yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * drivers/cpufreq/cpufreq_conservative.c |
| 3 | * |
| 4 | * Copyright (C) 2001 Russell King |
| 5 | * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. |
| 6 | * Jun Nakajima <jun.nakajima@intel.com> |
| 7 | * (C) 2009 Alexander Clouter <alex@digriz.org.uk> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/cpufreq.h> |
| 18 | #include <linux/cpu.h> |
| 19 | #include <linux/jiffies.h> |
| 20 | #include <linux/kernel_stat.h> |
| 21 | #include <linux/mutex.h> |
| 22 | #include <linux/hrtimer.h> |
| 23 | #include <linux/tick.h> |
| 24 | #include <linux/ktime.h> |
| 25 | #include <linux/sched.h> |
| 26 | |
| 27 | /* |
| 28 | * dbs is used in this file as a shortform for demandbased switching |
| 29 | * It helps to keep variable names smaller, simpler |
| 30 | */ |
| 31 | |
| 32 | #define DEF_FREQUENCY_UP_THRESHOLD (80) |
| 33 | #define DEF_FREQUENCY_DOWN_THRESHOLD (20) |
| 34 | |
| 35 | /* |
| 36 | * The polling frequency of this governor depends on the capability of |
| 37 | * the processor. Default polling frequency is 1000 times the transition |
| 38 | * latency of the processor. The governor will work on any processor with |
| 39 | * transition latency <= 10mS, using appropriate sampling |
| 40 | * rate. |
| 41 | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) |
| 42 | * this governor will not work. |
| 43 | * All times here are in uS. |
| 44 | */ |
| 45 | #define MIN_SAMPLING_RATE_RATIO (2) |
| 46 | |
| 47 | static unsigned int min_sampling_rate; |
| 48 | |
| 49 | #define LATENCY_MULTIPLIER (1000) |
| 50 | #define MIN_LATENCY_MULTIPLIER (100) |
| 51 | #define DEF_SAMPLING_DOWN_FACTOR (1) |
| 52 | #define MAX_SAMPLING_DOWN_FACTOR (10) |
| 53 | #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) |
| 54 | |
| 55 | static void do_dbs_timer(struct work_struct *work); |
| 56 | |
| 57 | struct cpu_dbs_info_s { |
| 58 | cputime64_t prev_cpu_idle; |
| 59 | cputime64_t prev_cpu_wall; |
| 60 | cputime64_t prev_cpu_nice; |
| 61 | struct cpufreq_policy *cur_policy; |
| 62 | struct delayed_work work; |
| 63 | unsigned int down_skip; |
| 64 | unsigned int requested_freq; |
| 65 | int cpu; |
| 66 | unsigned int enable:1; |
| 67 | /* |
| 68 | * percpu mutex that serializes governor limit change with |
| 69 | * do_dbs_timer invocation. We do not want do_dbs_timer to run |
| 70 | * when user is changing the governor or limits. |
| 71 | */ |
| 72 | struct mutex timer_mutex; |
| 73 | }; |
| 74 | static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info); |
| 75 | |
| 76 | static unsigned int dbs_enable; /* number of CPUs using this policy */ |
| 77 | |
| 78 | /* |
| 79 | * dbs_mutex protects dbs_enable in governor start/stop. |
| 80 | */ |
| 81 | static DEFINE_MUTEX(dbs_mutex); |
| 82 | |
| 83 | static struct dbs_tuners { |
| 84 | unsigned int sampling_rate; |
| 85 | unsigned int sampling_down_factor; |
| 86 | unsigned int up_threshold; |
| 87 | unsigned int down_threshold; |
| 88 | unsigned int ignore_nice; |
| 89 | unsigned int freq_step; |
| 90 | } dbs_tuners_ins = { |
| 91 | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, |
| 92 | .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD, |
| 93 | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, |
| 94 | .ignore_nice = 0, |
| 95 | .freq_step = 5, |
| 96 | }; |
| 97 | |
| 98 | static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) |
| 99 | { |
| 100 | u64 idle_time; |
| 101 | u64 cur_wall_time; |
| 102 | u64 busy_time; |
| 103 | |
| 104 | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); |
| 105 | |
