blob: 924af66bca94d16d20365d13e33391f456403a03 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64#define pr_fmt(fmt) "TCP: " fmt
65
66#include <linux/mm.h>
67#include <linux/slab.h>
68#include <linux/module.h>
69#include <linux/sysctl.h>
70#include <linux/kernel.h>
71#include <net/dst.h>
72#include <net/tcp.h>
73#include <net/inet_common.h>
74#include <linux/ipsec.h>
75#include <asm/unaligned.h>
76#include <net/netdma.h>
77#include <net/SI/errno_track.h>
78#include <net/SI/sock_track.h>
79
80
81int sysctl_tcp_timestamps __read_mostly = 1;
82int sysctl_tcp_window_scaling __read_mostly = 1;
83int sysctl_tcp_sack __read_mostly = 1;
84int sysctl_tcp_fack __read_mostly = 1;
85int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
86EXPORT_SYMBOL(sysctl_tcp_reordering);
87int sysctl_tcp_ecn __read_mostly = 2;
88EXPORT_SYMBOL(sysctl_tcp_ecn);
89int sysctl_tcp_dsack __read_mostly = 1;
90int sysctl_tcp_app_win __read_mostly = 31;
91int sysctl_tcp_adv_win_scale __read_mostly = 1;
92EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
93
94/* rfc5961 challenge ack rate limiting */
95int sysctl_tcp_challenge_ack_limit = 100;
96
97int sysctl_tcp_stdurg __read_mostly;
98int sysctl_tcp_rfc1337 __read_mostly;
99int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
100int sysctl_tcp_frto __read_mostly = 2;
101int sysctl_tcp_frto_response __read_mostly;
102int sysctl_tcp_nometrics_save __read_mostly;
103
104int sysctl_tcp_thin_dupack __read_mostly;
105
106int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
107int sysctl_tcp_abc __read_mostly;
108
109#define FLAG_DATA 0x01 /* Incoming frame contained data. */
110#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
111#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
112#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
113#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
114#define FLAG_DATA_SACKED 0x20 /* New SACK. */
115#define FLAG_ECE 0x40 /* ECE in this ACK */
116#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
117#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
118#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
119#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
120#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
121#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
122#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
123
124#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
125#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
126#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
127#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
128#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
129
130#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
131#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
132
133/* Adapt the MSS value used to make delayed ack decision to the
134 * real world.
135 */
136static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
137{
138 struct inet_connection_sock *icsk = inet_csk(sk);
139 const unsigned int lss = icsk->icsk_ack.last_seg_size;
140 unsigned int len;
141
142 icsk->icsk_ack.last_seg_size = 0;
143
144 /* skb->len may jitter because of SACKs, even if peer
145 * sends good full-sized frames.
146 */
147 len = skb_shinfo(skb)->gso_size ? : skb->len;
148 if (len >= icsk->icsk_ack.rcv_mss) {
149 icsk->icsk_ack.rcv_mss = len;
150 } else {
151 /* Otherwise, we make more careful check taking into account,
152 * that SACKs block is variable.
153 *
154 * "len" is invariant segment length, including TCP header.
155 */
156 len += skb->data - skb_transport_header(skb);
157 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
158 /* If PSH is not set, packet should be
159 * full sized, provided peer TCP is not badly broken.
160 * This observation (if it is correct 8)) allows
161 * to handle super-low mtu links fairly.
162 */
163 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
164 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
165 /* Subtract also invariant (if peer is RFC compliant),
166 * tcp header plus fixed timestamp option length.
167 * Resulting "len" is MSS free of SACK jitter.
168 */
169 len -= tcp_sk(sk)->tcp_header_len;
170 icsk->icsk_ack.last_seg_size = len;
171 if (len == lss) {
172 icsk->icsk_ack.rcv_mss = len;
173 return;
174 }
175 }
176 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
177 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
178 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
179 }
180}
181
182static void tcp_incr_quickack(struct sock *sk)
183{
184 struct inet_connection_sock *icsk = inet_csk(sk);
185 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
186
187 if (quickacks == 0)
188 quickacks = 2;
189 if (quickacks > icsk->icsk_ack.quick)
190 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
191}
192
193static void tcp_enter_quickack_mode(struct sock *sk)
194{
195 struct inet_connection_sock *icsk = inet_csk(sk);
196 tcp_incr_quickack(sk);
197 icsk->icsk_ack.pingpong = 0;
198 icsk->icsk_ack.ato = TCP_ATO_MIN;
199}
200
201/* Send ACKs quickly, if "quick" count is not exhausted
202 * and the session is not interactive.
203 */
204
205static inline int tcp_in_quickack_mode(const struct sock *sk)
206{
207 const struct inet_connection_sock *icsk = inet_csk(sk);
208 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
209}
210
211static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
212{
213 if (tp->ecn_flags & TCP_ECN_OK)
214 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
215}
216
217static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
218{
219 if (tcp_hdr(skb)->cwr)
220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221}
222
223static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
224{
225 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
226}
227
228static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
229{
230 if (!(tp->ecn_flags & TCP_ECN_OK))
231 return;
232
233 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
234 case INET_ECN_NOT_ECT:
235 /* Funny extension: if ECT is not set on a segment,
236 * and we already seen ECT on a previous segment,
237 * it is probably a retransmit.
238 */
239 if (tp->ecn_flags & TCP_ECN_SEEN)
240 tcp_enter_quickack_mode((struct sock *)tp);
241 break;
242 case INET_ECN_CE:
243 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
244 /* fallinto */
245 default:
246 tp->ecn_flags |= TCP_ECN_SEEN;
247 }
248}
249
250static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
251{
252 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
253 tp->ecn_flags &= ~TCP_ECN_OK;
254}
255
256static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
257{
258 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
259 tp->ecn_flags &= ~TCP_ECN_OK;
260}
261
262static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
263{
264 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
265 return 1;
266 return 0;
267}
268
269/* Buffer size and advertised window tuning.
270 *
271 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
272 */
273
274static void tcp_fixup_sndbuf(struct sock *sk)
275{
276 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
277
278 sndmem *= TCP_INIT_CWND;
279 if (sk->sk_sndbuf < sndmem)
280 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
281}
282
283/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
284 *
285 * All tcp_full_space() is split to two parts: "network" buffer, allocated
286 * forward and advertised in receiver window (tp->rcv_wnd) and
287 * "application buffer", required to isolate scheduling/application
288 * latencies from network.
289 * window_clamp is maximal advertised window. It can be less than
290 * tcp_full_space(), in this case tcp_full_space() - window_clamp
291 * is reserved for "application" buffer. The less window_clamp is
292 * the smoother our behaviour from viewpoint of network, but the lower
293 * throughput and the higher sensitivity of the connection to losses. 8)
294 *
295 * rcv_ssthresh is more strict window_clamp used at "slow start"
296 * phase to predict further behaviour of this connection.
297 * It is used for two goals:
298 * - to enforce header prediction at sender, even when application
299 * requires some significant "application buffer". It is check #1.
300 * - to prevent pruning of receive queue because of misprediction
301 * of receiver window. Check #2.
302 *
303 * The scheme does not work when sender sends good segments opening
304 * window and then starts to feed us spaghetti. But it should work
305 * in common situations. Otherwise, we have to rely on queue collapsing.
306 */
307
308/* Slow part of check#2. */
309static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
310{
311 struct tcp_sock *tp = tcp_sk(sk);
312 /* Optimize this! */
313 int truesize = tcp_win_from_space(skb->truesize) >> 1;
314 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
315
316 while (tp->rcv_ssthresh <= window) {
317 if (truesize <= skb->len)
318 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
319
320 truesize >>= 1;
321 window >>= 1;
322 }
323 return 0;
324}
325
326static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
327{
328 struct tcp_sock *tp = tcp_sk(sk);
329
330 /* Check #1 */
331 if (tp->rcv_ssthresh < tp->window_clamp &&
332 (int)tp->rcv_ssthresh < tcp_space(sk) &&
333 !sk_under_memory_pressure(sk)) {
334 int incr;
335
336 /* Check #2. Increase window, if skb with such overhead
337 * will fit to rcvbuf in future.
338 */
339 if (tcp_win_from_space(skb->truesize) <= skb->len)
340 incr = 2 * tp->advmss;
341 else
342 incr = __tcp_grow_window(sk, skb);
343
344 if (incr) {
345 incr = max_t(int, incr, 2 * skb->len);
346 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
347 tp->window_clamp);
348 inet_csk(sk)->icsk_ack.quick |= 1;
349 }
350 }
351}
352
353/* 3. Tuning rcvbuf, when connection enters established state. */
354
355static void tcp_fixup_rcvbuf(struct sock *sk)
356{
357 u32 mss = tcp_sk(sk)->advmss;
358 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
359 int rcvmem;
360
361 /* Limit to 10 segments if mss <= 1460,
362 * or 14600/mss segments, with a minimum of two segments.
363 */
364 if (mss > 1460)
365 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
366
367 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
368 while (tcp_win_from_space(rcvmem) < mss)
369 rcvmem += 128;
370
371 rcvmem *= icwnd;
372
373 if (sk->sk_rcvbuf < rcvmem)
374 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
375}
376
377/* 4. Try to fixup all. It is made immediately after connection enters
378 * established state.
379 */
380static void tcp_init_buffer_space(struct sock *sk)
381{
382 struct tcp_sock *tp = tcp_sk(sk);
383 int maxwin;
384
385 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
386 tcp_fixup_rcvbuf(sk);
387 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
388 tcp_fixup_sndbuf(sk);
389
390 tp->rcvq_space.space = tp->rcv_wnd;
391
392 maxwin = tcp_full_space(sk);
393
394 if (tp->window_clamp >= maxwin) {
395 tp->window_clamp = maxwin;
396
397 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
398 tp->window_clamp = max(maxwin -
399 (maxwin >> sysctl_tcp_app_win),
400 4 * tp->advmss);
401 }
402
403 /* Force reservation of one segment. */
404 if (sysctl_tcp_app_win &&
405 tp->window_clamp > 2 * tp->advmss &&
406 tp->window_clamp + tp->advmss > maxwin)
407 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
408
409 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
410 tp->snd_cwnd_stamp = tcp_time_stamp;
411}
412
413/* 5. Recalculate window clamp after socket hit its memory bounds. */
414static void tcp_clamp_window(struct sock *sk)
415{
416 struct tcp_sock *tp = tcp_sk(sk);
417 struct inet_connection_sock *icsk = inet_csk(sk);
418
419 icsk->icsk_ack.quick = 0;
420
421 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
422 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
423 !sk_under_memory_pressure(sk) &&
424 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
425 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
426 sysctl_tcp_rmem[2]);
427 }
428 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
429 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
430}
431
432/* Initialize RCV_MSS value.
433 * RCV_MSS is an our guess about MSS used by the peer.
434 * We haven't any direct information about the MSS.
435 * It's better to underestimate the RCV_MSS rather than overestimate.
436 * Overestimations make us ACKing less frequently than needed.
437 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
438 */
439void tcp_initialize_rcv_mss(struct sock *sk)
440{
441 const struct tcp_sock *tp = tcp_sk(sk);
442 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
443
444 hint = min(hint, tp->rcv_wnd / 2);
445 hint = min(hint, TCP_MSS_DEFAULT);
446 hint = max(hint, TCP_MIN_MSS);
447
448 inet_csk(sk)->icsk_ack.rcv_mss = hint;
449}
450EXPORT_SYMBOL(tcp_initialize_rcv_mss);
451
452/* Receiver "autotuning" code.
453 *
454 * The algorithm for RTT estimation w/o timestamps is based on
455 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
456 * <http://public.lanl.gov/radiant/pubs.html#DRS>
457 *
458 * More detail on this code can be found at
459 * <http://staff.psc.edu/jheffner/>,
460 * though this reference is out of date. A new paper
461 * is pending.
462 */
463static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
464{
465 u32 new_sample = tp->rcv_rtt_est.rtt;
466 long m = sample;
467
468 if (m == 0)
469 m = 1;
470
471 if (new_sample != 0) {
472 /* If we sample in larger samples in the non-timestamp
473 * case, we could grossly overestimate the RTT especially
474 * with chatty applications or bulk transfer apps which
475 * are stalled on filesystem I/O.
476 *
477 * Also, since we are only going for a minimum in the
478 * non-timestamp case, we do not smooth things out
479 * else with timestamps disabled convergence takes too
480 * long.
481 */
482 if (!win_dep) {
483 m -= (new_sample >> 3);
484 new_sample += m;
485 } else {
486 m <<= 3;
487 if (m < new_sample)
488 new_sample = m;
489 }
490 } else {
491 /* No previous measure. */
492 new_sample = m << 3;
493 }
494
495 if (tp->rcv_rtt_est.rtt != new_sample)
496 tp->rcv_rtt_est.rtt = new_sample;
497}
498
499static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
500{
501 if (tp->rcv_rtt_est.time == 0)
502 goto new_measure;
503 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
504 return;
505 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
506
507new_measure:
508 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
509 tp->rcv_rtt_est.time = tcp_time_stamp;
510}
511
512static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
513 const struct sk_buff *skb)
514{
515 struct tcp_sock *tp = tcp_sk(sk);
516 if (tp->rx_opt.rcv_tsecr &&
517 (TCP_SKB_CB(skb)->end_seq -
518 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
519 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
520}
521
522/*
523 * This function should be called every time data is copied to user space.
524 * It calculates the appropriate TCP receive buffer space.
525 */
526void tcp_rcv_space_adjust(struct sock *sk)
527{
528 struct tcp_sock *tp = tcp_sk(sk);
529 int time;
530 int space;
531
532 if (tp->rcvq_space.time == 0)
533 goto new_measure;
534
535 time = tcp_time_stamp - tp->rcvq_space.time;
536 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
537 return;
538
539 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
540
541 space = max(tp->rcvq_space.space, space);
542
543 if (tp->rcvq_space.space != space) {
544 int rcvmem;
545
546 tp->rcvq_space.space = space;
547
548 if (sysctl_tcp_moderate_rcvbuf &&
549 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
550 int new_clamp = space;
551
552 /* Receive space grows, normalize in order to
553 * take into account packet headers and sk_buff
554 * structure overhead.
555 */
556 space /= tp->advmss;
557 if (!space)
558 space = 1;
559 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
560 while (tcp_win_from_space(rcvmem) < tp->advmss)
561 rcvmem += 128;
562 space *= rcvmem;
563 space = min(space, sysctl_tcp_rmem[2]);
564 if (space > sk->sk_rcvbuf) {
565 sk->sk_rcvbuf = space;
566
567 /* Make the window clamp follow along. */
568 tp->window_clamp = new_clamp;
569 }
570 }
571 }
572
573new_measure:
574 tp->rcvq_space.seq = tp->copied_seq;
575 tp->rcvq_space.time = tcp_time_stamp;
576}
577
578/* There is something which you must keep in mind when you analyze the
579 * behavior of the tp->ato delayed ack timeout interval. When a
580 * connection starts up, we want to ack as quickly as possible. The
581 * problem is that "good" TCP's do slow start at the beginning of data
582 * transmission. The means that until we send the first few ACK's the
583 * sender will sit on his end and only queue most of his data, because
584 * he can only send snd_cwnd unacked packets at any given time. For
585 * each ACK we send, he increments snd_cwnd and transmits more of his
586 * queue. -DaveM
587 */
588static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
589{
590 struct tcp_sock *tp = tcp_sk(sk);
591 struct inet_connection_sock *icsk = inet_csk(sk);
592 u32 now;
593
594 inet_csk_schedule_ack(sk);
595
596 tcp_measure_rcv_mss(sk, skb);
597
598 tcp_rcv_rtt_measure(tp);
599
600 now = tcp_time_stamp;
601
602 if (!icsk->icsk_ack.ato) {
603 /* The _first_ data packet received, initialize
604 * delayed ACK engine.
605 */
606 tcp_incr_quickack(sk);
607 icsk->icsk_ack.ato = TCP_ATO_MIN;
608 } else {
609 int m = now - icsk->icsk_ack.lrcvtime;
610
611 if (m <= TCP_ATO_MIN / 2) {
612 /* The fastest case is the first. */
613 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
614 } else if (m < icsk->icsk_ack.ato) {
615 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
616 if (icsk->icsk_ack.ato > icsk->icsk_rto)
617 icsk->icsk_ack.ato = icsk->icsk_rto;
618 } else if (m > icsk->icsk_rto) {
619 /* Too long gap. Apparently sender failed to
620 * restart window, so that we send ACKs quickly.
621 */
622 tcp_incr_quickack(sk);
623 sk_mem_reclaim(sk);
624 }
625 }
626 icsk->icsk_ack.lrcvtime = now;
627
628 TCP_ECN_check_ce(tp, skb);
629
630 if (skb->len >= 128)
631 tcp_grow_window(sk, skb);
632}
633
634/* Called to compute a smoothed rtt estimate. The data fed to this
635 * routine either comes from timestamps, or from segments that were
636 * known _not_ to have been retransmitted [see Karn/Partridge
637 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
638 * piece by Van Jacobson.
639 * NOTE: the next three routines used to be one big routine.
640 * To save cycles in the RFC 1323 implementation it was better to break
641 * it up into three procedures. -- erics
642 */
643static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
644{
645 struct tcp_sock *tp = tcp_sk(sk);
646 long m = mrtt; /* RTT */
647
648 /* The following amusing code comes from Jacobson's
649 * article in SIGCOMM '88. Note that rtt and mdev
650 * are scaled versions of rtt and mean deviation.
651 * This is designed to be as fast as possible
652 * m stands for "measurement".
653 *
654 * On a 1990 paper the rto value is changed to:
655 * RTO = rtt + 4 * mdev
656 *
657 * Funny. This algorithm seems to be very broken.
658 * These formulae increase RTO, when it should be decreased, increase
659 * too slowly, when it should be increased quickly, decrease too quickly
660 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
661 * does not matter how to _calculate_ it. Seems, it was trap
662 * that VJ failed to avoid. 8)
663 */
664 if (m == 0)
665 m = 1;
666 if (tp->srtt != 0) {
667 m -= (tp->srtt >> 3); /* m is now error in rtt est */
668 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
669 if (m < 0) {
670 m = -m; /* m is now abs(error) */
671 m -= (tp->mdev >> 2); /* similar update on mdev */
672 /* This is similar to one of Eifel findings.
673 * Eifel blocks mdev updates when rtt decreases.
674 * This solution is a bit different: we use finer gain
675 * for mdev in this case (alpha*beta).
676 * Like Eifel it also prevents growth of rto,
677 * but also it limits too fast rto decreases,
678 * happening in pure Eifel.
679 */
680 if (m > 0)
681 m >>= 3;
682 } else {
683 m -= (tp->mdev >> 2); /* similar update on mdev */
684 }
685 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
686 if (tp->mdev > tp->mdev_max) {
687 tp->mdev_max = tp->mdev;
688 if (tp->mdev_max > tp->rttvar)
689 tp->rttvar = tp->mdev_max;
690 }
691 if (after(tp->snd_una, tp->rtt_seq)) {
692 if (tp->mdev_max < tp->rttvar)
693 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
694 tp->rtt_seq = tp->snd_nxt;
695 tp->mdev_max = tcp_rto_min(sk);
696 }
697 } else {
698 /* no previous measure. */
699 tp->srtt = m << 3; /* take the measured time to be rtt */
700 tp->mdev = m << 1; /* make sure rto = 3*rtt */
701 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
702 tp->rtt_seq = tp->snd_nxt;
703 }
704}
705
706/* Calculate rto without backoff. This is the second half of Van Jacobson's
707 * routine referred to above.
708 */
709static inline void tcp_set_rto(struct sock *sk)
710{
711 const struct tcp_sock *tp = tcp_sk(sk);
712 /* Old crap is replaced with new one. 8)
713 *
714 * More seriously:
715 * 1. If rtt variance happened to be less 50msec, it is hallucination.
716 * It cannot be less due to utterly erratic ACK generation made
717 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
718 * to do with delayed acks, because at cwnd>2 true delack timeout
719 * is invisible. Actually, Linux-2.4 also generates erratic
720 * ACKs in some circumstances.
721 */
722 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
723
724 /* 2. Fixups made earlier cannot be right.
725 * If we do not estimate RTO correctly without them,
726 * all the algo is pure shit and should be replaced
727 * with correct one. It is exactly, which we pretend to do.
728 */
729
730 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
731 * guarantees that rto is higher.
732 */
733 tcp_bound_rto(sk);
734}
735
736/* Save metrics learned by this TCP session.
737 This function is called only, when TCP finishes successfully
738 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
739 */
740void tcp_update_metrics(struct sock *sk)
741{
742 struct tcp_sock *tp = tcp_sk(sk);
743 struct dst_entry *dst = __sk_dst_get(sk);
744
745 if (sysctl_tcp_nometrics_save)
746 return;
747
748 dst_confirm(dst);
749
750 if (dst && (dst->flags & DST_HOST)) {
751 const struct inet_connection_sock *icsk = inet_csk(sk);
752 int m;
753 unsigned long rtt;
754
755 if (icsk->icsk_backoff || !tp->srtt) {
756 /* This session failed to estimate rtt. Why?
757 * Probably, no packets returned in time.
758 * Reset our results.
759 */
760 if (!(dst_metric_locked(dst, RTAX_RTT)))
761 dst_metric_set(dst, RTAX_RTT, 0);
762 return;
763 }
764
765 rtt = dst_metric_rtt(dst, RTAX_RTT);
766 m = rtt - tp->srtt;
767
768 /* If newly calculated rtt larger than stored one,
769 * store new one. Otherwise, use EWMA. Remember,
770 * rtt overestimation is always better than underestimation.
771 */
772 if (!(dst_metric_locked(dst, RTAX_RTT))) {
773 if (m <= 0)
774 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
775 else
776 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
777 }
778
779 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
780 unsigned long var;
781 if (m < 0)
782 m = -m;
783
784 /* Scale deviation to rttvar fixed point */
785 m >>= 1;
786 if (m < tp->mdev)
787 m = tp->mdev;
788
789 var = dst_metric_rtt(dst, RTAX_RTTVAR);
790 if (m >= var)
791 var = m;
792 else
793 var -= (var - m) >> 2;
794
795 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
796 }
797
798 if (tcp_in_initial_slowstart(tp)) {
799 /* Slow start still did not finish. */
800 if (dst_metric(dst, RTAX_SSTHRESH) &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
803 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
804 if (!dst_metric_locked(dst, RTAX_CWND) &&
805 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
806 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
807 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
808 icsk->icsk_ca_state == TCP_CA_Open) {
809 /* Cong. avoidance phase, cwnd is reliable. */
810 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
811 dst_metric_set(dst, RTAX_SSTHRESH,
812 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
813 if (!dst_metric_locked(dst, RTAX_CWND))
814 dst_metric_set(dst, RTAX_CWND,
815 (dst_metric(dst, RTAX_CWND) +
816 tp->snd_cwnd) >> 1);
817 } else {
818 /* Else slow start did not finish, cwnd is non-sense,
819 ssthresh may be also invalid.
