yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * drivers/cpufreq/cpufreq_ondemand.c |
| 3 | * |
| 4 | * Copyright (C) 2001 Russell King |
| 5 | * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. |
| 6 | * Jun Nakajima <jun.nakajima@intel.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/cpufreq.h> |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/jiffies.h> |
| 19 | #include <linux/kernel_stat.h> |
| 20 | #include <linux/mutex.h> |
| 21 | #include <linux/hrtimer.h> |
| 22 | #include <linux/tick.h> |
| 23 | #include <linux/ktime.h> |
| 24 | #include <linux/sched.h> |
| 25 | |
| 26 | /* |
| 27 | * dbs is used in this file as a shortform for demandbased switching |
| 28 | * It helps to keep variable names smaller, simpler |
| 29 | */ |
| 30 | |
| 31 | #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10) |
| 32 | #define DEF_FREQUENCY_UP_THRESHOLD (80) |
| 33 | #define DEF_SAMPLING_DOWN_FACTOR (1) |
| 34 | #define MAX_SAMPLING_DOWN_FACTOR (100000) |
| 35 | #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3) |
| 36 | #define MICRO_FREQUENCY_UP_THRESHOLD (95) |
| 37 | #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) |
| 38 | #define MIN_FREQUENCY_UP_THRESHOLD (11) |
| 39 | #define MAX_FREQUENCY_UP_THRESHOLD (100) |
| 40 | |
| 41 | /* |
| 42 | * The polling frequency of this governor depends on the capability of |
| 43 | * the processor. Default polling frequency is 1000 times the transition |
| 44 | * latency of the processor. The governor will work on any processor with |
| 45 | * transition latency <= 10mS, using appropriate sampling |
| 46 | * rate. |
| 47 | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) |
| 48 | * this governor will not work. |
| 49 | * All times here are in uS. |
| 50 | */ |
| 51 | #define MIN_SAMPLING_RATE_RATIO (2) |
| 52 | |
| 53 | static unsigned int min_sampling_rate; |
| 54 | |
| 55 | #define LATENCY_MULTIPLIER (1000) |
| 56 | #define MIN_LATENCY_MULTIPLIER (100) |
| 57 | #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) |
| 58 | |
| 59 | static void do_dbs_timer(struct work_struct *work); |
| 60 | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, |
| 61 | unsigned int event); |
| 62 | |
| 63 | #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND |
| 64 | static |
| 65 | #endif |
| 66 | struct cpufreq_governor cpufreq_gov_ondemand = { |
| 67 | .name = "ondemand", |
| 68 | .governor = cpufreq_governor_dbs, |
| 69 | .max_transition_latency = TRANSITION_LATENCY_LIMIT, |
| 70 | .owner = THIS_MODULE, |
| 71 | }; |
| 72 | |
| 73 | /* Sampling types */ |
| 74 | enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; |
| 75 | |
| 76 | struct cpu_dbs_info_s { |
| 77 | cputime64_t prev_cpu_idle; |
| 78 | cputime64_t prev_cpu_iowait; |
| 79 | cputime64_t prev_cpu_wall; |
| 80 | cputime64_t prev_cpu_nice; |
| 81 | struct cpufreq_policy *cur_policy; |
| 82 | struct delayed_work work; |
| 83 | struct cpufreq_frequency_table *freq_table; |
| 84 | unsigned int freq_lo; |
| 85 | unsigned int freq_lo_jiffies; |
| 86 | unsigned int freq_hi_jiffies; |
| 87 | unsigned int rate_mult; |
| 88 | int cpu; |
| 89 | unsigned int sample_type:1; |
| 90 | /* |
| 91 | * percpu mutex that serializes governor limit change with |
| 92 | * do_dbs_timer invocation. We do not want do_dbs_timer to run |
| 93 | * when user is changing the governor or limits. |
| 94 | */ |
| 95 | struct mutex timer_mutex; |
| 96 | }; |
| 97 | static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info); |
| 98 | |
| 99 | static unsigned int dbs_enable; /* number of CPUs using this policy */ |
| 100 | |
| 101 | /* |
| 102 | * dbs_mutex protects dbs_enable in governor start/stop. |
