)
5154 return 0;
5155 if (out != NULL)
5156 *out = PACKET_data(&s->clienthello->ciphersuites);
5157 return PACKET_remaining(&s->clienthello->ciphersuites);
5158}
5159
5160size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out)
5161{
5162 if (s->clienthello == NULL)
5163 return 0;
5164 if (out != NULL)
5165 *out = s->clienthello->compressions;
5166 return s->clienthello->compressions_len;
5167}
5168
5169int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen)
5170{
5171 RAW_EXTENSION *ext;
5172 int *present;
5173 size_t num = 0, i;
5174
5175 if (s->clienthello == NULL || out == NULL || outlen == NULL)
5176 return 0;
5177 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5178 ext = s->clienthello->pre_proc_exts + i;
5179 if (ext->present)
5180 num++;
5181 }
5182 if (num == 0) {
5183 *out = NULL;
5184 *outlen = 0;
5185 return 1;
5186 }
5187 if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) {
5188 SSLerr(SSL_F_SSL_CLIENT_HELLO_GET1_EXTENSIONS_PRESENT,
5189 ERR_R_MALLOC_FAILURE);
5190 return 0;
5191 }
5192 for (i = 0; i < s->clienthello->pre_proc_exts_len; i++) {
5193 ext = s->clienthello->pre_proc_exts + i;
5194 if (ext->present) {
5195 if (ext->received_order >= num)
5196 goto err;
5197 present[ext->received_order] = ext->type;
5198 }
5199 }
5200 *out = present;
5201 *outlen = num;
5202 return 1;
5203 err:
5204 OPENSSL_free(present);
5205 return 0;
5206}
5207
5208int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out,
5209 size_t *outlen)
5210{
5211 size_t i;
5212 RAW_EXTENSION *r;
5213
5214 if (s->clienthello == NULL)
5215 return 0;
5216 for (i = 0; i < s->clienthello->pre_proc_exts_len; ++i) {
5217 r = s->clienthello->pre_proc_exts + i;
5218 if (r->present && r->type == type) {
5219 if (out != NULL)
5220 *out = PACKET_data(&r->data);
5221 if (outlen != NULL)
5222 *outlen = PACKET_remaining(&r->data);
5223 return 1;
5224 }
5225 }
5226 return 0;
5227}
5228
5229int SSL_free_buffers(SSL *ssl)
5230{
5231 RECORD_LAYER *rl = &ssl->rlayer;
5232
5233 if (RECORD_LAYER_read_pending(rl) || RECORD_LAYER_write_pending(rl))
5234 return 0;
5235
5236 RECORD_LAYER_release(rl);
5237 return 1;
5238}
5239
5240int SSL_alloc_buffers(SSL *ssl)
5241{
5242 return ssl3_setup_buffers(ssl);
5243}
5244
5245void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb)
5246{
5247 ctx->keylog_callback = cb;
5248}
5249
5250SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx)
5251{
5252 return ctx->keylog_callback;
5253}
5254
5255static int nss_keylog_int(const char *prefix,
5256 SSL *ssl,
5257 const uint8_t *parameter_1,
5258 size_t parameter_1_len,
5259 const uint8_t *parameter_2,
5260 size_t parameter_2_len)
5261{
5262 char *out = NULL;
5263 char *cursor = NULL;
5264 size_t out_len = 0;
5265 size_t i;
5266 size_t prefix_len;
5267
5268 if (ssl->ctx->keylog_callback == NULL)
5269 return 1;
5270
5271 /*
5272 * Our output buffer will contain the following strings, rendered with
5273 * space characters in between, terminated by a NULL character: first the
5274 * prefix, then the first parameter, then the second parameter. The
5275 * meaning of each parameter depends on the specific key material being
5276 * logged. Note that the first and second parameters are encoded in
5277 * hexadecimal, so we need a buffer that is twice their lengths.
