yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2005-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /** |
| 11 | * The Whirlpool hashing function. |
| 12 | * |
| 13 | * See |
| 14 | * P.S.L.M. Barreto, V. Rijmen, |
| 15 | * ``The Whirlpool hashing function,'' |
| 16 | * NESSIE submission, 2000 (tweaked version, 2001), |
| 17 | * <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip> |
| 18 | * |
| 19 | * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and |
| 20 | * Vincent Rijmen. Lookup "reference implementations" on |
| 21 | * <http://planeta.terra.com.br/informatica/paulobarreto/> |
| 22 | * |
| 23 | * ============================================================================= |
| 24 | * |
| 25 | * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS |
| 26 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 27 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 28 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE |
| 29 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 30 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 31 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| 32 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 33 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
| 34 | * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
| 35 | * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 36 | * |
| 37 | */ |
| 38 | |
| 39 | #include "wp_local.h" |
| 40 | #include <string.h> |
| 41 | |
| 42 | typedef unsigned char u8; |
| 43 | #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32) |
| 44 | typedef unsigned __int64 u64; |
| 45 | #elif defined(__arch64__) |
| 46 | typedef unsigned long u64; |
| 47 | #else |
| 48 | typedef unsigned long long u64; |
| 49 | #endif |
| 50 | |
| 51 | #define ROUNDS 10 |
| 52 | |
| 53 | #define STRICT_ALIGNMENT |
| 54 | #if !defined(PEDANTIC) && (defined(__i386) || defined(__i386__) || \ |
| 55 | defined(__x86_64) || defined(__x86_64__) || \ |
| 56 | defined(_M_IX86) || defined(_M_AMD64) || \ |
| 57 | defined(_M_X64)) |
| 58 | /* |
| 59 | * Well, formally there're couple of other architectures, which permit |
| 60 | * unaligned loads, specifically those not crossing cache lines, IA-64 and |
| 61 | * PowerPC... |
| 62 | */ |
| 63 | # undef STRICT_ALIGNMENT |
| 64 | #endif |
| 65 | |
| 66 | #ifndef STRICT_ALIGNMENT |
| 67 | # ifdef __GNUC__ |
| 68 | typedef u64 u64_a1 __attribute((__aligned__(1))); |
| 69 | # else |
| 70 | typedef u64 u64_a1; |
| 71 | # endif |
| 72 | #endif |
| 73 | |
| 74 | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) |
| 75 | typedef u64 u64_aX __attribute((__aligned__(1))); |
| 76 | #else |
| 77 | typedef u64 u64_aX; |
| 78 | #endif |
| 79 | |
| 80 | #undef SMALL_REGISTER_BANK |
| 81 | #if defined(__i386) || defined(__i386__) || defined(_M_IX86) |
| 82 | # define SMALL_REGISTER_BANK |
| 83 | # if defined(WHIRLPOOL_ASM) |
| 84 | # ifndef OPENSSL_SMALL_FOOTPRINT |
| 85 | /* |
| 86 | * it appears that for elder non-MMX |
| 87 | * CPUs this is actually faster! |
| 88 | */ |
| 89 | # define OPENSSL_SMALL_FOOTPRINT |
| 90 | # endif |
| 91 | # define GO_FOR_MMX(ctx,inp,num) do { \ |
| 92 | extern unsigned long OPENSSL_ia32cap_P[]; \ |
| 93 | void whirlpool_block_mmx(void *,const void *,size_t); \ |
| 94 | if (!(OPENSSL_ia32cap_P[0] & (1<<23))) break; \ |
| 95 | whirlpool_block_mmx(ctx->H.c,inp,num); return; \ |
| 96 | } while (0) |
| 97 | # endif |
| 98 | #endif |
| 99 | |
| 100 | #undef ROTATE |
| 101 | #ifndef PEDANTIC |
| 102 | # if defined(_MSC_VER) |
| 103 | # if defined(_WIN64) /* applies to both IA-64 and AMD64 */ |
| 104 | # include <stdlib.h> |
| 105 | # pragma intrinsic(_rotl64) |
| 106 | # define ROTATE(a,n) _rotl64((a),n) |
| 107 | # endif |
| 108 | # elif defined(__GNUC__) && __GNUC__>=2 |
| 109 | # if defined(__x86_64) || defined(__x86_64__) |
| 110 | # if defined(L_ENDIAN) |
| 111 | # define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \ |
| 112 | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) |
| 113 | # elif defined(B_ENDIAN) |
| 114 | /* |
| 115 | * Most will argue that x86_64 is always little-endian. Well, yes, but |
| 116 | * then we have stratus.com who has modified gcc to "emulate" |
| 117 | * big-endian on x86. Is there evidence that they [or somebody else] |
| 118 | * won't do same for x86_64? Naturally no. And this line is waiting |
| 119 | * ready for that brave soul:-) |
| 120 | */ |
| 121 | # define ROTATE(a,n) ({ u64 ret; asm ("rorq %1,%0" \ |
| 122 | : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; }) |
| 123 | # endif |
| 124 | # elif defined(__ia64) || defined(__ia64__) |
| 125 | # if defined(L_ENDIAN) |