820 */
821 if (!dst_metric_locked(dst, RTAX_CWND))
822 dst_metric_set(dst, RTAX_CWND,
823 (dst_metric(dst, RTAX_CWND) +
824 tp->snd_ssthresh) >> 1);
825 if (dst_metric(dst, RTAX_SSTHRESH) &&
826 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
827 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
828 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
829 }
830
831 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
832 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
833 tp->reordering != sysctl_tcp_reordering)
834 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
835 }
836 }
837}
838
839__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
840{
841 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
842
843 if (!cwnd)
844 cwnd = TCP_INIT_CWND;
845 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
846}
847
848/* Set slow start threshold and cwnd not falling to slow start */
849void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
850{
851 struct tcp_sock *tp = tcp_sk(sk);
852 const struct inet_connection_sock *icsk = inet_csk(sk);
853
854 tp->prior_ssthresh = 0;
855 tp->bytes_acked = 0;
856 if (icsk->icsk_ca_state < TCP_CA_CWR) {
857 tp->undo_marker = 0;
858 if (set_ssthresh)
859 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
860 tp->snd_cwnd = min(tp->snd_cwnd,
861 tcp_packets_in_flight(tp) + 1U);
862 tp->snd_cwnd_cnt = 0;
863 tp->high_seq = tp->snd_nxt;
864 tp->snd_cwnd_stamp = tcp_time_stamp;
865 TCP_ECN_queue_cwr(tp);
866
867 tcp_set_ca_state(sk, TCP_CA_CWR);
868 }
869}
870
871/*
872 * Packet counting of FACK is based on in-order assumptions, therefore TCP
873 * disables it when reordering is detected
874 */
875static void tcp_disable_fack(struct tcp_sock *tp)
876{
877 /* RFC3517 uses different metric in lost marker => reset on change */
878 if (tcp_is_fack(tp))
879 tp->lost_skb_hint = NULL;
880 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
881}
882
883/* Take a notice that peer is sending D-SACKs */
884static void tcp_dsack_seen(struct tcp_sock *tp)
885{
886 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
887}
888
889/* Initialize metrics on socket. */
890
891static void tcp_init_metrics(struct sock *sk)
892{
893 struct tcp_sock *tp = tcp_sk(sk);
894 struct dst_entry *dst = __sk_dst_get(sk);
895
896 if (dst == NULL)
897 goto reset;
898
899 dst_confirm(dst);
900
901 if (dst_metric_locked(dst, RTAX_CWND))
902 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
903 if (dst_metric(dst, RTAX_SSTHRESH)) {
904 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
905 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
906 tp->snd_ssthresh = tp->snd_cwnd_clamp;
907 } else {
908 /* ssthresh may have been reduced unnecessarily during.
909 * 3WHS. Restore it back to its initial default.
910 */
911 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
912 }
913 if (dst_metric(dst, RTAX_REORDERING) &&
914 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
915 tcp_disable_fack(tp);
916 tp->reordering = dst_metric(dst, RTAX_REORDERING);
917 }
918
919 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
920 goto reset;
921
922 /* Initial rtt is determined from SYN,SYN-ACK.
923 * The segment is small and rtt may appear much
924 * less than real one. Use per-dst memory
925 * to make it more realistic.
926 *
927 * A bit of theory. RTT is time passed after "normal" sized packet
928 * is sent until it is ACKed. In normal circumstances sending small
929 * packets force peer to delay ACKs and calculation is correct too.
930 * The algorithm is adaptive and, provided we follow specs, it
931 * NEVER underestimate RTT. BUT! If peer tries to make some clever
932 * tricks sort of "quick acks" for time long enough to decrease RTT
933 * to low value, and then abruptly stops to do it and starts to delay
934 * ACKs, wait for troubles.
935 */
936 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
937 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
938 tp->rtt_seq = tp->snd_nxt;
939 }
940 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
941 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
942 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
943 }
944 tcp_set_rto(sk);
945reset:
946 if (tp->srtt == 0) {
947 /* RFC2988bis: We've failed to get a valid RTT sample from
948 * 3WHS. This is most likely due to retransmission,
949 * including spurious one. Reset the RTO back to 3secs
950 * from the more aggressive 1sec to avoid more spurious
951 * retransmission.
952 */
953 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
954 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
955 }
956 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
957 * retransmitted. In light of RFC2988bis' more aggressive 1sec
958 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
959 * retransmission has occurred.
960 */
961 if (tp->total_retrans > 1)
962 tp->snd_cwnd = 1;
963 else
964 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
965 tp->snd_cwnd_stamp = tcp_time_stamp;
966}
967
968static void tcp_update_reordering(struct sock *sk, const int metric,
969 const int ts)
970{
971 struct tcp_sock *tp = tcp_sk(sk);
972 if (metric > tp->reordering) {
973 int mib_idx;
974
975 tp->reordering = min(TCP_MAX_REORDERING, metric);
976
977 /* This exciting event is worth to be remembered. 8) */
978 if (ts)
979 mib_idx = LINUX_MIB_TCPTSREORDER;
980 else if (tcp_is_reno(tp))
981 mib_idx = LINUX_MIB_TCPRENOREORDER;
982 else if (tcp_is_fack(tp))
983 mib_idx = LINUX_MIB_TCPFACKREORDER;
984 else
985 mib_idx = LINUX_MIB_TCPSACKREORDER;
986
987 NET_INC_STATS_BH(sock_net(sk), mib_idx);
988#if FASTRETRANS_DEBUG > 1
989 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
990 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
991 tp->reordering,
992 tp->fackets_out,
993 tp->sacked_out,
994 tp->undo_marker ? tp->undo_retrans : 0);
995#endif
996 tcp_disable_fack(tp);
997 }
998}
999
1000/* This must be called before lost_out is incremented */
1001static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1002{
1003 if ((tp->retransmit_skb_hint == NULL) ||
1004 before(TCP_SKB_CB(skb)->seq,
1005 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1006 tp->retransmit_skb_hint = skb;
1007
1008 if (!tp->lost_out ||
1009 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1010 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1011}
1012
1013static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1014{
1015 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1016 tcp_verify_retransmit_hint(tp, skb);
1017
1018 tp->lost_out += tcp_skb_pcount(skb);
1019 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1020 }
1021}
1022
1023static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1024 struct sk_buff *skb)
1025{
1026 tcp_verify_retransmit_hint(tp, skb);
1027
1028 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1029 tp->lost_out += tcp_skb_pcount(skb);
1030 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1031 }
1032}
1033
1034/* This procedure tags the retransmission queue when SACKs arrive.
1035 *
1036 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1037 * Packets in queue with these bits set are counted in variables
1038 * sacked_out, retrans_out and lost_out, correspondingly.
1039 *
1040 * Valid combinations are:
1041 * Tag InFlight Description
1042 * 0 1 - orig segment is in flight.
1043 * S 0 - nothing flies, orig reached receiver.
1044 * L 0 - nothing flies, orig lost by net.
1045 * R 2 - both orig and retransmit are in flight.
1046 * L|R 1 - orig is lost, retransmit is in flight.
1047 * S|R 1 - orig reached receiver, retrans is still in flight.
1048 * (L|S|R is logically valid, it could occur when L|R is sacked,
1049 * but it is equivalent to plain S and code short-curcuits it to S.
1050 * L|S is logically invalid, it would mean -1 packet in flight 8))
1051 *
1052 * These 6 states form finite state machine, controlled by the following events:
1053 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1054 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1055 * 3. Loss detection event of two flavors:
1056 * A. Scoreboard estimator decided the packet is lost.
1057 * A'. Reno "three dupacks" marks head of queue lost.
1058 * A''. Its FACK modification, head until snd.fack is lost.
1059 * B. SACK arrives sacking SND.NXT at the moment, when the
1060 * segment was retransmitted.
1061 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1062 *
1063 * It is pleasant to note, that state diagram turns out to be commutative,
1064 * so that we are allowed not to be bothered by order of our actions,
1065 * when multiple events arrive simultaneously. (see the function below).
1066 *
1067 * Reordering detection.
1068 * --------------------
1069 * Reordering metric is maximal distance, which a packet can be displaced
1070 * in packet stream. With SACKs we can estimate it:
1071 *
1072 * 1. SACK fills old hole and the corresponding segment was not
1073 * ever retransmitted -> reordering. Alas, we cannot use it
1074 * when segment was retransmitted.
1075 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1076 * for retransmitted and already SACKed segment -> reordering..
1077 * Both of these heuristics are not used in Loss state, when we cannot
1078 * account for retransmits accurately.
1079 *
1080 * SACK block validation.
1081 * ----------------------
1082 *
1083 * SACK block range validation checks that the received SACK block fits to
1084 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1085 * Note that SND.UNA is not included to the range though being valid because
1086 * it means that the receiver is rather inconsistent with itself reporting
1087 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1088 * perfectly valid, however, in light of RFC2018 which explicitly states
1089 * that "SACK block MUST reflect the newest segment. Even if the newest
1090 * segment is going to be discarded ...", not that it looks very clever
1091 * in case of head skb. Due to potentional receiver driven attacks, we
1092 * choose to avoid immediate execution of a walk in write queue due to
1093 * reneging and defer head skb's loss recovery to standard loss recovery
1094 * procedure that will eventually trigger (nothing forbids us doing this).
1095 *
1096 * Implements also blockage to start_seq wrap-around. Problem lies in the
1097 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1098 * there's no guarantee that it will be before snd_nxt (n). The problem
1099 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1100 * wrap (s_w):
1101 *
1102 * <- outs wnd -> <- wrapzone ->
1103 * u e n u_w e_w s n_w
1104 * | | | | | | |
1105 * |<------------+------+----- TCP seqno space --------------+---------->|
1106 * ...-- <2^31 ->| |<--------...
1107 * ...---- >2^31 ------>| |<--------...
1108 *
1109 * Current code wouldn't be vulnerable but it's better still to discard such
1110 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1111 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1112 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1113 * equal to the ideal case (infinite seqno space without wrap caused issues).
1114 *
1115 * With D-SACK the lower bound is extended to cover sequence space below
1116 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1117 * again, D-SACK block must not to go across snd_una (for the same reason as
1118 * for the normal SACK blocks, explained above). But there all simplicity
1119 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1120 * fully below undo_marker they do not affect behavior in anyway and can
1121 * therefore be safely ignored. In rare cases (which are more or less
1122 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1123 * fragmentation and packet reordering past skb's retransmission. To consider
1124 * them correctly, the acceptable range must be extended even more though
1125 * the exact amount is rather hard to quantify. However, tp->max_window can
1126 * be used as an exaggerated estimate.
1127 */
1128static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1129 u32 start_seq, u32 end_seq)
1130{
1131 /* Too far in future, or reversed (interpretation is ambiguous) */
1132 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1133 return 0;
1134
1135 /* Nasty start_seq wrap-around check (see comments above) */
1136 if (!before(start_seq, tp->snd_nxt))
1137 return 0;
1138
1139 /* In outstanding window? ...This is valid exit for D-SACKs too.
1140 * start_seq == snd_una is non-sensical (see comments above)
1141 */
1142 if (after(start_seq, tp->snd_una))
1143 return 1;
1144
1145 if (!is_dsack || !tp->undo_marker)
1146 return 0;
1147
1148 /* ...Then it's D-SACK, and must reside below snd_una completely */
1149 if (after(end_seq, tp->snd_una))
1150 return 0;
1151
1152 if (!before(start_seq, tp->undo_marker))
1153 return 1;
1154
1155 /* Too old */
1156 if (!after(end_seq, tp->undo_marker))
1157 return 0;
1158
1159 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1160 * start_seq < undo_marker and end_seq >= undo_marker.
1161 */
1162 return !before(start_seq, end_seq - tp->max_window);
1163}
1164
1165/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1166 * Event "B". Later note: FACK people cheated me again 8), we have to account
1167 * for reordering! Ugly, but should help.
1168 *
1169 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1170 * less than what is now known to be received by the other end (derived from
1171 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1172 * retransmitted skbs to avoid some costly processing per ACKs.
1173 */
1174static void tcp_mark_lost_retrans(struct sock *sk)
1175{
1176 const struct inet_connection_sock *icsk = inet_csk(sk);
1177 struct tcp_sock *tp = tcp_sk(sk);
1178 struct sk_buff *skb;
1179 int cnt = 0;
1180 u32 new_low_seq = tp->snd_nxt;
1181 u32 received_upto = tcp_highest_sack_seq(tp);
1182
1183 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1184 !after(received_upto, tp->lost_retrans_low) ||
1185 icsk->icsk_ca_state != TCP_CA_Recovery)
1186 return;
1187
1188 tcp_for_write_queue(skb, sk) {
1189 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1190
1191 if (skb == tcp_send_head(sk))
1192 break;
1193 if (cnt == tp->retrans_out)
1194 break;
1195 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1196 continue;
1197
1198 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1199 continue;
1200
1201 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1202 * constraint here (see above) but figuring out that at
1203 * least tp->reordering SACK blocks reside between ack_seq
1204 * and received_upto is not easy task to do cheaply with
1205 * the available datastructures.
1206 *
1207 * Whether FACK should check here for tp->reordering segs
1208 * in-between one could argue for either way (it would be
1209 * rather simple to implement as we could count fack_count
1210 * during the walk and do tp->fackets_out - fack_count).
1211 */
1212 if (after(received_upto, ack_seq)) {
1213 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1214 tp->retrans_out -= tcp_skb_pcount(skb);
1215
1216 tcp_skb_mark_lost_uncond_verify(tp, skb);
1217 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1218 } else {
1219 if (before(ack_seq, new_low_seq))
1220 new_low_seq = ack_seq;
1221 cnt += tcp_skb_pcount(skb);
1222 }
1223 }
1224
1225 if (tp->retrans_out)
1226 tp->lost_retrans_low = new_low_seq;
1227}
1228
1229static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1230 struct tcp_sack_block_wire *sp, int num_sacks,
1231 u32 prior_snd_una)
1232{
1233 struct tcp_sock *tp = tcp_sk(sk);
1234 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1235 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1236 int dup_sack = 0;
1237
1238 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1239 dup_sack = 1;
1240 tcp_dsack_seen(tp);
1241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1242 } else if (num_sacks > 1) {
1243 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1244 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1245
1246 if (!after(end_seq_0, end_seq_1) &&
1247 !before(start_seq_0, start_seq_1)) {
1248 dup_sack = 1;
1249 tcp_dsack_seen(tp);
1250 NET_INC_STATS_BH(sock_net(sk),
1251 LINUX_MIB_TCPDSACKOFORECV);
1252 }
1253 }
1254
1255 /* D-SACK for already forgotten data... Do dumb counting. */
1256 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1257 !after(end_seq_0, prior_snd_una) &&
1258 after(end_seq_0, tp->undo_marker))
1259 tp->undo_retrans--;
1260
1261 return dup_sack;
1262}
1263
1264struct tcp_sacktag_state {
1265 int reord;
1266 int fack_count;
1267 int flag;
1268};
1269
1270/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1271 * the incoming SACK may not exactly match but we can find smaller MSS
1272 * aligned portion of it that matches. Therefore we might need to fragment
1273 * which may fail and creates some hassle (caller must handle error case
1274 * returns).
1275 *
1276 * FIXME: this could be merged to shift decision code
1277 */
1278static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1279 u32 start_seq, u32 end_seq)
1280{
1281 int in_sack, err;
1282 unsigned int pkt_len;
1283 unsigned int mss;
1284
1285 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290 mss = tcp_skb_mss(skb);
1291 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293 if (!in_sack) {
1294 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295 if (pkt_len < mss)
1296 pkt_len = mss;
1297 } else {
1298 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299 if (pkt_len < mss)
1300 return -EINVAL;
1301 }
1302
1303 /* Round if necessary so that SACKs cover only full MSSes
1304 * and/or the remaining small portion (if present)
1305 */
1306 if (pkt_len > mss) {
1307 unsigned int new_len = (pkt_len / mss) * mss;
1308 if (!in_sack && new_len < pkt_len) {
1309 new_len += mss;
1310 if (new_len >= skb->len)
1311 return 0;
1312 }
1313 pkt_len = new_len;
1314 }
1315 err = tcp_fragment(sk, skb, pkt_len, mss);
1316 if (err < 0)
1317 return err;
1318 }
1319
1320 return in_sack;
1321}
1322
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325 struct tcp_sacktag_state *state, u8 sacked,
1326 u32 start_seq, u32 end_seq,
1327 int dup_sack, int pcount)
1328{
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 int fack_count = state->fack_count;
1331
1332 /* Account D-SACK for retransmitted packet. */
1333 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334 if (tp->undo_marker && tp->undo_retrans > 0 &&
1335 after(end_seq, tp->undo_marker))
1336 tp->undo_retrans--;
1337 if (sacked & TCPCB_SACKED_ACKED)
1338 state->reord = min(fack_count, state->reord);
1339 }
1340
1341 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342 if (!after(end_seq, tp->snd_una))
1343 return sacked;
1344
1345 if (!(sacked & TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
1352 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 tp->lost_out -= pcount;
1354 tp->retrans_out -= pcount;
1355 }
1356 } else {
1357 if (!(sacked & TCPCB_RETRANS)) {
1358 /* New sack for not retransmitted frame,
1359 * which was in hole. It is reordering.
1360 */
1361 if (before(start_seq,
1362 tcp_highest_sack_seq(tp)))
1363 state->reord = min(fack_count,
1364 state->reord);
1365
1366 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367 if (!after(end_seq, tp->frto_highmark))
1368 state->flag |= FLAG_ONLY_ORIG_SACKED;
1369 }
1370
1371 if (sacked & TCPCB_LOST) {
1372 sacked &= ~TCPCB_LOST;
1373 tp->lost_out -= pcount;
1374 }
1375 }
1376
1377 sacked |= TCPCB_SACKED_ACKED;
1378 state->flag |= FLAG_DATA_SACKED;
1379 tp->sacked_out += pcount;
1380
1381 fack_count += pcount;
1382
1383 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386 tp->lost_cnt_hint += pcount;
1387
1388 if (fack_count > tp->fackets_out)
1389 tp->fackets_out = fack_count;
1390 }
1391
1392 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1393 * frames and clear it. undo_retrans is decreased above, L|R frames
1394 * are accounted above as well.
1395 */
1396 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397 sacked &= ~TCPCB_SACKED_RETRANS;
1398 tp->retrans_out -= pcount;
1399 }
1400
1401 return sacked;
1402}
1403
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408 struct tcp_sacktag_state *state,
1409 unsigned int pcount, int shifted, int mss,
1410 int dup_sack)
1411{
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1415 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1416
1417 BUG_ON(!pcount);
1418
1419 /* Adjust counters and hints for the newly sacked sequence
1420 * range but discard the return value since prev is already
1421 * marked. We must tag the range first because the seq
1422 * advancement below implicitly advances
1423 * tcp_highest_sack_seq() when skb is highest_sack.
1424 */
1425 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426 start_seq, end_seq, dup_sack, pcount);
1427
1428 if (skb == tp->lost_skb_hint)
1429 tp->lost_cnt_hint += pcount;
1430
1431 TCP_SKB_CB(prev)->end_seq += shifted;
1432 TCP_SKB_CB(skb)->seq += shifted;
1433
1434 skb_shinfo(prev)->gso_segs += pcount;
1435 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436 skb_shinfo(skb)->gso_segs -= pcount;
1437
1438 /* When we're adding to gso_segs == 1, gso_size will be zero,
1439 * in theory this shouldn't be necessary but as long as DSACK
1440 * code can come after this skb later on it's better to keep
1441 * setting gso_size to something.
1442 */
1443 if (!skb_shinfo(prev)->gso_size) {
1444 skb_shinfo(prev)->gso_size = mss;
1445 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446 }
1447
1448 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449 if (skb_shinfo(skb)->gso_segs <= 1) {
1450 skb_shinfo(skb)->gso_size = 0;
1451 skb_shinfo(skb)->gso_type = 0;
1452 }
1453
1454 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457 if (skb->len > 0) {
1458 BUG_ON(!tcp_skb_pcount(skb));
1459 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460 return 0;
1461 }
1462
1463 /* Whole SKB was eaten :-) */
1464
1465 if (skb == tp->retransmit_skb_hint)
1466 tp->retransmit_skb_hint = prev;
1467 if (skb == tp->scoreboard_skb_hint)
1468 tp->scoreboard_skb_hint = prev;
1469 if (skb == tp->lost_skb_hint) {
1470 tp->lost_skb_hint = prev;
1471 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472 }
1473
1474 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1475 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1476 TCP_SKB_CB(prev)->end_seq++;
1477
1478 if (skb == tcp_highest_sack(sk))
1479 tcp_advance_highest_sack(sk, skb);
1480
1481 tcp_unlink_write_queue(skb, sk);
1482 sk_wmem_free_skb(sk, skb);
1483
1484 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1485
1486 return 1;
1487}
1488
1489/* I wish gso_size would have a bit more sane initialization than
1490 * something-or-zero which complicates things
1491 */
1492static int tcp_skb_seglen(const struct sk_buff *skb)
1493{
1494 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1495}
1496
1497/* Shifting pages past head area doesn't work */
1498static int skb_can_shift(const struct sk_buff *skb)
1499{
1500 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1501}
1502//hub:CVE-2019-11477
1503int tcp_skb_shift(struct sk_buff * to, struct sk_buff * from, int pcount, int shiftlen)
1504{
1505 /* TCP min gso_size is 8 bytes(TCP_MIN_GSO_SIZE)
1506 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1507 * to make sure not storing more then 65535*8 bytes per skb,
1508 * event if current MSS is bigger.
1509 */
1510 if(unlikely(to->len + shiftlen >= 65535*TCP_MIN_GSO_SIZE))
1511 return 0;
1512 if(unlikely(tcp_skb_pcount(to) + pcount > 65535))
1513 return 0;
1514
1515 return skb_shift(to, from, shiftlen);
1516}
1517
1518/* Try collapsing SACK blocks spanning across multiple skbs to a single
1519 * skb.
1520 */
1521static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1522 struct tcp_sacktag_state *state,
1523 u32 start_seq, u32 end_seq,
1524 int dup_sack)
1525{
1526 struct tcp_sock *tp = tcp_sk(sk);
1527 struct sk_buff *prev;
1528 int mss;
1529 int pcount = 0;
1530 int len;
1531 int in_sack;
1532
1533 if (!sk_can_gso(sk))
1534 goto fallback;
1535
1536 /* Normally R but no L won't result in plain S */
1537 if (!dup_sack &&
1538 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1539 goto fallback;
1540 if (!skb_can_shift(skb))
1541 goto fallback;
1542 /* This frame is about to be dropped (was ACKed). */
1543 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1544 goto fallback;
1545
1546 /* Can only happen with delayed DSACK + discard craziness */
1547 if (unlikely(skb == tcp_write_queue_head(sk)))
1548 goto fallback;
1549 prev = tcp_write_queue_prev(sk, skb);
1550
1551 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1552 goto fallback;
1553
1554 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1555 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1556
1557 if (in_sack) {
1558 len = skb->len;
1559 pcount = tcp_skb_pcount(skb);
1560 mss = tcp_skb_seglen(skb);
1561
1562 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1563 * drop this restriction as unnecessary
1564 */
1565 if (mss != tcp_skb_seglen(prev))
1566 goto fallback;
1567 } else {
1568 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1569 goto noop;
1570 /* CHECKME: This is non-MSS split case only?, this will
1571 * cause skipped skbs due to advancing loop btw, original
1572 * has that feature too
1573 */
1574 if (tcp_skb_pcount(skb) <= 1)
1575 goto noop;
1576
1577 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1578 if (!in_sack) {
1579 /* TODO: head merge to next could be attempted here
1580 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1581 * though it might not be worth of the additional hassle
1582 *
1583 * ...we can probably just fallback to what was done
1584 * previously. We could try merging non-SACKed ones
1585 * as well but it probably isn't going to buy off
1586 * because later SACKs might again split them, and
1587 * it would make skb timestamp tracking considerably
1588 * harder problem.
