blob: 0f4525106af770f12c6031e48ef0e561fc93ac6d [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#ifndef _GNU_SOURCE
11# define _GNU_SOURCE
12#endif
13#include "e_os.h"
14#include <stdio.h>
15#include "internal/cryptlib.h"
16#include <openssl/rand.h>
17#include <openssl/crypto.h>
18#include "rand_local.h"
19#include "crypto/rand.h"
20#include <stdio.h>
21#include "internal/dso.h"
22#ifdef __linux
23# include <sys/syscall.h>
24# ifdef DEVRANDOM_WAIT
25# include <sys/shm.h>
26# include <sys/utsname.h>
27# endif
28#endif
29#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(OPENSSL_SYS_UEFI)
30# include <sys/types.h>
31# include <sys/sysctl.h>
32# include <sys/param.h>
33#endif
34#if defined(__OpenBSD__)
35# include <sys/param.h>
36#endif
37
38#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
39# include <sys/types.h>
40# include <sys/stat.h>
41# include <fcntl.h>
42# include <unistd.h>
43# include <sys/time.h>
44
45static uint64_t get_time_stamp(void);
46static uint64_t get_timer_bits(void);
47
48/* Macro to convert two thirty two bit values into a sixty four bit one */
49# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))
50
51/*
52 * Check for the existence and support of POSIX timers. The standard
53 * says that the _POSIX_TIMERS macro will have a positive value if they
54 * are available.
55 *
56 * However, we want an additional constraint: that the timer support does
57 * not require an extra library dependency. Early versions of glibc
58 * require -lrt to be specified on the link line to access the timers,
59 * so this needs to be checked for.
60 *
61 * It is worse because some libraries define __GLIBC__ but don't
62 * support the version testing macro (e.g. uClibc). This means
63 * an extra check is needed.
64 *
65 * The final condition is:
66 * "have posix timers and either not glibc or glibc without -lrt"
67 *
68 * The nested #if sequences are required to avoid using a parameterised
69 * macro that might be undefined.
70 */
71# undef OSSL_POSIX_TIMER_OKAY
72# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0
73# if defined(__GLIBC__)
74# if defined(__GLIBC_PREREQ)
75# if __GLIBC_PREREQ(2, 17)
76# define OSSL_POSIX_TIMER_OKAY
77# endif
78# endif
79# else
80# define OSSL_POSIX_TIMER_OKAY
81# endif
82# endif
83#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
84 || defined(__DJGPP__) */
85
86#if defined(OPENSSL_RAND_SEED_NONE)
87/* none means none. this simplifies the following logic */
88# undef OPENSSL_RAND_SEED_OS
89# undef OPENSSL_RAND_SEED_GETRANDOM
90# undef OPENSSL_RAND_SEED_LIBRANDOM
91# undef OPENSSL_RAND_SEED_DEVRANDOM
92# undef OPENSSL_RAND_SEED_RDTSC
93# undef OPENSSL_RAND_SEED_RDCPU
94# undef OPENSSL_RAND_SEED_EGD
95#endif
96
97#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
98 !defined(OPENSSL_RAND_SEED_NONE)
99# error "UEFI and VXWorks only support seeding NONE"
100#endif
101
102#if defined(OPENSSL_SYS_VXWORKS)
103/* empty implementation */
104int rand_pool_init(void)
105{
106 return 1;
107}
108
109void rand_pool_cleanup(void)
110{
111}
112
113void rand_pool_keep_random_devices_open(int keep)
114{
115}
116
117size_t rand_pool_acquire_entropy(RAND_POOL *pool)
118{
119 return rand_pool_entropy_available(pool);
120}
121#endif
122
123#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
124 || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
125 || defined(OPENSSL_SYS_UEFI))
126
127# if defined(OPENSSL_SYS_VOS)
128
129# ifndef OPENSSL_RAND_SEED_OS
130# error "Unsupported seeding method configured; must be os"
131# endif
132
133# if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)
134# error "Unsupported HP-PA and IA32 at the same time."
