yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include "internal/cryptlib.h" |
| 11 | #include "bn_local.h" |
| 12 | |
| 13 | /* |
| 14 | * bn_mod_inverse_no_branch is a special version of BN_mod_inverse. It does |
| 15 | * not contain branches that may leak sensitive information. |
| 16 | * |
| 17 | * This is a static function, we ensure all callers in this file pass valid |
| 18 | * arguments: all passed pointers here are non-NULL. |
| 19 | */ |
| 20 | static ossl_inline |
| 21 | BIGNUM *bn_mod_inverse_no_branch(BIGNUM *in, |
| 22 | const BIGNUM *a, const BIGNUM *n, |
| 23 | BN_CTX *ctx, int *pnoinv) |
| 24 | { |
| 25 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
| 26 | BIGNUM *ret = NULL; |
| 27 | int sign; |
| 28 | |
| 29 | bn_check_top(a); |
| 30 | bn_check_top(n); |
| 31 | |
| 32 | BN_CTX_start(ctx); |
| 33 | A = BN_CTX_get(ctx); |
| 34 | B = BN_CTX_get(ctx); |
| 35 | X = BN_CTX_get(ctx); |
| 36 | D = BN_CTX_get(ctx); |
| 37 | M = BN_CTX_get(ctx); |
| 38 | Y = BN_CTX_get(ctx); |
| 39 | T = BN_CTX_get(ctx); |
| 40 | if (T == NULL) |
| 41 | goto err; |
| 42 | |
| 43 | if (in == NULL) |
| 44 | R = BN_new(); |
| 45 | else |
| 46 | R = in; |
| 47 | if (R == NULL) |
| 48 | goto err; |
| 49 | |
| 50 | BN_one(X); |
| 51 | BN_zero(Y); |
| 52 | if (BN_copy(B, a) == NULL) |
| 53 | goto err; |
| 54 | if (BN_copy(A, n) == NULL) |
| 55 | goto err; |
| 56 | A->neg = 0; |
| 57 | |
| 58 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
| 59 | /* |
| 60 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
| 61 | * BN_div_no_branch will be called eventually. |
| 62 | */ |
| 63 | { |
| 64 | BIGNUM local_B; |
| 65 | bn_init(&local_B); |
| 66 | BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); |
| 67 | if (!BN_nnmod(B, &local_B, A, ctx)) |
| 68 | goto err; |
| 69 | /* Ensure local_B goes out of scope before any further use of B */ |
| 70 | } |
| 71 | } |
| 72 | sign = -1; |
| 73 | /*- |
| 74 | * From B = a mod |n|, A = |n| it follows that |
| 75 | * |
| 76 | * 0 <= B < A, |
| 77 | * -sign*X*a == B (mod |n|), |
| 78 | * sign*Y*a == A (mod |n|). |
| 79 | */ |
| 80 | |
| 81 | while (!BN_is_zero(B)) { |
| 82 | BIGNUM *tmp; |
| 83 | |
| 84 | /*- |
| 85 | * 0 < B < A, |
| 86 | * (*) -sign*X*a == B (mod |n|), |
| 87 | * sign*Y*a == A (mod |n|) |
| 88 | */ |
| 89 | |
| 90 | /* |
| 91 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
| 92 | * BN_div_no_branch will be called eventually. |
| 93 | */ |
| 94 | { |
| 95 | BIGNUM local_A; |
| 96 | bn_init(&local_A); |
| 97 | BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); |
| 98 | |
| 99 | /* (D, M) := (A/B, A%B) ... */ |
| 100 | if (!BN_div(D, M, &local_A, B, ctx)) |
| 101 | goto err; |
| 102 | /* Ensure local_A goes out of scope before any further use of A */ |
| 103 | } |
| 104 | |
| 105 | /*- |
| 106 | * Now |
| 107 | * A = D*B + M; |
| 108 | * thus we have |
| 109 | * (**) sign*Y*a == D*B + M (mod |n|). |
| 110 | */ |
| 111 | |
| 112 | tmp = A; /* keep the BIGNUM object, the value does not |
| 113 | * matter */ |
| 114 | |
| 115 | /* (A, B) := (B, A mod B) ... */ |
| 116 | A = B; |
| 117 | B = M; |
| 118 | /* ... so we have 0 <= B < A again */ |