1589 */
1590 goto fallback;
1591 }
1592
1593 len = end_seq - TCP_SKB_CB(skb)->seq;
1594 BUG_ON(len < 0);
1595 BUG_ON(len > skb->len);
1596
1597 /* MSS boundaries should be honoured or else pcount will
1598 * severely break even though it makes things bit trickier.
1599 * Optimize common case to avoid most of the divides
1600 */
1601 mss = tcp_skb_mss(skb);
1602
1603 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1604 * drop this restriction as unnecessary
1605 */
1606 if (mss != tcp_skb_seglen(prev))
1607 goto fallback;
1608
1609 if (len == mss) {
1610 pcount = 1;
1611 } else if (len < mss) {
1612 goto noop;
1613 } else {
1614 pcount = len / mss;
1615 len = pcount * mss;
1616 }
1617 }
1618
1619 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1620 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1621 goto fallback;
1622
1623 if (!tcp_skb_shift(prev, skb, pcount, len)) //hub:CVE-2019-11477
1624 goto fallback;
1625 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1626 goto out;
1627
1628 /* Hole filled allows collapsing with the next as well, this is very
1629 * useful when hole on every nth skb pattern happens
1630 */
1631 if (prev == tcp_write_queue_tail(sk))
1632 goto out;
1633 skb = tcp_write_queue_next(sk, prev);
1634
1635 if (!skb_can_shift(skb) ||
1636 (skb == tcp_send_head(sk)) ||
1637 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1638 (mss != tcp_skb_seglen(skb)))
1639 goto out;
1640
1641 len = skb->len;
1642 //hub:CVE-2019-11477
1643 pcount = tcp_skb_pcount(skb);
1644 if (tcp_skb_shift(prev, skb, pcount, len)) {
1645 tcp_shifted_skb(sk, skb, state, pcount, len, mss, 0);
1646 }
1647
1648out:
1649 state->fack_count += pcount;
1650 return prev;
1651
1652noop:
1653 return skb;
1654
1655fallback:
1656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1657 return NULL;
1658}
1659
1660static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1661 struct tcp_sack_block *next_dup,
1662 struct tcp_sacktag_state *state,
1663 u32 start_seq, u32 end_seq,
1664 int dup_sack_in)
1665{
1666 struct tcp_sock *tp = tcp_sk(sk);
1667 struct sk_buff *tmp;
1668
1669 tcp_for_write_queue_from(skb, sk) {
1670 int in_sack = 0;
1671 int dup_sack = dup_sack_in;
1672
1673 if (skb == tcp_send_head(sk))
1674 break;
1675
1676 /* queue is in-order => we can short-circuit the walk early */
1677 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1678 break;
1679
1680 if ((next_dup != NULL) &&
1681 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1682 in_sack = tcp_match_skb_to_sack(sk, skb,
1683 next_dup->start_seq,
1684 next_dup->end_seq);
1685 if (in_sack > 0)
1686 dup_sack = 1;
1687 }
1688
1689 /* skb reference here is a bit tricky to get right, since
1690 * shifting can eat and free both this skb and the next,
1691 * so not even _safe variant of the loop is enough.
1692 */
1693 if (in_sack <= 0) {
1694 tmp = tcp_shift_skb_data(sk, skb, state,
1695 start_seq, end_seq, dup_sack);
1696 if (tmp != NULL) {
1697 if (tmp != skb) {
1698 skb = tmp;
1699 continue;
1700 }
1701
1702 in_sack = 0;
1703 } else {
1704 in_sack = tcp_match_skb_to_sack(sk, skb,
1705 start_seq,
1706 end_seq);
1707 }
1708 }
1709
1710 if (unlikely(in_sack < 0))
1711 break;
1712
1713 if (in_sack) {
1714 TCP_SKB_CB(skb)->sacked =
1715 tcp_sacktag_one(sk,
1716 state,
1717 TCP_SKB_CB(skb)->sacked,
1718 TCP_SKB_CB(skb)->seq,
1719 TCP_SKB_CB(skb)->end_seq,
1720 dup_sack,
1721 tcp_skb_pcount(skb));
1722
1723 if (!before(TCP_SKB_CB(skb)->seq,
1724 tcp_highest_sack_seq(tp)))
1725 tcp_advance_highest_sack(sk, skb);
1726 }
1727
1728 state->fack_count += tcp_skb_pcount(skb);
1729 }
1730 return skb;
1731}
1732
1733/* Avoid all extra work that is being done by sacktag while walking in
1734 * a normal way
1735 */
1736static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1737 struct tcp_sacktag_state *state,
1738 u32 skip_to_seq)
1739{
1740 tcp_for_write_queue_from(skb, sk) {
1741 if (skb == tcp_send_head(sk))
1742 break;
1743
1744 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1745 break;
1746
1747 state->fack_count += tcp_skb_pcount(skb);
1748 }
1749 return skb;
1750}
1751
1752static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1753 struct sock *sk,
1754 struct tcp_sack_block *next_dup,
1755 struct tcp_sacktag_state *state,
1756 u32 skip_to_seq)
1757{
1758 if (next_dup == NULL)
1759 return skb;
1760
1761 if (before(next_dup->start_seq, skip_to_seq)) {
1762 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1763 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1764 next_dup->start_seq, next_dup->end_seq,
1765 1);
1766 }
1767
1768 return skb;
1769}
1770
1771static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1772{
1773 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1774}
1775
1776static int
1777tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1778 u32 prior_snd_una)
1779{
1780 const struct inet_connection_sock *icsk = inet_csk(sk);
1781 struct tcp_sock *tp = tcp_sk(sk);
1782 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1783 TCP_SKB_CB(ack_skb)->sacked);
1784 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1785 struct tcp_sack_block sp[TCP_NUM_SACKS];
1786 struct tcp_sack_block *cache;
1787 struct tcp_sacktag_state state;
1788 struct sk_buff *skb;
1789 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1790 int used_sacks;
1791 int found_dup_sack = 0;
1792 int i, j;
1793 int first_sack_index;
1794
1795 state.flag = 0;
1796 state.reord = tp->packets_out;
1797
1798 if (!tp->sacked_out) {
1799 if (WARN_ON(tp->fackets_out))
1800 tp->fackets_out = 0;
1801 tcp_highest_sack_reset(sk);
1802 }
1803
1804 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1805 num_sacks, prior_snd_una);
1806 if (found_dup_sack)
1807 state.flag |= FLAG_DSACKING_ACK;
1808
1809 /* Eliminate too old ACKs, but take into
1810 * account more or less fresh ones, they can
1811 * contain valid SACK info.
1812 */
1813 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1814 return 0;
1815
1816 if (!tp->packets_out)
1817 goto out;
1818
1819 used_sacks = 0;
1820 first_sack_index = 0;
1821 for (i = 0; i < num_sacks; i++) {
1822 int dup_sack = !i && found_dup_sack;
1823
1824 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1825 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1826
1827 if (!tcp_is_sackblock_valid(tp, dup_sack,
1828 sp[used_sacks].start_seq,
1829 sp[used_sacks].end_seq)) {
1830 int mib_idx;
1831
1832 if (dup_sack) {
1833 if (!tp->undo_marker)
1834 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1835 else
1836 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1837 } else {
1838 /* Don't count olds caused by ACK reordering */
1839 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1840 !after(sp[used_sacks].end_seq, tp->snd_una))
1841 continue;
1842 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1843 }
1844
1845 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1846 if (i == 0)
1847 first_sack_index = -1;
1848 continue;
1849 }
1850
1851 /* Ignore very old stuff early */
1852 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1853 continue;
1854
1855 used_sacks++;
1856 }
1857
1858 /* order SACK blocks to allow in order walk of the retrans queue */
1859 for (i = used_sacks - 1; i > 0; i--) {
1860 for (j = 0; j < i; j++) {
1861 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1862 swap(sp[j], sp[j + 1]);
1863
1864 /* Track where the first SACK block goes to */
1865 if (j == first_sack_index)
1866 first_sack_index = j + 1;
1867 }
1868 }
1869 }
1870
1871 skb = tcp_write_queue_head(sk);
1872 state.fack_count = 0;
1873 i = 0;
1874
1875 if (!tp->sacked_out) {
1876 /* It's already past, so skip checking against it */
1877 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1878 } else {
1879 cache = tp->recv_sack_cache;
1880 /* Skip empty blocks in at head of the cache */
1881 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1882 !cache->end_seq)
1883 cache++;
1884 }
1885
1886 while (i < used_sacks) {
1887 u32 start_seq = sp[i].start_seq;
1888 u32 end_seq = sp[i].end_seq;
1889 int dup_sack = (found_dup_sack && (i == first_sack_index));
1890 struct tcp_sack_block *next_dup = NULL;
1891
1892 if (found_dup_sack && ((i + 1) == first_sack_index))
1893 next_dup = &sp[i + 1];
1894
1895 /* Skip too early cached blocks */
1896 while (tcp_sack_cache_ok(tp, cache) &&
1897 !before(start_seq, cache->end_seq))
1898 cache++;
1899
1900 /* Can skip some work by looking recv_sack_cache? */
1901 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1902 after(end_seq, cache->start_seq)) {
1903
1904 /* Head todo? */
1905 if (before(start_seq, cache->start_seq)) {
1906 skb = tcp_sacktag_skip(skb, sk, &state,
1907 start_seq);
1908 skb = tcp_sacktag_walk(skb, sk, next_dup,
1909 &state,
1910 start_seq,
1911 cache->start_seq,
1912 dup_sack);
1913 }
1914
1915 /* Rest of the block already fully processed? */
1916 if (!after(end_seq, cache->end_seq))
1917 goto advance_sp;
1918
1919 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1920 &state,
1921 cache->end_seq);
1922
1923 /* ...tail remains todo... */
1924 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1925 /* ...but better entrypoint exists! */
1926 skb = tcp_highest_sack(sk);
1927 if (skb == NULL)
1928 break;
1929 state.fack_count = tp->fackets_out;
1930 cache++;
1931 goto walk;
1932 }
1933
1934 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1935 /* Check overlap against next cached too (past this one already) */
1936 cache++;
1937 continue;
1938 }
1939
1940 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1941 skb = tcp_highest_sack(sk);
1942 if (skb == NULL)
1943 break;
1944 state.fack_count = tp->fackets_out;
1945 }
1946 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1947
1948walk:
1949 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1950 start_seq, end_seq, dup_sack);
1951
1952advance_sp:
1953 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1954 * due to in-order walk
1955 */
1956 if (after(end_seq, tp->frto_highmark))
1957 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1958
1959 i++;
1960 }
1961
1962 /* Clear the head of the cache sack blocks so we can skip it next time */
1963 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1964 tp->recv_sack_cache[i].start_seq = 0;
1965 tp->recv_sack_cache[i].end_seq = 0;
1966 }
1967 for (j = 0; j < used_sacks; j++)
1968 tp->recv_sack_cache[i++] = sp[j];
1969
1970 tcp_mark_lost_retrans(sk);
1971
1972 tcp_verify_left_out(tp);
1973
1974 if ((state.reord < tp->fackets_out) &&
1975 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1976 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1977 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1978
1979out:
1980
1981#if FASTRETRANS_DEBUG > 0
1982 WARN_ON((int)tp->sacked_out < 0);
1983 WARN_ON((int)tp->lost_out < 0);
1984 WARN_ON((int)tp->retrans_out < 0);
1985 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1986#endif
1987 return state.flag;
1988}
1989
1990/* Limits sacked_out so that sum with lost_out isn't ever larger than
1991 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1992 */
1993static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1994{
1995 u32 holes;
1996
1997 holes = max(tp->lost_out, 1U);
1998 holes = min(holes, tp->packets_out);
1999
2000 if ((tp->sacked_out + holes) > tp->packets_out) {
2001 tp->sacked_out = tp->packets_out - holes;
2002 return 1;
2003 }
2004 return 0;
2005}
2006
2007/* If we receive more dupacks than we expected counting segments
2008 * in assumption of absent reordering, interpret this as reordering.
2009 * The only another reason could be bug in receiver TCP.
2010 */
2011static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2012{
2013 struct tcp_sock *tp = tcp_sk(sk);
2014 if (tcp_limit_reno_sacked(tp))
2015 tcp_update_reordering(sk, tp->packets_out + addend, 0);
2016}
2017
2018/* Emulate SACKs for SACKless connection: account for a new dupack. */
2019
2020static void tcp_add_reno_sack(struct sock *sk)
2021{
2022 struct tcp_sock *tp = tcp_sk(sk);
2023 tp->sacked_out++;
2024 tcp_check_reno_reordering(sk, 0);
2025 tcp_verify_left_out(tp);
2026}
2027
2028/* Account for ACK, ACKing some data in Reno Recovery phase. */
2029
2030static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2031{
2032 struct tcp_sock *tp = tcp_sk(sk);
2033
2034 if (acked > 0) {
2035 /* One ACK acked hole. The rest eat duplicate ACKs. */
2036 if (acked - 1 >= tp->sacked_out)
2037 tp->sacked_out = 0;
2038 else
2039 tp->sacked_out -= acked - 1;
2040 }
2041 tcp_check_reno_reordering(sk, acked);
2042 tcp_verify_left_out(tp);
2043}
2044
2045static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2046{
2047 tp->sacked_out = 0;
2048}
2049
2050static int tcp_is_sackfrto(const struct tcp_sock *tp)
2051{
2052 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2053}
2054
2055/* F-RTO can only be used if TCP has never retransmitted anything other than
2056 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2057 */
2058int tcp_use_frto(struct sock *sk)
2059{
2060 const struct tcp_sock *tp = tcp_sk(sk);
2061 const struct inet_connection_sock *icsk = inet_csk(sk);
2062 struct sk_buff *skb;
2063
2064 if (!sysctl_tcp_frto)
2065 return 0;
2066
2067 /* MTU probe and F-RTO won't really play nicely along currently */
2068 if (icsk->icsk_mtup.probe_size)
2069 return 0;
2070
2071 if (tcp_is_sackfrto(tp))
2072 return 1;
2073
2074 /* Avoid expensive walking of rexmit queue if possible */
2075 if (tp->retrans_out > 1)
2076 return 0;
2077
2078 skb = tcp_write_queue_head(sk);
2079 if (tcp_skb_is_last(sk, skb))
2080 return 1;
2081 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2082 tcp_for_write_queue_from(skb, sk) {
2083 if (skb == tcp_send_head(sk))
2084 break;
2085 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2086 return 0;
2087 /* Short-circuit when first non-SACKed skb has been checked */
2088 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2089 break;
2090 }
2091 return 1;
2092}
2093
2094/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2095 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2096 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2097 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2098 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2099 * bits are handled if the Loss state is really to be entered (in
2100 * tcp_enter_frto_loss).
2101 *
2102 * Do like tcp_enter_loss() would; when RTO expires the second time it
2103 * does:
2104 * "Reduce ssthresh if it has not yet been made inside this window."
2105 */
2106void tcp_enter_frto(struct sock *sk)
2107{
2108 const struct inet_connection_sock *icsk = inet_csk(sk);
2109 struct tcp_sock *tp = tcp_sk(sk);
2110 struct sk_buff *skb;
2111
2112 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2113 tp->snd_una == tp->high_seq ||
2114 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2115 !icsk->icsk_retransmits)) {
2116 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2117 /* Our state is too optimistic in ssthresh() call because cwnd
2118 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2119 * recovery has not yet completed. Pattern would be this: RTO,
2120 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2121 * up here twice).
2122 * RFC4138 should be more specific on what to do, even though
2123 * RTO is quite unlikely to occur after the first Cumulative ACK
2124 * due to back-off and complexity of triggering events ...
2125 */
2126 if (tp->frto_counter) {
2127 u32 stored_cwnd;
2128 stored_cwnd = tp->snd_cwnd;
2129 tp->snd_cwnd = 2;
2130 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2131 tp->snd_cwnd = stored_cwnd;
2132 } else {
2133 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2134 }
2135 /* ... in theory, cong.control module could do "any tricks" in
2136 * ssthresh(), which means that ca_state, lost bits and lost_out
2137 * counter would have to be faked before the call occurs. We
2138 * consider that too expensive, unlikely and hacky, so modules
2139 * using these in ssthresh() must deal these incompatibility
2140 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2141 */
2142 tcp_ca_event(sk, CA_EVENT_FRTO);
2143 }
2144
2145 tp->undo_marker = tp->snd_una;
2146 tp->undo_retrans = 0;
2147
2148 skb = tcp_write_queue_head(sk);
2149 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2150 tp->undo_marker = 0;
2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2152 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2153 tp->retrans_out -= tcp_skb_pcount(skb);
2154 }
2155 tcp_verify_left_out(tp);
2156
2157 /* Too bad if TCP was application limited */
2158 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2159
2160 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2161 * The last condition is necessary at least in tp->frto_counter case.
2162 */
2163 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2164 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2165 after(tp->high_seq, tp->snd_una)) {
2166 tp->frto_highmark = tp->high_seq;
2167 } else {
2168 tp->frto_highmark = tp->snd_nxt;
2169 }
2170 tcp_set_ca_state(sk, TCP_CA_Disorder);
2171 tp->high_seq = tp->snd_nxt;
2172 tp->frto_counter = 1;
2173}
2174
2175/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2176 * which indicates that we should follow the traditional RTO recovery,
2177 * i.e. mark everything lost and do go-back-N retransmission.
2178 */
2179static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2180{
2181 struct tcp_sock *tp = tcp_sk(sk);
2182 struct sk_buff *skb;
2183
2184 tp->lost_out = 0;
2185 tp->retrans_out = 0;
2186 if (tcp_is_reno(tp))
2187 tcp_reset_reno_sack(tp);
2188
2189 tcp_for_write_queue(skb, sk) {
2190 if (skb == tcp_send_head(sk))
2191 break;
2192
2193 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2194 /*
2195 * Count the retransmission made on RTO correctly (only when
2196 * waiting for the first ACK and did not get it)...
2197 */
2198 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2199 /* For some reason this R-bit might get cleared? */
2200 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2201 tp->retrans_out += tcp_skb_pcount(skb);
2202 /* ...enter this if branch just for the first segment */
2203 flag |= FLAG_DATA_ACKED;
2204 } else {
2205 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2206 tp->undo_marker = 0;
2207 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2208 }
2209
2210 /* Marking forward transmissions that were made after RTO lost
2211 * can cause unnecessary retransmissions in some scenarios,
2212 * SACK blocks will mitigate that in some but not in all cases.
2213 * We used to not mark them but it was causing break-ups with
2214 * receivers that do only in-order receival.
2215 *
2216 * TODO: we could detect presence of such receiver and select
2217 * different behavior per flow.
2218 */
2219 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2220 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2221 tp->lost_out += tcp_skb_pcount(skb);
2222 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2223 }
2224 }
2225 tcp_verify_left_out(tp);
2226
2227 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2228 tp->snd_cwnd_cnt = 0;
2229 tp->snd_cwnd_stamp = tcp_time_stamp;
2230 tp->frto_counter = 0;
2231 tp->bytes_acked = 0;
2232
2233 tp->reordering = min_t(unsigned int, tp->reordering,
2234 sysctl_tcp_reordering);
2235 tcp_set_ca_state(sk, TCP_CA_Loss);
2236 tp->high_seq = tp->snd_nxt;
2237 TCP_ECN_queue_cwr(tp);
2238
2239 tcp_clear_all_retrans_hints(tp);
2240}
2241
2242static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2243{
2244 tp->retrans_out = 0;
2245 tp->lost_out = 0;
2246
2247 tp->undo_marker = 0;
2248 tp->undo_retrans = -1;
2249}
2250
2251void tcp_clear_retrans(struct tcp_sock *tp)
2252{
2253 tcp_clear_retrans_partial(tp);
2254
2255 tp->fackets_out = 0;
2256 tp->sacked_out = 0;
2257}
2258
2259/* Enter Loss state. If "how" is not zero, forget all SACK information
2260 * and reset tags completely, otherwise preserve SACKs. If receiver
2261 * dropped its ofo queue, we will know this due to reneging detection.
2262 */
2263void tcp_enter_loss(struct sock *sk, int how)
2264{
2265 const struct inet_connection_sock *icsk = inet_csk(sk);
2266 struct tcp_sock *tp = tcp_sk(sk);
2267 struct sk_buff *skb;
2268
2269 /* Reduce ssthresh if it has not yet been made inside this window. */
2270 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2271 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2272 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2273 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2274 tcp_ca_event(sk, CA_EVENT_LOSS);
2275 }
2276 tp->snd_cwnd = 1;
2277 tp->snd_cwnd_cnt = 0;
2278 tp->snd_cwnd_stamp = tcp_time_stamp;
2279
2280 tp->bytes_acked = 0;
2281 tcp_clear_retrans_partial(tp);
2282
2283 if (tcp_is_reno(tp))
2284 tcp_reset_reno_sack(tp);
2285
2286 tp->undo_marker = tp->snd_una;
2287 if (how) {
2288 tp->sacked_out = 0;
2289 tp->fackets_out = 0;
2290 }
2291 tcp_clear_all_retrans_hints(tp);
2292
2293 tcp_for_write_queue(skb, sk) {
2294 if (skb == tcp_send_head(sk))
2295 break;
2296
2297 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2298 tp->undo_marker = 0;
2299 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2300 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2301 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2302 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2303 tp->lost_out += tcp_skb_pcount(skb);
2304 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2305 }
2306 }
2307 tcp_verify_left_out(tp);
2308
2309 tp->reordering = min_t(unsigned int, tp->reordering,
2310 sysctl_tcp_reordering);
2311 tcp_set_ca_state(sk, TCP_CA_Loss);
2312 tp->high_seq = tp->snd_nxt;
2313 TCP_ECN_queue_cwr(tp);
2314 /* Abort F-RTO algorithm if one is in progress */
2315 tp->frto_counter = 0;
2316}
2317
2318/* If ACK arrived pointing to a remembered SACK, it means that our
2319 * remembered SACKs do not reflect real state of receiver i.e.
2320 * receiver _host_ is heavily congested (or buggy).
2321 *
2322 * Do processing similar to RTO timeout.
2323 */
2324static int tcp_check_sack_reneging(struct sock *sk, int flag)
2325{
2326 if (flag & FLAG_SACK_RENEGING) {
2327 struct inet_connection_sock *icsk = inet_csk(sk);
2328 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2329
2330 tcp_enter_loss(sk, 1);
2331 icsk->icsk_retransmits++;
2332 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2333 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2334 icsk->icsk_rto, TCP_RTO_MAX);
2335 return 1;
2336 }
2337 return 0;
2338}
2339
2340static inline int tcp_fackets_out(const struct tcp_sock *tp)
2341{
2342 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2343}
2344
2345/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2346 * counter when SACK is enabled (without SACK, sacked_out is used for
2347 * that purpose).
2348 *
2349 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2350 * segments up to the highest received SACK block so far and holes in
2351 * between them.
2352 *
2353 * With reordering, holes may still be in flight, so RFC3517 recovery
2354 * uses pure sacked_out (total number of SACKed segments) even though
2355 * it violates the RFC that uses duplicate ACKs, often these are equal
2356 * but when e.g. out-of-window ACKs or packet duplication occurs,
2357 * they differ. Since neither occurs due to loss, TCP should really
2358 * ignore them.
2359 */
2360static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2361{
2362 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2363}
2364
2365static inline int tcp_skb_timedout(const struct sock *sk,
2366 const struct sk_buff *skb)
2367{
2368 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2369}
2370
2371static inline int tcp_head_timedout(const struct sock *sk)
2372{
2373 const struct tcp_sock *tp = tcp_sk(sk);
2374
2375 return tp->packets_out &&
2376 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2377}
2378
2379/* Linux NewReno/SACK/FACK/ECN state machine.
