yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <assert.h> |
| 11 | #include <openssl/bn.h> |
| 12 | #include "internal/cryptlib.h" |
| 13 | #include "bn_local.h" |
| 14 | |
| 15 | /* The old slow way */ |
| 16 | #if 0 |
| 17 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, |
| 18 | BN_CTX *ctx) |
| 19 | { |
| 20 | int i, nm, nd; |
| 21 | int ret = 0; |
| 22 | BIGNUM *D; |
| 23 | |
| 24 | bn_check_top(m); |
| 25 | bn_check_top(d); |
| 26 | if (BN_is_zero(d)) { |
| 27 | BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); |
| 28 | return 0; |
| 29 | } |
| 30 | |
| 31 | if (BN_ucmp(m, d) < 0) { |
| 32 | if (rem != NULL) { |
| 33 | if (BN_copy(rem, m) == NULL) |
| 34 | return 0; |
| 35 | } |
| 36 | if (dv != NULL) |
| 37 | BN_zero(dv); |
| 38 | return 1; |
| 39 | } |
| 40 | |
| 41 | BN_CTX_start(ctx); |
| 42 | D = BN_CTX_get(ctx); |
| 43 | if (dv == NULL) |
| 44 | dv = BN_CTX_get(ctx); |
| 45 | if (rem == NULL) |
| 46 | rem = BN_CTX_get(ctx); |
| 47 | if (D == NULL || dv == NULL || rem == NULL) |
| 48 | goto end; |
| 49 | |
| 50 | nd = BN_num_bits(d); |
| 51 | nm = BN_num_bits(m); |
| 52 | if (BN_copy(D, d) == NULL) |
| 53 | goto end; |
| 54 | if (BN_copy(rem, m) == NULL) |
| 55 | goto end; |
| 56 | |
| 57 | /* |
| 58 | * The next 2 are needed so we can do a dv->d[0]|=1 later since |
| 59 | * BN_lshift1 will only work once there is a value :-) |
| 60 | */ |
| 61 | BN_zero(dv); |
| 62 | if (bn_wexpand(dv, 1) == NULL) |
| 63 | goto end; |
| 64 | dv->top = 1; |
| 65 | |
| 66 | if (!BN_lshift(D, D, nm - nd)) |
| 67 | goto end; |
| 68 | for (i = nm - nd; i >= 0; i--) { |
| 69 | if (!BN_lshift1(dv, dv)) |
| 70 | goto end; |
| 71 | if (BN_ucmp(rem, D) >= 0) { |
| 72 | dv->d[0] |= 1; |
| 73 | if (!BN_usub(rem, rem, D)) |
| 74 | goto end; |
| 75 | } |
| 76 | /* CAN IMPROVE (and have now :=) */ |
| 77 | if (!BN_rshift1(D, D)) |
| 78 | goto end; |
| 79 | } |
| 80 | rem->neg = BN_is_zero(rem) ? 0 : m->neg; |
| 81 | dv->neg = m->neg ^ d->neg; |
| 82 | ret = 1; |
| 83 | end: |
| 84 | BN_CTX_end(ctx); |
| 85 | return ret; |
| 86 | } |
| 87 | |
| 88 | #else |
| 89 | |
| 90 | # if defined(BN_DIV3W) |
| 91 | BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0); |
| 92 | # elif 0 |
| 93 | /* |
| 94 | * This is #if-ed away, because it's a reference for assembly implementations, |
| 95 | * where it can and should be made constant-time. But if you want to test it, |
| 96 | * just replace 0 with 1. |
| 97 | */ |
| 98 | # if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 |
| 99 | # undef BN_ULLONG |
| 100 | # define BN_ULLONG __uint128_t |
| 101 | # define BN_LLONG |
| 102 | # endif |
| 103 | |
| 104 | # ifdef BN_LLONG |
| 105 | # define BN_DIV3W |
| 106 | /* |
| 107 | * Interface is somewhat quirky, |m| is pointer to most significant limb, |
| 108 | * and less significant limb is referred at |m[-1]|. This means that caller |
| 109 | * is responsible for ensuring that |m[-1]| is valid. Second condition that |
| 110 | * has to be met is that |d0|'s most significant bit has to be set. Or in |