| 103 | */ |
| 104 | static DEFINE_MUTEX(dbs_mutex); |
| 105 | |
| 106 | static struct dbs_tuners { |
| 107 | unsigned int sampling_rate; |
| 108 | unsigned int up_threshold; |
| 109 | unsigned int down_differential; |
| 110 | unsigned int ignore_nice; |
| 111 | unsigned int sampling_down_factor; |
| 112 | unsigned int powersave_bias; |
| 113 | unsigned int io_is_busy; |
| 114 | } dbs_tuners_ins = { |
| 115 | .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, |
| 116 | .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, |
| 117 | .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL, |
| 118 | .ignore_nice = 0, |
| 119 | .powersave_bias = 0, |
| 120 | }; |
| 121 | |
| 122 | static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) |
| 123 | { |
| 124 | u64 idle_time; |
| 125 | u64 cur_wall_time; |
| 126 | u64 busy_time; |
| 127 | |
| 128 | cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); |
| 129 | |
| 130 | busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; |
| 131 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; |
| 132 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; |
| 133 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; |
| 134 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; |
| 135 | busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; |
| 136 | |
| 137 | idle_time = cur_wall_time - busy_time; |
| 138 | if (wall) |
| 139 | *wall = jiffies_to_usecs(cur_wall_time); |
| 140 | |
| 141 | return jiffies_to_usecs(idle_time); |
| 142 | } |
| 143 | |
| 144 | static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) |
| 145 | { |
| 146 | u64 idle_time = get_cpu_idle_time_us(cpu, NULL); |
| 147 | |
| 148 | if (idle_time == -1ULL) |
| 149 | return get_cpu_idle_time_jiffy(cpu, wall); |
| 150 | else |
| 151 | idle_time += get_cpu_iowait_time_us(cpu, wall); |
| 152 | |
| 153 | return idle_time; |
| 154 | } |
| 155 | |
| 156 | static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall) |
| 157 | { |
| 158 | u64 iowait_time = get_cpu_iowait_time_us(cpu, wall); |
| 159 | |
| 160 | if (iowait_time == -1ULL) |
| 161 | return 0; |
| 162 | |
| 163 | return iowait_time; |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * Find right freq to be set now with powersave_bias on. |
| 168 | * Returns the freq_hi to be used right now and will set freq_hi_jiffies, |
| 169 | * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. |
| 170 | */ |
| 171 | static unsigned int powersave_bias_target(struct cpufreq_policy *policy, |
| 172 | unsigned int freq_next, |
| 173 | unsigned int relation) |
| 174 | { |
| 175 | unsigned int freq_req, freq_reduc, freq_avg; |
| 176 | unsigned int freq_hi, freq_lo; |
| 177 | unsigned int index = 0; |
| 178 | unsigned int jiffies_total, jiffies_hi, jiffies_lo; |
| 179 | struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, |
| 180 | policy->cpu); |
| 181 | |
| 182 | if (!dbs_info->freq_table) { |
| 183 | dbs_info->freq_lo = 0; |
| 184 | dbs_info->freq_lo_jiffies = 0; |
| 185 | return freq_next; |
| 186 | } |
| 187 | |
| 188 | cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, |
| 189 | relation, &index); |
| 190 | freq_req = dbs_info->freq_table[index].frequency; |
| 191 | freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; |
| 192 | freq_avg = freq_req - freq_reduc; |
| 193 | |
| 194 | /* Find freq bounds for freq_avg in freq_table */ |
| 195 | index = 0; |
| 196 | cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, |
| 197 | CPUFREQ_RELATION_H, &index); |
| 198 | freq_lo = dbs_info->freq_table[index].frequency; |
| 199 | index = 0; |
| 200 | cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, |