2380 * --------------------------------------
2381 *
2382 * "Open" Normal state, no dubious events, fast path.
2383 * "Disorder" In all the respects it is "Open",
2384 * but requires a bit more attention. It is entered when
2385 * we see some SACKs or dupacks. It is split of "Open"
2386 * mainly to move some processing from fast path to slow one.
2387 * "CWR" CWND was reduced due to some Congestion Notification event.
2388 * It can be ECN, ICMP source quench, local device congestion.
2389 * "Recovery" CWND was reduced, we are fast-retransmitting.
2390 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2391 *
2392 * tcp_fastretrans_alert() is entered:
2393 * - each incoming ACK, if state is not "Open"
2394 * - when arrived ACK is unusual, namely:
2395 * * SACK
2396 * * Duplicate ACK.
2397 * * ECN ECE.
2398 *
2399 * Counting packets in flight is pretty simple.
2400 *
2401 * in_flight = packets_out - left_out + retrans_out
2402 *
2403 * packets_out is SND.NXT-SND.UNA counted in packets.
2404 *
2405 * retrans_out is number of retransmitted segments.
2406 *
2407 * left_out is number of segments left network, but not ACKed yet.
2408 *
2409 * left_out = sacked_out + lost_out
2410 *
2411 * sacked_out: Packets, which arrived to receiver out of order
2412 * and hence not ACKed. With SACKs this number is simply
2413 * amount of SACKed data. Even without SACKs
2414 * it is easy to give pretty reliable estimate of this number,
2415 * counting duplicate ACKs.
2416 *
2417 * lost_out: Packets lost by network. TCP has no explicit
2418 * "loss notification" feedback from network (for now).
2419 * It means that this number can be only _guessed_.
2420 * Actually, it is the heuristics to predict lossage that
2421 * distinguishes different algorithms.
2422 *
2423 * F.e. after RTO, when all the queue is considered as lost,
2424 * lost_out = packets_out and in_flight = retrans_out.
2425 *
2426 * Essentially, we have now two algorithms counting
2427 * lost packets.
2428 *
2429 * FACK: It is the simplest heuristics. As soon as we decided
2430 * that something is lost, we decide that _all_ not SACKed
2431 * packets until the most forward SACK are lost. I.e.
2432 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2433 * It is absolutely correct estimate, if network does not reorder
2434 * packets. And it loses any connection to reality when reordering
2435 * takes place. We use FACK by default until reordering
2436 * is suspected on the path to this destination.
2437 *
2438 * NewReno: when Recovery is entered, we assume that one segment
2439 * is lost (classic Reno). While we are in Recovery and
2440 * a partial ACK arrives, we assume that one more packet
2441 * is lost (NewReno). This heuristics are the same in NewReno
2442 * and SACK.
2443 *
2444 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2445 * deflation etc. CWND is real congestion window, never inflated, changes
2446 * only according to classic VJ rules.
2447 *
2448 * Really tricky (and requiring careful tuning) part of algorithm
2449 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2450 * The first determines the moment _when_ we should reduce CWND and,
2451 * hence, slow down forward transmission. In fact, it determines the moment
2452 * when we decide that hole is caused by loss, rather than by a reorder.
2453 *
2454 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2455 * holes, caused by lost packets.
2456 *
2457 * And the most logically complicated part of algorithm is undo
2458 * heuristics. We detect false retransmits due to both too early
2459 * fast retransmit (reordering) and underestimated RTO, analyzing
2460 * timestamps and D-SACKs. When we detect that some segments were
2461 * retransmitted by mistake and CWND reduction was wrong, we undo
2462 * window reduction and abort recovery phase. This logic is hidden
2463 * inside several functions named tcp_try_undo_<something>.
2464 */
2465
2466/* This function decides, when we should leave Disordered state
2467 * and enter Recovery phase, reducing congestion window.
2468 *
2469 * Main question: may we further continue forward transmission
2470 * with the same cwnd?
2471 */
2472static int tcp_time_to_recover(struct sock *sk)
2473{
2474 struct tcp_sock *tp = tcp_sk(sk);
2475 __u32 packets_out;
2476
2477 /* Do not perform any recovery during F-RTO algorithm */
2478 if (tp->frto_counter)
2479 return 0;
2480
2481 /* Trick#1: The loss is proven. */
2482 if (tp->lost_out)
2483 return 1;
2484
2485 /* Not-A-Trick#2 : Classic rule... */
2486 if (tcp_dupack_heuristics(tp) > tp->reordering)
2487 return 1;
2488
2489 /* Trick#3 : when we use RFC2988 timer restart, fast
2490 * retransmit can be triggered by timeout of queue head.
2491 */
2492 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2493 return 1;
2494
2495 /* Trick#4: It is still not OK... But will it be useful to delay
2496 * recovery more?
2497 */
2498 packets_out = tp->packets_out;
2499 if (packets_out <= tp->reordering &&
2500 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2501 !tcp_may_send_now(sk)) {
2502 /* We have nothing to send. This connection is limited
2503 * either by receiver window or by application.
2504 */
2505 return 1;
2506 }
2507
2508 /* If a thin stream is detected, retransmit after first
2509 * received dupack. Employ only if SACK is supported in order
2510 * to avoid possible corner-case series of spurious retransmissions
2511 * Use only if there are no unsent data.
2512 */
2513 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2514 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2515 tcp_is_sack(tp) && !tcp_send_head(sk))
2516 return 1;
2517
2518 return 0;
2519}
2520
2521/* New heuristics: it is possible only after we switched to restart timer
2522 * each time when something is ACKed. Hence, we can detect timed out packets
2523 * during fast retransmit without falling to slow start.
2524 *
2525 * Usefulness of this as is very questionable, since we should know which of
2526 * the segments is the next to timeout which is relatively expensive to find
2527 * in general case unless we add some data structure just for that. The
2528 * current approach certainly won't find the right one too often and when it
2529 * finally does find _something_ it usually marks large part of the window
2530 * right away (because a retransmission with a larger timestamp blocks the
2531 * loop from advancing). -ij
2532 */
2533static void tcp_timeout_skbs(struct sock *sk)
2534{
2535 struct tcp_sock *tp = tcp_sk(sk);
2536 struct sk_buff *skb;
2537
2538 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2539 return;
2540
2541 skb = tp->scoreboard_skb_hint;
2542 if (tp->scoreboard_skb_hint == NULL)
2543 skb = tcp_write_queue_head(sk);
2544
2545 tcp_for_write_queue_from(skb, sk) {
2546 if (skb == tcp_send_head(sk))
2547 break;
2548 if (!tcp_skb_timedout(sk, skb))
2549 break;
2550
2551 tcp_skb_mark_lost(tp, skb);
2552 }
2553
2554 tp->scoreboard_skb_hint = skb;
2555
2556 tcp_verify_left_out(tp);
2557}
2558
2559/* Detect loss in event "A" above by marking head of queue up as lost.
2560 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2561 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2562 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2563 * the maximum SACKed segments to pass before reaching this limit.
2564 */
2565static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2566{
2567 struct tcp_sock *tp = tcp_sk(sk);
2568 struct sk_buff *skb;
2569 int cnt, oldcnt;
2570 int err;
2571 unsigned int mss;
2572 /* Use SACK to deduce losses of new sequences sent during recovery */
2573 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2574
2575 WARN_ON(packets > tp->packets_out);
2576 if (tp->lost_skb_hint) {
2577 skb = tp->lost_skb_hint;
2578 cnt = tp->lost_cnt_hint;
2579 /* Head already handled? */
2580 if (mark_head && skb != tcp_write_queue_head(sk))
2581 return;
2582 } else {
2583 skb = tcp_write_queue_head(sk);
2584 cnt = 0;
2585 }
2586
2587 tcp_for_write_queue_from(skb, sk) {
2588 if (skb == tcp_send_head(sk))
2589 break;
2590 /* TODO: do this better */
2591 /* this is not the most efficient way to do this... */
2592 tp->lost_skb_hint = skb;
2593 tp->lost_cnt_hint = cnt;
2594
2595 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2596 break;
2597
2598 oldcnt = cnt;
2599 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2600 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2601 cnt += tcp_skb_pcount(skb);
2602
2603 if (cnt > packets) {
2604 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2605 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2606 (oldcnt >= packets))
2607 break;
2608
2609 mss = skb_shinfo(skb)->gso_size;
2610 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2611 if (err < 0)
2612 break;
2613 cnt = packets;
2614 }
2615
2616 tcp_skb_mark_lost(tp, skb);
2617
2618 if (mark_head)
2619 break;
2620 }
2621 tcp_verify_left_out(tp);
2622}
2623
2624/* Account newly detected lost packet(s) */
2625
2626static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2627{
2628 struct tcp_sock *tp = tcp_sk(sk);
2629
2630 if (tcp_is_reno(tp)) {
2631 tcp_mark_head_lost(sk, 1, 1);
2632 } else if (tcp_is_fack(tp)) {
2633 int lost = tp->fackets_out - tp->reordering;
2634 if (lost <= 0)
2635 lost = 1;
2636 tcp_mark_head_lost(sk, lost, 0);
2637 } else {
2638 int sacked_upto = tp->sacked_out - tp->reordering;
2639 if (sacked_upto >= 0)
2640 tcp_mark_head_lost(sk, sacked_upto, 0);
2641 else if (fast_rexmit)
2642 tcp_mark_head_lost(sk, 1, 1);
2643 }
2644
2645 tcp_timeout_skbs(sk);
2646}
2647
2648/* CWND moderation, preventing bursts due to too big ACKs
2649 * in dubious situations.
2650 */
2651static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2652{
2653 tp->snd_cwnd = min(tp->snd_cwnd,
2654 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2655 tp->snd_cwnd_stamp = tcp_time_stamp;
2656}
2657
2658/* Lower bound on congestion window is slow start threshold
2659 * unless congestion avoidance choice decides to overide it.
2660 */
2661static inline u32 tcp_cwnd_min(const struct sock *sk)
2662{
2663 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2664
2665 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2666}
2667
2668/* Decrease cwnd each second ack. */
2669static void tcp_cwnd_down(struct sock *sk, int flag)
2670{
2671 struct tcp_sock *tp = tcp_sk(sk);
2672 int decr = tp->snd_cwnd_cnt + 1;
2673
2674 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2675 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2676 tp->snd_cwnd_cnt = decr & 1;
2677 decr >>= 1;
2678
2679 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2680 tp->snd_cwnd -= decr;
2681
2682 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2683 tp->snd_cwnd_stamp = tcp_time_stamp;
2684 }
2685}
2686
2687/* Nothing was retransmitted or returned timestamp is less
2688 * than timestamp of the first retransmission.
2689 */
2690static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2691{
2692 return !tp->retrans_stamp ||
2693 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2694 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2695}
2696
2697/* Undo procedures. */
2698
2699#if FASTRETRANS_DEBUG > 1
2700static void DBGUNDO(struct sock *sk, const char *msg)
2701{
2702 struct tcp_sock *tp = tcp_sk(sk);
2703 struct inet_sock *inet = inet_sk(sk);
2704
2705 if (sk->sk_family == AF_INET) {
2706 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2707 msg,
2708 &inet->inet_daddr, ntohs(inet->inet_dport),
2709 tp->snd_cwnd, tcp_left_out(tp),
2710 tp->snd_ssthresh, tp->prior_ssthresh,
2711 tp->packets_out);
2712 }
2713#if IS_ENABLED(CONFIG_IPV6)
2714 else if (sk->sk_family == AF_INET6) {
2715 struct ipv6_pinfo *np = inet6_sk(sk);
2716 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2717 msg,
2718 &np->daddr, ntohs(inet->inet_dport),
2719 tp->snd_cwnd, tcp_left_out(tp),
2720 tp->snd_ssthresh, tp->prior_ssthresh,
2721 tp->packets_out);
2722 }
2723#endif
2724}
2725#else
2726#define DBGUNDO(x...) do { } while (0)
2727#endif
2728
2729static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2730{
2731 struct tcp_sock *tp = tcp_sk(sk);
2732
2733 if (tp->prior_ssthresh) {
2734 const struct inet_connection_sock *icsk = inet_csk(sk);
2735
2736 if (icsk->icsk_ca_ops->undo_cwnd)
2737 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2738 else
2739 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2740
2741 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2742 tp->snd_ssthresh = tp->prior_ssthresh;
2743 TCP_ECN_withdraw_cwr(tp);
2744 }
2745 } else {
2746 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2747 }
2748 tp->snd_cwnd_stamp = tcp_time_stamp;
2749}
2750
2751static inline int tcp_may_undo(const struct tcp_sock *tp)
2752{
2753 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2754}
2755
2756/* People celebrate: "We love our President!" */
2757static int tcp_try_undo_recovery(struct sock *sk)
2758{
2759 struct tcp_sock *tp = tcp_sk(sk);
2760
2761 if (tcp_may_undo(tp)) {
2762 int mib_idx;
2763
2764 /* Happy end! We did not retransmit anything
2765 * or our original transmission succeeded.
2766 */
2767 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2768 tcp_undo_cwr(sk, true);
2769 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2770 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2771 else
2772 mib_idx = LINUX_MIB_TCPFULLUNDO;
2773
2774 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2775 tp->undo_marker = 0;
2776 }
2777 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2778 /* Hold old state until something *above* high_seq
2779 * is ACKed. For Reno it is MUST to prevent false
2780 * fast retransmits (RFC2582). SACK TCP is safe. */
2781 tcp_moderate_cwnd(tp);
2782 return 1;
2783 }
2784 tcp_set_ca_state(sk, TCP_CA_Open);
2785 return 0;
2786}
2787
2788/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2789static void tcp_try_undo_dsack(struct sock *sk)
2790{
2791 struct tcp_sock *tp = tcp_sk(sk);
2792
2793 if (tp->undo_marker && !tp->undo_retrans) {
2794 DBGUNDO(sk, "D-SACK");
2795 tcp_undo_cwr(sk, true);
2796 tp->undo_marker = 0;
2797 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2798 }
2799}
2800
2801/* We can clear retrans_stamp when there are no retransmissions in the
2802 * window. It would seem that it is trivially available for us in
2803 * tp->retrans_out, however, that kind of assumptions doesn't consider
2804 * what will happen if errors occur when sending retransmission for the
2805 * second time. ...It could the that such segment has only
2806 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2807 * the head skb is enough except for some reneging corner cases that
2808 * are not worth the effort.
2809 *
2810 * Main reason for all this complexity is the fact that connection dying
2811 * time now depends on the validity of the retrans_stamp, in particular,
2812 * that successive retransmissions of a segment must not advance
2813 * retrans_stamp under any conditions.
2814 */
2815static int tcp_any_retrans_done(const struct sock *sk)
2816{
2817 const struct tcp_sock *tp = tcp_sk(sk);
2818 struct sk_buff *skb;
2819
2820 if (tp->retrans_out)
2821 return 1;
2822
2823 skb = tcp_write_queue_head(sk);
2824 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2825 return 1;
2826
2827 return 0;
2828}
2829
2830/* Undo during fast recovery after partial ACK. */
2831
2832static int tcp_try_undo_partial(struct sock *sk, int acked)
2833{
2834 struct tcp_sock *tp = tcp_sk(sk);
2835 /* Partial ACK arrived. Force Hoe's retransmit. */
2836 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2837
2838 if (tcp_may_undo(tp)) {
2839 /* Plain luck! Hole if filled with delayed
2840 * packet, rather than with a retransmit.
2841 */
2842 if (!tcp_any_retrans_done(sk))
2843 tp->retrans_stamp = 0;
2844
2845 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2846
2847 DBGUNDO(sk, "Hoe");
2848 tcp_undo_cwr(sk, false);
2849 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2850
2851 /* So... Do not make Hoe's retransmit yet.
2852 * If the first packet was delayed, the rest
2853 * ones are most probably delayed as well.
2854 */
2855 failed = 0;
2856 }
2857 return failed;
2858}
2859
2860/* Undo during loss recovery after partial ACK. */
2861static int tcp_try_undo_loss(struct sock *sk)
2862{
2863 struct tcp_sock *tp = tcp_sk(sk);
2864
2865 if (tcp_may_undo(tp)) {
2866 struct sk_buff *skb;
2867 tcp_for_write_queue(skb, sk) {
2868 if (skb == tcp_send_head(sk))
2869 break;
2870 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2871 }
2872
2873 tcp_clear_all_retrans_hints(tp);
2874
2875 DBGUNDO(sk, "partial loss");
2876 tp->lost_out = 0;
2877 tcp_undo_cwr(sk, true);
2878 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2879 inet_csk(sk)->icsk_retransmits = 0;
2880 tp->undo_marker = 0;
2881 if (tcp_is_sack(tp))
2882 tcp_set_ca_state(sk, TCP_CA_Open);
2883 return 1;
2884 }
2885 return 0;
2886}
2887
2888static inline void tcp_complete_cwr(struct sock *sk)
2889{
2890 struct tcp_sock *tp = tcp_sk(sk);
2891
2892 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2893 if (tp->undo_marker) {
2894 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2895 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2896 tp->snd_cwnd_stamp = tcp_time_stamp;
2897 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2898 /* PRR algorithm. */
2899 tp->snd_cwnd = tp->snd_ssthresh;
2900 tp->snd_cwnd_stamp = tcp_time_stamp;
2901 }
2902 }
2903 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2904}
2905
2906static void tcp_try_keep_open(struct sock *sk)
2907{
2908 struct tcp_sock *tp = tcp_sk(sk);
2909 int state = TCP_CA_Open;
2910
2911 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2912 state = TCP_CA_Disorder;
2913
2914 if (inet_csk(sk)->icsk_ca_state != state) {
2915 tcp_set_ca_state(sk, state);
2916 tp->high_seq = tp->snd_nxt;
2917 }
2918}
2919
2920static void tcp_try_to_open(struct sock *sk, int flag)
2921{
2922 struct tcp_sock *tp = tcp_sk(sk);
2923
2924 tcp_verify_left_out(tp);
2925
2926 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2927 tp->retrans_stamp = 0;
2928
2929 if (flag & FLAG_ECE)
2930 tcp_enter_cwr(sk, 1);
2931
2932 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2933 tcp_try_keep_open(sk);
2934 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2935 tcp_moderate_cwnd(tp);
2936 } else {
2937 tcp_cwnd_down(sk, flag);
2938 }
2939}
2940
2941static void tcp_mtup_probe_failed(struct sock *sk)
2942{
2943 struct inet_connection_sock *icsk = inet_csk(sk);
2944
2945 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2946 icsk->icsk_mtup.probe_size = 0;
2947}
2948
2949static void tcp_mtup_probe_success(struct sock *sk)
2950{
2951 struct tcp_sock *tp = tcp_sk(sk);
2952 struct inet_connection_sock *icsk = inet_csk(sk);
2953
2954 /* FIXME: breaks with very large cwnd */
2955 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2956 tp->snd_cwnd = tp->snd_cwnd *
2957 tcp_mss_to_mtu(sk, tp->mss_cache) /
2958 icsk->icsk_mtup.probe_size;
2959 tp->snd_cwnd_cnt = 0;
2960 tp->snd_cwnd_stamp = tcp_time_stamp;
2961 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2962
2963 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2964 icsk->icsk_mtup.probe_size = 0;
2965 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2966}
2967
2968/* Do a simple retransmit without using the backoff mechanisms in
2969 * tcp_timer. This is used for path mtu discovery.
2970 * The socket is already locked here.
2971 */
2972void tcp_simple_retransmit(struct sock *sk)
2973{
2974 const struct inet_connection_sock *icsk = inet_csk(sk);
2975 struct tcp_sock *tp = tcp_sk(sk);
2976 struct sk_buff *skb;
2977 unsigned int mss = tcp_current_mss(sk);
2978 u32 prior_lost = tp->lost_out;
2979
2980 tcp_for_write_queue(skb, sk) {
2981 if (skb == tcp_send_head(sk))
2982 break;
2983 if (tcp_skb_seglen(skb) > mss &&
2984 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2985 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2986 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2987 tp->retrans_out -= tcp_skb_pcount(skb);
2988 }
2989 tcp_skb_mark_lost_uncond_verify(tp, skb);
2990 }
2991 }
2992
2993 tcp_clear_retrans_hints_partial(tp);
2994
2995 if (prior_lost == tp->lost_out)
2996 return;
2997
2998 if (tcp_is_reno(tp))
2999 tcp_limit_reno_sacked(tp);
3000
3001 tcp_verify_left_out(tp);
3002
3003 /* Don't muck with the congestion window here.
3004 * Reason is that we do not increase amount of _data_
3005 * in network, but units changed and effective
3006 * cwnd/ssthresh really reduced now.
3007 */
3008 if (icsk->icsk_ca_state != TCP_CA_Loss) {
3009 tp->high_seq = tp->snd_nxt;
3010 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3011 tp->prior_ssthresh = 0;
3012 tp->undo_marker = 0;
3013 tcp_set_ca_state(sk, TCP_CA_Loss);
3014 }
3015 tcp_xmit_retransmit_queue(sk);
3016}
3017EXPORT_SYMBOL(tcp_simple_retransmit);
3018
3019/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3020 * (proportional rate reduction with slow start reduction bound) as described in
3021 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3022 * It computes the number of packets to send (sndcnt) based on packets newly
3023 * delivered:
3024 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
3025 * cwnd reductions across a full RTT.
3026 * 2) If packets in flight is lower than ssthresh (such as due to excess
3027 * losses and/or application stalls), do not perform any further cwnd
3028 * reductions, but instead slow start up to ssthresh.
3029 */
3030static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3031 int fast_rexmit, int flag)
3032{
3033 struct tcp_sock *tp = tcp_sk(sk);
3034 int sndcnt = 0;
3035 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3036 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
3037 return;
3038
3039 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3040 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3041 tp->prior_cwnd - 1;
3042 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3043 } else {
3044 sndcnt = min_t(int, delta,
3045 max_t(int, tp->prr_delivered - tp->prr_out,
3046 newly_acked_sacked) + 1);
3047 }
3048
3049 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3050 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3051}
3052
3053/* Process an event, which can update packets-in-flight not trivially.
3054 * Main goal of this function is to calculate new estimate for left_out,
3055 * taking into account both packets sitting in receiver's buffer and
3056 * packets lost by network.
3057 *
3058 * Besides that it does CWND reduction, when packet loss is detected
3059 * and changes state of machine.
3060 *
3061 * It does _not_ decide what to send, it is made in function
3062 * tcp_xmit_retransmit_queue().
3063 */
3064static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3065 int prior_sacked, int prior_packets,
3066 bool is_dupack, int flag)
3067{
3068 struct inet_connection_sock *icsk = inet_csk(sk);
3069 struct tcp_sock *tp = tcp_sk(sk);
3070 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3071 (tcp_fackets_out(tp) > tp->reordering));
3072 int newly_acked_sacked = 0;
3073 int fast_rexmit = 0, mib_idx;
3074
3075 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3076 tp->sacked_out = 0;
3077 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3078 tp->fackets_out = 0;
3079
3080 /* Now state machine starts.