| 119 | |
| 120 | /*- |
| 121 | * Since the former M is now B and the former B is now A, |
| 122 | * (**) translates into |
| 123 | * sign*Y*a == D*A + B (mod |n|), |
| 124 | * i.e. |
| 125 | * sign*Y*a - D*A == B (mod |n|). |
| 126 | * Similarly, (*) translates into |
| 127 | * -sign*X*a == A (mod |n|). |
| 128 | * |
| 129 | * Thus, |
| 130 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
| 131 | * i.e. |
| 132 | * sign*(Y + D*X)*a == B (mod |n|). |
| 133 | * |
| 134 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
| 135 | * -sign*X*a == B (mod |n|), |
| 136 | * sign*Y*a == A (mod |n|). |
| 137 | * Note that X and Y stay non-negative all the time. |
| 138 | */ |
| 139 | |
| 140 | if (!BN_mul(tmp, D, X, ctx)) |
| 141 | goto err; |
| 142 | if (!BN_add(tmp, tmp, Y)) |
| 143 | goto err; |
| 144 | |
| 145 | M = Y; /* keep the BIGNUM object, the value does not |
| 146 | * matter */ |
| 147 | Y = X; |
| 148 | X = tmp; |
| 149 | sign = -sign; |
| 150 | } |
| 151 | |
| 152 | /*- |
| 153 | * The while loop (Euclid's algorithm) ends when |
| 154 | * A == gcd(a,n); |
| 155 | * we have |
| 156 | * sign*Y*a == A (mod |n|), |
| 157 | * where Y is non-negative. |
| 158 | */ |
| 159 | |
| 160 | if (sign < 0) { |
| 161 | if (!BN_sub(Y, n, Y)) |
| 162 | goto err; |
| 163 | } |
| 164 | /* Now Y*a == A (mod |n|). */ |
| 165 | |
| 166 | if (BN_is_one(A)) { |
| 167 | /* Y*a == 1 (mod |n|) */ |
| 168 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
| 169 | if (!BN_copy(R, Y)) |
| 170 | goto err; |
| 171 | } else { |
| 172 | if (!BN_nnmod(R, Y, n, ctx)) |
| 173 | goto err; |
| 174 | } |
| 175 | } else { |
| 176 | *pnoinv = 1; |
| 177 | /* caller sets the BN_R_NO_INVERSE error */ |
| 178 | goto err; |
| 179 | } |
| 180 | |
| 181 | ret = R; |
| 182 | *pnoinv = 0; |
| 183 | |
| 184 | err: |
| 185 | if ((ret == NULL) && (in == NULL)) |
| 186 | BN_free(R); |
| 187 | BN_CTX_end(ctx); |
| 188 | bn_check_top(ret); |
| 189 | return ret; |
| 190 | } |
| 191 | |
| 192 | /* |
| 193 | * This is an internal function, we assume all callers pass valid arguments: |
| 194 | * all pointers passed here are assumed non-NULL. |
| 195 | */ |
| 196 | BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
| 197 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
| 198 | int *pnoinv) |
| 199 | { |
| 200 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |
| 201 | BIGNUM *ret = NULL; |
| 202 | int sign; |
| 203 | |
| 204 | /* This is invalid input so we don't worry about constant time here */ |
| 205 | if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { |
| 206 | *pnoinv = 1; |
| 207 | return NULL; |
| 208 | } |
| 209 | |
| 210 | *pnoinv = 0; |
| 211 | |
| 212 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |
| 213 | || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |
| 214 | return bn_mod_inverse_no_branch(in, a, n, ctx, pnoinv); |
| 215 | } |
| 216 | |
| 217 | bn_check_top(a); |
| 218 | bn_check_top(n); |
| 219 | |
| 220 | BN_CTX_start(ctx); |
| 221 | A = BN_CTX_get(ctx); |
| 222 | B = BN_CTX_get(ctx); |
| 223 | X = BN_CTX_get(ctx); |
| 224 | D = BN_CTX_get(ctx); |
| 225 | M = BN_CTX_get(ctx); |