| 111 | * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top |
| 112 | * does all this. The subroutine considers four limbs, two of which are |
| 113 | * "overlapping," hence the name... |
| 114 | */ |
| 115 | static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0) |
| 116 | { |
| 117 | BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1]; |
| 118 | BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1; |
| 119 | BN_ULONG Q = 0, mask; |
| 120 | int i; |
| 121 | |
| 122 | for (i = 0; i < BN_BITS2; i++) { |
| 123 | Q <<= 1; |
| 124 | if (R >= D) { |
| 125 | Q |= 1; |
| 126 | R -= D; |
| 127 | } |
| 128 | D >>= 1; |
| 129 | } |
| 130 | |
| 131 | mask = 0 - (Q >> (BN_BITS2 - 1)); /* does it overflow? */ |
| 132 | |
| 133 | Q <<= 1; |
| 134 | Q |= (R >= D); |
| 135 | |
| 136 | return (Q | mask) & BN_MASK2; |
| 137 | } |
| 138 | # endif |
| 139 | # endif |
| 140 | |
| 141 | static int bn_left_align(BIGNUM *num) |
| 142 | { |
| 143 | BN_ULONG *d = num->d, n, m, rmask; |
| 144 | int top = num->top; |
| 145 | int rshift = BN_num_bits_word(d[top - 1]), lshift, i; |
| 146 | |
| 147 | lshift = BN_BITS2 - rshift; |
| 148 | rshift %= BN_BITS2; /* say no to undefined behaviour */ |
| 149 | rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */ |
| 150 | rmask |= rmask >> 8; |
| 151 | |
| 152 | for (i = 0, m = 0; i < top; i++) { |
| 153 | n = d[i]; |
| 154 | d[i] = ((n << lshift) | m) & BN_MASK2; |
| 155 | m = (n >> rshift) & rmask; |
| 156 | } |
| 157 | |
| 158 | return lshift; |
| 159 | } |
| 160 | |
| 161 | # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ |
| 162 | && !defined(PEDANTIC) && !defined(BN_DIV3W) |
| 163 | # if defined(__GNUC__) && __GNUC__>=2 |
| 164 | # if defined(__i386) || defined (__i386__) |
| 165 | /*- |
| 166 | * There were two reasons for implementing this template: |
| 167 | * - GNU C generates a call to a function (__udivdi3 to be exact) |
| 168 | * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to |
| 169 | * understand why...); |
| 170 | * - divl doesn't only calculate quotient, but also leaves |
| 171 | * remainder in %edx which we can definitely use here:-) |
| 172 | */ |
| 173 | # undef bn_div_words |
| 174 | # define bn_div_words(n0,n1,d0) \ |
| 175 | ({ asm volatile ( \ |
| 176 | "divl %4" \ |
| 177 | : "=a"(q), "=d"(rem) \ |
| 178 | : "a"(n1), "d"(n0), "r"(d0) \ |
| 179 | : "cc"); \ |
| 180 | q; \ |
| 181 | }) |
| 182 | # define REMAINDER_IS_ALREADY_CALCULATED |
| 183 | # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG) |
| 184 | /* |
| 185 | * Same story here, but it's 128-bit by 64-bit division. Wow! |
| 186 | */ |
| 187 | # undef bn_div_words |
| 188 | # define bn_div_words(n0,n1,d0) \ |
| 189 | ({ asm volatile ( \ |
| 190 | "divq %4" \ |
| 191 | : "=a"(q), "=d"(rem) \ |
| 192 | : "a"(n1), "d"(n0), "r"(d0) \ |
| 193 | : "cc"); \ |
| 194 | q; \ |
| 195 | }) |
| 196 | # define REMAINDER_IS_ALREADY_CALCULATED |
| 197 | # endif /* __<cpu> */ |
| 198 | # endif /* __GNUC__ */ |
| 199 | # endif /* OPENSSL_NO_ASM */ |
| 200 | |
| 201 | /*- |
