blob: 84c5ac74920dc86cfbb98c0212e2f38176f80f38 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/mutex.h>
32#include <linux/scatterlist.h>
33#include <linux/string_helpers.h>
34#include <linux/delay.h>
35#include <linux/capability.h>
36#include <linux/compat.h>
37
38#include <linux/mmc/ioctl.h>
39#include <linux/mmc/card.h>
40#include <linux/mmc/host.h>
41#include <linux/mmc/mmc.h>
42#include <linux/mmc/sd.h>
43
44#include <asm/uaccess.h>
45
46#include "queue.h"
47#include "../core/core.h"
48#include "../core/mmc_ops.h"
49
50
51MODULE_ALIAS("mmc:block");
52#ifdef MODULE_PARAM_PREFIX
53#undef MODULE_PARAM_PREFIX
54#endif
55#define MODULE_PARAM_PREFIX "mmcblk."
56
57//#define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
58#define MMC_BLK_TIMEOUT_MS (1 * 1 * 1000) /* 1 second timeout. refer EC 616000480970 */
59
60#define INAND_CMD38_ARG_EXT_CSD 113
61#define INAND_CMD38_ARG_ERASE 0x00
62#define INAND_CMD38_ARG_TRIM 0x01
63#define INAND_CMD38_ARG_SECERASE 0x80
64#define INAND_CMD38_ARG_SECTRIM1 0x81
65#define INAND_CMD38_ARG_SECTRIM2 0x88
66
67static DEFINE_MUTEX(block_mutex);
68
69/*
70 * The defaults come from config options but can be overriden by module
71 * or bootarg options.
72 */
73static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
74
75/*
76 * We've only got one major, so number of mmcblk devices is
77 * limited to 256 / number of minors per device.
78 */
79static int max_devices;
80
81/* 256 minors, so at most 256 separate devices */
82static DECLARE_BITMAP(dev_use, 256);
83static DECLARE_BITMAP(name_use, 256);
84
85/*
86 * There is one mmc_blk_data per slot.
87 */
88struct mmc_blk_data {
89 spinlock_t lock;
90 struct gendisk *disk;
91 struct mmc_queue queue;
92 struct list_head part;
93
94 unsigned int flags;
95#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
96#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
97
98 unsigned int usage;
99 unsigned int read_only;
100 unsigned int part_type;
101 unsigned int name_idx;
102 unsigned int reset_done;
103#define MMC_BLK_READ BIT(0)
104#define MMC_BLK_WRITE BIT(1)
105#define MMC_BLK_DISCARD BIT(2)
106#define MMC_BLK_SECDISCARD BIT(3)
107
108 /*
109 * Only set in main mmc_blk_data associated
110 * with mmc_card with mmc_set_drvdata, and keeps
111 * track of the current selected device partition.
112 */
113 unsigned int part_curr;
114 struct device_attribute force_ro;
115 struct device_attribute power_ro_lock;
116 int area_type;
117};
118
119static DEFINE_MUTEX(open_lock);
120
121enum mmc_blk_status {
122 MMC_BLK_SUCCESS = 0,
123 MMC_BLK_PARTIAL,
124 MMC_BLK_CMD_ERR,
125 MMC_BLK_RETRY,
126 MMC_BLK_ABORT,
127 MMC_BLK_DATA_ERR,
128 MMC_BLK_ECC_ERR,
129 MMC_BLK_NOMEDIUM,
130};
131
132module_param(perdev_minors, int, 0444);
133MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
134
135static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
136{
137 struct mmc_blk_data *md;
138
139 mutex_lock(&open_lock);
140 md = disk->private_data;
141 if (md && md->usage == 0)
142 md = NULL;
143 if (md)
144 md->usage++;
145 mutex_unlock(&open_lock);
146
147 return md;
148}
149
150static inline int mmc_get_devidx(struct gendisk *disk)
151{
152 int devidx = disk->first_minor / perdev_minors;
153 return devidx;
154}
155
156static void mmc_blk_put(struct mmc_blk_data *md)
157{
158 mutex_lock(&open_lock);
159 md->usage--;
160 if (md->usage == 0) {
161 int devidx = mmc_get_devidx(md->disk);
162 blk_cleanup_queue(md->queue.queue);
163
164 __clear_bit(devidx, dev_use);
165
166 put_disk(md->disk);
167 kfree(md);
168 }
169 mutex_unlock(&open_lock);
170}
171
172static ssize_t power_ro_lock_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174{