| 226 | Y = BN_CTX_get(ctx); |
| 227 | T = BN_CTX_get(ctx); |
| 228 | if (T == NULL) |
| 229 | goto err; |
| 230 | |
| 231 | if (in == NULL) |
| 232 | R = BN_new(); |
| 233 | else |
| 234 | R = in; |
| 235 | if (R == NULL) |
| 236 | goto err; |
| 237 | |
| 238 | BN_one(X); |
| 239 | BN_zero(Y); |
| 240 | if (BN_copy(B, a) == NULL) |
| 241 | goto err; |
| 242 | if (BN_copy(A, n) == NULL) |
| 243 | goto err; |
| 244 | A->neg = 0; |
| 245 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
| 246 | if (!BN_nnmod(B, B, A, ctx)) |
| 247 | goto err; |
| 248 | } |
| 249 | sign = -1; |
| 250 | /*- |
| 251 | * From B = a mod |n|, A = |n| it follows that |
| 252 | * |
| 253 | * 0 <= B < A, |
| 254 | * -sign*X*a == B (mod |n|), |
| 255 | * sign*Y*a == A (mod |n|). |
| 256 | */ |
| 257 | |
| 258 | if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { |
| 259 | /* |
| 260 | * Binary inversion algorithm; requires odd modulus. This is faster |
| 261 | * than the general algorithm if the modulus is sufficiently small |
| 262 | * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit |
| 263 | * systems) |
| 264 | */ |
| 265 | int shift; |
| 266 | |
| 267 | while (!BN_is_zero(B)) { |
| 268 | /*- |
| 269 | * 0 < B < |n|, |
| 270 | * 0 < A <= |n|, |
| 271 | * (1) -sign*X*a == B (mod |n|), |
| 272 | * (2) sign*Y*a == A (mod |n|) |
| 273 | */ |
| 274 | |
| 275 | /* |
| 276 | * Now divide B by the maximum possible power of two in the |
| 277 | * integers, and divide X by the same value mod |n|. When we're |
| 278 | * done, (1) still holds. |
| 279 | */ |
| 280 | shift = 0; |
| 281 | while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ |
| 282 | shift++; |
| 283 | |
| 284 | if (BN_is_odd(X)) { |
| 285 | if (!BN_uadd(X, X, n)) |
| 286 | goto err; |
| 287 | } |
| 288 | /* |
| 289 | * now X is even, so we can easily divide it by two |
| 290 | */ |
| 291 | if (!BN_rshift1(X, X)) |
| 292 | goto err; |
| 293 | } |
| 294 | if (shift > 0) { |
| 295 | if (!BN_rshift(B, B, shift)) |
| 296 | goto err; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Same for A and Y. Afterwards, (2) still holds. |
| 301 | */ |
| 302 | shift = 0; |
| 303 | while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ |
| 304 | shift++; |
| 305 | |
| 306 | if (BN_is_odd(Y)) { |
| 307 | if (!BN_uadd(Y, Y, n)) |
| 308 | goto err; |
| 309 | } |
| 310 | /* now Y is even */ |
| 311 | if (!BN_rshift1(Y, Y)) |
| 312 | goto err; |
| 313 | } |
| 314 | if (shift > 0) { |
| 315 | if (!BN_rshift(A, A, shift)) |
| 316 | goto err; |
| 317 | } |
| 318 | |
| 319 | /*- |
| 320 | * We still have (1) and (2). |
| 321 | * Both A and B are odd. |
| 322 | * The following computations ensure that |
| 323 | * |
| 324 | * 0 <= B < |n|, |
| 325 | * 0 < A < |n|, |
| 326 | * (1) -sign*X*a == B (mod |n|), |
| 327 | * (2) sign*Y*a == A (mod |n|), |
| 328 | * |
| 329 | * and that either A or B is even in the next iteration. |
| 330 | */ |
| 331 | if (BN_ucmp(B, A) >= 0) { |
| 332 | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
| 333 | if (!BN_uadd(X, X, Y)) |
| 334 | goto err; |
| 335 | /* |
| 336 | * NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