| 202 | * BN_div computes dv := num / divisor, rounding towards |
| 203 | * zero, and sets up rm such that dv*divisor + rm = num holds. |
| 204 | * Thus: |
| 205 | * dv->neg == num->neg ^ divisor->neg (unless the result is zero) |
| 206 | * rm->neg == num->neg (unless the remainder is zero) |
| 207 | * If 'dv' or 'rm' is NULL, the respective value is not returned. |
| 208 | */ |
| 209 | int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, |
| 210 | BN_CTX *ctx) |
| 211 | { |
| 212 | int ret; |
| 213 | |
| 214 | if (BN_is_zero(divisor)) { |
| 215 | BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); |
| 216 | return 0; |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Invalid zero-padding would have particularly bad consequences so don't |
| 221 | * just rely on bn_check_top() here (bn_check_top() works only for |
| 222 | * BN_DEBUG builds) |
| 223 | */ |
| 224 | if (divisor->d[divisor->top - 1] == 0) { |
| 225 | BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED); |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | ret = bn_div_fixed_top(dv, rm, num, divisor, ctx); |
| 230 | |
| 231 | if (ret) { |
| 232 | if (dv != NULL) |
| 233 | bn_correct_top(dv); |
| 234 | if (rm != NULL) |
| 235 | bn_correct_top(rm); |
| 236 | } |
| 237 | |
| 238 | return ret; |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * It's argued that *length* of *significant* part of divisor is public. |
| 243 | * Even if it's private modulus that is. Again, *length* is assumed |
| 244 | * public, but not *value*. Former is likely to be pre-defined by |
| 245 | * algorithm with bit granularity, though below subroutine is invariant |
| 246 | * of limb length. Thanks to this assumption we can require that |divisor| |
| 247 | * may not be zero-padded, yet claim this subroutine "constant-time"(*). |
| 248 | * This is because zero-padded dividend, |num|, is tolerated, so that |
| 249 | * caller can pass dividend of public length(*), but with smaller amount |
| 250 | * of significant limbs. This naturally means that quotient, |dv|, would |
| 251 | * contain correspongly less significant limbs as well, and will be zero- |
| 252 | * padded accordingly. Returned remainder, |rm|, will have same bit length |
| 253 | * as divisor, also zero-padded if needed. These actually leave sign bits |
| 254 | * in ambiguous state. In sense that we try to avoid negative zeros, while |
| 255 | * zero-padded zeros would retain sign. |
| 256 | * |
| 257 | * (*) "Constant-time-ness" has two pre-conditions: |
| 258 | * |
| 259 | * - availability of constant-time bn_div_3_words; |
| 260 | * - dividend is at least as "wide" as divisor, limb-wise, zero-padded |
| 261 | * if so required, which shouldn't be a privacy problem, because |
| 262 | * divisor's length is considered public; |
| 263 | */ |
| 264 | int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, |
| 265 | const BIGNUM *divisor, BN_CTX *ctx) |
| 266 | { |
| 267 | int norm_shift, i, j, loop; |
| 268 | BIGNUM *tmp, *snum, *sdiv, *res; |
| 269 | BN_ULONG *resp, *wnum, *wnumtop; |