175 int ret;
176 struct mmc_blk_data *md;
177 struct mmc_card *card;
178 int locked = 0;
179
180 md = mmc_blk_get(dev_to_disk(dev));
181#ifdef CONFIG_KLOCWORK
182 if (!md)
183 return 0;
184#endif
185 card = md->queue.card;
186
187 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
188 locked = 2;
189 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
190 locked = 1;
191
192 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
193
194 return ret;
195}
196
197static ssize_t power_ro_lock_store(struct device *dev,
198 struct device_attribute *attr, const char *buf, size_t count)
199{
200 int ret;
201 struct mmc_blk_data *md, *part_md;
202 struct mmc_card *card;
203 unsigned long set;
204
205 if (kstrtoul(buf, 0, &set))
206 return -EINVAL;
207
208 if (set != 1)
209 return count;
210
211 md = mmc_blk_get(dev_to_disk(dev));
212#ifdef CONFIG_KLOCWORK
213 if (!md)
214 return -ENODEV;
215#endif
216 card = md->queue.card;
217
218 mmc_claim_host(card->host);
219
220 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
221 card->ext_csd.boot_ro_lock |
222 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
223 card->ext_csd.part_time);
224 if (ret)
225 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
226 else
227 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
228
229 mmc_release_host(card->host);
230
231 if (!ret) {
232 pr_info("%s: Locking boot partition ro until next power on\n",
233 md->disk->disk_name);
234 set_disk_ro(md->disk, 1);
235
236 list_for_each_entry(part_md, &md->part, part)
237 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
238 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
239 set_disk_ro(part_md->disk, 1);
240 }
241 }
242
243 mmc_blk_put(md);
244 return count;
245}
246
247static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
248 char *buf)
249{
250 int ret;
251 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
252
253#ifdef CONFIG_KLOCWORK
254 if (!md)
255 return 0;
256#endif
257
258 ret = snprintf(buf, PAGE_SIZE, "%d",
259 get_disk_ro(dev_to_disk(dev)) ^
260 md->read_only);
261 mmc_blk_put(md);
262 return ret;
263}
264
265static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
266 const char *buf, size_t count)
267{
268 int ret;
269 char *end;
270 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
271 unsigned long set = simple_strtoul(buf, &end, 0);
272#ifdef CONFIG_KLOCWORK
273 if (!md)
274 return -ENODEV;
275#endif
276 if (end == buf) {
277 ret = -EINVAL;
278 goto out;
279 }
280
281 set_disk_ro(dev_to_disk(dev), set || md->read_only);
282 ret = count;
283out:
284 mmc_blk_put(md);
285 return ret;
286}
287
288static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
289{
290 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
291 int ret = -ENXIO;
292
293 mutex_lock(&block_mutex);
294 if (md) {
295 if (md->usage == 2)
296 check_disk_change(bdev);
297 ret = 0;
298
299 if ((mode & FMODE_WRITE) && md->read_only) {
300 mmc_blk_put(md);
301 ret = -EROFS;
302 }
303 }
304 mutex_unlock(&block_mutex);
305
306 return ret;
307}
308
309static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
310{
311 struct mmc_blk_data *md = disk->private_data;
312
313 mutex_lock(&block_mutex);
314 mmc_blk_put(md);
315 mutex_unlock(&block_mutex);
316 return 0;
317}
318
319static int
320mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
321{
322 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
323 geo->heads = 4;
324 geo->sectors = 16;
325 return 0;
326}
327
328struct mmc_blk_ioc_data {
329 struct mmc_ioc_cmd ic;
330 unsigned char *buf;
331 u64 buf_bytes;
332};
333
334static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
336{
337 struct mmc_blk_ioc_data *idata;
