yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* One way encryption based on SHA256 sum. |
| 2 | Copyright (C) 2007, 2009 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2007. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, write to the Free |
| 18 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 19 | 02111-1307 USA. */ |
| 20 | |
| 21 | #include <assert.h> |
| 22 | #include <errno.h> |
| 23 | #include <stdbool.h> |
| 24 | #include <stdlib.h> |
| 25 | #include <string.h> |
| 26 | #include <sys/param.h> |
| 27 | |
| 28 | #include "sha256.h" |
| 29 | #include "libcrypt.h" |
| 30 | |
| 31 | /* Define our magic string to mark salt for SHA256 "encryption" |
| 32 | replacement. */ |
| 33 | static const char sha256_salt_prefix[] = "$5$"; |
| 34 | |
| 35 | /* Prefix for optional rounds specification. */ |
| 36 | static const char sha256_rounds_prefix[] = "rounds="; |
| 37 | |
| 38 | /* Maximum salt string length. */ |
| 39 | #define SALT_LEN_MAX 16 |
| 40 | /* Default number of rounds if not explicitly specified. */ |
| 41 | #define ROUNDS_DEFAULT 5000 |
| 42 | /* Minimum number of rounds. */ |
| 43 | #define ROUNDS_MIN 1000 |
| 44 | /* Maximum number of rounds. */ |
| 45 | #define ROUNDS_MAX 999999999 |
| 46 | |
| 47 | /* Table with characters for base64 transformation. */ |
| 48 | static const char b64t[64] = |
| 49 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
| 50 | |
| 51 | #define B64_FROM_24BIT(b2, b1, b0, steps) \ |
| 52 | { \ |
| 53 | int n = (steps); \ |
| 54 | unsigned int w = ((b2) << 16) | ((b1) << 8) | (b0); \ |
| 55 | while (n-- > 0 && buflen > 0) \ |
| 56 | { \ |
| 57 | *cp++ = b64t[w & 0x3f]; \ |
| 58 | --buflen; \ |
| 59 | w >>= 6; \ |
| 60 | } \ |
| 61 | } |
| 62 | |
| 63 | char * |
| 64 | __sha256_crypt_r (const char *key, |
| 65 | const char *salt, |
| 66 | char *buffer, |
| 67 | int buflen) |
| 68 | { |
| 69 | unsigned char alt_result[32] |
| 70 | __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); |
| 71 | unsigned char temp_result[32] |
| 72 | __attribute__ ((__aligned__ (__alignof__ (uint32_t)))); |
| 73 | size_t salt_len; |
| 74 | size_t key_len; |
| 75 | size_t cnt; |
| 76 | char *cp; |
| 77 | char *copied_key = NULL; |
| 78 | char *copied_salt = NULL; |
| 79 | char *p_bytes; |
| 80 | char *s_bytes; |
| 81 | /* Default number of rounds. */ |
| 82 | size_t rounds = ROUNDS_DEFAULT; |
| 83 | bool rounds_custom = false; |
| 84 | |
| 85 | /* Find beginning of salt string. The prefix should normally always |
| 86 | be present. Just in case it is not. */ |
| 87 | if (strncmp (sha256_salt_prefix, salt, sizeof (sha256_salt_prefix) - 1) == 0) |
| 88 | /* Skip salt prefix. */ |
| 89 | salt += sizeof (sha256_salt_prefix) - 1; |
| 90 | |
| 91 | if (strncmp (salt, sha256_rounds_prefix, sizeof (sha256_rounds_prefix) - 1) |
| 92 | == 0) |
| 93 | { |
| 94 | const char *num = salt + sizeof (sha256_rounds_prefix) - 1; |
| 95 | char *endp; |
| 96 | unsigned long int srounds = strtoul (num, &endp, 10); |