| 270 | BN_ULONG d0, d1; |
| 271 | int num_n, div_n, num_neg; |
| 272 | |
| 273 | assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0); |
| 274 | |
| 275 | bn_check_top(num); |
| 276 | bn_check_top(divisor); |
| 277 | bn_check_top(dv); |
| 278 | bn_check_top(rm); |
| 279 | |
| 280 | BN_CTX_start(ctx); |
| 281 | res = (dv == NULL) ? BN_CTX_get(ctx) : dv; |
| 282 | tmp = BN_CTX_get(ctx); |
| 283 | snum = BN_CTX_get(ctx); |
| 284 | sdiv = BN_CTX_get(ctx); |
| 285 | if (sdiv == NULL) |
| 286 | goto err; |
| 287 | |
| 288 | /* First we normalise the numbers */ |
| 289 | if (!BN_copy(sdiv, divisor)) |
| 290 | goto err; |
| 291 | norm_shift = bn_left_align(sdiv); |
| 292 | sdiv->neg = 0; |
| 293 | /* |
| 294 | * Note that bn_lshift_fixed_top's output is always one limb longer |
| 295 | * than input, even when norm_shift is zero. This means that amount of |
| 296 | * inner loop iterations is invariant of dividend value, and that one |
| 297 | * doesn't need to compare dividend and divisor if they were originally |
| 298 | * of the same bit length. |
| 299 | */ |
| 300 | if (!(bn_lshift_fixed_top(snum, num, norm_shift))) |
| 301 | goto err; |
| 302 | |
| 303 | div_n = sdiv->top; |
| 304 | num_n = snum->top; |
| 305 | |
| 306 | if (num_n <= div_n) { |
| 307 | /* caller didn't pad dividend -> no constant-time guarantee... */ |
| 308 | if (bn_wexpand(snum, div_n + 1) == NULL) |
| 309 | goto err; |
| 310 | memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG)); |
| 311 | snum->top = num_n = div_n + 1; |
| 312 | } |
| 313 | |
| 314 | loop = num_n - div_n; |
| 315 | /* |
| 316 | * Lets setup a 'window' into snum This is the part that corresponds to |
| 317 | * the current 'area' being divided |
| 318 | */ |
| 319 | wnum = &(snum->d[loop]); |
| 320 | wnumtop = &(snum->d[num_n - 1]); |
| 321 | |
| 322 | /* Get the top 2 words of sdiv */ |
| 323 | d0 = sdiv->d[div_n - 1]; |
| 324 | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; |
| 325 | |
| 326 | /* Setup quotient */ |
| 327 | if (!bn_wexpand(res, loop)) |
| 328 | goto err; |
| 329 | num_neg = num->neg; |
| 330 | res->neg = (num_neg ^ divisor->neg); |
| 331 | res->top = loop; |
| 332 | res->flags |= BN_FLG_FIXED_TOP; |
| 333 | resp = &(res->d[loop]); |
| 334 | |
| 335 | /* space for temp */ |
| 336 | if (!bn_wexpand(tmp, (div_n + 1))) |
| 337 | goto err; |
| 338 | |
| 339 | for (i = 0; i < loop; i++, wnumtop--) { |
| 340 | BN_ULONG q, l0; |
| 341 | /* |
| 342 | * the first part of the loop uses the top two words of snum and sdiv |
| 343 | * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv |
| 344 | */ |
| 345 | # if defined(BN_DIV3W) |
| 346 | q = bn_div_3_words(wnumtop, d1, d0); |
| 347 | # else |
| 348 | BN_ULONG n0, n1, rem = 0; |
| 349 | |
| 350 | n0 = wnumtop[0]; |
| 351 | n1 = wnumtop[-1]; |
| 352 | if (n0 == d0) |
| 353 | q = BN_MASK2; |
| 354 | else { /* n0 < d0 */ |
| 355 | BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2]; |
| 356 | # ifdef BN_LLONG |
| 357 | BN_ULLONG t2; |
| 358 | |
| 359 | # if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words) |