3081 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3082 if (flag & FLAG_ECE)
3083 tp->prior_ssthresh = 0;
3084
3085 /* B. In all the states check for reneging SACKs. */
3086 if (tcp_check_sack_reneging(sk, flag))
3087 return;
3088
3089 /* C. Check consistency of the current state. */
3090 tcp_verify_left_out(tp);
3091
3092 /* D. Check state exit conditions. State can be terminated
3093 * when high_seq is ACKed. */
3094 if (icsk->icsk_ca_state == TCP_CA_Open) {
3095 WARN_ON(tp->retrans_out != 0);
3096 tp->retrans_stamp = 0;
3097 } else if (!before(tp->snd_una, tp->high_seq)) {
3098 switch (icsk->icsk_ca_state) {
3099 case TCP_CA_Loss:
3100 icsk->icsk_retransmits = 0;
3101 if (tcp_try_undo_recovery(sk))
3102 return;
3103 break;
3104
3105 case TCP_CA_CWR:
3106 /* CWR is to be held something *above* high_seq
3107 * is ACKed for CWR bit to reach receiver. */
3108 if (tp->snd_una != tp->high_seq) {
3109 tcp_complete_cwr(sk);
3110 tcp_set_ca_state(sk, TCP_CA_Open);
3111 }
3112 break;
3113
3114 case TCP_CA_Recovery:
3115 if (tcp_is_reno(tp))
3116 tcp_reset_reno_sack(tp);
3117 if (tcp_try_undo_recovery(sk))
3118 return;
3119 tcp_complete_cwr(sk);
3120 break;
3121 }
3122 }
3123
3124 /* E. Process state. */
3125 switch (icsk->icsk_ca_state) {
3126 case TCP_CA_Recovery:
3127 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3128 if (tcp_is_reno(tp) && is_dupack)
3129 tcp_add_reno_sack(sk);
3130 } else
3131 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3132 newly_acked_sacked = prior_packets - tp->packets_out +
3133 tp->sacked_out - prior_sacked;
3134 break;
3135 case TCP_CA_Loss:
3136 if (flag & FLAG_DATA_ACKED)
3137 icsk->icsk_retransmits = 0;
3138 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3139 tcp_reset_reno_sack(tp);
3140 if (!tcp_try_undo_loss(sk)) {
3141 tcp_moderate_cwnd(tp);
3142 tcp_xmit_retransmit_queue(sk);
3143 return;
3144 }
3145 if (icsk->icsk_ca_state != TCP_CA_Open)
3146 return;
3147 /* Loss is undone; fall through to processing in Open state. */
3148 default:
3149 if (tcp_is_reno(tp)) {
3150 if (flag & FLAG_SND_UNA_ADVANCED)
3151 tcp_reset_reno_sack(tp);
3152 if (is_dupack)
3153 tcp_add_reno_sack(sk);
3154 }
3155 newly_acked_sacked = prior_packets - tp->packets_out +
3156 tp->sacked_out - prior_sacked;
3157
3158 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3159 tcp_try_undo_dsack(sk);
3160
3161 if (!tcp_time_to_recover(sk)) {
3162 tcp_try_to_open(sk, flag);
3163 return;
3164 }
3165
3166 /* MTU probe failure: don't reduce cwnd */
3167 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3168 icsk->icsk_mtup.probe_size &&
3169 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3170 tcp_mtup_probe_failed(sk);
3171 /* Restores the reduction we did in tcp_mtup_probe() */
3172 tp->snd_cwnd++;
3173 tcp_simple_retransmit(sk);
3174 return;
3175 }
3176
3177 /* Otherwise enter Recovery state */
3178
3179 if (tcp_is_reno(tp))
3180 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3181 else
3182 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3183
3184 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3185
3186 tp->high_seq = tp->snd_nxt;
3187 tp->prior_ssthresh = 0;
3188 tp->undo_marker = tp->snd_una;
3189 tp->undo_retrans = tp->retrans_out ? : -1;
3190
3191 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3192 if (!(flag & FLAG_ECE))
3193 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3194 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3195 TCP_ECN_queue_cwr(tp);
3196 }
3197
3198 tp->bytes_acked = 0;
3199 tp->snd_cwnd_cnt = 0;
3200 tp->prior_cwnd = tp->snd_cwnd;
3201 tp->prr_delivered = 0;
3202 tp->prr_out = 0;
3203 tcp_set_ca_state(sk, TCP_CA_Recovery);
3204 fast_rexmit = 1;
3205 }
3206
3207 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3208 tcp_update_scoreboard(sk, fast_rexmit);
3209 tp->prr_delivered += newly_acked_sacked;
3210 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3211 tcp_xmit_retransmit_queue(sk);
3212}
3213
3214void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3215{
3216 tcp_rtt_estimator(sk, seq_rtt);
3217 tcp_set_rto(sk);
3218 inet_csk(sk)->icsk_backoff = 0;
3219}
3220EXPORT_SYMBOL(tcp_valid_rtt_meas);
3221
3222/* Read draft-ietf-tcplw-high-performance before mucking
3223 * with this code. (Supersedes RFC1323)
3224 */
3225static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3226{
3227 /* RTTM Rule: A TSecr value received in a segment is used to
3228 * update the averaged RTT measurement only if the segment
3229 * acknowledges some new data, i.e., only if it advances the
3230 * left edge of the send window.
3231 *
3232 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3233 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3234 *
3235 * Changed: reset backoff as soon as we see the first valid sample.
3236 * If we do not, we get strongly overestimated rto. With timestamps
3237 * samples are accepted even from very old segments: f.e., when rtt=1
3238 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3239 * answer arrives rto becomes 120 seconds! If at least one of segments
3240 * in window is lost... Voila. --ANK (010210)
3241 */
3242 struct tcp_sock *tp = tcp_sk(sk);
3243
3244 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3245}
3246
3247static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3248{
3249 /* We don't have a timestamp. Can only use
3250 * packets that are not retransmitted to determine
3251 * rtt estimates. Also, we must not reset the
3252 * backoff for rto until we get a non-retransmitted
3253 * packet. This allows us to deal with a situation
3254 * where the network delay has increased suddenly.
3255 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3256 */
3257
3258 if (flag & FLAG_RETRANS_DATA_ACKED)
3259 return;
3260
3261 tcp_valid_rtt_meas(sk, seq_rtt);
3262}
3263
3264static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3265 const s32 seq_rtt)
3266{
3267 const struct tcp_sock *tp = tcp_sk(sk);
3268 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3269 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3270 tcp_ack_saw_tstamp(sk, flag);
3271 else if (seq_rtt >= 0)
3272 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3273}
3274
3275static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3276{
3277 const struct inet_connection_sock *icsk = inet_csk(sk);
3278 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3279 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3280}
3281
3282/* Restart timer after forward progress on connection.
3283 * RFC2988 recommends to restart timer to now+rto.
3284 */
3285static void tcp_rearm_rto(struct sock *sk)
3286{
3287 const struct tcp_sock *tp = tcp_sk(sk);
3288
3289 if (!tp->packets_out) {
3290 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3291 } else {
3292 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3293 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3294 }
3295}
3296
3297/* If we get here, the whole TSO packet has not been acked. */
3298static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3299{
3300 struct tcp_sock *tp = tcp_sk(sk);
3301 u32 packets_acked;
3302
3303 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3304
3305 packets_acked = tcp_skb_pcount(skb);
3306 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3307 return 0;
3308 packets_acked -= tcp_skb_pcount(skb);
3309
3310 if (packets_acked) {
3311 BUG_ON(tcp_skb_pcount(skb) == 0);
3312 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3313 }
3314
3315 return packets_acked;
3316}
3317
3318/* Remove acknowledged frames from the retransmission queue. If our packet
3319 * is before the ack sequence we can discard it as it's confirmed to have
3320 * arrived at the other end.
3321 */
3322static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3323 u32 prior_snd_una)
3324{
3325 struct tcp_sock *tp = tcp_sk(sk);
3326 const struct inet_connection_sock *icsk = inet_csk(sk);
3327 struct sk_buff *skb;
3328 u32 now = tcp_time_stamp;
3329 int fully_acked = 1;
3330 int flag = 0;
3331 u32 pkts_acked = 0;
3332 u32 reord = tp->packets_out;
3333 u32 prior_sacked = tp->sacked_out;
3334 s32 seq_rtt = -1;
3335 s32 ca_seq_rtt = -1;
3336 ktime_t last_ackt = net_invalid_timestamp();
3337
3338 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3339 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3340 u32 acked_pcount;
3341 u8 sacked = scb->sacked;
3342
3343 /* Determine how many packets and what bytes were acked, tso and else */
3344 if (after(scb->end_seq, tp->snd_una)) {
3345 if (tcp_skb_pcount(skb) == 1 ||
3346 !after(tp->snd_una, scb->seq))
3347 break;
3348
3349 acked_pcount = tcp_tso_acked(sk, skb);
3350 if (!acked_pcount)
3351 break;
3352
3353 fully_acked = 0;
3354 } else {
3355 acked_pcount = tcp_skb_pcount(skb);
3356 }
3357
3358 if (sacked & TCPCB_RETRANS) {
3359 if (sacked & TCPCB_SACKED_RETRANS)
3360 tp->retrans_out -= acked_pcount;
3361 flag |= FLAG_RETRANS_DATA_ACKED;
3362 ca_seq_rtt = -1;
3363 seq_rtt = -1;
3364 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3365 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3366 } else {
3367 ca_seq_rtt = now - scb->when;
3368 last_ackt = skb->tstamp;
3369 if (seq_rtt < 0) {
3370 seq_rtt = ca_seq_rtt;
3371 }
3372 if (!(sacked & TCPCB_SACKED_ACKED))
3373 reord = min(pkts_acked, reord);
3374 }
3375
3376 if (sacked & TCPCB_SACKED_ACKED)
3377 tp->sacked_out -= acked_pcount;
3378 if (sacked & TCPCB_LOST)
3379 tp->lost_out -= acked_pcount;
3380
3381 tp->packets_out -= acked_pcount;
3382 pkts_acked += acked_pcount;
3383
3384 /* Initial outgoing SYN's get put onto the write_queue
3385 * just like anything else we transmit. It is not
3386 * true data, and if we misinform our callers that
3387 * this ACK acks real data, we will erroneously exit
3388 * connection startup slow start one packet too
3389 * quickly. This is severely frowned upon behavior.
3390 */
3391 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3392 flag |= FLAG_DATA_ACKED;
3393 } else {
3394 flag |= FLAG_SYN_ACKED;
3395 tp->retrans_stamp = 0;
3396 }
3397
3398 if (!fully_acked)
3399 break;
3400
3401 tcp_unlink_write_queue(skb, sk);
3402 sk_wmem_free_skb(sk, skb);
3403 tp->scoreboard_skb_hint = NULL;
3404 if (skb == tp->retransmit_skb_hint)
3405 tp->retransmit_skb_hint = NULL;
3406 if (skb == tp->lost_skb_hint)
3407 tp->lost_skb_hint = NULL;
3408 }
3409
3410 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3411 tp->snd_up = tp->snd_una;
3412
3413 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3414 flag |= FLAG_SACK_RENEGING;
3415
3416 if (flag & FLAG_ACKED) {
3417 const struct tcp_congestion_ops *ca_ops
3418 = inet_csk(sk)->icsk_ca_ops;
3419
3420 if (unlikely(icsk->icsk_mtup.probe_size &&
3421 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3422 tcp_mtup_probe_success(sk);
3423 }
3424
3425 tcp_ack_update_rtt(sk, flag, seq_rtt);
3426 tcp_rearm_rto(sk);
3427
3428 if (tcp_is_reno(tp)) {
3429 tcp_remove_reno_sacks(sk, pkts_acked);
3430 } else {
3431 int delta;
3432
3433 /* Non-retransmitted hole got filled? That's reordering */
3434 if (reord < prior_fackets)
3435 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3436
3437 delta = tcp_is_fack(tp) ? pkts_acked :
3438 prior_sacked - tp->sacked_out;
3439 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3440 }
3441
3442 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3443
3444 if (ca_ops->pkts_acked) {
3445 s32 rtt_us = -1;
3446
3447 /* Is the ACK triggering packet unambiguous? */
3448 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3449 /* High resolution needed and available? */
3450 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3451 !ktime_equal(last_ackt,
3452 net_invalid_timestamp()))
3453 rtt_us = ktime_us_delta(ktime_get_real(),
3454 last_ackt);
3455 else if (ca_seq_rtt >= 0)
3456 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3457 }
3458
3459 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3460 }
3461 }
3462
3463#if FASTRETRANS_DEBUG > 0
3464 WARN_ON((int)tp->sacked_out < 0);
3465 WARN_ON((int)tp->lost_out < 0);
3466 WARN_ON((int)tp->retrans_out < 0);
3467 if (!tp->packets_out && tcp_is_sack(tp)) {
3468 icsk = inet_csk(sk);
3469 if (tp->lost_out) {
3470 printk(KERN_DEBUG "Leak l=%u %d\n",
3471 tp->lost_out, icsk->icsk_ca_state);
3472 tp->lost_out = 0;
3473 }
3474 if (tp->sacked_out) {
3475 printk(KERN_DEBUG "Leak s=%u %d\n",
3476 tp->sacked_out, icsk->icsk_ca_state);
3477 tp->sacked_out = 0;
3478 }
3479 if (tp->retrans_out) {
3480 printk(KERN_DEBUG "Leak r=%u %d\n",
3481 tp->retrans_out, icsk->icsk_ca_state);
3482 tp->retrans_out = 0;
3483 }
3484 }
3485#endif
3486 return flag;
3487}
3488
3489static void tcp_ack_probe(struct sock *sk)
3490{
3491 const struct tcp_sock *tp = tcp_sk(sk);
3492 struct inet_connection_sock *icsk = inet_csk(sk);
3493
3494 /* Was it a usable window open? */
3495
3496 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3497 icsk->icsk_backoff = 0;
3498 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3499 /* Socket must be waked up by subsequent tcp_data_snd_check().
3500 * This function is not for random using!
3501 */
3502 } else {
3503 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3504 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3505 TCP_RTO_MAX);
3506 }
3507}
3508
3509static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3510{
3511 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3512 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3513}
3514
3515static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3516{
3517 const struct tcp_sock *tp = tcp_sk(sk);
3518 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3519 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3520}
3521
3522/* Check that window update is acceptable.
3523 * The function assumes that snd_una<=ack<=snd_next.
3524 */
3525static inline int tcp_may_update_window(const struct tcp_sock *tp,
3526 const u32 ack, const u32 ack_seq,
3527 const u32 nwin)
3528{
3529 return after(ack, tp->snd_una) ||
3530 after(ack_seq, tp->snd_wl1) ||
3531 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3532}
3533
3534/* Update our send window.
3535 *
3536 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3537 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3538 */
3539static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3540 u32 ack_seq)
3541{
3542 struct tcp_sock *tp = tcp_sk(sk);
3543 int flag = 0;
3544 u32 nwin = ntohs(tcp_hdr(skb)->window);
3545
3546 if (likely(!tcp_hdr(skb)->syn))
3547 nwin <<= tp->rx_opt.snd_wscale;
3548
3549 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3550 flag |= FLAG_WIN_UPDATE;
3551 tcp_update_wl(tp, ack_seq);
3552
3553 if (tp->snd_wnd != nwin) {
3554 tp->snd_wnd = nwin;
3555
3556 /* Note, it is the only place, where
3557 * fast path is recovered for sending TCP.
3558 */
3559 tp->pred_flags = 0;
3560 tcp_fast_path_check(sk);
3561
3562 if (nwin > tp->max_window) {
3563 tp->max_window = nwin;
3564 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3565 }
3566 }
3567 }
3568
3569 tp->snd_una = ack;
3570
3571 return flag;
3572}
3573
3574/* A very conservative spurious RTO response algorithm: reduce cwnd and
3575 * continue in congestion avoidance.
3576 */
3577static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3578{
3579 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3580 tp->snd_cwnd_cnt = 0;
3581 tp->bytes_acked = 0;
3582 TCP_ECN_queue_cwr(tp);
3583 tcp_moderate_cwnd(tp);
3584}
3585
3586/* A conservative spurious RTO response algorithm: reduce cwnd using
3587 * rate halving and continue in congestion avoidance.
3588 */
3589static void tcp_ratehalving_spur_to_response(struct sock *sk)
3590{
3591 tcp_enter_cwr(sk, 0);
3592}
3593
3594static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3595{
3596 if (flag & FLAG_ECE)
3597 tcp_ratehalving_spur_to_response(sk);
3598 else
3599 tcp_undo_cwr(sk, true);
3600}
3601
3602/* F-RTO spurious RTO detection algorithm (RFC4138)
3603 *
3604 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3605 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3606 * window (but not to or beyond highest sequence sent before RTO):
3607 * On First ACK, send two new segments out.
3608 * On Second ACK, RTO was likely spurious. Do spurious response (response
3609 * algorithm is not part of the F-RTO detection algorithm
3610 * given in RFC4138 but can be selected separately).
3611 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3612 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3613 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3614 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3615 *
3616 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3617 * original window even after we transmit two new data segments.
3618 *
3619 * SACK version:
3620 * on first step, wait until first cumulative ACK arrives, then move to
3621 * the second step. In second step, the next ACK decides.
3622 *
3623 * F-RTO is implemented (mainly) in four functions:
3624 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3625 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3626 * called when tcp_use_frto() showed green light
3627 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3628 * - tcp_enter_frto_loss() is called if there is not enough evidence
3629 * to prove that the RTO is indeed spurious. It transfers the control
3630 * from F-RTO to the conventional RTO recovery
3631 */
3632static int tcp_process_frto(struct sock *sk, int flag)
3633{
3634 struct tcp_sock *tp = tcp_sk(sk);
3635
3636 tcp_verify_left_out(tp);
3637
3638 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3639 if (flag & FLAG_DATA_ACKED)
3640 inet_csk(sk)->icsk_retransmits = 0;
3641
3642 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3643 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3644 tp->undo_marker = 0;
3645
3646 if (!before(tp->snd_una, tp->frto_highmark)) {
3647 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3648 return 1;
3649 }
3650
3651 if (!tcp_is_sackfrto(tp)) {
3652 /* RFC4138 shortcoming in step 2; should also have case c):
3653 * ACK isn't duplicate nor advances window, e.g., opposite dir
3654 * data, winupdate
3655 */
3656 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3657 return 1;
3658
3659 if (!(flag & FLAG_DATA_ACKED)) {
3660 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3661 flag);
3662 return 1;
3663 }
3664 } else {
3665 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3666 if (!tcp_packets_in_flight(tp)) {
3667 tcp_enter_frto_loss(sk, 2, flag);
3668 return true;
3669 }
3670
3671 /* Prevent sending of new data. */
3672 tp->snd_cwnd = min(tp->snd_cwnd,
3673 tcp_packets_in_flight(tp));
3674 return 1;
3675 }
3676
3677 if ((tp->frto_counter >= 2) &&
3678 (!(flag & FLAG_FORWARD_PROGRESS) ||
3679 ((flag & FLAG_DATA_SACKED) &&
3680 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3681 /* RFC4138 shortcoming (see comment above) */
3682 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3683 (flag & FLAG_NOT_DUP))
3684 return 1;
3685
3686 tcp_enter_frto_loss(sk, 3, flag);
3687 return 1;
3688 }
3689 }
3690
3691 if (tp->frto_counter == 1) {
3692 /* tcp_may_send_now needs to see updated state */
3693 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3694 tp->frto_counter = 2;
3695
3696 if (!tcp_may_send_now(sk))
3697 tcp_enter_frto_loss(sk, 2, flag);
3698
3699 return 1;
3700 } else {
3701 switch (sysctl_tcp_frto_response) {
3702 case 2:
3703 tcp_undo_spur_to_response(sk, flag);
3704 break;
3705 case 1:
3706 tcp_conservative_spur_to_response(tp);
3707 break;
3708 default:
3709 tcp_ratehalving_spur_to_response(sk);
3710 break;
3711 }
3712 tp->frto_counter = 0;
3713 tp->undo_marker = 0;
3714 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3715 }
3716 return 0;
3717}
3718
3719/* RFC 5961 7 [ACK Throttling] */
3720static void tcp_send_challenge_ack(struct sock *sk)
3721{
3722 /* unprotected vars, we dont care of overwrites */
3723 static u32 challenge_timestamp;
3724 static unsigned int challenge_count;
3725 u32 now = jiffies / HZ;
3726
3727 if (now != challenge_timestamp) {
3728 challenge_timestamp = now;
3729 challenge_count = 0;
3730 }
3731 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3732 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3733 tcp_send_ack(sk);
3734 }
3735}
3736
3737static void tcp_store_ts_recent(struct tcp_sock *tp)
3738{
3739 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3740 tp->rx_opt.ts_recent_stamp = get_seconds();
3741}
3742
3743static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3744{
3745 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3746 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3747 * extra check below makes sure this can only happen
3748 * for pure ACK frames. -DaveM
3749 *
3750 * Not only, also it occurs for expired timestamps.
3751 */
3752
3753 if (tcp_paws_check(&tp->rx_opt, 0))
3754 tcp_store_ts_recent(tp);
3755 }
3756}
3757
3758/* This routine deals with incoming acks, but not outgoing ones. */
3759static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3760{
3761 struct inet_connection_sock *icsk = inet_csk(sk);
3762 struct tcp_sock *tp = tcp_sk(sk);
3763 u32 prior_snd_una = tp->snd_una;
3764 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3765 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3766 bool is_dupack = false;
3767 u32 prior_in_flight;
3768 u32 prior_fackets;
3769 int prior_packets = tp->packets_out;
3770 int prior_sacked = tp->sacked_out;
3771 int pkts_acked = 0;
3772 int previous_packets_out = 0;
3773 int frto_cwnd = 0;
3774
3775 /* If the ack is older than previous acks
3776 * then we can probably ignore it.
3777 */
3778 if (before(ack, prior_snd_una)) {
3779 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3780 if (before(ack, prior_snd_una - tp->max_window)) {
3781 tcp_send_challenge_ack(sk);
3782 return -1;
3783 }
3784 goto old_ack;
3785 }
3786
3787 /* If the ack includes data we haven't sent yet, discard
3788 * this segment (RFC793 Section 3.9).
3789 */
3790 if (after(ack, tp->snd_nxt))
3791 goto invalid_ack;
3792
3793 if (after(ack, prior_snd_una))
3794 flag |= FLAG_SND_UNA_ADVANCED;
3795
3796 if (sysctl_tcp_abc) {
3797 if (icsk->icsk_ca_state < TCP_CA_CWR)
3798 tp->bytes_acked += ack - prior_snd_una;
3799 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3800 /* we assume just one segment left network */
3801 tp->bytes_acked += min(ack - prior_snd_una,
3802 tp->mss_cache);
3803 }
3804
3805 prior_fackets = tp->fackets_out;
3806 prior_in_flight = tcp_packets_in_flight(tp);
3807
3808 /* ts_recent update must be made after we are sure that the packet
3809 * is in window.
3810 */
3811 if (flag & FLAG_UPDATE_TS_RECENT)
3812 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3813
3814 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3815 /* Window is constant, pure forward advance.
3816 * No more checks are required.
3817 * Note, we use the fact that SND.UNA>=SND.WL2.
3818 */
3819 tcp_update_wl(tp, ack_seq);
3820 tp->snd_una = ack;
3821 flag |= FLAG_WIN_UPDATE;
3822
3823 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3824
3825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3826 } else {
3827 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3828 flag |= FLAG_DATA;
3829 else
3830 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3831
3832 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3833
3834 if (TCP_SKB_CB(skb)->sacked)
3835 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3836
3837 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3838 flag |= FLAG_ECE;
3839
3840 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3841 }
3842
3843 /* We passed data and got it acked, remove any soft error
3844 * log. Something worked...