| 106 | busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; |
| 107 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; |
| 108 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; |
| 109 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; |
| 110 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; |
| 111 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; |
| 112 | |
| 113 | idle_time = cur_wall_time - busy_time; |
| 114 | if (wall) |
| 115 | *wall = jiffies_to_usecs(cur_wall_time); |
| 116 | |
| 117 | return jiffies_to_usecs(idle_time); |
| 118 | } |
| 119 | |
| 120 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) |
| 121 | { |
| 122 | u64 idle_time = get_cpu_idle_time_us(cpu, NULL); |
| 123 | |
| 124 | if (idle_time == -1ULL) |
| 125 | return get_cpu_idle_time_jiffy(cpu, wall); |
| 126 | else |
| 127 | idle_time += get_cpu_iowait_time_us(cpu, wall); |
| 128 | |
| 129 | return idle_time; |
| 130 | } |
| 131 | |
| 132 | /* keep track of frequency transitions */ |
| 133 | static int |
| 134 | dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 135 | void *data) |
| 136 | { |
| 137 | struct cpufreq_freqs *freq = data; |
| 138 | struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info, |
| 139 | freq->cpu); |
| 140 | |
| 141 | struct cpufreq_policy *policy; |
| 142 | |
| 143 | if (!this_dbs_info->enable) |
| 144 | return 0; |
| 145 | |
| 146 | policy = this_dbs_info->cur_policy; |
| 147 | |
| 148 | /* |
| 149 | * we only care if our internally tracked freq moves outside |
| 150 | * the 'valid' ranges of freqency available to us otherwise |
| 151 | * we do not change it |
| 152 | */ |
| 153 | if (this_dbs_info->requested_freq > policy->max |
| 154 | || this_dbs_info->requested_freq < policy->min) |
| 155 | this_dbs_info->requested_freq = freq->new; |
| 156 | |
| 157 | return 0; |
| 158 | } |
| 159 | |
| 160 | static struct notifier_block dbs_cpufreq_notifier_block = { |
| 161 | .notifier_call = dbs_cpufreq_notifier |
| 162 | }; |
| 163 | |
| 164 | /************************** sysfs interface ************************/ |
| 165 | static ssize_t show_sampling_rate_min(struct kobject *kobj, |
| 166 | struct attribute *attr, char *buf) |
| 167 | { |
| 168 | return sprintf(buf, "%u\n", min_sampling_rate); |
| 169 | } |
| 170 | |
| 171 | define_one_global_ro(sampling_rate_min); |
| 172 | |
| 173 | /* cpufreq_conservative Governor Tunables */ |
| 174 | #define show_one(file_name, object) \ |
| 175 | static ssize_t show_##file_name \ |
| 176 | (struct kobject *kobj, struct attribute *attr, char *buf) \ |
| 177 | { \ |
| 178 | return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ |
| 179 | } |
| 180 | show_one(sampling_rate, sampling_rate); |
| 181 | show_one(sampling_down_factor, sampling_down_factor); |
| 182 | show_one(up_threshold, up_threshold); |
| 183 | show_one(down_threshold, down_threshold); |
| 184 | show_one(ignore_nice_load, ignore_nice); |
| 185 | show_one(freq_step, freq_step); |
| 186 | |
| 187 | static ssize_t store_sampling_down_factor(struct kobject *a, |
| 188 | struct attribute *b, |
| 189 | const char *buf, size_t count) |
| 190 | { |
| 191 | unsigned int input; |
| 192 | int ret; |
| 193 | ret = sscanf(buf, "%u", &input); |
| 194 | |
| 195 | if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) |
| 196 | return -EINVAL; |
| 197 | |
| 198 | dbs_tuners_ins.sampling_down_factor = input; |
| 199 | return count; |
| 200 | } |
| 201 | |
| 202 | static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, |
| 203 | const char *buf, size_t count) |
| 204 | { |
| 205 | unsigned int input; |