5278 */
5279 prefix_len = strlen(prefix);
5280 out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3;
5281 if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) {
5282 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR, SSL_F_NSS_KEYLOG_INT,
5283 ERR_R_MALLOC_FAILURE);
5284 return 0;
5285 }
5286
5287 strcpy(cursor, prefix);
5288 cursor += prefix_len;
5289 *cursor++ = ' ';
5290
5291 for (i = 0; i < parameter_1_len; i++) {
5292 sprintf(cursor, "%02x", parameter_1[i]);
5293 cursor += 2;
5294 }
5295 *cursor++ = ' ';
5296
5297 for (i = 0; i < parameter_2_len; i++) {
5298 sprintf(cursor, "%02x", parameter_2[i]);
5299 cursor += 2;
5300 }
5301 *cursor = '\0';
5302
5303 ssl->ctx->keylog_callback(ssl, (const char *)out);
5304 OPENSSL_clear_free(out, out_len);
5305 return 1;
5306
5307}
5308
5309int ssl_log_rsa_client_key_exchange(SSL *ssl,
5310 const uint8_t *encrypted_premaster,
5311 size_t encrypted_premaster_len,
5312 const uint8_t *premaster,
5313 size_t premaster_len)
5314{
5315 if (encrypted_premaster_len < 8) {
5316 SSLfatal(ssl, SSL_AD_INTERNAL_ERROR,
5317 SSL_F_SSL_LOG_RSA_CLIENT_KEY_EXCHANGE, ERR_R_INTERNAL_ERROR);
5318 return 0;
5319 }
5320
5321 /* We only want the first 8 bytes of the encrypted premaster as a tag. */
5322 return nss_keylog_int("RSA",
5323 ssl,
5324 encrypted_premaster,
5325 8,
5326 premaster,
5327 premaster_len);
5328}
5329
5330int ssl_log_secret(SSL *ssl,
5331 const char *label,
5332 const uint8_t *secret,
5333 size_t secret_len)
5334{
5335 return nss_keylog_int(label,
5336 ssl,
5337 ssl->s3->client_random,
5338 SSL3_RANDOM_SIZE,
5339 secret,
5340 secret_len);
5341}
5342
5343#define SSLV2_CIPHER_LEN 3
5344
5345int ssl_cache_cipherlist(SSL *s, PACKET *cipher_suites, int sslv2format)
5346{
5347 int n;
5348
5349 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5350
5351 if (PACKET_remaining(cipher_suites) == 0) {
5352 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_SSL_CACHE_CIPHERLIST,
5353 SSL_R_NO_CIPHERS_SPECIFIED);
5354 return 0;
5355 }
5356
5357 if (PACKET_remaining(cipher_suites) % n != 0) {
5358 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5359 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5360 return 0;
5361 }
5362
5363 OPENSSL_free(s->s3->tmp.ciphers_raw);
5364 s->s3->tmp.ciphers_raw = NULL;
5365 s->s3->tmp.ciphers_rawlen = 0;
5366
5367 if (sslv2format) {
5368 size_t numciphers = PACKET_remaining(cipher_suites) / n;
5369 PACKET sslv2ciphers = *cipher_suites;
5370 unsigned int leadbyte;
5371 unsigned char *raw;
5372
5373 /*
5374 * We store the raw ciphers list in SSLv3+ format so we need to do some
5375 * preprocessing to convert the list first. If there are any SSLv2 only
5376 * ciphersuites with a non-zero leading byte then we are going to
5377 * slightly over allocate because we won't store those. But that isn't a
5378 * problem.
5379 */
5380 raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN);
5381 s->s3->tmp.ciphers_raw = raw;
5382 if (raw == NULL) {
5383 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5384 ERR_R_MALLOC_FAILURE);
5385 return 0;
5386 }
5387 for (s->s3->tmp.ciphers_rawlen = 0;
5388 PACKET_remaining(&sslv2ciphers) > 0;
5389 raw += TLS_CIPHER_LEN) {
5390 if (!PACKET_get_1(&sslv2ciphers, &leadbyte)
5391 || (leadbyte == 0
5392 && !PACKET_copy_bytes(&sslv2ciphers, raw,
5393 TLS_CIPHER_LEN))
5394 || (leadbyte != 0
5395 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) {
5396 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5397 SSL_R_BAD_PACKET);
5398 OPENSSL_free(s->s3->tmp.ciphers_raw);
5399 s->s3->tmp.ciphers_raw = NULL;
5400 s->s3->tmp.ciphers_rawlen = 0;
5401 return 0;
5402 }
5403 if (leadbyte == 0)
5404 s->s3->tmp.ciphers_rawlen += TLS_CIPHER_LEN;
5405 }
5406 } else if (!PACKET_memdup(cipher_suites, &s->s3->tmp.ciphers_raw,
5407 &s->s3->tmp.ciphers_rawlen)) {
5408 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_SSL_CACHE_CIPHERLIST,
5409 ERR_R_INTERNAL_ERROR);
5410 return 0;
5411 }
5412 return 1;
5413}
5414