| 97 | if (*endp == '$') |
| 98 | { |
| 99 | salt = endp + 1; |
| 100 | rounds = MAX (ROUNDS_MIN, MIN (srounds, ROUNDS_MAX)); |
| 101 | rounds_custom = true; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | salt_len = MIN (strcspn (salt, "$"), SALT_LEN_MAX); |
| 106 | key_len = strlen (key); |
| 107 | |
| 108 | if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) |
| 109 | { |
| 110 | char *tmp = (char *) alloca (key_len + __alignof__ (uint32_t)); |
| 111 | key = copied_key = |
| 112 | memcpy (tmp + __alignof__ (uint32_t) |
| 113 | - (tmp - (char *) 0) % __alignof__ (uint32_t), |
| 114 | key, key_len); |
| 115 | assert ((key - (char *) 0) % __alignof__ (uint32_t) == 0); |
| 116 | } |
| 117 | |
| 118 | if ((salt - (char *) 0) % __alignof__ (uint32_t) != 0) |
| 119 | { |
| 120 | char *tmp = (char *) alloca (salt_len + __alignof__ (uint32_t)); |
| 121 | salt = copied_salt = |
| 122 | memcpy (tmp + __alignof__ (uint32_t) |
| 123 | - (tmp - (char *) 0) % __alignof__ (uint32_t), |
| 124 | salt, salt_len); |
| 125 | assert ((salt - (char *) 0) % __alignof__ (uint32_t) == 0); |
| 126 | } |
| 127 | |
| 128 | struct sha256_ctx ctx; |
| 129 | struct sha256_ctx alt_ctx; |
| 130 | |
| 131 | /* Prepare for the real work. */ |
| 132 | __sha256_init_ctx (&ctx); |
| 133 | |
| 134 | /* Add the key string. */ |
| 135 | __sha256_process_bytes (key, key_len, &ctx); |
| 136 | |
| 137 | /* The last part is the salt string. This must be at most 16 |
| 138 | characters and it ends at the first `$' character. */ |
| 139 | __sha256_process_bytes (salt, salt_len, &ctx); |
| 140 | |
| 141 | |
| 142 | /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The |
| 143 | final result will be added to the first context. */ |
| 144 | __sha256_init_ctx (&alt_ctx); |
| 145 | |
| 146 | /* Add key. */ |
| 147 | __sha256_process_bytes (key, key_len, &alt_ctx); |
| 148 | |
| 149 | /* Add salt. */ |
| 150 | __sha256_process_bytes (salt, salt_len, &alt_ctx); |
| 151 | |
| 152 | /* Add key again. */ |
| 153 | __sha256_process_bytes (key, key_len, &alt_ctx); |
| 154 | |
| 155 | /* Now get result of this (32 bytes) and add it to the other |
| 156 | context. */ |
| 157 | __sha256_finish_ctx (&alt_ctx, alt_result); |
| 158 | |
| 159 | /* Add for any character in the key one byte of the alternate sum. */ |
| 160 | for (cnt = key_len; cnt > 32; cnt -= 32) |
| 161 | __sha256_process_bytes (alt_result, 32, &ctx); |
| 162 | __sha256_process_bytes (alt_result, cnt, &ctx); |
| 163 | |
| 164 | /* Take the binary representation of the length of the key and for every |
| 165 | 1 add the alternate sum, for every 0 the key. */ |
| 166 | for (cnt = key_len; cnt > 0; cnt >>= 1) |
| 167 | if ((cnt & 1) != 0) |
| 168 | __sha256_process_bytes (alt_result, 32, &ctx); |
| 169 | else |
| 170 | __sha256_process_bytes (key, key_len, &ctx); |
| 171 | |
| 172 | /* Create intermediate result. */ |
| 173 | __sha256_finish_ctx (&ctx, alt_result); |