| 206 | int ret; |
| 207 | ret = sscanf(buf, "%u", &input); |
| 208 | |
| 209 | if (ret != 1) |
| 210 | return -EINVAL; |
| 211 | |
| 212 | dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate); |
| 213 | return count; |
| 214 | } |
| 215 | |
| 216 | static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, |
| 217 | const char *buf, size_t count) |
| 218 | { |
| 219 | unsigned int input; |
| 220 | int ret; |
| 221 | ret = sscanf(buf, "%u", &input); |
| 222 | |
| 223 | if (ret != 1 || input > 100 || |
| 224 | input <= dbs_tuners_ins.down_threshold) |
| 225 | return -EINVAL; |
| 226 | |
| 227 | dbs_tuners_ins.up_threshold = input; |
| 228 | return count; |
| 229 | } |
| 230 | |
| 231 | static ssize_t store_down_threshold(struct kobject *a, struct attribute *b, |
| 232 | const char *buf, size_t count) |
| 233 | { |
| 234 | unsigned int input; |
| 235 | int ret; |
| 236 | ret = sscanf(buf, "%u", &input); |
| 237 | |
| 238 | /* cannot be lower than 11 otherwise freq will not fall */ |
| 239 | if (ret != 1 || input < 11 || input > 100 || |
| 240 | input >= dbs_tuners_ins.up_threshold) |
| 241 | return -EINVAL; |
| 242 | |
| 243 | dbs_tuners_ins.down_threshold = input; |
| 244 | return count; |
| 245 | } |
| 246 | |
| 247 | static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, |
| 248 | const char *buf, size_t count) |
| 249 | { |
| 250 | unsigned int input; |
| 251 | int ret; |
| 252 | |
| 253 | unsigned int j; |
| 254 | |
| 255 | ret = sscanf(buf, "%u", &input); |
| 256 | if (ret != 1) |
| 257 | return -EINVAL; |
| 258 | |
| 259 | if (input > 1) |
| 260 | input = 1; |
| 261 | |
| 262 | if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */ |
| 263 | return count; |
| 264 | |
| 265 | dbs_tuners_ins.ignore_nice = input; |
| 266 | |
| 267 | /* we need to re-evaluate prev_cpu_idle */ |
| 268 | for_each_online_cpu(j) { |
| 269 | struct cpu_dbs_info_s *dbs_info; |
| 270 | dbs_info = &per_cpu(cs_cpu_dbs_info, j); |
| 271 | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
| 272 | &dbs_info->prev_cpu_wall); |
| 273 | if (dbs_tuners_ins.ignore_nice) |
| 274 | dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| 275 | } |
| 276 | return count; |
| 277 | } |
| 278 | |
| 279 | static ssize_t store_freq_step(struct kobject *a, struct attribute *b, |
| 280 | const char *buf, size_t count) |
| 281 | { |
| 282 | unsigned int input; |
| 283 | int ret; |
| 284 | ret = sscanf(buf, "%u", &input); |
| 285 | |
| 286 | if (ret != 1) |
| 287 | return -EINVAL; |
| 288 | |
| 289 | if (input > 100) |
| 290 | input = 100; |
| 291 | |
| 292 | /* no need to test here if freq_step is zero as the user might actually |
| 293 | * want this, they would be crazy though :) */ |
| 294 | dbs_tuners_ins.freq_step = input; |
| 295 | return count; |
| 296 | } |
| 297 | |
| 298 | define_one_global_rw(sampling_rate); |
| 299 | define_one_global_rw(sampling_down_factor); |
| 300 | define_one_global_rw(up_threshold); |
| 301 | define_one_global_rw(down_threshold); |
| 302 | define_one_global_rw(ignore_nice_load); |
| 303 | define_one_global_rw(freq_step); |
| 304 | |
| 305 | static struct attribute *dbs_attributes[] = { |
| 306 | &sampling_rate_min.attr, |
| 307 | &sampling_rate.attr, |
| 308 | &sampling_down_factor.attr, |
| 309 | &up_threshold.attr, |
| 310 | &down_threshold.attr, |
| 311 | &ignore_nice_load.attr, |
| 312 | &freq_step.attr, |
| 313 | NULL |
| 314 | }; |
| 315 | |
| 316 | static struct attribute_group dbs_attr_group = { |
| 317 | .attrs = dbs_attributes, |
| 318 | .name = "conservative", |
| 319 | }; |
| 320 | |