5415int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len,
5416 int isv2format, STACK_OF(SSL_CIPHER) **sk,
5417 STACK_OF(SSL_CIPHER) **scsvs)
5418{
5419 PACKET pkt;
5420
5421 if (!PACKET_buf_init(&pkt, bytes, len))
5422 return 0;
5423 return bytes_to_cipher_list(s, &pkt, sk, scsvs, isv2format, 0);
5424}
5425
5426int bytes_to_cipher_list(SSL *s, PACKET *cipher_suites,
5427 STACK_OF(SSL_CIPHER) **skp,
5428 STACK_OF(SSL_CIPHER) **scsvs_out,
5429 int sslv2format, int fatal)
5430{
5431 const SSL_CIPHER *c;
5432 STACK_OF(SSL_CIPHER) *sk = NULL;
5433 STACK_OF(SSL_CIPHER) *scsvs = NULL;
5434 int n;
5435 /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */
5436 unsigned char cipher[SSLV2_CIPHER_LEN];
5437
5438 n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN;
5439
5440 if (PACKET_remaining(cipher_suites) == 0) {
5441 if (fatal)
5442 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_BYTES_TO_CIPHER_LIST,
5443 SSL_R_NO_CIPHERS_SPECIFIED);
5444 else
5445 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_NO_CIPHERS_SPECIFIED);
5446 return 0;
5447 }
5448
5449 if (PACKET_remaining(cipher_suites) % n != 0) {
5450 if (fatal)
5451 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5452 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5453 else
5454 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST,
5455 SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
5456 return 0;
5457 }
5458
5459 sk = sk_SSL_CIPHER_new_null();
5460 scsvs = sk_SSL_CIPHER_new_null();
5461 if (sk == NULL || scsvs == NULL) {
5462 if (fatal)
5463 SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5464 ERR_R_MALLOC_FAILURE);
5465 else
5466 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5467 goto err;
5468 }
5469
5470 while (PACKET_copy_bytes(cipher_suites, cipher, n)) {
5471 /*
5472 * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the
5473 * first byte set to zero, while true SSLv2 ciphers have a non-zero
5474 * first byte. We don't support any true SSLv2 ciphers, so skip them.
5475 */
5476 if (sslv2format && cipher[0] != '\0')
5477 continue;
5478
5479 /* For SSLv2-compat, ignore leading 0-byte. */
5480 c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1);
5481 if (c != NULL) {
5482 if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) ||
5483 (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) {
5484 if (fatal)
5485 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
5486 SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5487 else
5488 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, ERR_R_MALLOC_FAILURE);
5489 goto err;
5490 }
5491 }
5492 }
5493 if (PACKET_remaining(cipher_suites) > 0) {
5494 if (fatal)
5495 SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_F_BYTES_TO_CIPHER_LIST,
5496 SSL_R_BAD_LENGTH);
5497 else
5498 SSLerr(SSL_F_BYTES_TO_CIPHER_LIST, SSL_R_BAD_LENGTH);
5499 goto err;
5500 }
5501
5502 if (skp != NULL)
5503 *skp = sk;
5504 else
5505 sk_SSL_CIPHER_free(sk);
5506 if (scsvs_out != NULL)
5507 *scsvs_out = scsvs;
5508 else
5509 sk_SSL_CIPHER_free(scsvs);
5510 return 1;
5511 err:
5512 sk_SSL_CIPHER_free(sk);
5513 sk_SSL_CIPHER_free(scsvs);
5514 return 0;
5515}
5516
5517int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data)
5518{
5519 ctx->max_early_data = max_early_data;
5520
5521 return 1;
5522}
5523
5524uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx)
5525{
5526 return ctx->max_early_data;
5527}
5528
5529int SSL_set_max_early_data(SSL *s, uint32_t max_early_data)
5530{
5531 s->max_early_data = max_early_data;
5532
5533 return 1;
5534}
5535
5536uint32_t SSL_get_max_early_data(const SSL *s)
5537{
5538 return s->max_early_data;
5539}
5540
5541int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data)
5542{
5543 ctx->recv_max_early_data = recv_max_early_data;
5544
5545 return 1;
5546}
5547
5548uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx)
5549{
5550 return ctx->recv_max_early_data;
5551}
5552
5553int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data)
5554{
5555 s->recv_max_early_data = recv_max_early_data;