| 126 | # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ |
| 127 | : "=r"(ret) : "r"(a),"M"(64-(n))); ret; }) |
| 128 | # elif defined(B_ENDIAN) |
| 129 | # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \ |
| 130 | : "=r"(ret) : "r"(a),"M"(n)); ret; }) |
| 131 | # endif |
| 132 | # endif |
| 133 | # endif |
| 134 | #endif |
| 135 | |
| 136 | #if defined(OPENSSL_SMALL_FOOTPRINT) |
| 137 | # if !defined(ROTATE) |
| 138 | # if defined(L_ENDIAN) /* little-endians have to rotate left */ |
| 139 | # define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n)) |
| 140 | # elif defined(B_ENDIAN) /* big-endians have to rotate right */ |
| 141 | # define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n)) |
| 142 | # endif |
| 143 | # endif |
| 144 | # if defined(ROTATE) && !defined(STRICT_ALIGNMENT) |
| 145 | # define STRICT_ALIGNMENT /* ensure smallest table size */ |
| 146 | # endif |
| 147 | #endif |
| 148 | |
| 149 | /* |
| 150 | * Table size depends on STRICT_ALIGNMENT and whether or not endian- |
| 151 | * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not |
| 152 | * defined, which is normally the case on x86[_64] CPUs, the table is |
| 153 | * 4KB large unconditionally. Otherwise if ROTATE is defined, the |
| 154 | * table is 2KB large, and otherwise - 16KB. 2KB table requires a |
| 155 | * whole bunch of additional rotations, but I'm willing to "trade," |
| 156 | * because 16KB table certainly trashes L1 cache. I wish all CPUs |
| 157 | * could handle unaligned load as 4KB table doesn't trash the cache, |
| 158 | * nor does it require additional rotations. |
| 159 | */ |
| 160 | /* |
| 161 | * Note that every Cn macro expands as two loads: one byte load and |
| 162 | * one quadword load. One can argue that that many single-byte loads |
| 163 | * is too excessive, as one could load a quadword and "milk" it for |
| 164 | * eight 8-bit values instead. Well, yes, but in order to do so *and* |
| 165 | * avoid excessive loads you have to accommodate a handful of 64-bit |
| 166 | * values in the register bank and issue a bunch of shifts and mask. |
| 167 | * It's a tradeoff: loads vs. shift and mask in big register bank[!]. |
| 168 | * On most CPUs eight single-byte loads are faster and I let other |
| 169 | * ones to depend on smart compiler to fold byte loads if beneficial. |
| 170 | * Hand-coded assembler would be another alternative:-) |
| 171 | */ |
| 172 | #ifdef STRICT_ALIGNMENT |
| 173 | # if defined(ROTATE) |
| 174 | # define N 1 |
| 175 | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7 |
| 176 | # define C0(K,i) (Cx.q[K.c[(i)*8+0]]) |
| 177 | # define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8) |
| 178 | # define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16) |
| 179 | # define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24) |
| 180 | # define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32) |
| 181 | # define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40) |
| 182 | # define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48) |
| 183 | # define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56) |
| 184 | # else |
| 185 | # define N 8 |
| 186 | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ |
| 187 | c7,c0,c1,c2,c3,c4,c5,c6, \ |
| 188 | c6,c7,c0,c1,c2,c3,c4,c5, \ |
| 189 | c5,c6,c7,c0,c1,c2,c3,c4, \ |
| 190 | c4,c5,c6,c7,c0,c1,c2,c3, \ |
| 191 | c3,c4,c5,c6,c7,c0,c1,c2, \ |
| 192 | c2,c3,c4,c5,c6,c7,c0,c1, \ |
| 193 | c1,c2,c3,c4,c5,c6,c7,c0 |
| 194 | # define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]]) |
| 195 | # define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]]) |
| 196 | # define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]]) |
| 197 | # define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]]) |
| 198 | # define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]]) |
| 199 | # define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]]) |
| 200 | # define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]]) |
| 201 | # define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]]) |
| 202 | # endif |
| 203 | #else |
| 204 | # define N 2 |
| 205 | # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \ |
| 206 | c0,c1,c2,c3,c4,c5,c6,c7 |
| 207 | # define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]]) |
| 208 | # define C1(K,i) (((u64_a1*)(Cx.c+7))[2*K.c[(i)*8+1]]) |
| 209 | # define C2(K,i) (((u64_a1*)(Cx.c+6))[2*K.c[(i)*8+2]]) |
| 210 | # define C3(K,i) (((u64_a1*)(Cx.c+5))[2*K.c[(i)*8+3]]) |
| 211 | # define C4(K,i) (((u64_a1*)(Cx.c+4))[2*K.c[(i)*8+4]]) |
| 212 | # define C5(K,i) (((u64_a1*)(Cx.c+3))[2*K.c[(i)*8+5]]) |