| 321 | /************************** sysfs end ************************/ |
| 322 | |
| 323 | static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) |
| 324 | { |
| 325 | unsigned int load = 0; |
| 326 | unsigned int max_load = 0; |
| 327 | unsigned int freq_target; |
| 328 | |
| 329 | struct cpufreq_policy *policy; |
| 330 | unsigned int j; |
| 331 | |
| 332 | policy = this_dbs_info->cur_policy; |
| 333 | |
| 334 | /* |
| 335 | * Every sampling_rate, we check, if current idle time is less |
| 336 | * than 20% (default), then we try to increase frequency |
| 337 | * Every sampling_rate*sampling_down_factor, we check, if current |
| 338 | * idle time is more than 80%, then we try to decrease frequency |
| 339 | * |
| 340 | * Any frequency increase takes it to the maximum frequency. |
| 341 | * Frequency reduction happens at minimum steps of |
| 342 | * 5% (default) of maximum frequency |
| 343 | */ |
| 344 | |
| 345 | /* Get Absolute Load */ |
| 346 | for_each_cpu(j, policy->cpus) { |
| 347 | struct cpu_dbs_info_s *j_dbs_info; |
| 348 | cputime64_t cur_wall_time, cur_idle_time; |
| 349 | unsigned int idle_time, wall_time; |
| 350 | #ifdef CONFIG_KLOCWORK |
| 351 | cur_wall_time=0; |
| 352 | #endif |
| 353 | |
| 354 | j_dbs_info = &per_cpu(cs_cpu_dbs_info, j); |
| 355 | |
| 356 | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); |
| 357 | |
| 358 | wall_time = (unsigned int) |
| 359 | (cur_wall_time - j_dbs_info->prev_cpu_wall); |
| 360 | j_dbs_info->prev_cpu_wall = cur_wall_time; |
| 361 | |
| 362 | idle_time = (unsigned int) |
| 363 | (cur_idle_time - j_dbs_info->prev_cpu_idle); |
| 364 | j_dbs_info->prev_cpu_idle = cur_idle_time; |
| 365 | |
| 366 | if (dbs_tuners_ins.ignore_nice) { |
| 367 | u64 cur_nice; |
| 368 | unsigned long cur_nice_jiffies; |
| 369 | |
| 370 | cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - |
| 371 | j_dbs_info->prev_cpu_nice; |
| 372 | /* |
| 373 | * Assumption: nice time between sampling periods will |
| 374 | * be less than 2^32 jiffies for 32 bit sys |
| 375 | */ |
| 376 | cur_nice_jiffies = (unsigned long) |
| 377 | cputime64_to_jiffies64(cur_nice); |
| 378 | |
| 379 | j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| 380 | idle_time += jiffies_to_usecs(cur_nice_jiffies); |
| 381 | } |
| 382 | |
| 383 | if (unlikely(!wall_time || wall_time < idle_time)) |
| 384 | continue; |
| 385 | |
| 386 | load = 100 * (wall_time - idle_time) / wall_time; |
| 387 | |
| 388 | if (load > max_load) |
| 389 | max_load = load; |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * break out if we 'cannot' reduce the speed as the user might |
| 394 | * want freq_step to be zero |
| 395 | */ |
| 396 | if (dbs_tuners_ins.freq_step == 0) |
| 397 | return; |
| 398 | |
| 399 | /* Check for frequency increase */ |
| 400 | if (max_load > dbs_tuners_ins.up_threshold) { |
| 401 | this_dbs_info->down_skip = 0; |
| 402 | |
| 403 | /* if we are already at full speed then break out early */ |
| 404 | if (this_dbs_info->requested_freq == policy->max) |
| 405 | return; |
| 406 | |
| 407 | freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100; |
| 408 | |
| 409 | /* max freq cannot be less than 100. But who knows.... */ |
| 410 | if (unlikely(freq_target == 0)) |
| 411 | freq_target = 5; |
| 412 | |
| 413 | this_dbs_info->requested_freq += freq_target; |
| 414 | if (this_dbs_info->requested_freq > policy->max) |
| 415 | this_dbs_info->requested_freq = policy->max; |
| 416 | |
| 417 | __cpufreq_driver_target(policy, this_dbs_info->requested_freq, |
| 418 | CPUFREQ_RELATION_H); |