338 int err;
339
340 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
341 if (!idata) {
342 err = -ENOMEM;
343 goto out;
344 }
345
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
347 err = -EFAULT;
348 goto idata_err;
349 }
350 if((idata->ic.blocks < MMC_IOC_MAX_BYTES)&&(idata->ic.blksz < MMC_IOC_MAX_BYTES))
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352
353 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
354 err = -EOVERFLOW;
355 goto idata_err;
356 }
357
358 if (!idata->buf_bytes)
359 return idata;
360
361 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
362 if (!idata->buf) {
363 err = -ENOMEM;
364 goto idata_err;
365 }
366
367 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
368 idata->ic.data_ptr, idata->buf_bytes)) {
369 err = -EFAULT;
370 goto copy_err;
371 }
372
373 return idata;
374
375copy_err:
376 kfree(idata->buf);
377idata_err:
378 kfree(idata);
379out:
380 return ERR_PTR(err);
381}
382
383static int mmc_blk_ioctl_cmd(struct block_device *bdev,
384 struct mmc_ioc_cmd __user *ic_ptr)
385{
386 struct mmc_blk_ioc_data *idata;
387 struct mmc_blk_data *md;
388 struct mmc_card *card;
389 struct mmc_command cmd = {0};
390 struct mmc_data data = {0};
391 struct mmc_request mrq = {NULL};
392 struct scatterlist sg;
393 int err = 0;
394
395 /*
396 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
397 * whole block device, not on a partition. This prevents overspray
398 * between sibling partitions.
399 */
400 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
401 return -EPERM;
402
403 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
404 if (IS_ERR(idata))
405 return PTR_ERR(idata);
406
407 md = mmc_blk_get(bdev->bd_disk);
408 if (!md) {
409 err = -EINVAL;
410 goto cmd_done;
411 }
412
413 card = md->queue.card;
414 if (IS_ERR(card)) {
415 err = PTR_ERR(card);
416 goto cmd_done;
417 }
418
419 cmd.opcode = idata->ic.opcode;
420 cmd.arg = idata->ic.arg;
421 cmd.flags = idata->ic.flags;
422
423 if (idata->buf_bytes) {
424 data.sg = &sg;
425 data.sg_len = 1;
426 data.blksz = idata->ic.blksz;
427 data.blocks = idata->ic.blocks;
428
429 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
430
431 if (idata->ic.write_flag)
432 data.flags = MMC_DATA_WRITE;
433 else
434 data.flags = MMC_DATA_READ;
435
436 /* data.flags must already be set before doing this. */
437 mmc_set_data_timeout(&data, card);
438
439 /* Allow overriding the timeout_ns for empirical tuning. */
440 if (idata->ic.data_timeout_ns)
441 data.timeout_ns = idata->ic.data_timeout_ns;
442
443 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
444 /*
445 * Pretend this is a data transfer and rely on the
446 * host driver to compute timeout. When all host
447 * drivers support cmd.cmd_timeout for R1B, this
448 * can be changed to:
449 *
450 * mrq.data = NULL;
451 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
452 */
453 if(idata->ic.cmd_timeout_ms < (UINT_MAX/100000))
454 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
455 }
456
457 mrq.data = &data;
458 }
459
460 mrq.cmd = &cmd;
461
462 mmc_claim_host(card->host);
463
464 if (idata->ic.is_acmd) {
465 err = mmc_app_cmd(card->host, card);
466 if (err)
467 goto cmd_rel_host;
468 }
469
470 mmc_wait_for_req(card->host, &mrq);
471
472 if (cmd.error) {
473 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
474 __func__, cmd.error);
475 err = cmd.error;
476 goto cmd_rel_host;
477 }
478 if (data.error) {
479 dev_err(mmc_dev(card->host), "%s: data error %d\n",
480 __func__, data.error);
481 err = data.error;
482 goto cmd_rel_host;
483 }
484
485 /*
486 * According to the SD specs, some commands require a delay after
487 * issuing the command.