| 201 | CPUFREQ_RELATION_L, &index); |
| 202 | freq_hi = dbs_info->freq_table[index].frequency; |
| 203 | |
| 204 | /* Find out how long we have to be in hi and lo freqs */ |
| 205 | if (freq_hi == freq_lo) { |
| 206 | dbs_info->freq_lo = 0; |
| 207 | dbs_info->freq_lo_jiffies = 0; |
| 208 | return freq_lo; |
| 209 | } |
| 210 | jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); |
| 211 | jiffies_hi = (freq_avg - freq_lo) * jiffies_total; |
| 212 | jiffies_hi += ((freq_hi - freq_lo) / 2); |
| 213 | jiffies_hi /= (freq_hi - freq_lo); |
| 214 | jiffies_lo = jiffies_total - jiffies_hi; |
| 215 | dbs_info->freq_lo = freq_lo; |
| 216 | dbs_info->freq_lo_jiffies = jiffies_lo; |
| 217 | dbs_info->freq_hi_jiffies = jiffies_hi; |
| 218 | return freq_hi; |
| 219 | } |
| 220 | |
| 221 | static void ondemand_powersave_bias_init_cpu(int cpu) |
| 222 | { |
| 223 | struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); |
| 224 | dbs_info->freq_table = cpufreq_frequency_get_table(cpu); |
| 225 | dbs_info->freq_lo = 0; |
| 226 | } |
| 227 | |
| 228 | static void ondemand_powersave_bias_init(void) |
| 229 | { |
| 230 | int i; |
| 231 | for_each_online_cpu(i) { |
| 232 | ondemand_powersave_bias_init_cpu(i); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | /************************** sysfs interface ************************/ |
| 237 | |
| 238 | static ssize_t show_sampling_rate_min(struct kobject *kobj, |
| 239 | struct attribute *attr, char *buf) |
| 240 | { |
| 241 | return sprintf(buf, "%u\n", min_sampling_rate); |
| 242 | } |
| 243 | |
| 244 | define_one_global_ro(sampling_rate_min); |
| 245 | |
| 246 | /* cpufreq_ondemand Governor Tunables */ |
| 247 | #define show_one(file_name, object) \ |
| 248 | static ssize_t show_##file_name \ |
| 249 | (struct kobject *kobj, struct attribute *attr, char *buf) \ |
| 250 | { \ |
| 251 | return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ |
| 252 | } |
| 253 | show_one(sampling_rate, sampling_rate); |
| 254 | show_one(io_is_busy, io_is_busy); |
| 255 | show_one(up_threshold, up_threshold); |
| 256 | show_one(sampling_down_factor, sampling_down_factor); |
| 257 | show_one(ignore_nice_load, ignore_nice); |
| 258 | show_one(powersave_bias, powersave_bias); |
| 259 | |
| 260 | /** |
| 261 | * update_sampling_rate - update sampling rate effective immediately if needed. |
| 262 | * @new_rate: new sampling rate |
| 263 | * |
| 264 | * If new rate is smaller than the old, simply updaing |
| 265 | * dbs_tuners_int.sampling_rate might not be appropriate. For example, |
| 266 | * if the original sampling_rate was 1 second and the requested new sampling |
| 267 | * rate is 10 ms because the user needs immediate reaction from ondemand |
| 268 | * governor, but not sure if higher frequency will be required or not, |
| 269 | * then, the governor may change the sampling rate too late; up to 1 second |
| 270 | * later. Thus, if we are reducing the sampling rate, we need to make the |
| 271 | * new value effective immediately. |
| 272 | */ |
| 273 | static void update_sampling_rate(unsigned int new_rate) |
| 274 | { |
| 275 | int cpu; |
| 276 | |
| 277 | dbs_tuners_ins.sampling_rate = new_rate |
| 278 | = max(new_rate, min_sampling_rate); |
| 279 | |
| 280 | for_each_online_cpu(cpu) { |
| 281 | struct cpufreq_policy *policy; |
| 282 | struct cpu_dbs_info_s *dbs_info; |
| 283 | unsigned long next_sampling, appointed_at; |
| 284 | |
| 285 | policy = cpufreq_cpu_get(cpu); |
| 286 | if (!policy) |
| 287 | continue; |
| 288 | dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu); |
| 289 | cpufreq_cpu_put(policy); |
| 290 | |
| 291 | mutex_lock(&dbs_info->timer_mutex); |
| 292 | |