| 419 | return; |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * The optimal frequency is the frequency that is the lowest that |
| 424 | * can support the current CPU usage without triggering the up |
| 425 | * policy. To be safe, we focus 10 points under the threshold. |
| 426 | */ |
| 427 | if (max_load < (dbs_tuners_ins.down_threshold - 10)) { |
| 428 | freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100; |
| 429 | |
| 430 | this_dbs_info->requested_freq -= freq_target; |
| 431 | if (this_dbs_info->requested_freq < policy->min) |
| 432 | this_dbs_info->requested_freq = policy->min; |
| 433 | |
| 434 | /* |
| 435 | * if we cannot reduce the frequency anymore, break out early |
| 436 | */ |
| 437 | if (policy->cur == policy->min) |
| 438 | return; |
| 439 | |
| 440 | __cpufreq_driver_target(policy, this_dbs_info->requested_freq, |
| 441 | CPUFREQ_RELATION_H); |
| 442 | return; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | static void do_dbs_timer(struct work_struct *work) |
| 447 | { |
| 448 | struct cpu_dbs_info_s *dbs_info = |
| 449 | container_of(work, struct cpu_dbs_info_s, work.work); |
| 450 | unsigned int cpu = dbs_info->cpu; |
| 451 | |
| 452 | /* We want all CPUs to do sampling nearly on same jiffy */ |
| 453 | int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); |
| 454 | |
| 455 | delay -= jiffies % delay; |
| 456 | |
| 457 | mutex_lock(&dbs_info->timer_mutex); |
| 458 | |
| 459 | dbs_check_cpu(dbs_info); |
| 460 | |
| 461 | schedule_delayed_work_on(cpu, &dbs_info->work, delay); |
| 462 | mutex_unlock(&dbs_info->timer_mutex); |
| 463 | } |
| 464 | |
| 465 | static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) |
| 466 | { |
| 467 | /* We want all CPUs to do sampling nearly on same jiffy */ |
| 468 | int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); |
| 469 | delay -= jiffies % delay; |
| 470 | |
| 471 | dbs_info->enable = 1; |
| 472 | INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); |
| 473 | schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay); |
| 474 | } |
| 475 | |
| 476 | static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) |
| 477 | { |
| 478 | dbs_info->enable = 0; |
| 479 | cancel_delayed_work_sync(&dbs_info->work); |
| 480 | } |
| 481 | |
| 482 | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, |
| 483 | unsigned int event) |
| 484 | { |
| 485 | unsigned int cpu = policy->cpu; |
| 486 | struct cpu_dbs_info_s *this_dbs_info; |
| 487 | unsigned int j; |
| 488 | int rc; |
| 489 | |
| 490 | this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu); |
| 491 | |
| 492 | switch (event) { |
| 493 | case CPUFREQ_GOV_START: |
| 494 | if ((!cpu_online(cpu)) || (!policy->cur)) |
| 495 | return -EINVAL; |
| 496 | |
| 497 | mutex_lock(&dbs_mutex); |
| 498 | |
| 499 | for_each_cpu(j, policy->cpus) { |
| 500 | struct cpu_dbs_info_s *j_dbs_info; |
| 501 | j_dbs_info = &per_cpu(cs_cpu_dbs_info, j); |
| 502 | j_dbs_info->cur_policy = policy; |
| 503 | |
| 504 | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
| 505 | &j_dbs_info->prev_cpu_wall); |
| 506 | if (dbs_tuners_ins.ignore_nice) |
| 507 | j_dbs_info->prev_cpu_nice = |
| 508 | kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| 509 | } |
| 510 | this_dbs_info->down_skip = 0; |
| 511 | this_dbs_info->requested_freq = policy->cur; |
| 512 | |
| 513 | mutex_init(&this_dbs_info->timer_mutex); |
| 514 | dbs_enable++; |
| 515 | /* |
| 516 | * Start the timerschedule work, when this governor |
| 517 | * is used for first time |
| 518 | */ |
| 519 | if (dbs_enable == 1) { |
| 520 | unsigned int latency; |