| 213 | # define C6(K,i) (((u64_a1*)(Cx.c+2))[2*K.c[(i)*8+6]]) |
| 214 | # define C7(K,i) (((u64_a1*)(Cx.c+1))[2*K.c[(i)*8+7]]) |
| 215 | #endif |
| 216 | |
| 217 | static const |
| 218 | union { |
| 219 | u8 c[(256 * N + ROUNDS) * sizeof(u64)]; |
| 220 | u64 q[(256 * N + ROUNDS)]; |
| 221 | } Cx = { |
| 222 | { |
| 223 | /* Note endian-neutral representation:-) */ |
| 224 | LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8), |
| 225 | LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26), |
| 226 | LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8), |
| 227 | LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb), |
| 228 | LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb), |
| 229 | LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11), |
| 230 | LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09), |
| 231 | LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d), |
| 232 | LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b), |
| 233 | LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff), |
| 234 | LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c), |
| 235 | LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e), |
| 236 | LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96), |
| 237 | LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30), |
| 238 | LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d), |
| 239 | LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8), |
| 240 | LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47), |
| 241 | LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35), |
| 242 | LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37), |
| 243 | LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a), |
| 244 | LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2), |
| 245 | LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c), |
| 246 | LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84), |
| 247 | LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80), |
| 248 | LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5), |
| 249 | LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3), |
| 250 | LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21), |
| 251 | LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c), |
| 252 | LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43), |
| 253 | LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29), |
| 254 | LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d), |
| 255 | LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5), |
| 256 | LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd), |
| 257 | LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8), |
| 258 | LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92), |
| 259 | LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e), |
| 260 | LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13), |
| 261 | LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23), |
| 262 | LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20), |
| 263 | LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44), |
| 264 | LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2), |
| 265 | LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf), |
| 266 | LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c), |
| 267 | LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a), |
| 268 | LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50), |
| 269 | LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9), |
| 270 | LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14), |
| 271 | LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9), |
| 272 | LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c), |
| 273 | LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f), |
| 274 | LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90), |
| 275 | LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07), |
| 276 | LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd), |
| 277 | LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3), |
| 278 | LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d), |
| 279 | LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78), |
| 280 | LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97), |
| 281 | LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02), |
| 282 | LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73), |
| 283 | LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7), |
| 284 | LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6), |
| 285 | LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2), |
| 286 | LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49), |