| 293 | if (!delayed_work_pending(&dbs_info->work)) { |
| 294 | mutex_unlock(&dbs_info->timer_mutex); |
| 295 | continue; |
| 296 | } |
| 297 | |
| 298 | next_sampling = jiffies + usecs_to_jiffies(new_rate); |
| 299 | appointed_at = dbs_info->work.timer.expires; |
| 300 | |
| 301 | |
| 302 | if (time_before(next_sampling, appointed_at)) { |
| 303 | |
| 304 | mutex_unlock(&dbs_info->timer_mutex); |
| 305 | cancel_delayed_work_sync(&dbs_info->work); |
| 306 | mutex_lock(&dbs_info->timer_mutex); |
| 307 | |
| 308 | schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, |
| 309 | usecs_to_jiffies(new_rate)); |
| 310 | |
| 311 | } |
| 312 | mutex_unlock(&dbs_info->timer_mutex); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, |
| 317 | const char *buf, size_t count) |
| 318 | { |
| 319 | unsigned int input; |
| 320 | int ret; |
| 321 | ret = sscanf(buf, "%u", &input); |
| 322 | if (ret != 1) |
| 323 | return -EINVAL; |
| 324 | update_sampling_rate(input); |
| 325 | return count; |
| 326 | } |
| 327 | |
| 328 | static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b, |
| 329 | const char *buf, size_t count) |
| 330 | { |
| 331 | unsigned int input; |
| 332 | int ret; |
| 333 | |
| 334 | ret = sscanf(buf, "%u", &input); |
| 335 | if (ret != 1) |
| 336 | return -EINVAL; |
| 337 | dbs_tuners_ins.io_is_busy = !!input; |
| 338 | return count; |
| 339 | } |
| 340 | |
| 341 | static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, |
| 342 | const char *buf, size_t count) |
| 343 | { |
| 344 | unsigned int input; |
| 345 | int ret; |
| 346 | ret = sscanf(buf, "%u", &input); |
| 347 | |
| 348 | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || |
| 349 | input < MIN_FREQUENCY_UP_THRESHOLD) { |
| 350 | return -EINVAL; |
| 351 | } |
| 352 | dbs_tuners_ins.up_threshold = input; |
| 353 | return count; |
| 354 | } |
| 355 | |
| 356 | static ssize_t store_sampling_down_factor(struct kobject *a, |
| 357 | struct attribute *b, const char *buf, size_t count) |
| 358 | { |
| 359 | unsigned int input, j; |
| 360 | int ret; |
| 361 | ret = sscanf(buf, "%u", &input); |
| 362 | |
| 363 | if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) |
| 364 | return -EINVAL; |
| 365 | dbs_tuners_ins.sampling_down_factor = input; |
| 366 | |
| 367 | /* Reset down sampling multiplier in case it was active */ |
| 368 | for_each_online_cpu(j) { |
| 369 | struct cpu_dbs_info_s *dbs_info; |
| 370 | dbs_info = &per_cpu(od_cpu_dbs_info, j); |
| 371 | dbs_info->rate_mult = 1; |
| 372 | } |
| 373 | return count; |
| 374 | } |
| 375 | |
| 376 | static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, |
| 377 | const char *buf, size_t count) |
| 378 | { |
| 379 | unsigned int input; |
| 380 | int ret; |
| 381 | |
| 382 | unsigned int j; |
| 383 | |
| 384 | ret = sscanf(buf, "%u", &input); |
| 385 | if (ret != 1) |
| 386 | return -EINVAL; |
| 387 | |
| 388 | if (input > 1) |
| 389 | input = 1; |
| 390 | |
| 391 | if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */ |
| 392 | return count; |
| 393 | } |
| 394 | dbs_tuners_ins.ignore_nice = input; |
| 395 | |
| 396 | /* we need to re-evaluate prev_cpu_idle */ |
| 397 | for_each_online_cpu(j) { |
| 398 | struct cpu_dbs_info_s *dbs_info; |
| 399 | dbs_info = &per_cpu(od_cpu_dbs_info, j); |
| 400 | dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
| 401 | &dbs_info->prev_cpu_wall); |
| 402 | if (dbs_tuners_ins.ignore_nice) |
| 403 | dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| 404 | |
| 405 | } |
| 406 | return count; |
| 407 | } |
| 408 | |
| 409 | static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b, |
| 410 | const char *buf, size_t count) |