| 521 | /* policy latency is in nS. Convert it to uS first */ |
| 522 | latency = policy->cpuinfo.transition_latency / 1000; |
| 523 | if (latency == 0) |
| 524 | latency = 1; |
| 525 | |
| 526 | rc = sysfs_create_group(cpufreq_global_kobject, |
| 527 | &dbs_attr_group); |
| 528 | if (rc) { |
| 529 | mutex_unlock(&dbs_mutex); |
| 530 | return rc; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * conservative does not implement micro like ondemand |
| 535 | * governor, thus we are bound to jiffes/HZ |
| 536 | */ |
| 537 | min_sampling_rate = |
| 538 | MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); |
| 539 | /* Bring kernel and HW constraints together */ |
| 540 | min_sampling_rate = max(min_sampling_rate, |
| 541 | MIN_LATENCY_MULTIPLIER * latency); |
| 542 | dbs_tuners_ins.sampling_rate = |
| 543 | max(min_sampling_rate, |
| 544 | latency * LATENCY_MULTIPLIER); |
| 545 | |
| 546 | cpufreq_register_notifier( |
| 547 | &dbs_cpufreq_notifier_block, |
| 548 | CPUFREQ_TRANSITION_NOTIFIER); |
| 549 | } |
| 550 | mutex_unlock(&dbs_mutex); |
| 551 | |
| 552 | dbs_timer_init(this_dbs_info); |
| 553 | |
| 554 | break; |
| 555 | |
| 556 | case CPUFREQ_GOV_STOP: |
| 557 | dbs_timer_exit(this_dbs_info); |
| 558 | |
| 559 | mutex_lock(&dbs_mutex); |
| 560 | dbs_enable--; |
| 561 | mutex_destroy(&this_dbs_info->timer_mutex); |
| 562 | |
| 563 | /* |
| 564 | * Stop the timerschedule work, when this governor |
| 565 | * is used for first time |
| 566 | */ |
| 567 | if (dbs_enable == 0) |
| 568 | cpufreq_unregister_notifier( |
| 569 | &dbs_cpufreq_notifier_block, |
| 570 | CPUFREQ_TRANSITION_NOTIFIER); |
| 571 | |
| 572 | mutex_unlock(&dbs_mutex); |
| 573 | if (!dbs_enable) |
| 574 | sysfs_remove_group(cpufreq_global_kobject, |
| 575 | &dbs_attr_group); |
| 576 | |
| 577 | break; |
| 578 | |
| 579 | case CPUFREQ_GOV_LIMITS: |
| 580 | mutex_lock(&this_dbs_info->timer_mutex); |
| 581 | if (policy->max < this_dbs_info->cur_policy->cur) |
| 582 | __cpufreq_driver_target( |
| 583 | this_dbs_info->cur_policy, |
| 584 | policy->max, CPUFREQ_RELATION_H); |
| 585 | else if (policy->min > this_dbs_info->cur_policy->cur) |
| 586 | __cpufreq_driver_target( |
| 587 | this_dbs_info->cur_policy, |
| 588 | policy->min, CPUFREQ_RELATION_L); |
| 589 | mutex_unlock(&this_dbs_info->timer_mutex); |
| 590 | |
| 591 | break; |
| 592 | } |
| 593 | return 0; |
| 594 | } |
| 595 | |
| 596 | #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE |
| 597 | static |
| 598 | #endif |
| 599 | struct cpufreq_governor cpufreq_gov_conservative = { |
| 600 | .name = "conservative", |
| 601 | .governor = cpufreq_governor_dbs, |
| 602 | .max_transition_latency = TRANSITION_LATENCY_LIMIT, |
| 603 | .owner = THIS_MODULE, |
| 604 | }; |
| 605 | |
| 606 | static int __init cpufreq_gov_dbs_init(void) |
| 607 | { |
| 608 | return cpufreq_register_governor(&cpufreq_gov_conservative); |
| 609 | } |
| 610 | |
| 611 | static void __exit cpufreq_gov_dbs_exit(void) |
| 612 | { |
| 613 | cpufreq_unregister_governor(&cpufreq_gov_conservative); |
| 614 | } |
| 615 | |
| 616 | |
| 617 | MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>"); |
| 618 | MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for " |
| 619 | "Low Latency Frequency Transition capable processors " |
| 620 | "optimised for use in a battery environment"); |
| 621 | MODULE_LICENSE("GPL"); |
| 622 | |
| 623 | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE |
| 624 | fs_initcall(cpufreq_gov_dbs_init); |
| 625 | #else |
| 626 | module_init(cpufreq_gov_dbs_init); |
| 627 | #endif |
| 628 | module_exit(cpufreq_gov_dbs_exit); |