135# endif
136# if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)
137# error "Must have one of HP-PA or IA32"
138# endif
139
140/*
141 * The following algorithm repeatedly samples the real-time clock (RTC) to
142 * generate a sequence of unpredictable data. The algorithm relies upon the
143 * uneven execution speed of the code (due to factors such as cache misses,
144 * interrupts, bus activity, and scheduling) and upon the rather large
145 * relative difference between the speed of the clock and the rate at which
146 * it can be read. If it is ported to an environment where execution speed
147 * is more constant or where the RTC ticks at a much slower rate, or the
148 * clock can be read with fewer instructions, it is likely that the results
149 * would be far more predictable. This should only be used for legacy
150 * platforms.
151 *
152 * As a precaution, we assume only 2 bits of entropy per byte.
153 */
154size_t rand_pool_acquire_entropy(RAND_POOL *pool)
155{
156 short int code;
157 int i, k;
158 size_t bytes_needed;
159 struct timespec ts;
160 unsigned char v;
161# ifdef OPENSSL_SYS_VOS_HPPA
162 long duration;
163 extern void s$sleep(long *_duration, short int *_code);
164# else
165 long long duration;
166 extern void s$sleep2(long long *_duration, short int *_code);
167# endif
168
169 bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);
170
171 for (i = 0; i < bytes_needed; i++) {
172 /*
173 * burn some cpu; hope for interrupts, cache collisions, bus
174 * interference, etc.
175 */
176 for (k = 0; k < 99; k++)
177 ts.tv_nsec = random();
178
179# ifdef OPENSSL_SYS_VOS_HPPA
180 /* sleep for 1/1024 of a second (976 us). */
181 duration = 1;
182 s$sleep(&duration, &code);
183# else
184 /* sleep for 1/65536 of a second (15 us). */
185 duration = 1;
186 s$sleep2(&duration, &code);
187# endif
188
189 /* Get wall clock time, take 8 bits. */
190 clock_gettime(CLOCK_REALTIME, &ts);
191 v = (unsigned char)(ts.tv_nsec & 0xFF);
192 rand_pool_add(pool, arg, &v, sizeof(v) , 2);
193 }
194 return rand_pool_entropy_available(pool);
195}
196
197void rand_pool_cleanup(void)
198{
199}
200
201void rand_pool_keep_random_devices_open(int keep)
202{
203}
204
205# else
206
207# if defined(OPENSSL_RAND_SEED_EGD) && \
208 (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))
209# error "Seeding uses EGD but EGD is turned off or no device given"
210# endif
211
212# if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)
213# error "Seeding uses urandom but DEVRANDOM is not configured"
214# endif
215
216# if defined(OPENSSL_RAND_SEED_OS)
217# if !defined(DEVRANDOM)
218# error "OS seeding requires DEVRANDOM to be configured"
219# endif
220# define OPENSSL_RAND_SEED_GETRANDOM
221# define OPENSSL_RAND_SEED_DEVRANDOM
222# endif
223
224# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
225# error "librandom not (yet) supported"
226# endif
227
228# if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
229/*
230 * sysctl_random(): Use sysctl() to read a random number from the kernel
231 * Returns the number of bytes returned in buf on success, -1 on failure.
232 */
233static ssize_t sysctl_random(char *buf, size_t buflen)
234{
235 int mib[2];
236 size_t done = 0;
237 size_t len;
238
239 /*
240 * Note: sign conversion between size_t and ssize_t is safe even
241 * without a range check, see comment in syscall_random()
242 */
243
244 /*
245 * On FreeBSD old implementations returned longs, newer versions support
246 * variable sizes up to 256 byte. The code below would not work properly
247 * when the sysctl returns long and we want to request something not a
248 * multiple of longs, which should never be the case.
