blob: 1b98434993f7ee5a1108431bc4bbab3e4e49f4bb [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/cpufreq.h>
18#include <linux/cpu.h>
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
21#include <linux/mutex.h>
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
34
35/*
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
44 */
45#define MIN_SAMPLING_RATE_RATIO (2)
46
47static unsigned int min_sampling_rate;
48
49#define LATENCY_MULTIPLIER (1000)
50#define MIN_LATENCY_MULTIPLIER (100)
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
54
55static void do_dbs_timer(struct work_struct *work);
56
57struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
65 int cpu;
66 unsigned int enable:1;
67 /*
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
71 */
72 struct mutex timer_mutex;
73};
74static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75
76static unsigned int dbs_enable; /* number of CPUs using this policy */
77
78/*
79 * dbs_mutex protects dbs_enable in governor start/stop.
80 */
81static DEFINE_MUTEX(dbs_mutex);
82
83static struct dbs_tuners {
84 unsigned int sampling_rate;
85 unsigned int sampling_down_factor;
86 unsigned int up_threshold;
87 unsigned int down_threshold;
88 unsigned int ignore_nice;
89 unsigned int freq_step;
90} dbs_tuners_ins = {
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 .ignore_nice = 0,
95 .freq_step = 5,
96};
97
98static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
99{
100 u64 idle_time;
101 u64 cur_wall_time;
102 u64 busy_time;
103
104 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
105
106 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
107 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
108 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
109 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
110 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
111 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
112
113 idle_time = cur_wall_time - busy_time;
114 if (wall)
115 *wall = jiffies_to_usecs(cur_wall_time);
116
117 return jiffies_to_usecs(idle_time);
118}
119
120static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
121{
122 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
123
124 if (idle_time == -1ULL)
125 return get_cpu_idle_time_jiffy(cpu, wall);
126 else
127 idle_time += get_cpu_iowait_time_us(cpu, wall);
128
129 return idle_time;
130}
131
132/* keep track of frequency transitions */
133static int
134dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135 void *data)
136{
137 struct cpufreq_freqs *freq = data;
138 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
139 freq->cpu);
140
141 struct cpufreq_policy *policy;
142
143 if (!this_dbs_info->enable)
144 return 0;
145
146 policy = this_dbs_info->cur_policy;
147
148 /*
149 * we only care if our internally tracked freq moves outside
150 * the 'valid' ranges of freqency available to us otherwise
151 * we do not change it
152 */
153 if (this_dbs_info->requested_freq > policy->max
154 || this_dbs_info->requested_freq < policy->min)
155 this_dbs_info->requested_freq = freq->new;
156
157 return 0;
158}
159
160static struct notifier_block dbs_cpufreq_notifier_block = {
161 .notifier_call = dbs_cpufreq_notifier
162};
163
164/************************** sysfs interface ************************/
165static ssize_t show_sampling_rate_min(struct kobject *kobj,
166 struct attribute *attr, char *buf)
167{
168 return sprintf(buf, "%u\n", min_sampling_rate);
169}
170
171define_one_global_ro(sampling_rate_min);
172
173/* cpufreq_conservative Governor Tunables */
174#define show_one(file_name, object) \
175static ssize_t show_##file_name \
176(struct kobject *kobj, struct attribute *attr, char *buf) \
177{ \
178 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
179}
180show_one(sampling_rate, sampling_rate);
181show_one(sampling_down_factor, sampling_down_factor);
182show_one(up_threshold, up_threshold);
183show_one(down_threshold, down_threshold);
184show_one(ignore_nice_load, ignore_nice);