| 287 | LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56), |
| 288 | LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70), |
| 289 | LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd), |
| 290 | LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb), |
| 291 | LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71), |
| 292 | LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b), |
| 293 | LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf), |
| 294 | LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45), |
| 295 | LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a), |
| 296 | LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4), |
| 297 | LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58), |
| 298 | LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e), |
| 299 | LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f), |
| 300 | LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac), |
| 301 | LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0), |
| 302 | LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef), |
| 303 | LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6), |
| 304 | LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c), |
| 305 | LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12), |
| 306 | LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93), |
| 307 | LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde), |
| 308 | LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6), |
| 309 | LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1), |
| 310 | LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b), |
| 311 | LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f), |
| 312 | LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31), |
| 313 | LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8), |
| 314 | LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9), |
| 315 | LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc), |
| 316 | LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e), |
| 317 | LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b), |
| 318 | LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf), |
| 319 | LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59), |
| 320 | LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2), |
| 321 | LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77), |
| 322 | LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33), |
| 323 | LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4), |
| 324 | LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27), |
| 325 | LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb), |
| 326 | LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89), |
| 327 | LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32), |
| 328 | LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54), |
| 329 | LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d), |
| 330 | LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64), |
| 331 | LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d), |
| 332 | LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d), |
| 333 | LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f), |
| 334 | LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca), |
| 335 | LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7), |
| 336 | LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d), |
| 337 | LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce), |
| 338 | LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f), |
| 339 | LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f), |
| 340 | LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63), |
| 341 | LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a), |
| 342 | LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc), |
| 343 | LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82), |
| 344 | LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a), |
| 345 | LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48), |
| 346 | LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95), |
| 347 | LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf), |
| 348 | LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d), |
| 349 | LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0), |
| 350 | LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91), |
| 351 | LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8), |
| 352 | LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b), |
| 353 | LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), |
| 354 | LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9), |
| 355 | LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e), |