| 174 | |
| 175 | /* Start computation of P byte sequence. */ |
| 176 | __sha256_init_ctx (&alt_ctx); |
| 177 | |
| 178 | /* For every character in the password add the entire password. */ |
| 179 | for (cnt = 0; cnt < key_len; ++cnt) |
| 180 | __sha256_process_bytes (key, key_len, &alt_ctx); |
| 181 | |
| 182 | /* Finish the digest. */ |
| 183 | __sha256_finish_ctx (&alt_ctx, temp_result); |
| 184 | |
| 185 | /* Create byte sequence P. */ |
| 186 | cp = p_bytes = alloca (key_len); |
| 187 | for (cnt = key_len; cnt >= 32; cnt -= 32) |
| 188 | cp = mempcpy (cp, temp_result, 32); |
| 189 | memcpy (cp, temp_result, cnt); |
| 190 | |
| 191 | /* Start computation of S byte sequence. */ |
| 192 | __sha256_init_ctx (&alt_ctx); |
| 193 | |
| 194 | /* For every character in the password add the entire password. */ |
| 195 | for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) |
| 196 | __sha256_process_bytes (salt, salt_len, &alt_ctx); |
| 197 | |
| 198 | /* Finish the digest. */ |
| 199 | __sha256_finish_ctx (&alt_ctx, temp_result); |
| 200 | |
| 201 | /* Create byte sequence S. */ |
| 202 | cp = s_bytes = alloca (salt_len); |
| 203 | for (cnt = salt_len; cnt >= 32; cnt -= 32) |
| 204 | cp = mempcpy (cp, temp_result, 32); |
| 205 | memcpy (cp, temp_result, cnt); |
| 206 | |
| 207 | /* Repeatedly run the collected hash value through SHA256 to burn |
| 208 | CPU cycles. */ |
| 209 | for (cnt = 0; cnt < rounds; ++cnt) |
| 210 | { |
| 211 | /* New context. */ |
| 212 | __sha256_init_ctx (&ctx); |
| 213 | |
| 214 | /* Add key or last result. */ |
| 215 | if ((cnt & 1) != 0) |
| 216 | __sha256_process_bytes (p_bytes, key_len, &ctx); |
| 217 | else |
| 218 | __sha256_process_bytes (alt_result, 32, &ctx); |
| 219 | |
| 220 | /* Add salt for numbers not divisible by 3. */ |
| 221 | if (cnt % 3 != 0) |
| 222 | __sha256_process_bytes (s_bytes, salt_len, &ctx); |
| 223 | |
| 224 | /* Add key for numbers not divisible by 7. */ |
| 225 | if (cnt % 7 != 0) |
| 226 | __sha256_process_bytes (p_bytes, key_len, &ctx); |
| 227 | |
| 228 | /* Add key or last result. */ |
| 229 | if ((cnt & 1) != 0) |
| 230 | __sha256_process_bytes (alt_result, 32, &ctx); |
| 231 | else |
| 232 | __sha256_process_bytes (p_bytes, key_len, &ctx); |
| 233 | |
| 234 | /* Create intermediate result. */ |
| 235 | __sha256_finish_ctx (&ctx, alt_result); |
| 236 | } |
| 237 | |
| 238 | /* Now we can construct the result string. It consists of three |
| 239 | parts. */ |
| 240 | cp = stpncpy (buffer, sha256_salt_prefix, MAX (0, buflen)); |
| 241 | buflen -= sizeof (sha256_salt_prefix) - 1; |
| 242 | |
| 243 | if (rounds_custom) |
| 244 | { |
| 245 | int n = snprintf (cp, MAX (0, buflen), "%s%zu$", |
| 246 | sha256_rounds_prefix, rounds); |
| 247 | cp += n; |
| 248 | buflen -= n; |
| 249 | } |
| 250 | |
| 251 | cp = stpncpy (cp, salt, MIN ((size_t) MAX (0, buflen), salt_len)); |
| 252 | buflen -= MIN ((size_t) MAX (0, buflen), salt_len); |
| 253 | |
| 254 | if (buflen > 0) |