| 411 | { |
| 412 | unsigned int input; |
| 413 | int ret; |
| 414 | ret = sscanf(buf, "%u", &input); |
| 415 | |
| 416 | if (ret != 1) |
| 417 | return -EINVAL; |
| 418 | |
| 419 | if (input > 1000) |
| 420 | input = 1000; |
| 421 | |
| 422 | dbs_tuners_ins.powersave_bias = input; |
| 423 | ondemand_powersave_bias_init(); |
| 424 | return count; |
| 425 | } |
| 426 | |
| 427 | define_one_global_rw(sampling_rate); |
| 428 | define_one_global_rw(io_is_busy); |
| 429 | define_one_global_rw(up_threshold); |
| 430 | define_one_global_rw(sampling_down_factor); |
| 431 | define_one_global_rw(ignore_nice_load); |
| 432 | define_one_global_rw(powersave_bias); |
| 433 | |
| 434 | static struct attribute *dbs_attributes[] = { |
| 435 | &sampling_rate_min.attr, |
| 436 | &sampling_rate.attr, |
| 437 | &up_threshold.attr, |
| 438 | &sampling_down_factor.attr, |
| 439 | &ignore_nice_load.attr, |
| 440 | &powersave_bias.attr, |
| 441 | &io_is_busy.attr, |
| 442 | NULL |
| 443 | }; |
| 444 | |
| 445 | static struct attribute_group dbs_attr_group = { |
| 446 | .attrs = dbs_attributes, |
| 447 | .name = "ondemand", |
| 448 | }; |
| 449 | |
| 450 | /************************** sysfs end ************************/ |
| 451 | |
| 452 | static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq) |
| 453 | { |
| 454 | if (dbs_tuners_ins.powersave_bias) |
| 455 | freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H); |
| 456 | else if (p->cur == p->max) |
| 457 | return; |
| 458 | |
| 459 | __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ? |
| 460 | CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); |
| 461 | } |
| 462 | |
| 463 | static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) |
| 464 | { |
| 465 | unsigned int max_load_freq; |
| 466 | |
| 467 | struct cpufreq_policy *policy; |
| 468 | unsigned int j; |
| 469 | |
| 470 | this_dbs_info->freq_lo = 0; |
| 471 | policy = this_dbs_info->cur_policy; |
| 472 | |
| 473 | /* |
| 474 | * Every sampling_rate, we check, if current idle time is less |
| 475 | * than 20% (default), then we try to increase frequency |
| 476 | * Every sampling_rate, we look for a the lowest |
| 477 | * frequency which can sustain the load while keeping idle time over |
| 478 | * 30%. If such a frequency exist, we try to decrease to this frequency. |
| 479 | * |
| 480 | * Any frequency increase takes it to the maximum frequency. |
| 481 | * Frequency reduction happens at minimum steps of |
| 482 | * 5% (default) of current frequency |
| 483 | */ |
| 484 | |
| 485 | /* Get Absolute Load - in terms of freq */ |
| 486 | max_load_freq = 0; |
| 487 | |
| 488 | for_each_cpu(j, policy->cpus) { |
| 489 | struct cpu_dbs_info_s *j_dbs_info; |
| 490 | cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time; |
| 491 | unsigned int idle_time, wall_time, iowait_time; |
| 492 | unsigned int load, load_freq; |
| 493 | int freq_avg; |
| 494 | |
| 495 | #ifdef CONFIG_KLOCWORK |
| 496 | cur_wall_time=0; |
| 497 | #endif |
| 498 | j_dbs_info = &per_cpu(od_cpu_dbs_info, j); |
| 499 | |
| 500 | cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); |
| 501 | cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time); |
| 502 | |
| 503 | wall_time = (unsigned int) |
| 504 | (cur_wall_time - j_dbs_info->prev_cpu_wall); |
| 505 | j_dbs_info->prev_cpu_wall = cur_wall_time; |
| 506 | |
| 507 | idle_time = (unsigned int) |
| 508 | (cur_idle_time - j_dbs_info->prev_cpu_idle); |
| 509 | j_dbs_info->prev_cpu_idle = cur_idle_time; |
| 510 | |
| 511 | iowait_time = (unsigned int) |
| 512 | (cur_iowait_time - j_dbs_info->prev_cpu_iowait); |
| 513 | j_dbs_info->prev_cpu_iowait = cur_iowait_time; |
| 514 | |