| 337 | * actually makes the algorithm slower |
| 338 | */ |
| 339 | if (!BN_usub(B, B, A)) |
| 340 | goto err; |
| 341 | } else { |
| 342 | /* sign*(X + Y)*a == A - B (mod |n|) */ |
| 343 | if (!BN_uadd(Y, Y, X)) |
| 344 | goto err; |
| 345 | /* |
| 346 | * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
| 347 | */ |
| 348 | if (!BN_usub(A, A, B)) |
| 349 | goto err; |
| 350 | } |
| 351 | } |
| 352 | } else { |
| 353 | /* general inversion algorithm */ |
| 354 | |
| 355 | while (!BN_is_zero(B)) { |
| 356 | BIGNUM *tmp; |
| 357 | |
| 358 | /*- |
| 359 | * 0 < B < A, |
| 360 | * (*) -sign*X*a == B (mod |n|), |
| 361 | * sign*Y*a == A (mod |n|) |
| 362 | */ |
| 363 | |
| 364 | /* (D, M) := (A/B, A%B) ... */ |
| 365 | if (BN_num_bits(A) == BN_num_bits(B)) { |
| 366 | if (!BN_one(D)) |
| 367 | goto err; |
| 368 | if (!BN_sub(M, A, B)) |
| 369 | goto err; |
| 370 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
| 371 | /* A/B is 1, 2, or 3 */ |
| 372 | if (!BN_lshift1(T, B)) |
| 373 | goto err; |
| 374 | if (BN_ucmp(A, T) < 0) { |
| 375 | /* A < 2*B, so D=1 */ |
| 376 | if (!BN_one(D)) |
| 377 | goto err; |
| 378 | if (!BN_sub(M, A, B)) |
| 379 | goto err; |
| 380 | } else { |
| 381 | /* A >= 2*B, so D=2 or D=3 */ |
| 382 | if (!BN_sub(M, A, T)) |
| 383 | goto err; |
| 384 | if (!BN_add(D, T, B)) |
| 385 | goto err; /* use D (:= 3*B) as temp */ |
| 386 | if (BN_ucmp(A, D) < 0) { |
| 387 | /* A < 3*B, so D=2 */ |
| 388 | if (!BN_set_word(D, 2)) |
| 389 | goto err; |
| 390 | /* |
| 391 | * M (= A - 2*B) already has the correct value |
| 392 | */ |
| 393 | } else { |
| 394 | /* only D=3 remains */ |
| 395 | if (!BN_set_word(D, 3)) |
| 396 | goto err; |
| 397 | /* |
| 398 | * currently M = A - 2*B, but we need M = A - 3*B |
| 399 | */ |
| 400 | if (!BN_sub(M, M, B)) |
| 401 | goto err; |
| 402 | } |
| 403 | } |
| 404 | } else { |
| 405 | if (!BN_div(D, M, A, B, ctx)) |
| 406 | goto err; |
| 407 | } |
| 408 | |
| 409 | /*- |
| 410 | * Now |
| 411 | * A = D*B + M; |
| 412 | * thus we have |
| 413 | * (**) sign*Y*a == D*B + M (mod |n|). |
| 414 | */ |
| 415 | |
| 416 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
| 417 | |
| 418 | /* (A, B) := (B, A mod B) ... */ |
| 419 | A = B; |
| 420 | B = M; |
| 421 | /* ... so we have 0 <= B < A again */ |
| 422 | |
| 423 | /*- |
| 424 | * Since the former M is now B and the former B is now A, |
| 425 | * (**) translates into |
| 426 | * sign*Y*a == D*A + B (mod |n|), |
| 427 | * i.e. |
| 428 | * sign*Y*a - D*A == B (mod |n|). |
| 429 | * Similarly, (*) translates into |
| 430 | * -sign*X*a == A (mod |n|). |
| 431 | * |
| 432 | * Thus, |
| 433 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
| 434 | * i.e. |
| 435 | * sign*(Y + D*X)*a == B (mod |n|). |
| 436 | * |
| 437 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
| 438 | * -sign*X*a == B (mod |n|), |
| 439 | * sign*Y*a == A (mod |n|). |
| 440 | * Note that X and Y stay non-negative all the time. |
| 441 | */ |
| 442 | |
| 443 | /* |
| 444 | * most of the time D is very small, so we can optimize tmp := D*X+Y |
| 445 | */ |
| 446 | if (BN_is_one(D)) { |
| 447 | if (!BN_add(tmp, X, Y)) |
| 448 | goto err; |