185show_one(freq_step, freq_step);
186
187static ssize_t store_sampling_down_factor(struct kobject *a,
188 struct attribute *b,
189 const char *buf, size_t count)
190{
191 unsigned int input;
192 int ret;
193 ret = sscanf(buf, "%u", &input);
194
195 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
196 return -EINVAL;
197
198 dbs_tuners_ins.sampling_down_factor = input;
199 return count;
200}
201
202static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
203 const char *buf, size_t count)
204{
205 unsigned int input;
206 int ret;
207 ret = sscanf(buf, "%u", &input);
208
209 if (ret != 1)
210 return -EINVAL;
211
212 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
213 return count;
214}
215
216static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
217 const char *buf, size_t count)
218{
219 unsigned int input;
220 int ret;
221 ret = sscanf(buf, "%u", &input);
222
223 if (ret != 1 || input > 100 ||
224 input <= dbs_tuners_ins.down_threshold)
225 return -EINVAL;
226
227 dbs_tuners_ins.up_threshold = input;
228 return count;
229}
230
231static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
232 const char *buf, size_t count)
233{
234 unsigned int input;
235 int ret;
236 ret = sscanf(buf, "%u", &input);
237
238 /* cannot be lower than 11 otherwise freq will not fall */
239 if (ret != 1 || input < 11 || input > 100 ||
240 input >= dbs_tuners_ins.up_threshold)
241 return -EINVAL;
242
243 dbs_tuners_ins.down_threshold = input;
244 return count;
245}
246
247static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
248 const char *buf, size_t count)
249{
250 unsigned int input;
251 int ret;
252
253 unsigned int j;
254
255 ret = sscanf(buf, "%u", &input);
256 if (ret != 1)
257 return -EINVAL;
258
259 if (input > 1)
260 input = 1;
261
262 if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
263 return count;
264
265 dbs_tuners_ins.ignore_nice = input;
266
267 /* we need to re-evaluate prev_cpu_idle */
268 for_each_online_cpu(j) {
269 struct cpu_dbs_info_s *dbs_info;
270 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
271 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
272 &dbs_info->prev_cpu_wall);
273 if (dbs_tuners_ins.ignore_nice)
274 dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
275 }
276 return count;
277}
278
279static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
280 const char *buf, size_t count)
281{
282 unsigned int input;
283 int ret;
284 ret = sscanf(buf, "%u", &input);
285
286 if (ret != 1)
287 return -EINVAL;
288
289 if (input > 100)
290 input = 100;
291
292 /* no need to test here if freq_step is zero as the user might actually
293 * want this, they would be crazy though :) */
294 dbs_tuners_ins.freq_step = input;
295 return count;
296}
297
298define_one_global_rw(sampling_rate);
299define_one_global_rw(sampling_down_factor);
300define_one_global_rw(up_threshold);
301define_one_global_rw(down_threshold);
302define_one_global_rw(ignore_nice_load);
303define_one_global_rw(freq_step);
304
305static struct attribute *dbs_attributes[] = {
306 &sampling_rate_min.attr,
307 &sampling_rate.attr,
308 &sampling_down_factor.attr,
309 &up_threshold.attr,
310 &down_threshold.attr,
311 &ignore_nice_load.attr,
312 &freq_step.attr,
313 NULL
314};
315
316static struct attribute_group dbs_attr_group = {
317 .attrs = dbs_attributes,
318 .name = "conservative",
319};
320
321/************************** sysfs end ************************/
322
323static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
324{
325 unsigned int load = 0;
326 unsigned int max_load = 0;
327 unsigned int freq_target;
328
329 struct cpufreq_policy *policy;
330 unsigned int j;
331
332 policy = this_dbs_info->cur_policy;
333
334 /*
335 * Every sampling_rate, we check, if current idle time is less
336 * than 20% (default), then we try to increase frequency
337 * Every sampling_rate*sampling_down_factor, we check, if current
338 * idle time is more than 80%, then we try to decrease frequency
339 *
340 * Any frequency increase takes it to the maximum frequency.
