blob: 6c5cf854f0303763163ce8b5c78c2185b0fb4ef8 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/mm.h>
10#include <linux/gfp.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/swapops.h>
14#include <linux/init.h>
15#include <linux/pagemap.h>
16#include <linux/backing-dev.h>
17#include <linux/pagevec.h>
18#include <linux/migrate.h>
19#include <linux/page_cgroup.h>
20
21#include <asm/pgtable.h>
22
23/*
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list.
26 */
27static const struct address_space_operations swap_aops = {
28 .writepage = swap_writepage,
29 .set_page_dirty = __set_page_dirty_no_writeback,
30 .migratepage = migrate_page,
31};
32
33static struct backing_dev_info swap_backing_dev_info = {
34 .name = "swap",
35 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
36};
37
38struct address_space swapper_space = {
39 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
40 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
41 .a_ops = &swap_aops,
42 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
43 .backing_dev_info = &swap_backing_dev_info,
44};
45
46#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
47
48static struct {
49 unsigned long add_total;
50 unsigned long del_total;
51 unsigned long find_success;
52 unsigned long find_total;
53} swap_cache_info;
54
55void show_swap_cache_info(void)
56{
57 printk("%lu pages in swap cache\n", total_swapcache_pages);
58 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
59 swap_cache_info.add_total, swap_cache_info.del_total,
60 swap_cache_info.find_success, swap_cache_info.find_total);
61 printk("Free swap = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
62 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
63}
64
65/*
66 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
67 * but sets SwapCache flag and private instead of mapping and index.
68 */
69static int __add_to_swap_cache(struct page *page, swp_entry_t entry)
70{
71 int error;
72
73 VM_BUG_ON(!PageLocked(page));
74 VM_BUG_ON(PageSwapCache(page));
75 VM_BUG_ON(!PageSwapBacked(page));
76
77 page_cache_get(page);
78 SetPageSwapCache(page);
79 set_page_private(page, entry.val);
80
81 spin_lock_irq(&swapper_space.tree_lock);
82 error = radix_tree_insert(&swapper_space.page_tree, entry.val, page);
83 if (likely(!error)) {
84 total_swapcache_pages++;
85#ifndef CONFIG_LIMIT_PAGE_CACHE
86 __inc_zone_page_state(page, NR_FILE_PAGES);
87#endif
88 INC_CACHE_INFO(add_total);
89 }
90 spin_unlock_irq(&swapper_space.tree_lock);
91
92 if (unlikely(error)) {
93 /*
94 * Only the context which have set SWAP_HAS_CACHE flag
95 * would call add_to_swap_cache().
96 * So add_to_swap_cache() doesn't returns -EEXIST.
97 */
98 VM_BUG_ON(error == -EEXIST);
99 set_page_private(page, 0UL);
100 ClearPageSwapCache(page);
101 page_cache_release(page);
102 }
103
104 return error;
105}
106
107
108int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
109{
110 int error;
111
112 error = radix_tree_preload(gfp_mask);
113 if (!error) {
114 error = __add_to_swap_cache(page, entry);
115 radix_tree_preload_end();
116 }
117 return error;
118}
119
120/*
121 * This must be called only on pages that have
122 * been verified to be in the swap cache.
123 */
124void __delete_from_swap_cache(struct page *page)
125{
126 VM_BUG_ON(!PageLocked(page));
127 VM_BUG_ON(!PageSwapCache(page));
128 VM_BUG_ON(PageWriteback(page));
129
130 radix_tree_delete(&swapper_space.page_tree, page_private(page));
131 set_page_private(page, 0);
132 ClearPageSwapCache(page);
133 total_swapcache_pages--;
134#ifndef CONFIG_LIMIT_PAGE_CACHE
135 __dec_zone_page_state(page, NR_FILE_PAGES);
136#endif
137 INC_CACHE_INFO(del_total);
138}
139
140/**
141 * add_to_swap - allocate swap space for a page
142 * @page: page we want to move to swap
143 *
144 * Allocate swap space for the page and add the page to the
145 * swap cache. Caller needs to hold the page lock.