| 356 | LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1), |
| 357 | LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6), |
| 358 | LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28), |
| 359 | LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3), |
| 360 | LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74), |
| 361 | LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe), |
| 362 | LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d), |
| 363 | LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea), |
| 364 | LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57), |
| 365 | LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38), |
| 366 | LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad), |
| 367 | LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4), |
| 368 | LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda), |
| 369 | LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7), |
| 370 | LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb), |
| 371 | LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9), |
| 372 | LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a), |
| 373 | LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03), |
| 374 | LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a), |
| 375 | LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e), |
| 376 | LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60), |
| 377 | LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc), |
| 378 | LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46), |
| 379 | LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f), |
| 380 | LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76), |
| 381 | LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa), |
| 382 | LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36), |
| 383 | LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae), |
| 384 | LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b), |
| 385 | LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85), |
| 386 | LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e), |
| 387 | LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7), |
| 388 | LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55), |
| 389 | LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a), |
| 390 | LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81), |
| 391 | LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52), |
| 392 | LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62), |
| 393 | LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3), |
| 394 | LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10), |
| 395 | LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab), |
| 396 | LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0), |
| 397 | LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5), |
| 398 | LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec), |
| 399 | LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16), |
| 400 | LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94), |
| 401 | LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f), |
| 402 | LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5), |
| 403 | LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98), |
| 404 | LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17), |
| 405 | LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4), |
| 406 | LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1), |
| 407 | LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e), |
| 408 | LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42), |
| 409 | LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34), |
| 410 | LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08), |
| 411 | LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee), |
| 412 | LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61), |
| 413 | LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1), |
| 414 | LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f), |
| 415 | LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24), |
| 416 | LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3), |
| 417 | LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25), |
| 418 | LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22), |
| 419 | LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65), |
| 420 | LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79), |
| 421 | LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69), |
| 422 | LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9), |
| 423 | LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19), |