249 */
250#if defined(__FreeBSD__)
251 if (!ossl_assert(buflen % sizeof(long) == 0)) {
252 errno = EINVAL;
253 return -1;
254 }
255#endif
256
257 /*
258 * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only
259 * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0
260 * it returns a variable number of bytes with the current version supporting
261 * up to 256 bytes.
262 * Just return an error on older NetBSD versions.
263 */
264#if defined(__NetBSD__) && __NetBSD_Version__ < 400000000
265 errno = ENOSYS;
266 return -1;
267#endif
268
269 mib[0] = CTL_KERN;
270 mib[1] = KERN_ARND;
271
272 do {
273 len = buflen > 256 ? 256 : buflen;
274 if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)
275 return done > 0 ? done : -1;
276 done += len;
277 buf += len;
278 buflen -= len;
279 } while (buflen > 0);
280
281 return done;
282}
283# endif
284
285# if defined(OPENSSL_RAND_SEED_GETRANDOM)
286
287# if defined(__linux) && !defined(__NR_getrandom)
288# if defined(__arm__)
289# define __NR_getrandom (__NR_SYSCALL_BASE+384)
290# elif defined(__i386__)
291# define __NR_getrandom 355
292# elif defined(__x86_64__)
293# if defined(__ILP32__)
294# define __NR_getrandom (__X32_SYSCALL_BIT + 318)
295# else
296# define __NR_getrandom 318
297# endif
298# elif defined(__xtensa__)
299# define __NR_getrandom 338
300# elif defined(__s390__) || defined(__s390x__)
301# define __NR_getrandom 349
302# elif defined(__bfin__)
303# define __NR_getrandom 389
304# elif defined(__powerpc__)
305# define __NR_getrandom 359
306# elif defined(__mips__) || defined(__mips64)
307# if _MIPS_SIM == _MIPS_SIM_ABI32
308# define __NR_getrandom (__NR_Linux + 353)
309# elif _MIPS_SIM == _MIPS_SIM_ABI64
310# define __NR_getrandom (__NR_Linux + 313)
311# elif _MIPS_SIM == _MIPS_SIM_NABI32
312# define __NR_getrandom (__NR_Linux + 317)
313# endif
314# elif defined(__hppa__)
315# define __NR_getrandom (__NR_Linux + 339)
316# elif defined(__sparc__)
317# define __NR_getrandom 347
318# elif defined(__ia64__)
319# define __NR_getrandom 1339
320# elif defined(__alpha__)
321# define __NR_getrandom 511
322# elif defined(__sh__)
323# if defined(__SH5__)
324# define __NR_getrandom 373
325# else
326# define __NR_getrandom 384
327# endif
328# elif defined(__avr32__)
329# define __NR_getrandom 317
330# elif defined(__microblaze__)
331# define __NR_getrandom 385
332# elif defined(__m68k__)
333# define __NR_getrandom 352
334# elif defined(__cris__)
335# define __NR_getrandom 356
336# elif defined(__aarch64__)
337# define __NR_getrandom 278
338# else /* generic */
339# define __NR_getrandom 278
340# endif
341# endif
342
343/*
344 * syscall_random(): Try to get random data using a system call
345 * returns the number of bytes returned in buf, or < 0 on error.
346 */
347static ssize_t syscall_random(void *buf, size_t buflen)
348{
349 /*
350 * Note: 'buflen' equals the size of the buffer which is used by the
351 * get_entropy() callback of the RAND_DRBG. It is roughly bounded by
352 *
353 * 2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14
354 *
355 * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion
356 * between size_t and ssize_t is safe even without a range check.
357 */
358
359 /*
360 * Do runtime detection to find getentropy().
361 *
362 * Known OSs that should support this:
363 * - Darwin since 16 (OSX 10.12, IOS 10.0).