3845 */
3846 sk->sk_err_soft = 0;
3847 icsk->icsk_probes_out = 0;
3848 tp->rcv_tstamp = tcp_time_stamp;
3849 if (!prior_packets)
3850 goto no_queue;
3851
3852 /* See if we can take anything off of the retransmit queue. */
3853 previous_packets_out = tp->packets_out;
3854 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3855
3856 pkts_acked = previous_packets_out - tp->packets_out;
3857
3858 if (tp->frto_counter)
3859 frto_cwnd = tcp_process_frto(sk, flag);
3860 /* Guarantee sacktag reordering detection against wrap-arounds */
3861 if (before(tp->frto_highmark, tp->snd_una))
3862 tp->frto_highmark = 0;
3863
3864 if (tcp_ack_is_dubious(sk, flag)) {
3865 /* Advance CWND, if state allows this. */
3866 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3867 tcp_may_raise_cwnd(sk, flag))
3868 tcp_cong_avoid(sk, ack, prior_in_flight);
3869 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3870 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3871 prior_packets, is_dupack, flag);
3872 } else {
3873 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3874 tcp_cong_avoid(sk, ack, prior_in_flight);
3875 }
3876
3877 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3878 dst_confirm(__sk_dst_get(sk));
3879
3880 return 1;
3881
3882no_queue:
3883 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3884 if (flag & FLAG_DSACKING_ACK)
3885 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3886 prior_packets, is_dupack, flag);
3887 /* If this ack opens up a zero window, clear backoff. It was
3888 * being used to time the probes, and is probably far higher than
3889 * it needs to be for normal retransmission.
3890 */
3891 if (tcp_send_head(sk))
3892 tcp_ack_probe(sk);
3893 return 1;
3894
3895invalid_ack:
3896 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3897 return -1;
3898
3899old_ack:
3900 /* If data was SACKed, tag it and see if we should send more data.
3901 * If data was DSACKed, see if we can undo a cwnd reduction.
3902 */
3903 if (TCP_SKB_CB(skb)->sacked) {
3904 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3905 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3906 prior_packets, is_dupack, flag);
3907 }
3908
3909 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3910 return 0;
3911}
3912
3913/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3914 * But, this can also be called on packets in the established flow when
3915 * the fast version below fails.
3916 */
3917void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3918 const u8 **hvpp, int estab)
3919{
3920 const unsigned char *ptr;
3921 const struct tcphdr *th = tcp_hdr(skb);
3922 int length = (th->doff * 4) - sizeof(struct tcphdr);
3923
3924 ptr = (const unsigned char *)(th + 1);
3925 opt_rx->saw_tstamp = 0;
3926
3927 while (length > 0) {
3928 int opcode = *ptr++;
3929 int opsize;
3930
3931 switch (opcode) {
3932 case TCPOPT_EOL:
3933 return;
3934 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3935 length--;
3936 continue;
3937 default:
3938 opsize = *ptr++;
3939 if (opsize < 2) /* "silly options" */
3940 return;
3941 if (opsize > length)
3942 return; /* don't parse partial options */
3943 switch (opcode) {
3944 case TCPOPT_MSS:
3945 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3946 u16 in_mss = get_unaligned_be16(ptr);
3947 if (in_mss) {
3948 if (opt_rx->user_mss &&
3949 opt_rx->user_mss < in_mss)
3950 in_mss = opt_rx->user_mss;
3951 opt_rx->mss_clamp = in_mss;
3952 }
3953 }
3954 break;
3955 case TCPOPT_WINDOW:
3956 if (opsize == TCPOLEN_WINDOW && th->syn &&
3957 !estab && sysctl_tcp_window_scaling) {
3958 __u8 snd_wscale = *(__u8 *)ptr;
3959 opt_rx->wscale_ok = 1;
3960 if (snd_wscale > 14) {
3961 if (net_ratelimit())
3962 pr_info("%s: Illegal window scaling value %d >14 received\n",
3963 __func__,
3964 snd_wscale);
3965 snd_wscale = 14;
3966 }
3967 opt_rx->snd_wscale = snd_wscale;
3968 }
3969 break;
3970 case TCPOPT_TIMESTAMP:
3971 if ((opsize == TCPOLEN_TIMESTAMP) &&
3972 ((estab && opt_rx->tstamp_ok) ||
3973 (!estab && sysctl_tcp_timestamps))) {
3974 opt_rx->saw_tstamp = 1;
3975 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3976 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3977 }
3978 break;
3979 case TCPOPT_SACK_PERM:
3980 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3981 !estab && sysctl_tcp_sack) {
3982 opt_rx->sack_ok = TCP_SACK_SEEN;
3983 tcp_sack_reset(opt_rx);
3984 }
3985 break;
3986
3987 case TCPOPT_SACK:
3988 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3989 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3990 opt_rx->sack_ok) {
3991 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3992 }
3993 break;
3994#ifdef CONFIG_TCP_MD5SIG
3995 case TCPOPT_MD5SIG:
3996 /*
3997 * The MD5 Hash has already been
3998 * checked (see tcp_v{4,6}_do_rcv()).
3999 */
4000 break;
4001#endif
4002 case TCPOPT_COOKIE:
4003 /* This option is variable length.
4004 */
4005 switch (opsize) {
4006 case TCPOLEN_COOKIE_BASE:
4007 /* not yet implemented */
4008 break;
4009 case TCPOLEN_COOKIE_PAIR:
4010 /* not yet implemented */
4011 break;
4012 case TCPOLEN_COOKIE_MIN+0:
4013 case TCPOLEN_COOKIE_MIN+2:
4014 case TCPOLEN_COOKIE_MIN+4:
4015 case TCPOLEN_COOKIE_MIN+6:
4016 case TCPOLEN_COOKIE_MAX:
4017 /* 16-bit multiple */
4018 opt_rx->cookie_plus = opsize;
4019 *hvpp = ptr;
4020 break;
4021 default:
4022 /* ignore option */
4023 break;
4024 }
4025 break;
4026 }
4027
4028 ptr += opsize-2;
4029 length -= opsize;
4030 }
4031 }
4032}
4033EXPORT_SYMBOL(tcp_parse_options);
4034
4035static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4036{
4037 const __be32 *ptr = (const __be32 *)(th + 1);
4038
4039 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4040 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4041 tp->rx_opt.saw_tstamp = 1;
4042 ++ptr;
4043 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4044 ++ptr;
4045 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4046 return 1;
4047 }
4048 return 0;
4049}
4050
4051/* Fast parse options. This hopes to only see timestamps.
4052 * If it is wrong it falls back on tcp_parse_options().
4053 */
4054static int tcp_fast_parse_options(const struct sk_buff *skb,
4055 const struct tcphdr *th,
4056 struct tcp_sock *tp, const u8 **hvpp)
4057{
4058 /* In the spirit of fast parsing, compare doff directly to constant
4059 * values. Because equality is used, short doff can be ignored here.
4060 */
4061 if (th->doff == (sizeof(*th) / 4)) {
4062 tp->rx_opt.saw_tstamp = 0;
4063 return 0;
4064 } else if (tp->rx_opt.tstamp_ok &&
4065 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4066 if (tcp_parse_aligned_timestamp(tp, th))
4067 return 1;
4068 }
4069 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4070 return 1;
4071}
4072
4073#ifdef CONFIG_TCP_MD5SIG
4074/*
4075 * Parse MD5 Signature option
4076 */
4077const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4078{
4079 int length = (th->doff << 2) - sizeof(*th);
4080 const u8 *ptr = (const u8 *)(th + 1);
4081
4082 /* If the TCP option is too short, we can short cut */
4083 if (length < TCPOLEN_MD5SIG)
4084 return NULL;
4085
4086 while (length > 0) {
4087 int opcode = *ptr++;
4088 int opsize;
4089
4090 switch(opcode) {
4091 case TCPOPT_EOL:
4092 return NULL;
4093 case TCPOPT_NOP:
4094 length--;
4095 continue;
4096 default:
4097 opsize = *ptr++;
4098 if (opsize < 2 || opsize > length)
4099 return NULL;
4100 if (opcode == TCPOPT_MD5SIG)
4101 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4102 }
4103 ptr += opsize - 2;
4104 length -= opsize;
4105 }
4106 return NULL;
4107}
4108EXPORT_SYMBOL(tcp_parse_md5sig_option);
4109#endif
4110
4111/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4112 *
4113 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4114 * it can pass through stack. So, the following predicate verifies that
4115 * this segment is not used for anything but congestion avoidance or
4116 * fast retransmit. Moreover, we even are able to eliminate most of such
4117 * second order effects, if we apply some small "replay" window (~RTO)
4118 * to timestamp space.
4119 *
4120 * All these measures still do not guarantee that we reject wrapped ACKs
4121 * on networks with high bandwidth, when sequence space is recycled fastly,
4122 * but it guarantees that such events will be very rare and do not affect
4123 * connection seriously. This doesn't look nice, but alas, PAWS is really
4124 * buggy extension.
4125 *
4126 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4127 * states that events when retransmit arrives after original data are rare.
4128 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4129 * the biggest problem on large power networks even with minor reordering.
4130 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4131 * up to bandwidth of 18Gigabit/sec. 8) ]
4132 */
4133
4134static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4135{
4136 const struct tcp_sock *tp = tcp_sk(sk);
4137 const struct tcphdr *th = tcp_hdr(skb);
4138 u32 seq = TCP_SKB_CB(skb)->seq;
4139 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4140
4141 return (/* 1. Pure ACK with correct sequence number. */
4142 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4143
4144 /* 2. ... and duplicate ACK. */
4145 ack == tp->snd_una &&
4146
4147 /* 3. ... and does not update window. */
4148 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4149
4150 /* 4. ... and sits in replay window. */
4151 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4152}
4153
4154static inline int tcp_paws_discard(const struct sock *sk,
4155 const struct sk_buff *skb)
4156{
4157 const struct tcp_sock *tp = tcp_sk(sk);
4158
4159 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4160 !tcp_disordered_ack(sk, skb);
4161}
4162
4163/* Check segment sequence number for validity.
4164 *
4165 * Segment controls are considered valid, if the segment
4166 * fits to the window after truncation to the window. Acceptability
4167 * of data (and SYN, FIN, of course) is checked separately.
4168 * See tcp_data_queue(), for example.
4169 *
4170 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4171 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4172 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4173 * (borrowed from freebsd)
4174 */
4175
4176static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4177{
4178 return !before(end_seq, tp->rcv_wup) &&
4179 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4180}
4181
4182/* When we get a reset we do this. */
4183static void tcp_reset(struct sock *sk)
4184{
4185 TCP_PKT_STATS_INC(TCP_RST_RECV_NUM);
4186 TCP_SOCK_TRACK(sk, TCP_RST_RECV);
4187
4188 /* We want the right error as BSD sees it (and indeed as we do). */
4189 switch (sk->sk_state) {
4190 case TCP_SYN_SENT:
4191 sk->sk_err = ECONNREFUSED;
4192 break;
4193 case TCP_CLOSE_WAIT:
4194 sk->sk_err = EPIPE;
4195 break;
4196 case TCP_CLOSE:
4197 return;
4198 default:
4199 sk->sk_err = ECONNRESET;
4200 ERRNO_TRACK(-ECONNRESET);
4201 }
4202 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4203 smp_wmb();
4204
4205 if (!sock_flag(sk, SOCK_DEAD))
4206 sk->sk_error_report(sk);
4207
4208 tcp_done(sk);
4209}
4210
4211/*
4212 * Process the FIN bit. This now behaves as it is supposed to work
4213 * and the FIN takes effect when it is validly part of sequence
4214 * space. Not before when we get holes.
4215 *
4216 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4217 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4218 * TIME-WAIT)
4219 *
4220 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4221 * close and we go into CLOSING (and later onto TIME-WAIT)
4222 *
4223 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4224 */
4225static void tcp_fin(struct sock *sk)
4226{
4227 struct tcp_sock *tp = tcp_sk(sk);
4228
4229 TCP_SOCK_TRACK(sk, TCP_FIN_RECV);
4230
4231 inet_csk_schedule_ack(sk);
4232
4233 sk->sk_shutdown |= RCV_SHUTDOWN;
4234 sock_set_flag(sk, SOCK_DONE);
4235
4236 switch (sk->sk_state) {
4237 case TCP_SYN_RECV:
4238 case TCP_ESTABLISHED:
4239 /* Move to CLOSE_WAIT */
4240 tcp_set_state(sk, TCP_CLOSE_WAIT);
4241 inet_csk(sk)->icsk_ack.pingpong = 1;
4242 break;
4243
4244 case TCP_CLOSE_WAIT:
4245 case TCP_CLOSING:
4246 /* Received a retransmission of the FIN, do
4247 * nothing.
4248 */
4249 break;
4250 case TCP_LAST_ACK:
4251 /* RFC793: Remain in the LAST-ACK state. */
4252 break;
4253
4254 case TCP_FIN_WAIT1:
4255 /* This case occurs when a simultaneous close
4256 * happens, we must ack the received FIN and
4257 * enter the CLOSING state.
4258 */
4259 tcp_send_ack(sk);
4260 tcp_set_state(sk, TCP_CLOSING);
4261 break;
4262 case TCP_FIN_WAIT2:
4263 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4264 tcp_send_ack(sk);
4265 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4266 break;
4267 default:
4268 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4269 * cases we should never reach this piece of code.
4270 */
4271 pr_err("%s: Impossible, sk->sk_state=%d\n",
4272 __func__, sk->sk_state);
4273 break;
4274 }
4275
4276 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4277 * Probably, we should reset in this case. For now drop them.
4278 */
4279 __skb_queue_purge(&tp->out_of_order_queue);
4280 if (tcp_is_sack(tp))
4281 tcp_sack_reset(&tp->rx_opt);
4282 sk_mem_reclaim(sk);
4283
4284 if (!sock_flag(sk, SOCK_DEAD)) {
4285 sk->sk_state_change(sk);
4286
4287 /* Do not send POLL_HUP for half duplex close. */
4288 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4289 sk->sk_state == TCP_CLOSE)
4290 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4291 else
4292 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4293 }
4294}
4295
4296static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4297 u32 end_seq)
4298{
4299 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4300 if (before(seq, sp->start_seq))
4301 sp->start_seq = seq;
4302 if (after(end_seq, sp->end_seq))
4303 sp->end_seq = end_seq;
4304 return 1;
4305 }
4306 return 0;
4307}
4308
4309static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4310{
4311 struct tcp_sock *tp = tcp_sk(sk);
4312
4313 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4314 int mib_idx;
4315
4316 if (before(seq, tp->rcv_nxt))
4317 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4318 else
4319 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4320
4321 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4322
4323 tp->rx_opt.dsack = 1;
4324 tp->duplicate_sack[0].start_seq = seq;
4325 tp->duplicate_sack[0].end_seq = end_seq;
4326 }
4327}
4328
4329static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4330{
4331 struct tcp_sock *tp = tcp_sk(sk);
4332
4333 if (!tp->rx_opt.dsack)
4334 tcp_dsack_set(sk, seq, end_seq);
4335 else
4336 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4337}
4338
4339static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4340{
4341 struct tcp_sock *tp = tcp_sk(sk);
4342
4343 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4344 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4346 tcp_enter_quickack_mode(sk);
4347
4348 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4349 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4350
4351 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4352 end_seq = tp->rcv_nxt;
4353 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4354 }
4355 }
4356
4357 tcp_send_ack(sk);
4358}
4359
4360/* These routines update the SACK block as out-of-order packets arrive or
4361 * in-order packets close up the sequence space.
4362 */
4363static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4364{
4365 int this_sack;
4366 struct tcp_sack_block *sp = &tp->selective_acks[0];
4367 struct tcp_sack_block *swalk = sp + 1;
4368
4369 /* See if the recent change to the first SACK eats into
4370 * or hits the sequence space of other SACK blocks, if so coalesce.
4371 */
4372 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4373 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4374 int i;
4375
4376 /* Zap SWALK, by moving every further SACK up by one slot.
4377 * Decrease num_sacks.
4378 */
4379 tp->rx_opt.num_sacks--;
4380 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4381 sp[i] = sp[i + 1];
4382 continue;
4383 }
4384 this_sack++, swalk++;
4385 }
4386}
4387
4388static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4389{
4390 struct tcp_sock *tp = tcp_sk(sk);
4391 struct tcp_sack_block *sp = &tp->selective_acks[0];
4392 int cur_sacks = tp->rx_opt.num_sacks;
4393 int this_sack;
4394
4395 if (!cur_sacks)
4396 goto new_sack;
4397
4398 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4399 if (tcp_sack_extend(sp, seq, end_seq)) {
4400 /* Rotate this_sack to the first one. */
4401 for (; this_sack > 0; this_sack--, sp--)
4402 swap(*sp, *(sp - 1));
4403 if (cur_sacks > 1)
4404 tcp_sack_maybe_coalesce(tp);
4405 return;
4406 }
4407 }
4408
4409 /* Could not find an adjacent existing SACK, build a new one,
4410 * put it at the front, and shift everyone else down. We
4411 * always know there is at least one SACK present already here.
4412 *
4413 * If the sack array is full, forget about the last one.
4414 */
4415 if (this_sack >= TCP_NUM_SACKS) {
4416 this_sack--;
4417 tp->rx_opt.num_sacks--;
4418 sp--;
4419 }
4420 for (; this_sack > 0; this_sack--, sp--)
4421 *sp = *(sp - 1);
4422
4423new_sack:
4424 /* Build the new head SACK, and we're done. */
4425 sp->start_seq = seq;
4426 sp->end_seq = end_seq;
4427 tp->rx_opt.num_sacks++;
4428}
4429
4430/* RCV.NXT advances, some SACKs should be eaten. */
4431
4432static void tcp_sack_remove(struct tcp_sock *tp)
4433{
4434 struct tcp_sack_block *sp = &tp->selective_acks[0];
4435 int num_sacks = tp->rx_opt.num_sacks;
4436 int this_sack;
4437
4438 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4439 if (skb_queue_empty(&tp->out_of_order_queue)) {
4440 tp->rx_opt.num_sacks = 0;
4441 return;
4442 }
4443
4444 for (this_sack = 0; this_sack < num_sacks;) {
4445 /* Check if the start of the sack is covered by RCV.NXT. */
4446 if (!before(tp->rcv_nxt, sp->start_seq)) {
4447 int i;
4448
4449 /* RCV.NXT must cover all the block! */
4450 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4451
4452 /* Zap this SACK, by moving forward any other SACKS. */
4453 for (i=this_sack+1; i < num_sacks; i++)
4454 tp->selective_acks[i-1] = tp->selective_acks[i];
4455 num_sacks--;
4456 continue;
4457 }
4458 this_sack++;
4459 sp++;
4460 }
4461 tp->rx_opt.num_sacks = num_sacks;
4462}
4463
4464/* This one checks to see if we can put data from the
4465 * out_of_order queue into the receive_queue.
4466 */
4467static void tcp_ofo_queue(struct sock *sk)
4468{
4469 struct tcp_sock *tp = tcp_sk(sk);
4470 __u32 dsack_high = tp->rcv_nxt;
4471 struct sk_buff *skb;
4472
4473 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4474 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4475 break;
4476
4477 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4478 __u32 dsack = dsack_high;
4479 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4480 dsack_high = TCP_SKB_CB(skb)->end_seq;
4481 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4482 }
4483
4484 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4485 SOCK_DEBUG(sk, "ofo packet was already received\n");
4486 __skb_unlink(skb, &tp->out_of_order_queue);
4487 __kfree_skb(skb);
4488 continue;
4489 }
4490 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4491 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4492 TCP_SKB_CB(skb)->end_seq);
4493
4494 __skb_unlink(skb, &tp->out_of_order_queue);
4495 __skb_queue_tail(&sk->sk_receive_queue, skb);
4496 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4497 if (tcp_hdr(skb)->fin)
4498 tcp_fin(sk);
4499 }
4500}
4501
4502static int tcp_prune_ofo_queue(struct sock *sk);
4503static int tcp_prune_queue(struct sock *sk);
4504
4505static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4506{
4507 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4508 !sk_rmem_schedule(sk, size)) {
4509
4510 if (tcp_prune_queue(sk) < 0)
4511 return -1;
4512
4513 if (!sk_rmem_schedule(sk, size)) {
4514 if (!tcp_prune_ofo_queue(sk))
4515 return -1;
4516
4517 if (!sk_rmem_schedule(sk, size))
4518 return -1;
4519 }
4520 }
4521 return 0;
4522}
4523
4524static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4525{
4526 struct tcp_sock *tp = tcp_sk(sk);
4527 struct sk_buff *skb1;
4528 u32 seq, end_seq;
4529
4530 TCP_ECN_check_ce(tp, skb);
4531
4532 if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4533 /* TODO: should increment a counter */
4534 TCP_SOCK_TRACK(sk, TCP_RECV_BUFF_FULL);
4535 __kfree_skb(skb);
4536 return;
4537 }
4538
4539 /* Disable header prediction. */
4540 tp->pred_flags = 0;
4541 inet_csk_schedule_ack(sk);
4542
4543 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4544 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4545
4546 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4547 if (!skb1) {
4548 /* Initial out of order segment, build 1 SACK. */
4549 if (tcp_is_sack(tp)) {
4550 tp->rx_opt.num_sacks = 1;
4551 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4552 tp->selective_acks[0].end_seq =
4553 TCP_SKB_CB(skb)->end_seq;
4554 }
4555 __skb_queue_head(&tp->out_of_order_queue, skb);
4556 goto end;
4557 }
4558
4559 seq = TCP_SKB_CB(skb)->seq;
4560 end_seq = TCP_SKB_CB(skb)->end_seq;
4561
4562 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4563 /* Packets in ofo can stay in queue a long time.
4564 * Better try to coalesce them right now
4565 * to avoid future tcp_collapse_ofo_queue(),
4566 * probably the most expensive function in tcp stack.
4567 */
4568 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4569 NET_INC_STATS_BH(sock_net(sk),
4570 LINUX_MIB_TCPRCVCOALESCE);
4571 BUG_ON(skb_copy_bits(skb, 0,
4572 skb_put(skb1, skb->len),
4573 skb->len));
4574 TCP_SKB_CB(skb1)->end_seq = end_seq;
4575 TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4576 __kfree_skb(skb);
4577 skb = NULL;
4578 } else {
4579 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4580 }
4581
4582 if (!tp->rx_opt.num_sacks ||
4583 tp->selective_acks[0].end_seq != seq)
4584 goto add_sack;
4585
4586 /* Common case: data arrive in order after hole. */
4587 tp->selective_acks[0].end_seq = end_seq;
4588 goto end;
4589 }
4590
4591 /* Find place to insert this segment. */
4592 while (1) {
4593 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4594 break;
4595 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4596 skb1 = NULL;
4597 break;
4598 }
4599 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4600 }
4601
4602 /* Do skb overlap to previous one? */
4603 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4604 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4605 /* All the bits are present. Drop. */
4606 __kfree_skb(skb);
4607 skb = NULL;
4608 tcp_dsack_set(sk, seq, end_seq);
4609 goto add_sack;
4610 }
4611 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4612 /* Partial overlap. */
4613 tcp_dsack_set(sk, seq,
4614 TCP_SKB_CB(skb1)->end_seq);
4615 } else {
4616 if (skb_queue_is_first(&tp->out_of_order_queue,
4617 skb1))
4618 skb1 = NULL;
4619 else
4620 skb1 = skb_queue_prev(
4621 &tp->out_of_order_queue,
4622 skb1);
4623 }
4624 }
4625 if (!skb1)
4626 __skb_queue_head(&tp->out_of_order_queue, skb);
4627 else
4628 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4629
4630 /* And clean segments covered by new one as whole. */
4631 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4632 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4633
4634 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4635 break;
4636 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4637 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4638 end_seq);
4639 break;
4640 }
4641 __skb_unlink(skb1, &tp->out_of_order_queue);
4642 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4643 TCP_SKB_CB(skb1)->end_seq);
4644 __kfree_skb(skb1);
4645 }
4646
4647add_sack:
4648 if (tcp_is_sack(tp))
4649 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4650end:
4651 if (skb)
4652 skb_set_owner_r(skb, sk);
4653}
4654
4655
4656static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4657{
4658 const struct tcphdr *th = tcp_hdr(skb);
4659 struct tcp_sock *tp = tcp_sk(sk);
4660 int eaten = -1;
4661
4662 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4663 goto drop;
4664
4665 skb_dst_drop(skb);
4666 __skb_pull(skb, th->doff * 4);
4667
4668 TCP_ECN_accept_cwr(tp, skb);
4669
4670 tp->rx_opt.dsack = 0;
4671
4672 /* Queue data for delivery to the user.