| 424 | LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe), |
| 425 | LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a), |
| 426 | LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0), |
| 427 | LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99), |
| 428 | LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83), |
| 429 | LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04), |
| 430 | LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66), |
| 431 | LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0), |
| 432 | LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1), |
| 433 | LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd), |
| 434 | LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40), |
| 435 | LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c), |
| 436 | LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18), |
| 437 | LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b), |
| 438 | LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51), |
| 439 | LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05), |
| 440 | LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c), |
| 441 | LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39), |
| 442 | LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa), |
| 443 | LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b), |
| 444 | LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc), |
| 445 | LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e), |
| 446 | LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0), |
| 447 | LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88), |
| 448 | LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67), |
| 449 | LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a), |
| 450 | LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87), |
| 451 | LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1), |
| 452 | LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72), |
| 453 | LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53), |
| 454 | LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01), |
| 455 | LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b), |
| 456 | LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4), |
| 457 | LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3), |
| 458 | LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15), |
| 459 | LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c), |
| 460 | LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5), |
| 461 | LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5), |
| 462 | LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4), |
| 463 | LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba), |
| 464 | LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6), |
| 465 | LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7), |
| 466 | LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06), |
| 467 | LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41), |
| 468 | LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7), |
| 469 | LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f), |
| 470 | LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e), |
| 471 | LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6), |
| 472 | LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2), |
| 473 | LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68), |
| 474 | LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c), |
| 475 | LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed), |
| 476 | LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75), |
| 477 | LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86), |
| 478 | LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b), |
| 479 | LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2), |
| 480 | #define RC (&(Cx.q[256*N])) |
| 481 | 0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f, |
| 482 | /* rc[ROUNDS] */ |
| 483 | 0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b, |
| 484 | 0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b, |
| 485 | 0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58, |
| 486 | 0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4, |
| 487 | 0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95, |
| 488 | 0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d, |
| 489 | 0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33 |
| 490 | } |
| 491 | }; |
| 492 | |
| 493 | void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n) |
| 494 | { |
| 495 | int r; |
| 496 | const u8 *p = inp; |
| 497 | union { |
| 498 | u64 q[8]; |