| 449 | } else { |
| 450 | if (BN_is_word(D, 2)) { |
| 451 | if (!BN_lshift1(tmp, X)) |
| 452 | goto err; |
| 453 | } else if (BN_is_word(D, 4)) { |
| 454 | if (!BN_lshift(tmp, X, 2)) |
| 455 | goto err; |
| 456 | } else if (D->top == 1) { |
| 457 | if (!BN_copy(tmp, X)) |
| 458 | goto err; |
| 459 | if (!BN_mul_word(tmp, D->d[0])) |
| 460 | goto err; |
| 461 | } else { |
| 462 | if (!BN_mul(tmp, D, X, ctx)) |
| 463 | goto err; |
| 464 | } |
| 465 | if (!BN_add(tmp, tmp, Y)) |
| 466 | goto err; |
| 467 | } |
| 468 | |
| 469 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
| 470 | Y = X; |
| 471 | X = tmp; |
| 472 | sign = -sign; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | /*- |
| 477 | * The while loop (Euclid's algorithm) ends when |
| 478 | * A == gcd(a,n); |
| 479 | * we have |
| 480 | * sign*Y*a == A (mod |n|), |
| 481 | * where Y is non-negative. |
| 482 | */ |
| 483 | |
| 484 | if (sign < 0) { |
| 485 | if (!BN_sub(Y, n, Y)) |
| 486 | goto err; |
| 487 | } |
| 488 | /* Now Y*a == A (mod |n|). */ |
| 489 | |
| 490 | if (BN_is_one(A)) { |
| 491 | /* Y*a == 1 (mod |n|) */ |
| 492 | if (!Y->neg && BN_ucmp(Y, n) < 0) { |
| 493 | if (!BN_copy(R, Y)) |
| 494 | goto err; |
| 495 | } else { |
| 496 | if (!BN_nnmod(R, Y, n, ctx)) |
| 497 | goto err; |
| 498 | } |
| 499 | } else { |
| 500 | *pnoinv = 1; |
| 501 | goto err; |
| 502 | } |
| 503 | ret = R; |
| 504 | err: |
| 505 | if ((ret == NULL) && (in == NULL)) |
| 506 | BN_free(R); |
| 507 | BN_CTX_end(ctx); |
| 508 | bn_check_top(ret); |
| 509 | return ret; |
| 510 | } |
| 511 | |
| 512 | /* solves ax == 1 (mod n) */ |
| 513 | BIGNUM *BN_mod_inverse(BIGNUM *in, |
| 514 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
| 515 | { |
| 516 | BN_CTX *new_ctx = NULL; |
| 517 | BIGNUM *rv; |
| 518 | int noinv = 0; |
| 519 | |
| 520 | if (ctx == NULL) { |
| 521 | ctx = new_ctx = BN_CTX_new(); |
| 522 | if (ctx == NULL) { |
| 523 | BNerr(BN_F_BN_MOD_INVERSE, ERR_R_MALLOC_FAILURE); |
| 524 | return NULL; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); |
| 529 | if (noinv) |
| 530 | BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); |
| 531 | BN_CTX_free(new_ctx); |
| 532 | return rv; |
| 533 | } |
| 534 | |
| 535 | /*- |
| 536 | * This function is based on the constant-time GCD work by Bernstein and Yang: |
| 537 | * https://eprint.iacr.org/2019/266 |
| 538 | * Generalized fast GCD function to allow even inputs. |
| 539 | * The algorithm first finds the shared powers of 2 between |
| 540 | * the inputs, and removes them, reducing at least one of the |
| 541 | * inputs to an odd value. Then it proceeds to calculate the GCD. |
| 542 | * Before returning the resulting GCD, we take care of adding |
| 543 | * back the powers of two removed at the beginning. |
| 544 | * Note 1: we assume the bit length of both inputs is public information, |
| 545 | * since access to top potentially leaks this information. |
| 546 | */ |
| 547 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
| 548 | { |
| 549 | BIGNUM *g, *temp = NULL; |
| 550 | BN_ULONG mask = 0; |
| 551 | int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; |
| 552 | |