5556
5557 return 1;
5558}
5559
5560uint32_t SSL_get_recv_max_early_data(const SSL *s)
5561{
5562 return s->recv_max_early_data;
5563}
5564
5565__owur unsigned int ssl_get_max_send_fragment(const SSL *ssl)
5566{
5567 /* Return any active Max Fragment Len extension */
5568 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session))
5569 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5570
5571 /* return current SSL connection setting */
5572 return ssl->max_send_fragment;
5573}
5574
5575__owur unsigned int ssl_get_split_send_fragment(const SSL *ssl)
5576{
5577 /* Return a value regarding an active Max Fragment Len extension */
5578 if (ssl->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(ssl->session)
5579 && ssl->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(ssl->session))
5580 return GET_MAX_FRAGMENT_LENGTH(ssl->session);
5581
5582 /* else limit |split_send_fragment| to current |max_send_fragment| */
5583 if (ssl->split_send_fragment > ssl->max_send_fragment)
5584 return ssl->max_send_fragment;
5585
5586 /* return current SSL connection setting */
5587 return ssl->split_send_fragment;
5588}
5589
5590int SSL_stateless(SSL *s)
5591{
5592 int ret;
5593
5594 /* Ensure there is no state left over from a previous invocation */
5595 if (!SSL_clear(s))
5596 return 0;
5597
5598 ERR_clear_error();
5599
5600 s->s3->flags |= TLS1_FLAGS_STATELESS;
5601 ret = SSL_accept(s);
5602 s->s3->flags &= ~TLS1_FLAGS_STATELESS;
5603
5604 if (ret > 0 && s->ext.cookieok)
5605 return 1;
5606
5607 if (s->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(s))
5608 return 0;
5609
5610 return -1;
5611}
5612
5613void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val)
5614{
5615 ctx->pha_enabled = val;
5616}
5617
5618void SSL_set_post_handshake_auth(SSL *ssl, int val)
5619{
5620 ssl->pha_enabled = val;
5621}
5622
5623int SSL_verify_client_post_handshake(SSL *ssl)
5624{
5625 if (!SSL_IS_TLS13(ssl)) {
5626 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_WRONG_SSL_VERSION);
5627 return 0;
5628 }
5629 if (!ssl->server) {
5630 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_NOT_SERVER);
5631 return 0;
5632 }
5633
5634 if (!SSL_is_init_finished(ssl)) {
5635 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_STILL_IN_INIT);
5636 return 0;
5637 }
5638
5639 switch (ssl->post_handshake_auth) {
5640 case SSL_PHA_NONE:
5641 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_EXTENSION_NOT_RECEIVED);
5642 return 0;
5643 default:
5644 case SSL_PHA_EXT_SENT:
5645 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, ERR_R_INTERNAL_ERROR);
5646 return 0;
5647 case SSL_PHA_EXT_RECEIVED:
5648 break;
5649 case SSL_PHA_REQUEST_PENDING:
5650 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_PENDING);
5651 return 0;
5652 case SSL_PHA_REQUESTED:
5653 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_REQUEST_SENT);
5654 return 0;
5655 }
5656
5657 ssl->post_handshake_auth = SSL_PHA_REQUEST_PENDING;
5658
5659 /* checks verify_mode and algorithm_auth */
5660 if (!send_certificate_request(ssl)) {
5661 ssl->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */
5662 SSLerr(SSL_F_SSL_VERIFY_CLIENT_POST_HANDSHAKE, SSL_R_INVALID_CONFIG);
5663 return 0;
5664 }
5665
5666 ossl_statem_set_in_init(ssl, 1);
5667 return 1;
5668}
5669
5670int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx,
5671 SSL_CTX_generate_session_ticket_fn gen_cb,
5672 SSL_CTX_decrypt_session_ticket_fn dec_cb,
5673 void *arg)
5674{
5675 ctx->generate_ticket_cb = gen_cb;
5676 ctx->decrypt_ticket_cb = dec_cb;
5677 ctx->ticket_cb_data = arg;
5678 return 1;
5679}
5680
5681void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx,
5682 SSL_allow_early_data_cb_fn cb,
5683 void *arg)
5684{
5685 ctx->allow_early_data_cb = cb;
5686 ctx->allow_early_data_cb_data = arg;
5687}
5688
5689void SSL_set_allow_early_data_cb(SSL *s,
5690 SSL_allow_early_data_cb_fn cb,
5691 void *arg)
5692{
5693 s->allow_early_data_cb = cb;
5694 s->allow_early_data_cb_data = arg;
5695}