| 499 | u8 c[64]; |
| 500 | } S, K, *H = (void *)ctx->H.q; |
| 501 | |
| 502 | #ifdef GO_FOR_MMX |
| 503 | GO_FOR_MMX(ctx, inp, n); |
| 504 | #endif |
| 505 | do { |
| 506 | #ifdef OPENSSL_SMALL_FOOTPRINT |
| 507 | u64 L[8]; |
| 508 | int i; |
| 509 | |
| 510 | for (i = 0; i < 64; i++) |
| 511 | S.c[i] = (K.c[i] = H->c[i]) ^ p[i]; |
| 512 | for (r = 0; r < ROUNDS; r++) { |
| 513 | for (i = 0; i < 8; i++) { |
| 514 | L[i] = i ? 0 : RC[r]; |
| 515 | L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^ |
| 516 | C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^ |
| 517 | C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^ |
| 518 | C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7); |
| 519 | } |
| 520 | memcpy(K.q, L, 64); |
| 521 | for (i = 0; i < 8; i++) { |
| 522 | L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^ |
| 523 | C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^ |
| 524 | C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^ |
| 525 | C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7); |
| 526 | } |
| 527 | memcpy(S.q, L, 64); |
| 528 | } |
| 529 | for (i = 0; i < 64; i++) |
| 530 | H->c[i] ^= S.c[i] ^ p[i]; |
| 531 | #else |
| 532 | u64 L0, L1, L2, L3, L4, L5, L6, L7; |
| 533 | |
| 534 | # ifdef STRICT_ALIGNMENT |
| 535 | if ((size_t)p & 7) { |
| 536 | memcpy(S.c, p, 64); |
| 537 | S.q[0] ^= (K.q[0] = H->q[0]); |
| 538 | S.q[1] ^= (K.q[1] = H->q[1]); |
| 539 | S.q[2] ^= (K.q[2] = H->q[2]); |
| 540 | S.q[3] ^= (K.q[3] = H->q[3]); |
| 541 | S.q[4] ^= (K.q[4] = H->q[4]); |
| 542 | S.q[5] ^= (K.q[5] = H->q[5]); |
| 543 | S.q[6] ^= (K.q[6] = H->q[6]); |
| 544 | S.q[7] ^= (K.q[7] = H->q[7]); |
| 545 | } else |
| 546 | # endif |
| 547 | { |
| 548 | const u64_aX *pa = (const u64_aX *)p; |
| 549 | S.q[0] = (K.q[0] = H->q[0]) ^ pa[0]; |
| 550 | S.q[1] = (K.q[1] = H->q[1]) ^ pa[1]; |
| 551 | S.q[2] = (K.q[2] = H->q[2]) ^ pa[2]; |
| 552 | S.q[3] = (K.q[3] = H->q[3]) ^ pa[3]; |
| 553 | S.q[4] = (K.q[4] = H->q[4]) ^ pa[4]; |
| 554 | S.q[5] = (K.q[5] = H->q[5]) ^ pa[5]; |
| 555 | S.q[6] = (K.q[6] = H->q[6]) ^ pa[6]; |
| 556 | S.q[7] = (K.q[7] = H->q[7]) ^ pa[7]; |
| 557 | } |
| 558 | |
| 559 | for (r = 0; r < ROUNDS; r++) { |
| 560 | # ifdef SMALL_REGISTER_BANK |
| 561 | L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^ |
| 562 | C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r]; |
| 563 | L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^ |
| 564 | C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2); |
| 565 | L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^ |
| 566 | C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3); |
| 567 | L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^ |
| 568 | C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4); |
| 569 | L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^ |
| 570 | C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5); |
| 571 | L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^ |
| 572 | C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6); |
| 573 | L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^ |
| 574 | C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7); |
| 575 | L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^ |
| 576 | C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0); |
| 577 | |
| 578 | K.q[0] = L0; |
| 579 | K.q[1] = L1; |
| 580 | K.q[2] = L2; |
| 581 | K.q[3] = L3; |
| 582 | K.q[4] = L4; |
| 583 | K.q[5] = L5; |
| 584 | K.q[6] = L6; |
| 585 | K.q[7] = L7; |
| 586 | |
| 587 | L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^ |
| 588 | C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1); |
| 589 | L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^ |
| 590 | C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2); |
| 591 | L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^ |
| 592 | C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3); |
| 593 | L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^ |
| 594 | C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4); |
| 595 | L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^ |
| 596 | C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5); |
| 597 | L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^ |
| 598 | C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6); |
| 599 | L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^ |
| 600 | C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7); |
| 601 | L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^ |
| 602 | C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0); |
| 603 | |
| 604 | S.q[0] = L0; |
| 605 | S.q[1] = L1; |
| 606 | S.q[2] = L2; |
| 607 | S.q[3] = L3; |