4673 * Packets in sequence go to the receive queue.
4674 * Out of sequence packets to the out_of_order_queue.
4675 */
4676 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4677 if (tcp_receive_window(tp) == 0)
4678 goto out_of_window;
4679
4680 /* Ok. In sequence. In window. */
4681 if (tp->ucopy.task == current &&
4682 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4683 sock_owned_by_user(sk) && !tp->urg_data) {
4684 int chunk = min_t(unsigned int, skb->len,
4685 tp->ucopy.len);
4686
4687 __set_current_state(TASK_RUNNING);
4688
4689 local_bh_enable();
4690 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4691 tp->ucopy.len -= chunk;
4692 tp->copied_seq += chunk;
4693 eaten = (chunk == skb->len);
4694 tcp_rcv_space_adjust(sk);
4695 }
4696 local_bh_disable();
4697 }
4698
4699 if (eaten <= 0) {
4700queue_and_out:
4701 if (eaten < 0 &&
4702 tcp_try_rmem_schedule(sk, skb->truesize))
4703 {
4704 TCP_SOCK_TRACK(sk, TCP_RECV_BUFF_FULL);
4705 goto drop;
4706 }
4707
4708 skb_set_owner_r(skb, sk);
4709 __skb_queue_tail(&sk->sk_receive_queue, skb);
4710 }
4711 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4712 if (skb->len)
4713 tcp_event_data_recv(sk, skb);
4714 if (th->fin)
4715 tcp_fin(sk);
4716
4717 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4718
4719 /*ÔÚ¿ìËÙÖØ´«Ê±£¬µ±Á¬ÐøÊÕµ½3¸öÒ»ÑùµÄACKʱ£¬ÖØ´«±¨ÎÄ£¬ËùÒÔ¿ÉÒÔÈÏΪÂÒÐò´ïµ½3¸ö£¬³öÏÖ¶ª°ü*/
4720 if(tp->out_of_order_queue.qlen >= 3)
4721 TCP_PKT_STATS_INC(TCP_RECV_DROPS);
4722
4723 tcp_ofo_queue(sk);
4724
4725 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4726 * gap in queue is filled.
4727 */
4728 if (skb_queue_empty(&tp->out_of_order_queue))
4729 inet_csk(sk)->icsk_ack.pingpong = 0;
4730 }
4731
4732 if (tp->rx_opt.num_sacks)
4733 tcp_sack_remove(tp);
4734
4735 tcp_fast_path_check(sk);
4736
4737 if (eaten > 0)
4738 __kfree_skb(skb);
4739 else if (!sock_flag(sk, SOCK_DEAD))
4740 sk->sk_data_ready(sk, 0);
4741 return;
4742 }
4743
4744 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4745 /* A retransmit, 2nd most common case. Force an immediate ack. */
4746 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4747 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4748
4749 /*´Ëʱ½ÓÊն˻صĵÄACK°ü¶ªÊ§*/
4750 TCP_PKT_STATS_INC(TCP_SEND_DROPS);
4751
4752out_of_window:
4753 TCP_SOCK_TRACK(sk, TCP_RECV_WINDOW_FULL);
4754 tcp_enter_quickack_mode(sk);
4755 inet_csk_schedule_ack(sk);
4756drop:
4757 __kfree_skb(skb);
4758 return;
4759 }
4760
4761 /* Out of window. F.e. zero window probe. */
4762 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4763 goto out_of_window;
4764
4765 tcp_enter_quickack_mode(sk);
4766
4767 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4768 /* Partial packet, seq < rcv_next < end_seq */
4769 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4770 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4771 TCP_SKB_CB(skb)->end_seq);
4772
4773 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4774
4775 /* If window is closed, drop tail of packet. But after
4776 * remembering D-SACK for its head made in previous line.
4777 */
4778 if (!tcp_receive_window(tp))
4779 goto out_of_window;
4780 goto queue_and_out;
4781 }
4782
4783 tcp_data_queue_ofo(sk, skb);
4784}
4785
4786static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4787 struct sk_buff_head *list)
4788{
4789 struct sk_buff *next = NULL;
4790
4791 if (!skb_queue_is_last(list, skb))
4792 next = skb_queue_next(list, skb);
4793
4794 __skb_unlink(skb, list);
4795 __kfree_skb(skb);
4796 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4797
4798 return next;
4799}
4800
4801/* Collapse contiguous sequence of skbs head..tail with
4802 * sequence numbers start..end.
4803 *
4804 * If tail is NULL, this means until the end of the list.
4805 *
4806 * Segments with FIN/SYN are not collapsed (only because this
4807 * simplifies code)
4808 */
4809static void
4810tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4811 struct sk_buff *head, struct sk_buff *tail,
4812 u32 start, u32 end)
4813{
4814 struct sk_buff *skb, *n;
4815 bool end_of_skbs;
4816
4817 /* First, check that queue is collapsible and find
4818 * the point where collapsing can be useful. */
4819 skb = head;
4820restart:
4821 end_of_skbs = true;
4822 skb_queue_walk_from_safe(list, skb, n) {
4823 if (skb == tail)
4824 break;
4825 /* No new bits? It is possible on ofo queue. */
4826 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4827 skb = tcp_collapse_one(sk, skb, list);
4828 if (!skb)
4829 break;
4830 goto restart;
4831 }
4832
4833 /* The first skb to collapse is:
4834 * - not SYN/FIN and
4835 * - bloated or contains data before "start" or
4836 * overlaps to the next one.
4837 */
4838 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4839 (tcp_win_from_space(skb->truesize) > skb->len ||
4840 before(TCP_SKB_CB(skb)->seq, start))) {
4841 end_of_skbs = false;
4842 break;
4843 }
4844
4845 if (!skb_queue_is_last(list, skb)) {
4846 struct sk_buff *next = skb_queue_next(list, skb);
4847 if (next != tail &&
4848 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4849 end_of_skbs = false;
4850 break;
4851 }
4852 }
4853
4854 /* Decided to skip this, advance start seq. */
4855 start = TCP_SKB_CB(skb)->end_seq;
4856 }
4857 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4858 return;
4859
4860 while (before(start, end)) {
4861 struct sk_buff *nskb;
4862 unsigned int header = skb_headroom(skb);
4863 int copy = SKB_MAX_ORDER(header, 0);
4864
4865 /* Too big header? This can happen with IPv6. */
4866 if (copy < 0)
4867 return;
4868 if (end - start < copy)
4869 copy = end - start;
4870 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4871 if (!nskb)
4872 return;
4873
4874 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4875 skb_set_network_header(nskb, (skb_network_header(skb) -
4876 skb->head));
4877 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4878 skb->head));
4879 skb_reserve(nskb, header);
4880 memcpy(nskb->head, skb->head, header);
4881 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4882 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4883 __skb_queue_before(list, skb, nskb);
4884 skb_set_owner_r(nskb, sk);
4885
4886 /* Copy data, releasing collapsed skbs. */
4887 while (copy > 0) {
4888 int offset = start - TCP_SKB_CB(skb)->seq;
4889 int size = TCP_SKB_CB(skb)->end_seq - start;
4890
4891 BUG_ON(offset < 0);
4892 if (size > 0) {
4893 size = min(copy, size);
4894 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4895 BUG();
4896 TCP_SKB_CB(nskb)->end_seq += size;
4897 copy -= size;
4898 start += size;
4899 }
4900 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4901 skb = tcp_collapse_one(sk, skb, list);
4902 if (!skb ||
4903 skb == tail ||
4904 tcp_hdr(skb)->syn ||
4905 tcp_hdr(skb)->fin)
4906 return;
4907 }
4908 }
4909 }
4910}
4911
4912/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4913 * and tcp_collapse() them until all the queue is collapsed.
4914 */
4915static void tcp_collapse_ofo_queue(struct sock *sk)
4916{
4917 struct tcp_sock *tp = tcp_sk(sk);
4918 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4919 struct sk_buff *head;
4920 u32 start, end;
4921
4922 if (skb == NULL)
4923 return;
4924
4925 start = TCP_SKB_CB(skb)->seq;
4926 end = TCP_SKB_CB(skb)->end_seq;
4927 head = skb;
4928
4929 for (;;) {
4930 struct sk_buff *next = NULL;
4931
4932 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4933 next = skb_queue_next(&tp->out_of_order_queue, skb);
4934 skb = next;
4935
4936 /* Segment is terminated when we see gap or when
4937 * we are at the end of all the queue. */
4938 if (!skb ||
4939 after(TCP_SKB_CB(skb)->seq, end) ||
4940 before(TCP_SKB_CB(skb)->end_seq, start)) {
4941 tcp_collapse(sk, &tp->out_of_order_queue,
4942 head, skb, start, end);
4943 head = skb;
4944 if (!skb)
4945 break;
4946 /* Start new segment */
4947 start = TCP_SKB_CB(skb)->seq;
4948 end = TCP_SKB_CB(skb)->end_seq;
4949 } else {
4950 if (before(TCP_SKB_CB(skb)->seq, start))
4951 start = TCP_SKB_CB(skb)->seq;
4952 if (after(TCP_SKB_CB(skb)->end_seq, end))
4953 end = TCP_SKB_CB(skb)->end_seq;
4954 }
4955 }
4956}
4957
4958/*
4959 * Purge the out-of-order queue.
4960 * Return true if queue was pruned.
4961 */
4962static int tcp_prune_ofo_queue(struct sock *sk)
4963{
4964 struct tcp_sock *tp = tcp_sk(sk);
4965 int res = 0;
4966
4967 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4968 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4969 __skb_queue_purge(&tp->out_of_order_queue);
4970
4971 /* Reset SACK state. A conforming SACK implementation will
4972 * do the same at a timeout based retransmit. When a connection
4973 * is in a sad state like this, we care only about integrity
4974 * of the connection not performance.
4975 */
4976 if (tp->rx_opt.sack_ok)
4977 tcp_sack_reset(&tp->rx_opt);
4978 sk_mem_reclaim(sk);
4979 res = 1;
4980 }
4981 return res;
4982}
4983
4984/* Reduce allocated memory if we can, trying to get
4985 * the socket within its memory limits again.
4986 *
4987 * Return less than zero if we should start dropping frames
4988 * until the socket owning process reads some of the data
4989 * to stabilize the situation.
4990 */
4991static int tcp_prune_queue(struct sock *sk)
4992{
4993 struct tcp_sock *tp = tcp_sk(sk);
4994
4995 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4996
4997 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4998
4999 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5000 tcp_clamp_window(sk);
5001 else if (sk_under_memory_pressure(sk))
5002 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5003
5004 tcp_collapse_ofo_queue(sk);
5005 if (!skb_queue_empty(&sk->sk_receive_queue))
5006 tcp_collapse(sk, &sk->sk_receive_queue,
5007 skb_peek(&sk->sk_receive_queue),
5008 NULL,
5009 tp->copied_seq, tp->rcv_nxt);
5010 sk_mem_reclaim(sk);
5011
5012 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5013 return 0;
5014
5015 /* Collapsing did not help, destructive actions follow.
5016 * This must not ever occur. */
5017
5018 tcp_prune_ofo_queue(sk);
5019
5020 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5021 return 0;
5022
5023 /* If we are really being abused, tell the caller to silently
5024 * drop receive data on the floor. It will get retransmitted
5025 * and hopefully then we'll have sufficient space.
5026 */
5027 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5028
5029 /* Massive buffer overcommit. */
5030 tp->pred_flags = 0;
5031 return -1;
5032}
5033
5034/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5035 * As additional protections, we do not touch cwnd in retransmission phases,
5036 * and if application hit its sndbuf limit recently.
5037 */
5038void tcp_cwnd_application_limited(struct sock *sk)
5039{
5040 struct tcp_sock *tp = tcp_sk(sk);
5041
5042 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5043 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5044 /* Limited by application or receiver window. */
5045 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5046 u32 win_used = max(tp->snd_cwnd_used, init_win);
5047 if (win_used < tp->snd_cwnd) {
5048 tp->snd_ssthresh = tcp_current_ssthresh(sk);
5049 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5050 }
5051 tp->snd_cwnd_used = 0;
5052 }
5053 tp->snd_cwnd_stamp = tcp_time_stamp;
5054}
5055
5056static int tcp_should_expand_sndbuf(const struct sock *sk)
5057{
5058 const struct tcp_sock *tp = tcp_sk(sk);
5059
5060 /* If the user specified a specific send buffer setting, do
5061 * not modify it.
5062 */
5063 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5064 return 0;
5065
5066 /* If we are under global TCP memory pressure, do not expand. */
5067 if (sk_under_memory_pressure(sk))
5068 return 0;
5069
5070 /* If we are under soft global TCP memory pressure, do not expand. */
5071 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5072 return 0;
5073
5074 /* If we filled the congestion window, do not expand. */
5075 if (tp->packets_out >= tp->snd_cwnd)
5076 return 0;
5077
5078 return 1;
5079}
5080
5081/* When incoming ACK allowed to free some skb from write_queue,
5082 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5083 * on the exit from tcp input handler.
5084 *
5085 * PROBLEM: sndbuf expansion does not work well with largesend.
5086 */
5087static void tcp_new_space(struct sock *sk)
5088{
5089 struct tcp_sock *tp = tcp_sk(sk);
5090
5091 if (tcp_should_expand_sndbuf(sk)) {
5092 int sndmem = SKB_TRUESIZE(max_t(u32,
5093 tp->rx_opt.mss_clamp,
5094 tp->mss_cache) +
5095 MAX_TCP_HEADER);
5096 int demanded = max_t(unsigned int, tp->snd_cwnd,
5097 tp->reordering + 1);
5098 sndmem *= 2 * demanded;
5099 if (sndmem > sk->sk_sndbuf)
5100 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5101 tp->snd_cwnd_stamp = tcp_time_stamp;
5102 }
5103
5104 sk->sk_write_space(sk);
5105}
5106
5107static void tcp_check_space(struct sock *sk)
5108{
5109 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5110 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5111 if (sk->sk_socket &&
5112 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5113 tcp_new_space(sk);
5114 }
5115}
5116
5117static inline void tcp_data_snd_check(struct sock *sk)
5118{
5119 tcp_push_pending_frames(sk);
5120 tcp_check_space(sk);
5121}
5122
5123/*
5124 * Check if sending an ack is needed.
5125 */
5126static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5127{
5128 struct tcp_sock *tp = tcp_sk(sk);
5129
5130 /* More than one full frame received... */
5131 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5132 /* ... and right edge of window advances far enough.
5133 * (tcp_recvmsg() will send ACK otherwise). Or...
5134 */
5135 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5136 /* We ACK each frame or... */
5137 tcp_in_quickack_mode(sk) ||
5138 /* We have out of order data. */
5139 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5140 /* Then ack it now */
5141 tcp_send_ack(sk);
5142 } else {
5143 /* Else, send delayed ack. */
5144 tcp_send_delayed_ack(sk);
5145 }
5146}
5147
5148static inline void tcp_ack_snd_check(struct sock *sk)
5149{
5150 if (!inet_csk_ack_scheduled(sk)) {
5151 /* We sent a data segment already. */
5152 return;
5153 }
5154 __tcp_ack_snd_check(sk, 1);
5155}
5156
5157/*
5158 * This routine is only called when we have urgent data
5159 * signaled. Its the 'slow' part of tcp_urg. It could be
5160 * moved inline now as tcp_urg is only called from one
5161 * place. We handle URGent data wrong. We have to - as
5162 * BSD still doesn't use the correction from RFC961.
5163 * For 1003.1g we should support a new option TCP_STDURG to permit
5164 * either form (or just set the sysctl tcp_stdurg).
5165 */
5166
5167static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5168{
5169 struct tcp_sock *tp = tcp_sk(sk);
5170 u32 ptr = ntohs(th->urg_ptr);
5171
5172 if (ptr && !sysctl_tcp_stdurg)
5173 ptr--;
5174 ptr += ntohl(th->seq);
5175
5176 /* Ignore urgent data that we've already seen and read. */
5177 if (after(tp->copied_seq, ptr))
5178 return;
5179
5180 /* Do not replay urg ptr.
5181 *
5182 * NOTE: interesting situation not covered by specs.
5183 * Misbehaving sender may send urg ptr, pointing to segment,
5184 * which we already have in ofo queue. We are not able to fetch
5185 * such data and will stay in TCP_URG_NOTYET until will be eaten
5186 * by recvmsg(). Seems, we are not obliged to handle such wicked
5187 * situations. But it is worth to think about possibility of some
5188 * DoSes using some hypothetical application level deadlock.
5189 */
5190 if (before(ptr, tp->rcv_nxt))
5191 return;
5192
5193 /* Do we already have a newer (or duplicate) urgent pointer? */
5194 if (tp->urg_data && !after(ptr, tp->urg_seq))
5195 return;
5196
5197 /* Tell the world about our new urgent pointer. */
5198 sk_send_sigurg(sk);
5199
5200 /* We may be adding urgent data when the last byte read was
5201 * urgent. To do this requires some care. We cannot just ignore
5202 * tp->copied_seq since we would read the last urgent byte again
5203 * as data, nor can we alter copied_seq until this data arrives
5204 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5205 *
5206 * NOTE. Double Dutch. Rendering to plain English: author of comment
5207 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5208 * and expect that both A and B disappear from stream. This is _wrong_.
5209 * Though this happens in BSD with high probability, this is occasional.
5210 * Any application relying on this is buggy. Note also, that fix "works"
5211 * only in this artificial test. Insert some normal data between A and B and we will
5212 * decline of BSD again. Verdict: it is better to remove to trap
5213 * buggy users.
5214 */
5215 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5216 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5217 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5218 tp->copied_seq++;
5219 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5220 __skb_unlink(skb, &sk->sk_receive_queue);
5221 __kfree_skb(skb);
5222 }
5223 }
5224
5225 tp->urg_data = TCP_URG_NOTYET;
5226 tp->urg_seq = ptr;
5227
5228 /* Disable header prediction. */
5229 tp->pred_flags = 0;
5230}
5231
5232/* This is the 'fast' part of urgent handling. */
5233static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5234{
5235 struct tcp_sock *tp = tcp_sk(sk);
5236
5237 /* Check if we get a new urgent pointer - normally not. */
5238 if (th->urg)
5239 tcp_check_urg(sk, th);
5240
5241 /* Do we wait for any urgent data? - normally not... */
5242 if (tp->urg_data == TCP_URG_NOTYET) {
5243 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5244 th->syn;
5245
5246 /* Is the urgent pointer pointing into this packet? */
5247 if (ptr < skb->len) {
5248 u8 tmp;
5249 if (skb_copy_bits(skb, ptr, &tmp, 1))
5250 BUG();
5251 tp->urg_data = TCP_URG_VALID | tmp;
5252 if (!sock_flag(sk, SOCK_DEAD))
5253 sk->sk_data_ready(sk, 0);
5254 }
5255 }
5256}
5257
5258static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5259{
5260 struct tcp_sock *tp = tcp_sk(sk);
5261 int chunk = skb->len - hlen;
5262 int err;
5263
5264 local_bh_enable();
5265 if (skb_csum_unnecessary(skb))
5266 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5267 else
5268 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5269 tp->ucopy.iov);
5270
5271 if (!err) {
5272 tp->ucopy.len -= chunk;
5273 tp->copied_seq += chunk;
5274 tcp_rcv_space_adjust(sk);
5275 }
5276
5277 local_bh_disable();
5278 return err;
5279}
5280
5281static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5282 struct sk_buff *skb)
5283{
5284 __sum16 result;
5285
5286 if (sock_owned_by_user(sk)) {
5287 local_bh_enable();
5288 result = __tcp_checksum_complete(skb);
5289 local_bh_disable();
5290 } else {
5291 result = __tcp_checksum_complete(skb);
5292 }
5293 return result;
5294}
5295
5296static inline int tcp_checksum_complete_user(struct sock *sk,
5297 struct sk_buff *skb)
5298{
5299 return !skb_csum_unnecessary(skb) &&
5300 __tcp_checksum_complete_user(sk, skb);
5301}
5302
5303#ifdef CONFIG_NET_DMA
5304static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5305 int hlen)
5306{
5307 struct tcp_sock *tp = tcp_sk(sk);
5308 int chunk = skb->len - hlen;
5309 int dma_cookie;
5310 int copied_early = 0;
5311
5312 if (tp->ucopy.wakeup)
5313 return 0;
5314
5315 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5316 tp->ucopy.dma_chan = net_dma_find_channel();
5317
5318 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5319
5320 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5321 skb, hlen,
5322 tp->ucopy.iov, chunk,
5323 tp->ucopy.pinned_list);
5324
5325 if (dma_cookie < 0)
5326 goto out;
5327
5328 tp->ucopy.dma_cookie = dma_cookie;
5329 copied_early = 1;
5330
5331 tp->ucopy.len -= chunk;
5332 tp->copied_seq += chunk;
5333 tcp_rcv_space_adjust(sk);
5334
5335 if ((tp->ucopy.len == 0) ||
5336 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5337 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5338 tp->ucopy.wakeup = 1;
5339 sk->sk_data_ready(sk, 0);
5340 }
5341 } else if (chunk > 0) {
5342 tp->ucopy.wakeup = 1;
5343 sk->sk_data_ready(sk, 0);
5344 }
5345out:
5346 return copied_early;
5347}
5348#endif /* CONFIG_NET_DMA */
5349
5350/* Does PAWS and seqno based validation of an incoming segment, flags will
5351 * play significant role here.
5352 */
5353static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5354 const struct tcphdr *th, int syn_inerr)
5355{
5356 const u8 *hash_location;
5357 struct tcp_sock *tp = tcp_sk(sk);
5358
5359 /* RFC1323: H1. Apply PAWS check first. */
5360 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5361 tp->rx_opt.saw_tstamp &&
5362 tcp_paws_discard(sk, skb)) {
5363 if (!th->rst) {
5364 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5365 tcp_send_dupack(sk, skb);
5366 goto discard;
5367 }
5368 /* Reset is accepted even if it did not pass PAWS. */
5369 }
5370
5371 /* Step 1: check sequence number */
5372 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5373 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5374 * (RST) segments are validated by checking their SEQ-fields."
5375 * And page 69: "If an incoming segment is not acceptable,
5376 * an acknowledgment should be sent in reply (unless the RST
5377 * bit is set, if so drop the segment and return)".