| 515 | if (dbs_tuners_ins.ignore_nice) { |
| 516 | u64 cur_nice; |
| 517 | unsigned long cur_nice_jiffies; |
| 518 | |
| 519 | cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - |
| 520 | j_dbs_info->prev_cpu_nice; |
| 521 | /* |
| 522 | * Assumption: nice time between sampling periods will |
| 523 | * be less than 2^32 jiffies for 32 bit sys |
| 524 | */ |
| 525 | cur_nice_jiffies = (unsigned long) |
| 526 | cputime64_to_jiffies64(cur_nice); |
| 527 | |
| 528 | j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| 529 | idle_time += jiffies_to_usecs(cur_nice_jiffies); |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | * For the purpose of ondemand, waiting for disk IO is an |
| 534 | * indication that you're performance critical, and not that |
| 535 | * the system is actually idle. So subtract the iowait time |
| 536 | * from the cpu idle time. |
| 537 | */ |
| 538 | |
| 539 | if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time) |
| 540 | idle_time -= iowait_time; |
| 541 | |
| 542 | if (unlikely(!wall_time || wall_time < idle_time)) |
| 543 | continue; |
| 544 | |
| 545 | load = 100 * (wall_time - idle_time) / wall_time; |
| 546 | |
| 547 | freq_avg = __cpufreq_driver_getavg(policy, j); |
| 548 | if (freq_avg <= 0) |
| 549 | freq_avg = policy->cur; |
| 550 | |
| 551 | load_freq = load * freq_avg; |
| 552 | if (load_freq > max_load_freq) |
| 553 | max_load_freq = load_freq; |
| 554 | } |
| 555 | |
| 556 | /* Check for frequency increase */ |
| 557 | if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) { |
| 558 | /* If switching to max speed, apply sampling_down_factor */ |
| 559 | if (policy->cur < policy->max) |
| 560 | this_dbs_info->rate_mult = |
| 561 | dbs_tuners_ins.sampling_down_factor; |
| 562 | dbs_freq_increase(policy, policy->max); |
| 563 | return; |
| 564 | } |
| 565 | |
| 566 | /* Check for frequency decrease */ |
| 567 | /* if we cannot reduce the frequency anymore, break out early */ |
| 568 | if (policy->cur == policy->min) |
| 569 | return; |
| 570 | |
| 571 | /* |
| 572 | * The optimal frequency is the frequency that is the lowest that |
| 573 | * can support the current CPU usage without triggering the up |
| 574 | * policy. To be safe, we focus 10 points under the threshold. |
| 575 | */ |
| 576 | if (max_load_freq < |
| 577 | (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) * |
| 578 | policy->cur) { |
| 579 | unsigned int freq_next; |
| 580 | freq_next = max_load_freq / |
| 581 | (dbs_tuners_ins.up_threshold - |
| 582 | dbs_tuners_ins.down_differential); |
| 583 | |
| 584 | /* No longer fully busy, reset rate_mult */ |
| 585 | this_dbs_info->rate_mult = 1; |
| 586 | |
| 587 | if (freq_next < policy->min) |
| 588 | freq_next = policy->min; |
| 589 | |
| 590 | if (!dbs_tuners_ins.powersave_bias) { |
| 591 | __cpufreq_driver_target(policy, freq_next, |
| 592 | CPUFREQ_RELATION_L); |
| 593 | } else { |
| 594 | int freq = powersave_bias_target(policy, freq_next, |
| 595 | CPUFREQ_RELATION_L); |
| 596 | __cpufreq_driver_target(policy, freq, |
| 597 | CPUFREQ_RELATION_L); |
| 598 | } |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | static void do_dbs_timer(struct work_struct *work) |
| 603 | { |
| 604 | struct cpu_dbs_info_s *dbs_info = |
| 605 | container_of(work, struct cpu_dbs_info_s, work.work); |
| 606 | unsigned int cpu = dbs_info->cpu; |
| 607 | int sample_type = dbs_info->sample_type; |
| 608 | |
| 609 | int delay; |
| 610 | |
| 611 | mutex_lock(&dbs_info->timer_mutex); |
| 612 | |
| 613 | /* Common NORMAL_SAMPLE setup */ |
| 614 | dbs_info->sample_type = DBS_NORMAL_SAMPLE; |
| 615 | if (!dbs_tuners_ins.powersave_bias || |