| 553 | /* Note 2: zero input corner cases are not constant-time since they are |
| 554 | * handled immediately. An attacker can run an attack under this |
| 555 | * assumption without the need of side-channel information. */ |
| 556 | if (BN_is_zero(in_b)) { |
| 557 | ret = BN_copy(r, in_a) != NULL; |
| 558 | r->neg = 0; |
| 559 | return ret; |
| 560 | } |
| 561 | if (BN_is_zero(in_a)) { |
| 562 | ret = BN_copy(r, in_b) != NULL; |
| 563 | r->neg = 0; |
| 564 | return ret; |
| 565 | } |
| 566 | |
| 567 | bn_check_top(in_a); |
| 568 | bn_check_top(in_b); |
| 569 | |
| 570 | BN_CTX_start(ctx); |
| 571 | temp = BN_CTX_get(ctx); |
| 572 | g = BN_CTX_get(ctx); |
| 573 | |
| 574 | /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ |
| 575 | if (g == NULL |
| 576 | || !BN_lshift1(g, in_b) |
| 577 | || !BN_lshift1(r, in_a)) |
| 578 | goto err; |
| 579 | |
| 580 | /* find shared powers of two, i.e. "shifts" >= 1 */ |
| 581 | for (i = 0; i < r->dmax && i < g->dmax; i++) { |
| 582 | mask = ~(r->d[i] | g->d[i]); |
| 583 | for (j = 0; j < BN_BITS2; j++) { |
| 584 | bit &= mask; |
| 585 | shifts += bit; |
| 586 | mask >>= 1; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | /* subtract shared powers of two; shifts >= 1 */ |
| 591 | if (!BN_rshift(r, r, shifts) |
| 592 | || !BN_rshift(g, g, shifts)) |
| 593 | goto err; |
| 594 | |
| 595 | /* expand to biggest nword, with room for a possible extra word */ |
| 596 | top = 1 + ((r->top >= g->top) ? r->top : g->top); |
| 597 | if (bn_wexpand(r, top) == NULL |
| 598 | || bn_wexpand(g, top) == NULL |
| 599 | || bn_wexpand(temp, top) == NULL) |
| 600 | goto err; |
| 601 | |
| 602 | /* re arrange inputs s.t. r is odd */ |
| 603 | BN_consttime_swap((~r->d[0]) & 1, r, g, top); |
| 604 | |
| 605 | /* compute the number of iterations */ |
| 606 | rlen = BN_num_bits(r); |
| 607 | glen = BN_num_bits(g); |
| 608 | m = 4 + 3 * ((rlen >= glen) ? rlen : glen); |
| 609 | |
| 610 | for (i = 0; i < m; i++) { |
| 611 | /* conditionally flip signs if delta is positive and g is odd */ |
| 612 | cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 |
| 613 | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ |
| 614 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))); |
| 615 | delta = (-cond & -delta) | ((cond - 1) & delta); |
| 616 | r->neg ^= cond; |
| 617 | /* swap */ |
| 618 | BN_consttime_swap(cond, r, g, top); |
| 619 | |
| 620 | /* elimination step */ |
| 621 | delta++; |
| 622 | if (!BN_add(temp, g, r)) |
| 623 | goto err; |
| 624 | BN_consttime_swap(g->d[0] & 1 /* g is odd */ |
| 625 | /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ |
| 626 | & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))), |
| 627 | g, temp, top); |
| 628 | if (!BN_rshift1(g, g)) |
| 629 | goto err; |
| 630 | } |
| 631 | |
| 632 | /* remove possible negative sign */ |
| 633 | r->neg = 0; |
| 634 | /* add powers of 2 removed, then correct the artificial shift */ |
| 635 | if (!BN_lshift(r, r, shifts) |
| 636 | || !BN_rshift1(r, r)) |
| 637 | goto err; |
| 638 | |
| 639 | ret = 1; |
| 640 | |
| 641 | err: |
| 642 | BN_CTX_end(ctx); |
| 643 | bn_check_top(r); |
| 644 | return ret; |
| 645 | } |