488 */
489 if ((idata->ic.postsleep_min_us)&&(idata->ic.postsleep_min_us < idata->ic.postsleep_max_us))
490 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
491
492 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
493 err = -EFAULT;
494 goto cmd_rel_host;
495 }
496
497 if (!idata->ic.write_flag) {
498 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
499 idata->buf, idata->buf_bytes)) {
500 err = -EFAULT;
501 goto cmd_rel_host;
502 }
503 }
504
505cmd_rel_host:
506 mmc_release_host(card->host);
507
508cmd_done:
509 if (md)
510 mmc_blk_put(md);
511 kfree(idata->buf);
512 kfree(idata);
513 return err;
514}
515
516static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
517 unsigned int cmd, unsigned long arg)
518{
519 int ret = -EINVAL;
520 if (cmd == MMC_IOC_CMD)
521 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
522 return ret;
523}
524
525#ifdef CONFIG_COMPAT
526static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
527 unsigned int cmd, unsigned long arg)
528{
529 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
530}
531#endif
532
533static const struct block_device_operations mmc_bdops = {
534 .open = mmc_blk_open,
535 .release = mmc_blk_release,
536 .getgeo = mmc_blk_getgeo,
537 .owner = THIS_MODULE,
538 .ioctl = mmc_blk_ioctl,
539#ifdef CONFIG_COMPAT
540 .compat_ioctl = mmc_blk_compat_ioctl,
541#endif
542};
543
544static inline int mmc_blk_part_switch(struct mmc_card *card,
545 struct mmc_blk_data *md)
546{
547 int ret;
548 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
549
550 if(!main_md)
551 return -EINVAL;
552
553 if (main_md->part_curr == md->part_type)
554 return 0;
555
556 if (mmc_card_mmc(card)) {
557 u8 part_config = card->ext_csd.part_config;
558
559 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
560 part_config |= md->part_type;
561
562 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
563 EXT_CSD_PART_CONFIG, part_config,
564 card->ext_csd.part_time);
565 if (ret)
566 return ret;
567
568 card->ext_csd.part_config = part_config;
569 }
570
571 main_md->part_curr = md->part_type;
572 return 0;
573}
574
575static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
576{
577 int err;
578 u32 result;
579 __be32 *blocks;
580
581 struct mmc_request mrq = {NULL};
582 struct mmc_command cmd = {0};
583 struct mmc_data data = {0};
584 unsigned int timeout_us;
585
586 struct scatterlist sg;
587
588 cmd.opcode = MMC_APP_CMD;
589 cmd.arg = card->rca << 16;
590 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
591
592 err = mmc_wait_for_cmd(card->host, &cmd, 0);
593 if (err)
594 return (u32)-1;
595 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
596 return (u32)-1;
597
598 memset(&cmd, 0, sizeof(struct mmc_command));
599
600 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
601 cmd.arg = 0;
602 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
603
604 data.timeout_ns = card->csd.tacc_ns * 100;
605 data.timeout_clks = card->csd.tacc_clks * 100;
606
607 timeout_us = data.timeout_ns / 1000;
608 timeout_us += data.timeout_clks * 1000 /
609 (card->host->ios.clock / 1000);
610
611 if (timeout_us > 100000) {
612 data.timeout_ns = 100000000;
613 data.timeout_clks = 0;
614 }
615
616 data.blksz = 4;
617 data.blocks = 1;
618 data.flags = MMC_DATA_READ;
619 data.sg = &sg;
620 data.sg_len = 1;
621
622 mrq.cmd = &cmd;
623 mrq.data = &data;
624
625#ifdef CONFIG_KLOCWORK
626 blocks = kzalloc(4, GFP_KERNEL);
627#else
628 blocks = kmalloc(4, GFP_KERNEL);
629#endif
630 if (!blocks)
631 return (u32)-1;
632
633 sg_init_one(&sg, blocks, 4);
634
635 mmc_wait_for_req(card->host, &mrq);
636
637 result = ntohl(*blocks);
638 kfree(blocks);
639
640 if (cmd.error || data.error)
641 result = (u32)-1;
642
643 return result;
644}
645
646static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
647 bool hw_busy_detect, struct request *req, bool *gen_err)
648{
649 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
650 int err = 0;
651 u32 status;
652 int check_cnt = 0;
653
654 do {
655 err = __mmc_send_status(card, &status, 5);
656 if (err) {
657 pr_err("%s: error %d requesting status\n",
658 req->rq_disk->disk_name, err);
659 return err;
660 }
661
662 if (status & R1_ERROR) {
663 pr_err("%s: %s: error sending status cmd, status %#x\n",
664 req->rq_disk->disk_name, __func__, status);
665 *gen_err = true;
666 }
667
668 /* We may rely on the host hw to handle busy detection.*/
669 if (hw_busy_detect &&
670 (card->host->caps & MMC_CAP_WAIT_WHILE_BUSY))
671 break;
672
673 /*
674 * Timeout if the device never becomes ready for data and never
675 * leaves the program state.