364 * - Solaris since 11.3
365 * - OpenBSD since 5.6
366 * - Linux since 3.17 with glibc 2.25
367 * - FreeBSD since 12.0 (1200061)
368 *
369 * Note: Sometimes getentropy() can be provided but not implemented
370 * internally. So we need to check errno for ENOSYS
371 */
372# if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)
373 extern int getentropy(void *buffer, size_t length) __attribute__((weak));
374
375 if (getentropy != NULL) {
376 if (getentropy(buf, buflen) == 0)
377 return (ssize_t)buflen;
378 if (errno != ENOSYS)
379 return -1;
380 }
381# elif defined(OPENSSL_APPLE_CRYPTO_RANDOM)
382 if (CCRandomGenerateBytes(buf, buflen) == kCCSuccess)
383 return (ssize_t)buflen;
384
385 return -1;
386# else
387 union {
388 void *p;
389 int (*f)(void *buffer, size_t length);
390 } p_getentropy;
391
392 /*
393 * We could cache the result of the lookup, but we normally don't
394 * call this function often.
395 */
396 ERR_set_mark();
397 p_getentropy.p = DSO_global_lookup("getentropy");
398 ERR_pop_to_mark();
399 if (p_getentropy.p != NULL)
400 return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;
401# endif
402
403 /* Linux supports this since version 3.17 */
404# if defined(__linux) && defined(__NR_getrandom)
405 return syscall(__NR_getrandom, buf, buflen, 0);
406# elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)
407 return sysctl_random(buf, buflen);
408# else
409 errno = ENOSYS;
410 return -1;
411# endif
412}
413# endif /* defined(OPENSSL_RAND_SEED_GETRANDOM) */
414
415# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
416static const char *random_device_paths[] = { DEVRANDOM };
417static struct random_device {
418 int fd;
419 dev_t dev;
420 ino_t ino;
421 mode_t mode;
422 dev_t rdev;
423} random_devices[OSSL_NELEM(random_device_paths)];
424static int keep_random_devices_open = 1;
425
426# if defined(__linux) && defined(DEVRANDOM_WAIT) \
427 && defined(OPENSSL_RAND_SEED_GETRANDOM)
428static void *shm_addr;
429
430static void cleanup_shm(void)
431{
432 shmdt(shm_addr);
433}
434
435/*
436 * Ensure that the system randomness source has been adequately seeded.
437 * This is done by having the first start of libcrypto, wait until the device
438 * /dev/random becomes able to supply a byte of entropy. Subsequent starts
439 * of the library and later reseedings do not need to do this.
440 */
441static int wait_random_seeded(void)
442{
443 static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;
444 static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };
445 int kernel[2];
446 int shm_id, fd, r;
447 char c, *p;
448 struct utsname un;
449 fd_set fds;
450
451 if (!seeded) {
452 /* See if anything has created the global seeded indication */
453 if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {
454 /*
455 * Check the kernel's version and fail if it is too recent.
456 *
457 * Linux kernels from 4.8 onwards do not guarantee that
458 * /dev/urandom is properly seeded when /dev/random becomes
459 * readable. However, such kernels support the getentropy(2)
460 * system call and this should always succeed which renders
461 * this alternative but essentially identical source moot.
462 */
463 if (uname(&un) == 0) {
464 kernel[0] = atoi(un.release);
465 p = strchr(un.release, '.');
466 kernel[1] = p == NULL ? 0 : atoi(p + 1);
467 if (kernel[0] > kernel_version[0]
468 || (kernel[0] == kernel_version[0]
469 && kernel[1] >= kernel_version[1])) {
470 return 0;
471 }
472 }
473 /* Open /dev/random and wait for it to be readable */
474 if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {
475 if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {
476 FD_ZERO(&fds);
477 FD_SET(fd, &fds);
478 while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0
479 && errno == EINTR);
480 } else {
481 while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);
482 }
483 close(fd);
484 if (r == 1) {
485 seeded = 1;
486 /* Create the shared memory indicator */
487 shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,
488 IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);
489 }
490 }
491 }
492 if (shm_id != -1) {
493 seeded = 1;
494 /*
495 * Map the shared memory to prevent its premature destruction.