| 616 | sample_type == DBS_NORMAL_SAMPLE) { |
| 617 | dbs_check_cpu(dbs_info); |
| 618 | if (dbs_info->freq_lo) { |
| 619 | /* Setup timer for SUB_SAMPLE */ |
| 620 | dbs_info->sample_type = DBS_SUB_SAMPLE; |
| 621 | delay = dbs_info->freq_hi_jiffies; |
| 622 | } else { |
| 623 | /* We want all CPUs to do sampling nearly on |
| 624 | * same jiffy |
| 625 | */ |
| 626 | delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate |
| 627 | * dbs_info->rate_mult); |
| 628 | |
| 629 | if (num_online_cpus() > 1) |
| 630 | delay -= jiffies % delay; |
| 631 | } |
| 632 | } else { |
| 633 | __cpufreq_driver_target(dbs_info->cur_policy, |
| 634 | dbs_info->freq_lo, CPUFREQ_RELATION_H); |
| 635 | delay = dbs_info->freq_lo_jiffies; |
| 636 | } |
| 637 | schedule_delayed_work_on(cpu, &dbs_info->work, delay); |
| 638 | mutex_unlock(&dbs_info->timer_mutex); |
| 639 | } |
| 640 | |
| 641 | static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) |
| 642 | { |
| 643 | /* We want all CPUs to do sampling nearly on same jiffy */ |
| 644 | int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); |
| 645 | |
| 646 | if (num_online_cpus() > 1) |
| 647 | delay -= jiffies % delay; |
| 648 | |
| 649 | dbs_info->sample_type = DBS_NORMAL_SAMPLE; |
| 650 | INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); |
| 651 | schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay); |
| 652 | } |
| 653 | |
| 654 | static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) |
| 655 | { |
| 656 | cancel_delayed_work_sync(&dbs_info->work); |
| 657 | } |
| 658 | |
| 659 | /* |
| 660 | * Not all CPUs want IO time to be accounted as busy; this dependson how |
| 661 | * efficient idling at a higher frequency/voltage is. |
| 662 | * Pavel Machek says this is not so for various generations of AMD and old |
| 663 | * Intel systems. |
| 664 | * Mike Chan (androidlcom) calis this is also not true for ARM. |
| 665 | * Because of this, whitelist specific known (series) of CPUs by default, and |
| 666 | * leave all others up to the user. |
| 667 | */ |
| 668 | static int should_io_be_busy(void) |
| 669 | { |
| 670 | #if defined(CONFIG_X86) |
| 671 | /* |
| 672 | * For Intel, Core 2 (model 15) andl later have an efficient idle. |
| 673 | */ |
| 674 | if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && |
| 675 | boot_cpu_data.x86 == 6 && |
| 676 | boot_cpu_data.x86_model >= 15) |
| 677 | return 1; |
| 678 | #endif |
| 679 | return 0; |
| 680 | } |
| 681 | |
| 682 | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, |
| 683 | unsigned int event) |
| 684 | { |
| 685 | unsigned int cpu = policy->cpu; |
| 686 | struct cpu_dbs_info_s *this_dbs_info; |
| 687 | unsigned int j; |
| 688 | int rc; |
| 689 | |
| 690 | this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu); |
| 691 | |
| 692 | switch (event) { |
| 693 | case CPUFREQ_GOV_START: |
| 694 | if ((!cpu_online(cpu)) || (!policy->cur)) |
| 695 | return -EINVAL; |
| 696 | |
| 697 | mutex_lock(&dbs_mutex); |
| 698 | |
| 699 | dbs_enable++; |
| 700 | for_each_cpu(j, policy->cpus) { |
| 701 | struct cpu_dbs_info_s *j_dbs_info; |
| 702 | j_dbs_info = &per_cpu(od_cpu_dbs_info, j); |
| 703 | j_dbs_info->cur_policy = policy; |
| 704 | |
| 705 | j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, |
| 706 | &j_dbs_info->prev_cpu_wall); |
| 707 | if (dbs_tuners_ins.ignore_nice) |
| 708 | j_dbs_info->prev_cpu_nice = |
| 709 | kcpustat_cpu(j).cpustat[CPUTIME_NICE]; |
| 710 | } |
| 711 | this_dbs_info->cpu = cpu; |
| 712 | this_dbs_info->rate_mult = 1; |
| 713 | ondemand_powersave_bias_init_cpu(cpu); |
| 714 | /* |
| 715 | * Start the timerschedule work, when this governor |
| 716 | * is used for first time |