676 */
677 if (time_after(jiffies, timeout)) {
678 pr_err("%s: Card stuck in programming state! %s %s\n",
679 mmc_hostname(card->host),
680 req->rq_disk->disk_name, __func__);
681 return -ETIMEDOUT;
682 }
683
684 /*
685 check_cnt--;
686 if(!check_cnt)
687 break;
688 */
689 check_cnt++;
690 if (check_cnt > 30)
691 mmc_delay(10);
692 else if (check_cnt > 20)
693 mmc_delay(1);
694 else if (check_cnt > 5)
695 udelay(100);
696
697 /*
698 * Some cards mishandle the status bits,
699 * so make sure to check both the busy
700 * indication and the card state.
701 */
702 } while (!(status & R1_READY_FOR_DATA) ||
703 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
704
705 return err;
706}
707
708static int send_stop(struct mmc_card *card, u32 *status)
709{
710 struct mmc_command cmd = {0};
711 int err;
712
713 cmd.opcode = MMC_STOP_TRANSMISSION;
714 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
715 err = mmc_wait_for_cmd(card->host, &cmd, 5);
716 if (err == 0)
717 *status = cmd.resp[0];
718 return err;
719}
720
721static int get_card_status(struct mmc_card *card, u32 *status, int retries)
722{
723 struct mmc_command cmd = {0};
724 int err;
725
726 cmd.opcode = MMC_SEND_STATUS;
727 if (!mmc_host_is_spi(card->host))
728 cmd.arg = card->rca << 16;
729 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
730 err = mmc_wait_for_cmd(card->host, &cmd, retries);
731 if (err == 0)
732 *status = cmd.resp[0];
733 return err;
734}
735
736#define ERR_NOMEDIUM 3
737#define ERR_RETRY 2
738#define ERR_ABORT 1
739#define ERR_CONTINUE 0
740
741static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
742 bool status_valid, u32 status)
743{
744 switch (error) {
745 case -EILSEQ:
746 /* response crc error, retry the r/w cmd */
747 pr_err("%s: %s sending %s command, card status %#x\n",
748 req->rq_disk->disk_name, "response CRC error",
749 name, status);
750 return ERR_RETRY;
751
752 case -ETIMEDOUT:
753 pr_err("%s: %s sending %s command, card status %#x\n",
754 req->rq_disk->disk_name, "timed out", name, status);
755
756 /* If the status cmd initially failed, retry the r/w cmd */
757 if (!status_valid) {
758 pr_err("%s: status not valid, retrying timeout\n", req->rq_disk->disk_name);
759 return ERR_RETRY;
760 }
761 /*
762 * If it was a r/w cmd crc error, or illegal command
763 * (eg, issued in wrong state) then retry - we should
764 * have corrected the state problem above.
765 */
766 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
767 pr_err("%s: command error, retrying timeout\n", req->rq_disk->disk_name);
768 return ERR_RETRY;
769 }
770
771 /* Otherwise abort the command */
772 pr_err("%s: not retrying timeout\n", req->rq_disk->disk_name);
773 return ERR_ABORT;
774
775 default:
776 /* We don't understand the error code the driver gave us */
777 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
778 req->rq_disk->disk_name, error, status);
779 return ERR_ABORT;
780 }
781}
782
783/*
784 * Initial r/w and stop cmd error recovery.
785 * We don't know whether the card received the r/w cmd or not, so try to
786 * restore things back to a sane state. Essentially, we do this as follows:
787 * - Obtain card status. If the first attempt to obtain card status fails,
788 * the status word will reflect the failed status cmd, not the failed
789 * r/w cmd. If we fail to obtain card status, it suggests we can no
790 * longer communicate with the card.