| 608 | S.q[4] = L4; |
| 609 | S.q[5] = L5; |
| 610 | S.q[6] = L6; |
| 611 | S.q[7] = L7; |
| 612 | # else |
| 613 | L0 = C0(K, 0); |
| 614 | L1 = C1(K, 0); |
| 615 | L2 = C2(K, 0); |
| 616 | L3 = C3(K, 0); |
| 617 | L4 = C4(K, 0); |
| 618 | L5 = C5(K, 0); |
| 619 | L6 = C6(K, 0); |
| 620 | L7 = C7(K, 0); |
| 621 | L0 ^= RC[r]; |
| 622 | |
| 623 | L1 ^= C0(K, 1); |
| 624 | L2 ^= C1(K, 1); |
| 625 | L3 ^= C2(K, 1); |
| 626 | L4 ^= C3(K, 1); |
| 627 | L5 ^= C4(K, 1); |
| 628 | L6 ^= C5(K, 1); |
| 629 | L7 ^= C6(K, 1); |
| 630 | L0 ^= C7(K, 1); |
| 631 | |
| 632 | L2 ^= C0(K, 2); |
| 633 | L3 ^= C1(K, 2); |
| 634 | L4 ^= C2(K, 2); |
| 635 | L5 ^= C3(K, 2); |
| 636 | L6 ^= C4(K, 2); |
| 637 | L7 ^= C5(K, 2); |
| 638 | L0 ^= C6(K, 2); |
| 639 | L1 ^= C7(K, 2); |
| 640 | |
| 641 | L3 ^= C0(K, 3); |
| 642 | L4 ^= C1(K, 3); |
| 643 | L5 ^= C2(K, 3); |
| 644 | L6 ^= C3(K, 3); |
| 645 | L7 ^= C4(K, 3); |
| 646 | L0 ^= C5(K, 3); |
| 647 | L1 ^= C6(K, 3); |
| 648 | L2 ^= C7(K, 3); |
| 649 | |
| 650 | L4 ^= C0(K, 4); |
| 651 | L5 ^= C1(K, 4); |
| 652 | L6 ^= C2(K, 4); |
| 653 | L7 ^= C3(K, 4); |
| 654 | L0 ^= C4(K, 4); |
| 655 | L1 ^= C5(K, 4); |
| 656 | L2 ^= C6(K, 4); |
| 657 | L3 ^= C7(K, 4); |
| 658 | |
| 659 | L5 ^= C0(K, 5); |
| 660 | L6 ^= C1(K, 5); |
| 661 | L7 ^= C2(K, 5); |
| 662 | L0 ^= C3(K, 5); |
| 663 | L1 ^= C4(K, 5); |
| 664 | L2 ^= C5(K, 5); |
| 665 | L3 ^= C6(K, 5); |
| 666 | L4 ^= C7(K, 5); |
| 667 | |
| 668 | L6 ^= C0(K, 6); |
| 669 | L7 ^= C1(K, 6); |
| 670 | L0 ^= C2(K, 6); |
| 671 | L1 ^= C3(K, 6); |
| 672 | L2 ^= C4(K, 6); |
| 673 | L3 ^= C5(K, 6); |
| 674 | L4 ^= C6(K, 6); |
| 675 | L5 ^= C7(K, 6); |
| 676 | |
| 677 | L7 ^= C0(K, 7); |
| 678 | L0 ^= C1(K, 7); |
| 679 | L1 ^= C2(K, 7); |
| 680 | L2 ^= C3(K, 7); |
| 681 | L3 ^= C4(K, 7); |
| 682 | L4 ^= C5(K, 7); |
| 683 | L5 ^= C6(K, 7); |
| 684 | L6 ^= C7(K, 7); |
| 685 | |
| 686 | K.q[0] = L0; |
| 687 | K.q[1] = L1; |
| 688 | K.q[2] = L2; |
| 689 | K.q[3] = L3; |
| 690 | K.q[4] = L4; |
| 691 | K.q[5] = L5; |
| 692 | K.q[6] = L6; |
| 693 | K.q[7] = L7; |
| 694 | |
| 695 | L0 ^= C0(S, 0); |
| 696 | L1 ^= C1(S, 0); |
| 697 | L2 ^= C2(S, 0); |
| 698 | L3 ^= C3(S, 0); |
| 699 | L4 ^= C4(S, 0); |
| 700 | L5 ^= C5(S, 0); |
| 701 | L6 ^= C6(S, 0); |
| 702 | L7 ^= C7(S, 0); |
| 703 | |
| 704 | L1 ^= C0(S, 1); |
| 705 | L2 ^= C1(S, 1); |
| 706 | L3 ^= C2(S, 1); |
| 707 | L4 ^= C3(S, 1); |
| 708 | L5 ^= C4(S, 1); |
| 709 | L6 ^= C5(S, 1); |
| 710 | L7 ^= C6(S, 1); |
| 711 | L0 ^= C7(S, 1); |
| 712 | |
| 713 | L2 ^= C0(S, 2); |
| 714 | L3 ^= C1(S, 2); |
| 715 | L4 ^= C2(S, 2); |
| 716 | L5 ^= C3(S, 2); |
| 717 | L6 ^= C4(S, 2); |
| 718 | L7 ^= C5(S, 2); |
| 719 | L0 ^= C6(S, 2); |
| 720 | L1 ^= C7(S, 2); |
| 721 | |
| 722 | L3 ^= C0(S, 3); |
| 723 | L4 ^= C1(S, 3); |
| 724 | L5 ^= C2(S, 3); |
| 725 | L6 ^= C3(S, 3); |
| 726 | L7 ^= C4(S, 3); |
| 727 | L0 ^= C5(S, 3); |
| 728 | L1 ^= C6(S, 3); |
| 729 | L2 ^= C7(S, 3); |
| 730 | |
| 731 | L4 ^= C0(S, 4); |
| 732 | L5 ^= C1(S, 4); |
| 733 | L6 ^= C2(S, 4); |
| 734 | L7 ^= C3(S, 4); |
| 735 | L0 ^= C4(S, 4); |
| 736 | L1 ^= C5(S, 4); |
| 737 | L2 ^= C6(S, 4); |
| 738 | L3 ^= C7(S, 4); |
| 739 | |
| 740 | L5 ^= C0(S, 5); |
| 741 | L6 ^= C1(S, 5); |
| 742 | L7 ^= C2(S, 5); |
| 743 | L0 ^= C3(S, 5); |
| 744 | L1 ^= C4(S, 5); |
| 745 | L2 ^= C5(S, 5); |
| 746 | L3 ^= C6(S, 5); |
| 747 | L4 ^= C7(S, 5); |
| 748 | |
| 749 | L6 ^= C0(S, 6); |
| 750 | L7 ^= C1(S, 6); |
| 751 | L0 ^= C2(S, 6); |
| 752 | L1 ^= C3(S, 6); |
| 753 | L2 ^= C4(S, 6); |
| 754 | L3 ^= C5(S, 6); |
| 755 | L4 ^= C6(S, 6); |
| 756 | L5 ^= C7(S, 6); |
| 757 | |
| 758 | L7 ^= C0(S, 7); |
| 759 | L0 ^= C1(S, 7); |
| 760 | L1 ^= C2(S, 7); |
| 761 | L2 ^= C3(S, 7); |
| 762 | L3 ^= C4(S, 7); |
| 763 | L4 ^= C5(S, 7); |
| 764 | L5 ^= C6(S, 7); |
| 765 | L6 ^= C7(S, 7); |
| 766 | |
| 767 | S.q[0] = L0; |
| 768 | S.q[1] = L1; |
| 769 | S.q[2] = L2; |
| 770 | S.q[3] = L3; |
| 771 | S.q[4] = L4; |
| 772 | S.q[5] = L5; |
| 773 | S.q[6] = L6; |
| 774 | S.q[7] = L7; |
| 775 | # endif |
| 776 | } |
| 777 | |
| 778 | # ifdef STRICT_ALIGNMENT |
| 779 | if ((size_t)p & 7) { |
| 780 | int i; |
| 781 | for (i = 0; i < 64; i++) |
| 782 | H->c[i] ^= S.c[i] ^ p[i]; |
| 783 | } else |
| 784 | # endif |
| 785 | { |
| 786 | const u64_aX *pa = (const u64_aX *)p; |
| 787 | H->q[0] ^= S.q[0] ^ pa[0]; |
| 788 | H->q[1] ^= S.q[1] ^ pa[1]; |
| 789 | H->q[2] ^= S.q[2] ^ pa[2]; |
| 790 | H->q[3] ^= S.q[3] ^ pa[3]; |
| 791 | H->q[4] ^= S.q[4] ^ pa[4]; |
| 792 | H->q[5] ^= S.q[5] ^ pa[5]; |
| 793 | H->q[6] ^= S.q[6] ^ pa[6]; |
| 794 | H->q[7] ^= S.q[7] ^ pa[7]; |
| 795 | } |
| 796 | #endif |
| 797 | p += 64; |
| 798 | } while (--n); |
| 799 | } |