341 * Frequency reduction happens at minimum steps of
342 * 5% (default) of maximum frequency
343 */
344
345 /* Get Absolute Load */
346 for_each_cpu(j, policy->cpus) {
347 struct cpu_dbs_info_s *j_dbs_info;
348 cputime64_t cur_wall_time, cur_idle_time;
349 unsigned int idle_time, wall_time;
350 #ifdef CONFIG_KLOCWORK
351 cur_wall_time=0;
352 #endif
353
354 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
355
356 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
357
358 wall_time = (unsigned int)
359 (cur_wall_time - j_dbs_info->prev_cpu_wall);
360 j_dbs_info->prev_cpu_wall = cur_wall_time;
361
362 idle_time = (unsigned int)
363 (cur_idle_time - j_dbs_info->prev_cpu_idle);
364 j_dbs_info->prev_cpu_idle = cur_idle_time;
365
366 if (dbs_tuners_ins.ignore_nice) {
367 u64 cur_nice;
368 unsigned long cur_nice_jiffies;
369
370 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
371 j_dbs_info->prev_cpu_nice;
372 /*
373 * Assumption: nice time between sampling periods will
374 * be less than 2^32 jiffies for 32 bit sys
375 */
376 cur_nice_jiffies = (unsigned long)
377 cputime64_to_jiffies64(cur_nice);
378
379 j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
380 idle_time += jiffies_to_usecs(cur_nice_jiffies);
381 }
382
383 if (unlikely(!wall_time || wall_time < idle_time))
384 continue;
385
386 load = 100 * (wall_time - idle_time) / wall_time;
387
388 if (load > max_load)
389 max_load = load;
390 }
391
392 /*
393 * break out if we 'cannot' reduce the speed as the user might
394 * want freq_step to be zero
395 */
396 if (dbs_tuners_ins.freq_step == 0)
397 return;
398
399 /* Check for frequency increase */
400 if (max_load > dbs_tuners_ins.up_threshold) {
401 this_dbs_info->down_skip = 0;
402
403 /* if we are already at full speed then break out early */
404 if (this_dbs_info->requested_freq == policy->max)
405 return;
406
407 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
408
409 /* max freq cannot be less than 100. But who knows.... */
410 if (unlikely(freq_target == 0))
411 freq_target = 5;
412
413 this_dbs_info->requested_freq += freq_target;
414 if (this_dbs_info->requested_freq > policy->max)
415 this_dbs_info->requested_freq = policy->max;
416
417 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
418 CPUFREQ_RELATION_H);
419 return;
420 }
421
422 /*
423 * The optimal frequency is the frequency that is the lowest that
424 * can support the current CPU usage without triggering the up
425 * policy. To be safe, we focus 10 points under the threshold.
426 */
427 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
428 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
429
430 this_dbs_info->requested_freq -= freq_target;
431 if (this_dbs_info->requested_freq < policy->min)
432 this_dbs_info->requested_freq = policy->min;
433
434 /*
435 * if we cannot reduce the frequency anymore, break out early
436 */
437 if (policy->cur == policy->min)
438 return;
439
440 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
441 CPUFREQ_RELATION_H);
442 return;
443 }
444}
445
446static void do_dbs_timer(struct work_struct *work)
447{
448 struct cpu_dbs_info_s *dbs_info =
449 container_of(work, struct cpu_dbs_info_s, work.work);
450 unsigned int cpu = dbs_info->cpu;
451
452 /* We want all CPUs to do sampling nearly on same jiffy */
453 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
454
455 delay -= jiffies % delay;
456
457 mutex_lock(&dbs_info->timer_mutex);
458
459 dbs_check_cpu(dbs_info);
460
461 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
462 mutex_unlock(&dbs_info->timer_mutex);
463}
464
465static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
466{
467 /* We want all CPUs to do sampling nearly on same jiffy */
468 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
469 delay -= jiffies % delay;
470
471 dbs_info->enable = 1;
472 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
473 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
474}
475
476static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
477{
478 dbs_info->enable = 0;
479 cancel_delayed_work_sync(&dbs_info->work);