791 * - Check the card state. If the card received the cmd but there was a
792 * transient problem with the response, it might still be in a data transfer
793 * mode. Try to send it a stop command. If this fails, we can't recover.
794 * - If the r/w cmd failed due to a response CRC error, it was probably
795 * transient, so retry the cmd.
796 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
797 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
798 * illegal cmd, retry.
799 * Otherwise we don't understand what happened, so abort.
800 */
801static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
802 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
803{
804 bool prev_cmd_status_valid = true;
805 u32 status, stop_status = 0;
806 int err, retry;
807
808 if (mmc_card_removed(card))
809 return ERR_NOMEDIUM;
810
811 /*
812 * Try to get card status which indicates both the card state
813 * and why there was no response. If the first attempt fails,
814 * we can't be sure the returned status is for the r/w command.
815 */
816 for (retry = 2; retry >= 0; retry--) {
817 err = get_card_status(card, &status, 0);
818 if (!err)
819 break;
820
821 prev_cmd_status_valid = false;
822 pr_err("%s: error %d sending status command, %sing\n",
823 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
824 }
825
826 /* We couldn't get a response from the card. Give up. */
827 if (err) {
828 /* Check if the card is removed */
829 if (mmc_detect_card_removed(card->host))
830 return ERR_NOMEDIUM;
831 return ERR_ABORT;
832 }
833
834 /* Flag ECC errors */
835 if ((status & R1_CARD_ECC_FAILED) ||
836 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
837 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
838 *ecc_err = 1;
839
840 /* Flag General errors */
841 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
842 if ((status & R1_ERROR) ||
843 (brq->stop.resp[0] & R1_ERROR)) {
844 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
845 req->rq_disk->disk_name, __func__,
846 brq->stop.resp[0], status);
847 *gen_err = 1;
848 }
849
850 /*
851 * Check the current card state. If it is in some data transfer
852 * mode, tell it to stop (and hopefully transition back to TRAN.)
853 */
854 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
855 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
856 err = send_stop(card, &stop_status);
857 if (err)
858 pr_err("%s: error %d sending stop command\n",
859 req->rq_disk->disk_name, err);
860
861 /*
862 * If the stop cmd also timed out, the card is probably
863 * not present, so abort. Other errors are bad news too.
864 */
865 if (err)
866 return ERR_ABORT;
867 if (stop_status & R1_CARD_ECC_FAILED)
868 *ecc_err = 1;
869 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
870 if (stop_status & R1_ERROR) {
871 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
872 req->rq_disk->disk_name, __func__,
873 stop_status);
874 *gen_err = 1;
875 }
876 }
877
878 /* Check for set block count errors */
879 if (brq->sbc.error)
880 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
881 prev_cmd_status_valid, status);
882
883 /* Check for r/w command errors */
884 if (brq->cmd.error)
885 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
886 prev_cmd_status_valid, status);
887
888 /* Data errors */
889 if (!brq->stop.error)
890 return ERR_CONTINUE;
891
892 /* Now for stop errors. These aren't fatal to the transfer. */
893 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
894 req->rq_disk->disk_name, brq->stop.error,
895 brq->cmd.resp[0], status);
896
897 /*
898 * Subsitute in our own stop status as this will give the error
899 * state which happened during the execution of the r/w command.
900 */
901 if (stop_status) {
902 brq->stop.resp[0] = stop_status;
903 brq->stop.error = 0;
904 }
905 return ERR_CONTINUE;
906}
907
908static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
909 int type)
910{
911 int err;
912
913 if (md->reset_done & type)
914 return -EEXIST;
915
916 md->reset_done |= type;
917 err = mmc_hw_reset(host);
918 /* Ensure we switch back to the correct partition */
919 if (err != -EOPNOTSUPP) {
920 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
921 int part_err;
922
923 if(!main_md)
924 return -EINVAL;
925
926 main_md->part_curr = main_md->part_type;
927 part_err = mmc_blk_part_switch(host->card, md);
928 if (part_err) {
929 /*
930 * We have failed to get back into the correct
931 * partition, so we need to abort the whole request.