496 * If this call fails, it isn't a big problem.
497 */
498 shm_addr = shmat(shm_id, NULL, SHM_RDONLY);
499 if (shm_addr != (void *)-1)
500 OPENSSL_atexit(&cleanup_shm);
501 }
502 }
503 return seeded;
504}
505# else /* defined __linux && DEVRANDOM_WAIT && OPENSSL_RAND_SEED_GETRANDOM */
506static int wait_random_seeded(void)
507{
508 return 1;
509}
510# endif
511
512/*
513 * Verify that the file descriptor associated with the random source is
514 * still valid. The rationale for doing this is the fact that it is not
515 * uncommon for daemons to close all open file handles when daemonizing.
516 * So the handle might have been closed or even reused for opening
517 * another file.
518 */
519static int check_random_device(struct random_device * rd)
520{
521 struct stat st;
522
523 return rd->fd != -1
524 && fstat(rd->fd, &st) != -1
525 && rd->dev == st.st_dev
526 && rd->ino == st.st_ino
527 && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0
528 && rd->rdev == st.st_rdev;
529}
530
531/*
532 * Open a random device if required and return its file descriptor or -1 on error
533 */
534static int get_random_device(size_t n)
535{
536 struct stat st;
537 struct random_device * rd = &random_devices[n];
538
539 /* reuse existing file descriptor if it is (still) valid */
540 if (check_random_device(rd))
541 return rd->fd;
542
543 /* open the random device ... */
544 if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)
545 return rd->fd;
546
547 /* ... and cache its relevant stat(2) data */
548 if (fstat(rd->fd, &st) != -1) {
549 rd->dev = st.st_dev;
550 rd->ino = st.st_ino;
551 rd->mode = st.st_mode;
552 rd->rdev = st.st_rdev;
553 } else {
554 close(rd->fd);
555 rd->fd = -1;
556 }
557
558 return rd->fd;
559}
560
561/*
562 * Close a random device making sure it is a random device
563 */
564static void close_random_device(size_t n)
565{
566 struct random_device * rd = &random_devices[n];
567
568 if (check_random_device(rd))
569 close(rd->fd);
570 rd->fd = -1;
571}
572
573int rand_pool_init(void)
574{
575 size_t i;
576
577 for (i = 0; i < OSSL_NELEM(random_devices); i++)
578 random_devices[i].fd = -1;
579
580 return 1;
581}
582
583void rand_pool_cleanup(void)
584{
585 size_t i;
586
587 for (i = 0; i < OSSL_NELEM(random_devices); i++)
588 close_random_device(i);
589}
590
591void rand_pool_keep_random_devices_open(int keep)
592{
593 if (!keep)
594 rand_pool_cleanup();
595
596 keep_random_devices_open = keep;
597}
598
599# else /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */
600
601int rand_pool_init(void)
602{
603 return 1;
604}
605
606void rand_pool_cleanup(void)
607{
608}
609
610void rand_pool_keep_random_devices_open(int keep)
611{
612}
613
614# endif /* defined(OPENSSL_RAND_SEED_DEVRANDOM) */
615
616/*
617 * Try the various seeding methods in turn, exit when successful.
618 *
619 * TODO(DRBG): If more than one entropy source is available, is it
620 * preferable to stop as soon as enough entropy has been collected
621 * (as favored by @rsalz) or should one rather be defensive and add
622 * more entropy than requested and/or from different sources?
623 *
624 * Currently, the user can select multiple entropy sources in the
625 * configure step, yet in practice only the first available source
626 * will be used. A more flexible solution has been requested, but
627 * currently it is not clear how this can be achieved without
628 * overengineering the problem. There are many parameters which
629 * could be taken into account when selecting the order and amount
630 * of input from the different entropy sources (trust, quality,
631 * possibility of blocking).