5378 */
5379 if (!th->rst) {
5380 if (th->syn)
5381 goto syn_challenge;
5382 tcp_send_dupack(sk, skb);
5383 }
5384 goto discard;
5385 }
5386
5387 /* Step 2: check RST bit */
5388 if (th->rst) {
5389 /* RFC 5961 3.2 :
5390 * If sequence number exactly matches RCV.NXT, then
5391 * RESET the connection
5392 * else
5393 * Send a challenge ACK
5394 */
5395 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5396 tcp_reset(sk);
5397 else
5398 tcp_send_challenge_ack(sk);
5399 goto discard;
5400 }
5401
5402 /* step 3: check security and precedence [ignored] */
5403
5404 /* step 4: Check for a SYN
5405 * RFC 5691 4.2 : Send a challenge ack
5406 */
5407 if (th->syn) {
5408syn_challenge:
5409 if (syn_inerr)
5410 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5412 tcp_send_challenge_ack(sk);
5413 goto discard;
5414 }
5415
5416 return true;
5417
5418discard:
5419 __kfree_skb(skb);
5420 return false;
5421}
5422
5423/*
5424 * TCP receive function for the ESTABLISHED state.
5425 *
5426 * It is split into a fast path and a slow path. The fast path is
5427 * disabled when:
5428 * - A zero window was announced from us - zero window probing
5429 * is only handled properly in the slow path.
5430 * - Out of order segments arrived.
5431 * - Urgent data is expected.
5432 * - There is no buffer space left
5433 * - Unexpected TCP flags/window values/header lengths are received
5434 * (detected by checking the TCP header against pred_flags)
5435 * - Data is sent in both directions. Fast path only supports pure senders
5436 * or pure receivers (this means either the sequence number or the ack
5437 * value must stay constant)
5438 * - Unexpected TCP option.
5439 *
5440 * When these conditions are not satisfied it drops into a standard
5441 * receive procedure patterned after RFC793 to handle all cases.
5442 * The first three cases are guaranteed by proper pred_flags setting,
5443 * the rest is checked inline. Fast processing is turned on in
5444 * tcp_data_queue when everything is OK.
5445 */
5446int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5447 const struct tcphdr *th, unsigned int len)
5448{
5449 struct tcp_sock *tp = tcp_sk(sk);
5450
5451 /*
5452 * Header prediction.
5453 * The code loosely follows the one in the famous
5454 * "30 instruction TCP receive" Van Jacobson mail.
5455 *
5456 * Van's trick is to deposit buffers into socket queue
5457 * on a device interrupt, to call tcp_recv function
5458 * on the receive process context and checksum and copy
5459 * the buffer to user space. smart...
5460 *
5461 * Our current scheme is not silly either but we take the
5462 * extra cost of the net_bh soft interrupt processing...
5463 * We do checksum and copy also but from device to kernel.
5464 */
5465
5466 tp->rx_opt.saw_tstamp = 0;
5467
5468 /* pred_flags is 0xS?10 << 16 + snd_wnd
5469 * if header_prediction is to be made
5470 * 'S' will always be tp->tcp_header_len >> 2
5471 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5472 * turn it off (when there are holes in the receive
5473 * space for instance)
5474 * PSH flag is ignored.
5475 */
5476
5477 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5478 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5479 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5480 int tcp_header_len = tp->tcp_header_len;
5481
5482 /* Timestamp header prediction: tcp_header_len
5483 * is automatically equal to th->doff*4 due to pred_flags
5484 * match.
5485 */
5486
5487 /* Check timestamp */
5488 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5489 /* No? Slow path! */
5490 if (!tcp_parse_aligned_timestamp(tp, th))
5491 goto slow_path;
5492
5493 /* If PAWS failed, check it more carefully in slow path */
5494 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5495 goto slow_path;
5496
5497 /* DO NOT update ts_recent here, if checksum fails
5498 * and timestamp was corrupted part, it will result
5499 * in a hung connection since we will drop all
5500 * future packets due to the PAWS test.
5501 */
5502 }
5503
5504 if (len <= tcp_header_len) {
5505 /* Bulk data transfer: sender */
5506 if (len == tcp_header_len) {
5507 /* Predicted packet is in window by definition.
5508 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5509 * Hence, check seq<=rcv_wup reduces to:
5510 */
5511 if (tcp_header_len ==
5512 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5513 tp->rcv_nxt == tp->rcv_wup)
5514 tcp_store_ts_recent(tp);
5515
5516 /* We know that such packets are checksummed
5517 * on entry.
5518 */
5519 tcp_ack(sk, skb, 0);
5520 __kfree_skb(skb);
5521 tcp_data_snd_check(sk);
5522 return 0;
5523 } else { /* Header too small */
5524 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5525 goto discard;
5526 }
5527 } else {
5528 int eaten = 0;
5529 int copied_early = 0;
5530
5531 if (tp->copied_seq == tp->rcv_nxt &&
5532 len - tcp_header_len <= tp->ucopy.len) {
5533#ifdef CONFIG_NET_DMA
5534 if (tp->ucopy.task == current &&
5535 sock_owned_by_user(sk) &&
5536 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5537 copied_early = 1;
5538 eaten = 1;
5539 }
5540#endif
5541 if (tp->ucopy.task == current &&
5542 sock_owned_by_user(sk) && !copied_early) {
5543 __set_current_state(TASK_RUNNING);
5544
5545 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5546 eaten = 1;
5547 }
5548 if (eaten) {
5549 /* Predicted packet is in window by definition.
5550 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5551 * Hence, check seq<=rcv_wup reduces to:
5552 */
5553 if (tcp_header_len ==
5554 (sizeof(struct tcphdr) +
5555 TCPOLEN_TSTAMP_ALIGNED) &&
5556 tp->rcv_nxt == tp->rcv_wup)
5557 tcp_store_ts_recent(tp);
5558
5559 tcp_rcv_rtt_measure_ts(sk, skb);
5560
5561 __skb_pull(skb, tcp_header_len);
5562 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5563 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5564 }
5565 if (copied_early)
5566 tcp_cleanup_rbuf(sk, skb->len);
5567 }
5568 if (!eaten) {
5569 if (tcp_checksum_complete_user(sk, skb))
5570 goto csum_error;
5571
5572 if ((int)skb->truesize > sk->sk_forward_alloc)
5573 goto step5;
5574
5575 /* Predicted packet is in window by definition.
5576 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5577 * Hence, check seq<=rcv_wup reduces to:
5578 */
5579 if (tcp_header_len ==
5580 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5581 tp->rcv_nxt == tp->rcv_wup)
5582 tcp_store_ts_recent(tp);
5583
5584 tcp_rcv_rtt_measure_ts(sk, skb);
5585
5586 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5587
5588 /* Bulk data transfer: receiver */
5589 __skb_pull(skb, tcp_header_len);
5590 __skb_queue_tail(&sk->sk_receive_queue, skb);
5591 skb_set_owner_r(skb, sk);
5592 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5593 }
5594
5595 tcp_event_data_recv(sk, skb);
5596
5597 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5598 /* Well, only one small jumplet in fast path... */
5599 tcp_ack(sk, skb, FLAG_DATA);
5600 tcp_data_snd_check(sk);
5601 if (!inet_csk_ack_scheduled(sk))
5602 goto no_ack;
5603 }
5604
5605 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5606 __tcp_ack_snd_check(sk, 0);
5607no_ack:
5608#ifdef CONFIG_NET_DMA
5609 if (copied_early)
5610 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5611 else
5612#endif
5613 if (eaten)
5614 __kfree_skb(skb);
5615 else
5616 sk->sk_data_ready(sk, 0);
5617 return 0;
5618 }
5619 }
5620
5621slow_path:
5622 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5623 goto csum_error;
5624
5625 /*
5626 * Standard slow path.
5627 */
5628
5629 if (!tcp_validate_incoming(sk, skb, th, 1))
5630 return 0;
5631
5632step5:
5633 if (th->ack &&
5634 tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5635 goto discard;
5636
5637 tcp_rcv_rtt_measure_ts(sk, skb);
5638
5639 /* Process urgent data. */
5640 tcp_urg(sk, skb, th);
5641
5642 /* step 7: process the segment text */
5643 tcp_data_queue(sk, skb);
5644
5645 tcp_data_snd_check(sk);
5646 tcp_ack_snd_check(sk);
5647 return 0;
5648
5649csum_error:
5650 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5651
5652discard:
5653 __kfree_skb(skb);
5654 return 0;
5655}
5656EXPORT_SYMBOL(tcp_rcv_established);
5657
5658static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5659 const struct tcphdr *th, unsigned int len)
5660{
5661 const u8 *hash_location;
5662 struct inet_connection_sock *icsk = inet_csk(sk);
5663 struct tcp_sock *tp = tcp_sk(sk);
5664 struct tcp_cookie_values *cvp = tp->cookie_values;
5665 int saved_clamp = tp->rx_opt.mss_clamp;
5666
5667 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5668
5669 if (th->ack) {
5670 /* rfc793:
5671 * "If the state is SYN-SENT then
5672 * first check the ACK bit
5673 * If the ACK bit is set
5674 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5675 * a reset (unless the RST bit is set, if so drop
5676 * the segment and return)"
5677 *
5678 * We do not send data with SYN, so that RFC-correct
5679 * test reduces to:
5680 */
5681 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5682 goto reset_and_undo;
5683
5684 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5685 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5686 tcp_time_stamp)) {
5687 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5688 goto reset_and_undo;
5689 }
5690
5691 /* Now ACK is acceptable.
5692 *
5693 * "If the RST bit is set
5694 * If the ACK was acceptable then signal the user "error:
5695 * connection reset", drop the segment, enter CLOSED state,
5696 * delete TCB, and return."
5697 */
5698
5699 if (th->rst) {
5700 tcp_reset(sk);
5701 goto discard;
5702 }
5703
5704 /* rfc793:
5705 * "fifth, if neither of the SYN or RST bits is set then
5706 * drop the segment and return."
5707 *
5708 * See note below!
5709 * --ANK(990513)
5710 */
5711 if (!th->syn)
5712 goto discard_and_undo;
5713
5714 /* rfc793:
5715 * "If the SYN bit is on ...
5716 * are acceptable then ...
5717 * (our SYN has been ACKed), change the connection
5718 * state to ESTABLISHED..."
5719 */
5720
5721 TCP_ECN_rcv_synack(tp, th);
5722
5723 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5724 tcp_ack(sk, skb, FLAG_SLOWPATH);
5725
5726 /* Ok.. it's good. Set up sequence numbers and
5727 * move to established.
5728 */
5729 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5730 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5731
5732 /* RFC1323: The window in SYN & SYN/ACK segments is
5733 * never scaled.
5734 */
5735 tp->snd_wnd = ntohs(th->window);
5736 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5737
5738 if (!tp->rx_opt.wscale_ok) {
5739 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5740 tp->window_clamp = min(tp->window_clamp, 65535U);
5741 }
5742
5743 if (tp->rx_opt.saw_tstamp) {
5744 tp->rx_opt.tstamp_ok = 1;
5745 tp->tcp_header_len =
5746 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5747 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5748 tcp_store_ts_recent(tp);
5749 } else {
5750 tp->tcp_header_len = sizeof(struct tcphdr);
5751 }
5752
5753 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5754 tcp_enable_fack(tp);
5755
5756 tcp_mtup_init(sk);
5757 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5758 tcp_initialize_rcv_mss(sk);
5759
5760 /* Remember, tcp_poll() does not lock socket!
5761 * Change state from SYN-SENT only after copied_seq
5762 * is initialized. */
5763 tp->copied_seq = tp->rcv_nxt;
5764
5765 if (cvp != NULL &&
5766 cvp->cookie_pair_size > 0 &&
5767 tp->rx_opt.cookie_plus > 0) {
5768 int cookie_size = tp->rx_opt.cookie_plus
5769 - TCPOLEN_COOKIE_BASE;
5770 int cookie_pair_size = cookie_size
5771 + cvp->cookie_desired;
5772
5773 /* A cookie extension option was sent and returned.
5774 * Note that each incoming SYNACK replaces the
5775 * Responder cookie. The initial exchange is most
5776 * fragile, as protection against spoofing relies
5777 * entirely upon the sequence and timestamp (above).
5778 * This replacement strategy allows the correct pair to
5779 * pass through, while any others will be filtered via
5780 * Responder verification later.
5781 */
5782 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5783 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5784 hash_location, cookie_size);
5785 cvp->cookie_pair_size = cookie_pair_size;
5786 }
5787 }
5788
5789 smp_mb();
5790 tcp_set_state(sk, TCP_ESTABLISHED);
5791
5792 security_inet_conn_established(sk, skb);
5793
5794 /* Make sure socket is routed, for correct metrics. */
5795 icsk->icsk_af_ops->rebuild_header(sk);
5796
5797 tcp_init_metrics(sk);
5798
5799 tcp_init_congestion_control(sk);
5800
5801 /* Prevent spurious tcp_cwnd_restart() on first data
5802 * packet.
5803 */
5804 tp->lsndtime = tcp_time_stamp;
5805
5806 tcp_init_buffer_space(sk);
5807
5808 if (sock_flag(sk, SOCK_KEEPOPEN))
5809 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5810
5811 if (!tp->rx_opt.snd_wscale)
5812 __tcp_fast_path_on(tp, tp->snd_wnd);
5813 else
5814 tp->pred_flags = 0;
5815
5816 if (!sock_flag(sk, SOCK_DEAD)) {
5817 sk->sk_state_change(sk);
5818 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5819 }
5820
5821 if (sk->sk_write_pending ||
5822 icsk->icsk_accept_queue.rskq_defer_accept ||
5823 icsk->icsk_ack.pingpong) {
5824 /* Save one ACK. Data will be ready after
5825 * several ticks, if write_pending is set.
5826 *
5827 * It may be deleted, but with this feature tcpdumps
5828 * look so _wonderfully_ clever, that I was not able
5829 * to stand against the temptation 8) --ANK
5830 */
5831 inet_csk_schedule_ack(sk);
5832 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5833 icsk->icsk_ack.ato = TCP_ATO_MIN;
5834 tcp_incr_quickack(sk);
5835 tcp_enter_quickack_mode(sk);
5836 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5837 TCP_DELACK_MAX, TCP_RTO_MAX);
5838
5839discard:
5840 __kfree_skb(skb);
5841 return 0;
5842 } else {
5843 tcp_send_ack(sk);
5844 }
5845 return -1;
5846 }
5847
5848 /* No ACK in the segment */
5849
5850 if (th->rst) {
5851 /* rfc793:
5852 * "If the RST bit is set
5853 *
5854 * Otherwise (no ACK) drop the segment and return."
5855 */
5856
5857 goto discard_and_undo;
5858 }
5859
5860 /* PAWS check. */
5861 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5862 tcp_paws_reject(&tp->rx_opt, 0))
5863 goto discard_and_undo;
5864
5865 if (th->syn) {
5866 /* We see SYN without ACK. It is attempt of
5867 * simultaneous connect with crossed SYNs.
5868 * Particularly, it can be connect to self.
5869 */
5870 tcp_set_state(sk, TCP_SYN_RECV);
5871
5872 if (tp->rx_opt.saw_tstamp) {
5873 tp->rx_opt.tstamp_ok = 1;
5874 tcp_store_ts_recent(tp);
5875 tp->tcp_header_len =
5876 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5877 } else {
5878 tp->tcp_header_len = sizeof(struct tcphdr);
5879 }
5880
5881 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5882 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5883
5884 /* RFC1323: The window in SYN & SYN/ACK segments is
5885 * never scaled.
5886 */
5887 tp->snd_wnd = ntohs(th->window);
5888 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5889 tp->max_window = tp->snd_wnd;
5890
5891 TCP_ECN_rcv_syn(tp, th);
5892
5893 tcp_mtup_init(sk);
5894 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5895 tcp_initialize_rcv_mss(sk);
5896
5897 tcp_send_synack(sk);
5898#if 0
5899 /* Note, we could accept data and URG from this segment.
5900 * There are no obstacles to make this.
5901 *
5902 * However, if we ignore data in ACKless segments sometimes,
5903 * we have no reasons to accept it sometimes.
5904 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5905 * is not flawless. So, discard packet for sanity.
5906 * Uncomment this return to process the data.
5907 */
5908 return -1;
5909#else
5910 goto discard;
5911#endif
5912 }
5913 /* "fifth, if neither of the SYN or RST bits is set then
5914 * drop the segment and return."
5915 */
5916
5917discard_and_undo:
5918 tcp_clear_options(&tp->rx_opt);
5919 tp->rx_opt.mss_clamp = saved_clamp;
5920 goto discard;
5921
5922reset_and_undo:
5923 tcp_clear_options(&tp->rx_opt);
5924 tp->rx_opt.mss_clamp = saved_clamp;
5925 return 1;
5926}
5927
5928/*
5929 * This function implements the receiving procedure of RFC 793 for
5930 * all states except ESTABLISHED and TIME_WAIT.
5931 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5932 * address independent.
5933 */
5934
5935int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5936 const struct tcphdr *th, unsigned int len)
5937{
5938 struct tcp_sock *tp = tcp_sk(sk);
5939 struct inet_connection_sock *icsk = inet_csk(sk);
5940 int queued = 0;
5941
5942 tp->rx_opt.saw_tstamp = 0;
5943
5944 switch (sk->sk_state) {
5945 case TCP_CLOSE:
5946 goto discard;
5947
5948 case TCP_LISTEN:
5949 if (th->ack)
5950 return 1;
5951
5952 if (th->rst)
5953 goto discard;
5954
5955 if (th->syn) {
5956 if (th->fin)
5957 goto discard;
5958 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5959 return 1;
5960
5961 /* Now we have several options: In theory there is
5962 * nothing else in the frame. KA9Q has an option to
5963 * send data with the syn, BSD accepts data with the
5964 * syn up to the [to be] advertised window and
5965 * Solaris 2.1 gives you a protocol error. For now
5966 * we just ignore it, that fits the spec precisely
5967 * and avoids incompatibilities. It would be nice in
5968 * future to drop through and process the data.
5969 *
5970 * Now that TTCP is starting to be used we ought to
5971 * queue this data.
5972 * But, this leaves one open to an easy denial of
5973 * service attack, and SYN cookies can't defend
5974 * against this problem. So, we drop the data
5975 * in the interest of security over speed unless
5976 * it's still in use.
5977 */
5978 kfree_skb(skb);
5979 return 0;
5980 }
5981 goto discard;
5982
5983 case TCP_SYN_SENT:
5984 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5985 if (queued >= 0)
5986 return queued;
5987
5988 /* Do step6 onward by hand. */
5989 tcp_urg(sk, skb, th);
5990 __kfree_skb(skb);
5991 tcp_data_snd_check(sk);
5992 return 0;
5993 }
5994
5995 if (!tcp_validate_incoming(sk, skb, th, 0))
5996 return 0;
5997
5998 /* step 5: check the ACK field */
5999 if (th->ack) {
6000 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6001 FLAG_UPDATE_TS_RECENT) > 0;
6002
6003 switch (sk->sk_state) {
6004 case TCP_SYN_RECV:
6005 if (acceptable) {
6006 tp->copied_seq = tp->rcv_nxt;
6007 smp_mb();
6008 tcp_set_state(sk, TCP_ESTABLISHED);
6009 sk->sk_state_change(sk);
6010
6011 /* Note, that this wakeup is only for marginal
6012 * crossed SYN case. Passively open sockets
6013 * are not waked up, because sk->sk_sleep ==
6014 * NULL and sk->sk_socket == NULL.
6015 */
6016 if (sk->sk_socket)
6017 sk_wake_async(sk,
6018 SOCK_WAKE_IO, POLL_OUT);
6019
6020 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6021 tp->snd_wnd = ntohs(th->window) <<
6022 tp->rx_opt.snd_wscale;
6023 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6024
6025 if (tp->rx_opt.tstamp_ok)
6026 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6027
6028 /* Make sure socket is routed, for
6029 * correct metrics.
6030 */
6031 icsk->icsk_af_ops->rebuild_header(sk);
6032
6033 tcp_init_metrics(sk);
6034
6035 tcp_init_congestion_control(sk);
6036
6037 /* Prevent spurious tcp_cwnd_restart() on
6038 * first data packet.
6039 */
6040 tp->lsndtime = tcp_time_stamp;
6041
6042 tcp_mtup_init(sk);
6043 tcp_initialize_rcv_mss(sk);
6044 tcp_init_buffer_space(sk);
6045 tcp_fast_path_on(tp);
6046 } else {
6047 return 1;
6048 }
6049 break;
6050
6051 case TCP_FIN_WAIT1:
6052 if (tp->snd_una == tp->write_seq) {
6053 tcp_set_state(sk, TCP_FIN_WAIT2);
6054 sk->sk_shutdown |= SEND_SHUTDOWN;
6055 dst_confirm(__sk_dst_get(sk));
6056
6057 if (!sock_flag(sk, SOCK_DEAD))
6058 /* Wake up lingering close() */
6059 sk->sk_state_change(sk);
6060 else {
6061 int tmo;
6062
6063 if (tp->linger2 < 0 ||
6064 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6065 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6066 tcp_done(sk);
6067 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6068 return 1;
6069 }
6070
6071 tmo = tcp_fin_time(sk);
6072 if (tmo > TCP_TIMEWAIT_LEN) {
6073 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6074 } else if (th->fin || sock_owned_by_user(sk)) {
6075 /* Bad case. We could lose such FIN otherwise.
6076 * It is not a big problem, but it looks confusing
6077 * and not so rare event. We still can lose it now,
6078 * if it spins in bh_lock_sock(), but it is really
6079 * marginal case.
6080 */
6081 inet_csk_reset_keepalive_timer(sk, tmo);
6082 } else {
6083 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6084 goto discard;
6085 }
6086 }
6087 }
6088 break;
6089
6090 case TCP_CLOSING:
6091 if (tp->snd_una == tp->write_seq) {
6092 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6093 goto discard;
6094 }
6095 break;
6096
6097 case TCP_LAST_ACK:
6098 if (tp->snd_una == tp->write_seq) {
6099 tcp_update_metrics(sk);
6100 tcp_done(sk);
6101 goto discard;
6102 }
6103 break;
6104 }
6105 } else
6106 goto discard;
6107
6108 /* step 6: check the URG bit */
6109 tcp_urg(sk, skb, th);
6110
6111 /* step 7: process the segment text */
6112 switch (sk->sk_state) {
6113 case TCP_CLOSE_WAIT:
6114 case TCP_CLOSING:
6115 case TCP_LAST_ACK:
6116 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6117 break;
6118 case TCP_FIN_WAIT1:
6119 case TCP_FIN_WAIT2:
6120 /* RFC 793 says to queue data in these states,
6121 * RFC 1122 says we MUST send a reset.
6122 * BSD 4.4 also does reset.
6123 */
6124 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6125 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6126 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6127 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6128 tcp_reset(sk);
6129 return 1;
6130 }
6131 }
6132 /* Fall through */
6133 case TCP_ESTABLISHED:
6134 tcp_data_queue(sk, skb);
6135 queued = 1;
6136 break;
6137 }
6138
6139 /* tcp_data could move socket to TIME-WAIT */
6140 if (sk->sk_state != TCP_CLOSE) {
6141 tcp_data_snd_check(sk);
6142 tcp_ack_snd_check(sk);
6143 }
6144
6145 if (!queued) {
6146discard:
6147 __kfree_skb(skb);
6148 }
6149 return 0;
6150}
6151EXPORT_SYMBOL(tcp_rcv_state_process);