146 */
147int add_to_swap(struct page *page)
148{
149 swp_entry_t entry;
150 int err;
151
152 VM_BUG_ON(!PageLocked(page));
153 VM_BUG_ON(!PageUptodate(page));
154
155 entry = get_swap_page();
156 if (!entry.val)
157 return 0;
158
159 if (unlikely(PageTransHuge(page)))
160 if (unlikely(split_huge_page(page))) {
161 swapcache_free(entry, NULL);
162 return 0;
163 }
164
165 /*
166 * Radix-tree node allocations from PF_MEMALLOC contexts could
167 * completely exhaust the page allocator. __GFP_NOMEMALLOC
168 * stops emergency reserves from being allocated.
169 *
170 * TODO: this could cause a theoretical memory reclaim
171 * deadlock in the swap out path.
172 */
173 /*
174 * Add it to the swap cache and mark it dirty
175 */
176 err = add_to_swap_cache(page, entry,
177 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
178
179 if (!err) { /* Success */
180 SetPageDirty(page);
181 return 1;
182 } else { /* -ENOMEM radix-tree allocation failure */
183 /*
184 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
185 * clear SWAP_HAS_CACHE flag.
186 */
187 swapcache_free(entry, NULL);
188 return 0;
189 }
190}
191
192/*
193 * This must be called only on pages that have
194 * been verified to be in the swap cache and locked.
195 * It will never put the page into the free list,
196 * the caller has a reference on the page.
197 */
198void delete_from_swap_cache(struct page *page)
199{
200 swp_entry_t entry;
201
202 entry.val = page_private(page);
203
204 spin_lock_irq(&swapper_space.tree_lock);
205 __delete_from_swap_cache(page);
206 spin_unlock_irq(&swapper_space.tree_lock);
207
208 swapcache_free(entry, page);
209 page_cache_release(page);
210}
211
212/*
213 * If we are the only user, then try to free up the swap cache.
214 *
215 * Its ok to check for PageSwapCache without the page lock
216 * here because we are going to recheck again inside
217 * try_to_free_swap() _with_ the lock.
218 * - Marcelo
219 */
220static inline void free_swap_cache(struct page *page)
221{
222 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
223 try_to_free_swap(page);
224 unlock_page(page);
225 }
226}
227
228/*
229 * Perform a free_page(), also freeing any swap cache associated with
230 * this page if it is the last user of the page.
231 */
232void free_page_and_swap_cache(struct page *page)
233{
234 free_swap_cache(page);
235 page_cache_release(page);
236}
237
238/*
239 * Passed an array of pages, drop them all from swapcache and then release
240 * them. They are removed from the LRU and freed if this is their last use.
241 */
242void free_pages_and_swap_cache(struct page **pages, int nr)
243{
244 struct page **pagep = pages;
245
246 lru_add_drain();
247 while (nr) {
248 int todo = min(nr, PAGEVEC_SIZE);
249 int i;
250
251 for (i = 0; i < todo; i++)
252 free_swap_cache(pagep[i]);
253 release_pages(pagep, todo, 0);
254 pagep += todo;
255 nr -= todo;
256 }
257}
258
259/*
260 * Lookup a swap entry in the swap cache. A found page will be returned
261 * unlocked and with its refcount incremented - we rely on the kernel
262 * lock getting page table operations atomic even if we drop the page
263 * lock before returning.
264 */
265struct page * lookup_swap_cache(swp_entry_t entry)
266{
267 struct page *page;
268
269 page = find_get_page(&swapper_space, entry.val);
270
271 if (page)
272 INC_CACHE_INFO(find_success);
273
274 INC_CACHE_INFO(find_total);
275 return page;
276}
277
278/*
279 * Locate a page of swap in physical memory, reserving swap cache space
280 * and reading the disk if it is not already cached.
281 * A failure return means that either the page allocation failed or that
282 * the swap entry is no longer in use.