632 */
633size_t rand_pool_acquire_entropy(RAND_POOL *pool)
634{
635# if defined(OPENSSL_RAND_SEED_NONE)
636 return rand_pool_entropy_available(pool);
637# else
638 size_t entropy_available;
639
640# if defined(OPENSSL_RAND_SEED_GETRANDOM)
641 {
642 size_t bytes_needed;
643 unsigned char *buffer;
644 ssize_t bytes;
645 /* Maximum allowed number of consecutive unsuccessful attempts */
646 int attempts = 3;
647
648 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
649 while (bytes_needed != 0 && attempts-- > 0) {
650 buffer = rand_pool_add_begin(pool, bytes_needed);
651 bytes = syscall_random(buffer, bytes_needed);
652 if (bytes > 0) {
653 rand_pool_add_end(pool, bytes, 8 * bytes);
654 bytes_needed -= bytes;
655 attempts = 3; /* reset counter after successful attempt */
656 } else if (bytes < 0 && errno != EINTR) {
657 break;
658 }
659 }
660 }
661 entropy_available = rand_pool_entropy_available(pool);
662 if (entropy_available > 0)
663 return entropy_available;
664# endif
665
666# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
667 {
668 /* Not yet implemented. */
669 }
670# endif
671
672# if defined(OPENSSL_RAND_SEED_DEVRANDOM)
673 if (wait_random_seeded()) {
674 size_t bytes_needed;
675 unsigned char *buffer;
676 size_t i;
677
678 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
679 for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);
680 i++) {
681 ssize_t bytes = 0;
682 /* Maximum number of consecutive unsuccessful attempts */
683 int attempts = 3;
684 const int fd = get_random_device(i);
685
686 if (fd == -1)
687 continue;
688
689 while (bytes_needed != 0 && attempts-- > 0) {
690 buffer = rand_pool_add_begin(pool, bytes_needed);
691 bytes = read(fd, buffer, bytes_needed);
692
693 if (bytes > 0) {
694 rand_pool_add_end(pool, bytes, 8 * bytes);
695 bytes_needed -= bytes;
696 attempts = 3; /* reset counter on successful attempt */
697 } else if (bytes < 0 && errno != EINTR) {
698 break;
699 }
700 }
701 if (bytes < 0 || !keep_random_devices_open)
702 close_random_device(i);
703
704 bytes_needed = rand_pool_bytes_needed(pool, 1);
705 }
706 entropy_available = rand_pool_entropy_available(pool);
707 if (entropy_available > 0)
708 return entropy_available;
709 }
710# endif
711
712# if defined(OPENSSL_RAND_SEED_RDTSC)
713 entropy_available = rand_acquire_entropy_from_tsc(pool);
714 if (entropy_available > 0)
715 return entropy_available;
716# endif
717
718# if defined(OPENSSL_RAND_SEED_RDCPU)
719 entropy_available = rand_acquire_entropy_from_cpu(pool);
720 if (entropy_available > 0)
721 return entropy_available;
722# endif
723
724# if defined(OPENSSL_RAND_SEED_EGD)
725 {
726 static const char *paths[] = { DEVRANDOM_EGD, NULL };
727 size_t bytes_needed;
728 unsigned char *buffer;
729 int i;
730
731 bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);
732 for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {
733 size_t bytes = 0;
734 int num;
735
736 buffer = rand_pool_add_begin(pool, bytes_needed);
737 num = RAND_query_egd_bytes(paths[i],
738 buffer, (int)bytes_needed);
739 if (num == (int)bytes_needed)
740 bytes = bytes_needed;
741
742 rand_pool_add_end(pool, bytes, 8 * bytes);
743 bytes_needed = rand_pool_bytes_needed(pool, 1);
744 }
745 entropy_available = rand_pool_entropy_available(pool);
746 if (entropy_available > 0)
747 return entropy_available;
748 }
749# endif
750
751 return rand_pool_entropy_available(pool);
752# endif
753}
754# endif
755#endif
756
757#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)
758int rand_pool_add_nonce_data(RAND_POOL *pool)
759{
760 struct {
761 pid_t pid;
762 CRYPTO_THREAD_ID tid;
763 uint64_t time;
764 } data = { 0 };
765
766 /*
767 * Add process id, thread id, and a high resolution timestamp to
768 * ensure that the nonce is unique with high probability for
769 * different process instances.