| 255 | { |
| 256 | *cp++ = '$'; |
| 257 | --buflen; |
| 258 | } |
| 259 | |
| 260 | B64_FROM_24BIT (alt_result[0], alt_result[10], alt_result[20], 4); |
| 261 | B64_FROM_24BIT (alt_result[21], alt_result[1], alt_result[11], 4); |
| 262 | B64_FROM_24BIT (alt_result[12], alt_result[22], alt_result[2], 4); |
| 263 | B64_FROM_24BIT (alt_result[3], alt_result[13], alt_result[23], 4); |
| 264 | B64_FROM_24BIT (alt_result[24], alt_result[4], alt_result[14], 4); |
| 265 | B64_FROM_24BIT (alt_result[15], alt_result[25], alt_result[5], 4); |
| 266 | B64_FROM_24BIT (alt_result[6], alt_result[16], alt_result[26], 4); |
| 267 | B64_FROM_24BIT (alt_result[27], alt_result[7], alt_result[17], 4); |
| 268 | B64_FROM_24BIT (alt_result[18], alt_result[28], alt_result[8], 4); |
| 269 | B64_FROM_24BIT (alt_result[9], alt_result[19], alt_result[29], 4); |
| 270 | B64_FROM_24BIT (0, alt_result[31], alt_result[30], 3); |
| 271 | if (buflen <= 0) |
| 272 | { |
| 273 | __set_errno (ERANGE); |
| 274 | buffer = NULL; |
| 275 | } |
| 276 | else |
| 277 | *cp = '\0'; /* Terminate the string. */ |
| 278 | |
| 279 | /* Clear the buffer for the intermediate result so that people |
| 280 | attaching to processes or reading core dumps cannot get any |
| 281 | information. We do it in this way to clear correct_words[] |
| 282 | inside the SHA256 implementation as well. */ |
| 283 | __sha256_init_ctx (&ctx); |
| 284 | __sha256_finish_ctx (&ctx, alt_result); |
| 285 | memset (&ctx, '\0', sizeof (ctx)); |
| 286 | memset (&alt_ctx, '\0', sizeof (alt_ctx)); |
| 287 | |
| 288 | memset (temp_result, '\0', sizeof (temp_result)); |
| 289 | memset (p_bytes, '\0', key_len); |
| 290 | memset (s_bytes, '\0', salt_len); |
| 291 | if (copied_key != NULL) |
| 292 | memset (copied_key, '\0', key_len); |
| 293 | if (copied_salt != NULL) |
| 294 | memset (copied_salt, '\0', salt_len); |
| 295 | |
| 296 | return buffer; |
| 297 | } |
| 298 | |
| 299 | static char *buffer; |
| 300 | |
| 301 | /* This entry point is equivalent to the `crypt' function in Unix |
| 302 | libcs. */ |
| 303 | char * |
| 304 | __sha256_crypt (const unsigned char *key, const unsigned char *salt) |
| 305 | { |
| 306 | /* We don't want to have an arbitrary limit in the size of the |
| 307 | password. We can compute an upper bound for the size of the |
| 308 | result in advance and so we can prepare the buffer we pass to |
| 309 | `sha256_crypt_r'. */ |
| 310 | static int buflen; |
| 311 | int needed = (sizeof (sha256_salt_prefix) - 1 |
| 312 | + sizeof (sha256_rounds_prefix) + 9 + 1 |
| 313 | + strlen (salt) + 1 + 43 + 1); |
| 314 | |
| 315 | if (buflen < needed) |
| 316 | { |
| 317 | char *new_buffer = (char *) realloc (buffer, needed); |
| 318 | if (new_buffer == NULL) |
| 319 | return NULL; |
| 320 | |
| 321 | buffer = new_buffer; |
| 322 | buflen = needed; |
| 323 | } |
| 324 | |
| 325 | return __sha256_crypt_r ((const char *) key, (const char *) salt, buffer, buflen); |
| 326 | } |