| 360 | q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0); |
| 361 | # else |
| 362 | q = bn_div_words(n0, n1, d0); |
| 363 | # endif |
| 364 | |
| 365 | # ifndef REMAINDER_IS_ALREADY_CALCULATED |
| 366 | /* |
| 367 | * rem doesn't have to be BN_ULLONG. The least we |
| 368 | * know it's less that d0, isn't it? |
| 369 | */ |
| 370 | rem = (n1 - q * d0) & BN_MASK2; |
| 371 | # endif |
| 372 | t2 = (BN_ULLONG) d1 *q; |
| 373 | |
| 374 | for (;;) { |
| 375 | if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2)) |
| 376 | break; |
| 377 | q--; |
| 378 | rem += d0; |
| 379 | if (rem < d0) |
| 380 | break; /* don't let rem overflow */ |
| 381 | t2 -= d1; |
| 382 | } |
| 383 | # else /* !BN_LLONG */ |
| 384 | BN_ULONG t2l, t2h; |
| 385 | |
| 386 | q = bn_div_words(n0, n1, d0); |
| 387 | # ifndef REMAINDER_IS_ALREADY_CALCULATED |
| 388 | rem = (n1 - q * d0) & BN_MASK2; |
| 389 | # endif |
| 390 | |
| 391 | # if defined(BN_UMULT_LOHI) |
| 392 | BN_UMULT_LOHI(t2l, t2h, d1, q); |
| 393 | # elif defined(BN_UMULT_HIGH) |
| 394 | t2l = d1 * q; |
| 395 | t2h = BN_UMULT_HIGH(d1, q); |
| 396 | # else |
| 397 | { |
| 398 | BN_ULONG ql, qh; |
| 399 | t2l = LBITS(d1); |
| 400 | t2h = HBITS(d1); |
| 401 | ql = LBITS(q); |
| 402 | qh = HBITS(q); |
| 403 | mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ |
| 404 | } |
| 405 | # endif |
| 406 | |
| 407 | for (;;) { |
| 408 | if ((t2h < rem) || ((t2h == rem) && (t2l <= n2))) |
| 409 | break; |
| 410 | q--; |
| 411 | rem += d0; |
| 412 | if (rem < d0) |
| 413 | break; /* don't let rem overflow */ |
| 414 | if (t2l < d1) |
| 415 | t2h--; |
| 416 | t2l -= d1; |
| 417 | } |
| 418 | # endif /* !BN_LLONG */ |
| 419 | } |
| 420 | # endif /* !BN_DIV3W */ |
| 421 | |
| 422 | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); |
| 423 | tmp->d[div_n] = l0; |
| 424 | wnum--; |
| 425 | /* |
| 426 | * ignore top values of the bignums just sub the two BN_ULONG arrays |
| 427 | * with bn_sub_words |
| 428 | */ |
| 429 | l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1); |
| 430 | q -= l0; |
| 431 | /* |
| 432 | * Note: As we have considered only the leading two BN_ULONGs in |
| 433 | * the calculation of q, sdiv * q might be greater than wnum (but |
| 434 | * then (q-1) * sdiv is less or equal than wnum) |
| 435 | */ |
| 436 | for (l0 = 0 - l0, j = 0; j < div_n; j++) |
| 437 | tmp->d[j] = sdiv->d[j] & l0; |
| 438 | l0 = bn_add_words(wnum, wnum, tmp->d, div_n); |
| 439 | (*wnumtop) += l0; |
| 440 | assert((*wnumtop) == 0); |
| 441 | |
| 442 | /* store part of the result */ |
| 443 | *--resp = q; |
| 444 | } |
| 445 | /* snum holds remainder, it's as wide as divisor */ |
| 446 | snum->neg = num_neg; |
| 447 | snum->top = div_n; |
| 448 | snum->flags |= BN_FLG_FIXED_TOP; |
| 449 | |
| 450 | if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0) |
| 451 | goto err; |
| 452 | |
| 453 | BN_CTX_end(ctx); |
| 454 | return 1; |
| 455 | err: |
| 456 | bn_check_top(rm); |
| 457 | BN_CTX_end(ctx); |
| 458 | return 0; |
| 459 | } |
| 460 | #endif |