283 */
284struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
285 struct vm_area_struct *vma, unsigned long addr)
286{
287 struct page *found_page, *new_page = NULL;
288 int err;
289
290 do {
291 /*
292 * First check the swap cache. Since this is normally
293 * called after lookup_swap_cache() failed, re-calling
294 * that would confuse statistics.
295 */
296 found_page = find_get_page(&swapper_space, entry.val);
297 if (found_page)
298 break;
299
300 /*
301 * Get a new page to read into from swap.
302 */
303 if (!new_page) {
304 new_page = alloc_page_vma(gfp_mask, vma, addr);
305 if (!new_page)
306 break; /* Out of memory */
307 }
308
309 /*
310 * call radix_tree_preload() while we can wait.
311 */
312 err = radix_tree_preload(gfp_mask & GFP_KERNEL);
313 if (err)
314 break;
315
316 /*
317 * Swap entry may have been freed since our caller observed it.
318 */
319 err = swapcache_prepare(entry);
320 if (err == -EEXIST) {
321 radix_tree_preload_end();
322 /*
323 * We might race against get_swap_page() and stumble
324 * across a SWAP_HAS_CACHE swap_map entry whose page
325 * has not been brought into the swapcache yet, while
326 * the other end is scheduled away waiting on discard
327 * I/O completion at scan_swap_map().
328 *
329 * In order to avoid turning this transitory state
330 * into a permanent loop around this -EEXIST case
331 * if !CONFIG_PREEMPT and the I/O completion happens
332 * to be waiting on the CPU waitqueue where we are now
333 * busy looping, we just conditionally invoke the
334 * scheduler here, if there are some more important
335 * tasks to run.
336 */
337 cond_resched();
338 continue;
339 }
340 if (err) { /* swp entry is obsolete ? */
341 radix_tree_preload_end();
342 break;
343 }
344
345 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
346 __set_page_locked(new_page);
347 SetPageSwapBacked(new_page);
348 err = __add_to_swap_cache(new_page, entry);
349 if (likely(!err)) {
350 radix_tree_preload_end();
351 /*
352 * Initiate read into locked page and return.
353 */
354 lru_cache_add_anon(new_page);
355 swap_readpage(new_page);
356 return new_page;
357 }
358 radix_tree_preload_end();
359 ClearPageSwapBacked(new_page);
360 __clear_page_locked(new_page);
361 /*
362 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
363 * clear SWAP_HAS_CACHE flag.
364 */
365 swapcache_free(entry, NULL);
366 } while (err != -ENOMEM);
367
368 if (new_page)
369 page_cache_release(new_page);
370 return found_page;
371}
372
373/**
374 * swapin_readahead - swap in pages in hope we need them soon
375 * @entry: swap entry of this memory
376 * @gfp_mask: memory allocation flags
377 * @vma: user vma this address belongs to
378 * @addr: target address for mempolicy
379 *
380 * Returns the struct page for entry and addr, after queueing swapin.
381 *
382 * Primitive swap readahead code. We simply read an aligned block of
383 * (1 << page_cluster) entries in the swap area. This method is chosen
384 * because it doesn't cost us any seek time. We also make sure to queue
385 * the 'original' request together with the readahead ones...
386 *
387 * This has been extended to use the NUMA policies from the mm triggering
388 * the readahead.
389 *
390 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
391 */
392struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
393 struct vm_area_struct *vma, unsigned long addr)
394{
395 struct page *page;
396 unsigned long offset = swp_offset(entry);
397 unsigned long start_offset, end_offset;
398 unsigned long mask = (1UL << page_cluster) - 1;
399
400 /* Read a page_cluster sized and aligned cluster around offset. */
401 start_offset = offset & ~mask;
402 end_offset = offset | mask;
403 if (!start_offset) /* First page is swap header. */
404 start_offset++;
405
406 for (offset = start_offset; offset <= end_offset ; offset++) {
407 /* Ok, do the async read-ahead now */
408 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
409 gfp_mask, vma, addr);
410 if (!page)
411 continue;
412 page_cache_release(page);
413 }
414 lru_add_drain(); /* Push any new pages onto the LRU now */
415 return read_swap_cache_async(entry, gfp_mask, vma, addr);
416}