770 */
771 data.pid = getpid();
772 data.tid = CRYPTO_THREAD_get_current_id();
773 data.time = get_time_stamp();
774
775 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
776}
777
778int rand_pool_add_additional_data(RAND_POOL *pool)
779{
780 struct {
781 int fork_id;
782 CRYPTO_THREAD_ID tid;
783 uint64_t time;
784 } data = { 0 };
785
786 /*
787 * Add some noise from the thread id and a high resolution timer.
788 * The fork_id adds some extra fork-safety.
789 * The thread id adds a little randomness if the drbg is accessed
790 * concurrently (which is the case for the <master> drbg).
791 */
792 data.fork_id = openssl_get_fork_id();
793 data.tid = CRYPTO_THREAD_get_current_id();
794 data.time = get_timer_bits();
795
796 return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);
797}
798
799
800/*
801 * Get the current time with the highest possible resolution
802 *
803 * The time stamp is added to the nonce, so it is optimized for not repeating.
804 * The current time is ideal for this purpose, provided the computer's clock
805 * is synchronized.
806 */
807static uint64_t get_time_stamp(void)
808{
809# if defined(OSSL_POSIX_TIMER_OKAY)
810 {
811 struct timespec ts;
812
813 if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
814 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
815 }
816# endif
817# if defined(__unix__) \
818 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
819 {
820 struct timeval tv;
821
822 if (gettimeofday(&tv, NULL) == 0)
823 return TWO32TO64(tv.tv_sec, tv.tv_usec);
824 }
825# endif
826 return time(NULL);
827}
828
829/*
830 * Get an arbitrary timer value of the highest possible resolution
831 *
832 * The timer value is added as random noise to the additional data,
833 * which is not considered a trusted entropy sourec, so any result
834 * is acceptable.
835 */
836static uint64_t get_timer_bits(void)
837{
838 uint64_t res = OPENSSL_rdtsc();
839
840 if (res != 0)
841 return res;
842
843# if defined(__sun) || defined(__hpux)
844 return gethrtime();
845# elif defined(_AIX)
846 {
847 timebasestruct_t t;
848
849 read_wall_time(&t, TIMEBASE_SZ);
850 return TWO32TO64(t.tb_high, t.tb_low);
851 }
852# elif defined(OSSL_POSIX_TIMER_OKAY)
853 {
854 struct timespec ts;
855
856# ifdef CLOCK_BOOTTIME
857# define CLOCK_TYPE CLOCK_BOOTTIME
858# elif defined(_POSIX_MONOTONIC_CLOCK)
859# define CLOCK_TYPE CLOCK_MONOTONIC
860# else
861# define CLOCK_TYPE CLOCK_REALTIME
862# endif
863
864 if (clock_gettime(CLOCK_TYPE, &ts) == 0)
865 return TWO32TO64(ts.tv_sec, ts.tv_nsec);
866 }
867# endif
868# if defined(__unix__) \
869 || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
870 {
871 struct timeval tv;
872
873 if (gettimeofday(&tv, NULL) == 0)
874 return TWO32TO64(tv.tv_sec, tv.tv_usec);
875 }
876# endif
877 return time(NULL);
878}
879#endif /* (defined(OPENSSL_SYS_UNIX) && !defined(OPENSSL_SYS_VXWORKS))
880 || defined(__DJGPP__) */