480}
481
482static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
483 unsigned int event)
484{
485 unsigned int cpu = policy->cpu;
486 struct cpu_dbs_info_s *this_dbs_info;
487 unsigned int j;
488 int rc;
489
490 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
491
492 switch (event) {
493 case CPUFREQ_GOV_START:
494 if ((!cpu_online(cpu)) || (!policy->cur))
495 return -EINVAL;
496
497 mutex_lock(&dbs_mutex);
498
499 for_each_cpu(j, policy->cpus) {
500 struct cpu_dbs_info_s *j_dbs_info;
501 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
502 j_dbs_info->cur_policy = policy;
503
504 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
505 &j_dbs_info->prev_cpu_wall);
506 if (dbs_tuners_ins.ignore_nice)
507 j_dbs_info->prev_cpu_nice =
508 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
509 }
510 this_dbs_info->down_skip = 0;
511 this_dbs_info->requested_freq = policy->cur;
512
513 mutex_init(&this_dbs_info->timer_mutex);
514 dbs_enable++;
515 /*
516 * Start the timerschedule work, when this governor
517 * is used for first time
518 */
519 if (dbs_enable == 1) {
520 unsigned int latency;
521 /* policy latency is in nS. Convert it to uS first */
522 latency = policy->cpuinfo.transition_latency / 1000;
523 if (latency == 0)
524 latency = 1;
525
526 rc = sysfs_create_group(cpufreq_global_kobject,
527 &dbs_attr_group);
528 if (rc) {
529 mutex_unlock(&dbs_mutex);
530 return rc;
531 }
532
533 /*
534 * conservative does not implement micro like ondemand
535 * governor, thus we are bound to jiffes/HZ
536 */
537 min_sampling_rate =
538 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
539 /* Bring kernel and HW constraints together */
540 min_sampling_rate = max(min_sampling_rate,
541 MIN_LATENCY_MULTIPLIER * latency);
542 dbs_tuners_ins.sampling_rate =
543 max(min_sampling_rate,
544 latency * LATENCY_MULTIPLIER);
545
546 cpufreq_register_notifier(
547 &dbs_cpufreq_notifier_block,
548 CPUFREQ_TRANSITION_NOTIFIER);
549 }
550 mutex_unlock(&dbs_mutex);
551
552 dbs_timer_init(this_dbs_info);
553
554 break;
555
556 case CPUFREQ_GOV_STOP:
557 dbs_timer_exit(this_dbs_info);
558
559 mutex_lock(&dbs_mutex);
560 dbs_enable--;
561 mutex_destroy(&this_dbs_info->timer_mutex);
562
563 /*
564 * Stop the timerschedule work, when this governor
565 * is used for first time
566 */
567 if (dbs_enable == 0)
568 cpufreq_unregister_notifier(
569 &dbs_cpufreq_notifier_block,
570 CPUFREQ_TRANSITION_NOTIFIER);
571
572 mutex_unlock(&dbs_mutex);
573 if (!dbs_enable)
574 sysfs_remove_group(cpufreq_global_kobject,
575 &dbs_attr_group);
576
577 break;
578
579 case CPUFREQ_GOV_LIMITS:
580 mutex_lock(&this_dbs_info->timer_mutex);
581 if (policy->max < this_dbs_info->cur_policy->cur)
582 __cpufreq_driver_target(
583 this_dbs_info->cur_policy,
584 policy->max, CPUFREQ_RELATION_H);
585 else if (policy->min > this_dbs_info->cur_policy->cur)
586 __cpufreq_driver_target(
587 this_dbs_info->cur_policy,
588 policy->min, CPUFREQ_RELATION_L);
589 mutex_unlock(&this_dbs_info->timer_mutex);
590
591 break;
592 }
593 return 0;
594}
595
596#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
597static
598#endif
599struct cpufreq_governor cpufreq_gov_conservative = {
600 .name = "conservative",
601 .governor = cpufreq_governor_dbs,
602 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
603 .owner = THIS_MODULE,
604};
605
606static int __init cpufreq_gov_dbs_init(void)
607{
608 return cpufreq_register_governor(&cpufreq_gov_conservative);
609}
610
611static void __exit cpufreq_gov_dbs_exit(void)
612{
613 cpufreq_unregister_governor(&cpufreq_gov_conservative);
614}
615
616
617MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
618MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
619 "Low Latency Frequency Transition capable processors "
620 "optimised for use in a battery environment");
621MODULE_LICENSE("GPL");
622
623#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
624fs_initcall(cpufreq_gov_dbs_init);
625#else
626module_init(cpufreq_gov_dbs_init);
627#endif
628module_exit(cpufreq_gov_dbs_exit);