| 717 | */ |
| 718 | if (dbs_enable == 1) { |
| 719 | unsigned int latency; |
| 720 | |
| 721 | rc = sysfs_create_group(cpufreq_global_kobject, |
| 722 | &dbs_attr_group); |
| 723 | if (rc) { |
| 724 | mutex_unlock(&dbs_mutex); |
| 725 | return rc; |
| 726 | } |
| 727 | |
| 728 | /* policy latency is in nS. Convert it to uS first */ |
| 729 | latency = policy->cpuinfo.transition_latency / 1000; |
| 730 | if (latency == 0) |
| 731 | latency = 1; |
| 732 | /* Bring kernel and HW constraints together */ |
| 733 | min_sampling_rate = max(min_sampling_rate, |
| 734 | MIN_LATENCY_MULTIPLIER * latency); |
| 735 | dbs_tuners_ins.sampling_rate = |
| 736 | max(min_sampling_rate, |
| 737 | latency * LATENCY_MULTIPLIER); |
| 738 | dbs_tuners_ins.io_is_busy = should_io_be_busy(); |
| 739 | } |
| 740 | mutex_unlock(&dbs_mutex); |
| 741 | |
| 742 | mutex_init(&this_dbs_info->timer_mutex); |
| 743 | dbs_timer_init(this_dbs_info); |
| 744 | break; |
| 745 | |
| 746 | case CPUFREQ_GOV_STOP: |
| 747 | dbs_timer_exit(this_dbs_info); |
| 748 | |
| 749 | mutex_lock(&dbs_mutex); |
| 750 | mutex_destroy(&this_dbs_info->timer_mutex); |
| 751 | dbs_enable--; |
| 752 | mutex_unlock(&dbs_mutex); |
| 753 | if (!dbs_enable) |
| 754 | sysfs_remove_group(cpufreq_global_kobject, |
| 755 | &dbs_attr_group); |
| 756 | |
| 757 | break; |
| 758 | |
| 759 | case CPUFREQ_GOV_LIMITS: |
| 760 | mutex_lock(&this_dbs_info->timer_mutex); |
| 761 | if (policy->max < this_dbs_info->cur_policy->cur) |
| 762 | __cpufreq_driver_target(this_dbs_info->cur_policy, |
| 763 | policy->max, CPUFREQ_RELATION_H); |
| 764 | else if (policy->min > this_dbs_info->cur_policy->cur) |
| 765 | __cpufreq_driver_target(this_dbs_info->cur_policy, |
| 766 | policy->min, CPUFREQ_RELATION_L); |
| 767 | mutex_unlock(&this_dbs_info->timer_mutex); |
| 768 | break; |
| 769 | } |
| 770 | return 0; |
| 771 | } |
| 772 | |
| 773 | static int __init cpufreq_gov_dbs_init(void) |
| 774 | { |
| 775 | u64 idle_time; |
| 776 | int cpu = get_cpu(); |
| 777 | |
| 778 | idle_time = get_cpu_idle_time_us(cpu, NULL); |
| 779 | put_cpu(); |
| 780 | if (idle_time != -1ULL) { |
| 781 | /* Idle micro accounting is supported. Use finer thresholds */ |
| 782 | dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; |
| 783 | dbs_tuners_ins.down_differential = |
| 784 | MICRO_FREQUENCY_DOWN_DIFFERENTIAL; |
| 785 | /* |
| 786 | * In nohz/micro accounting case we set the minimum frequency |
| 787 | * not depending on HZ, but fixed (very low). The deferred |
| 788 | * timer might skip some samples if idle/sleeping as needed. |
| 789 | */ |
| 790 | min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; |
| 791 | } else { |
| 792 | /* For correct statistics, we need 10 ticks for each measure */ |
| 793 | min_sampling_rate = |
| 794 | MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); |
| 795 | } |
| 796 | |
| 797 | return cpufreq_register_governor(&cpufreq_gov_ondemand); |
| 798 | } |
| 799 | |
| 800 | static void __exit cpufreq_gov_dbs_exit(void) |
| 801 | { |
| 802 | cpufreq_unregister_governor(&cpufreq_gov_ondemand); |
| 803 | } |
| 804 | |
| 805 | |
| 806 | MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); |
| 807 | MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); |
| 808 | MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " |
| 809 | "Low Latency Frequency Transition capable processors"); |
| 810 | MODULE_LICENSE("GPL"); |
| 811 | |
| 812 | #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND |
| 813 | fs_initcall(cpufreq_gov_dbs_init); |
| 814 | #else |
| 815 | module_init(cpufreq_gov_dbs_init); |
| 816 | #endif |
| 817 | module_exit(cpufreq_gov_dbs_exit); |