932 */
933 return -ENODEV;
934 }
935 }
936 return err;
937}
938
939static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
940{
941 md->reset_done &= ~type;
942}
943
944static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
945{
946 struct mmc_blk_data *md = mq->data;
947 struct mmc_card *card = md->queue.card;
948 unsigned int from, nr, arg;
949 int err = 0, type = MMC_BLK_DISCARD;
950
951 if (!mmc_can_erase(card)) {
952 err = -EOPNOTSUPP;
953 goto out;
954 }
955
956 from = blk_rq_pos(req);
957 nr = blk_rq_sectors(req);
958
959 if (mmc_can_discard(card))
960 arg = MMC_DISCARD_ARG;
961 else if (mmc_can_trim(card))
962 arg = MMC_TRIM_ARG;
963 else
964 arg = MMC_ERASE_ARG;
965retry:
966 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
967 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
968 INAND_CMD38_ARG_EXT_CSD,
969 arg == MMC_TRIM_ARG ?
970 INAND_CMD38_ARG_TRIM :
971 INAND_CMD38_ARG_ERASE,
972 0);
973 if (err)
974 goto out;
975 }
976 err = mmc_erase(card, from, nr, arg);
977out:
978 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
979 goto retry;
980 if (!err)
981 mmc_blk_reset_success(md, type);
982 spin_lock_irq(&md->lock);
983 __blk_end_request(req, err, blk_rq_bytes(req));
984 spin_unlock_irq(&md->lock);
985
986 return err ? 0 : 1;
987}
988
989static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
990 struct request *req)
991{
992 struct mmc_blk_data *md = mq->data;
993 struct mmc_card *card = md->queue.card;
994 unsigned int from, nr, arg, trim_arg, erase_arg;
995 int err = 0, type = MMC_BLK_SECDISCARD;
996
997 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
998 err = -EOPNOTSUPP;
999 goto out;
1000 }
1001
1002 from = blk_rq_pos(req);
1003 nr = blk_rq_sectors(req);
1004
1005 /* The sanitize operation is supported at v4.5 only */
1006 if (mmc_can_sanitize(card)) {
1007 erase_arg = MMC_ERASE_ARG;
1008 trim_arg = MMC_TRIM_ARG;
1009 } else {
1010 erase_arg = MMC_SECURE_ERASE_ARG;
1011 trim_arg = MMC_SECURE_TRIM1_ARG;
1012 }
1013
1014 if (mmc_erase_group_aligned(card, from, nr))
1015 arg = erase_arg;
1016 else if (mmc_can_trim(card))
1017 arg = trim_arg;
1018 else {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022retry:
1023 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1024 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1025 INAND_CMD38_ARG_EXT_CSD,
1026 arg == MMC_SECURE_TRIM1_ARG ?
1027 INAND_CMD38_ARG_SECTRIM1 :
1028 INAND_CMD38_ARG_SECERASE,
1029 0);
1030 if (err)
1031 goto out_retry;
1032 }
1033
1034 err = mmc_erase(card, from, nr, arg);
1035 if (err == -EIO)
1036 goto out_retry;
1037 if (err)
1038 goto out;
1039
1040 if (arg == MMC_SECURE_TRIM1_ARG) {
1041 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1042 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1043 INAND_CMD38_ARG_EXT_CSD,
1044 INAND_CMD38_ARG_SECTRIM2,
1045 0);
1046 if (err)
1047 goto out_retry;
1048 }
1049
1050 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1051 if (err == -EIO)
1052 goto out_retry;
1053 if (err)
1054 goto out;
1055 }
1056
1057 if (mmc_can_sanitize(card))
1058 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1059 EXT_CSD_SANITIZE_START, 1, 0);
1060out_retry:
1061 if (err && !mmc_blk_reset(md, card->host, type))
1062 goto retry;
1063 if (!err)
1064 mmc_blk_reset_success(md, type);
1065out:
1066 spin_lock_irq(&md->lock);
1067 __blk_end_request(req, err, blk_rq_bytes(req));
1068 spin_unlock_irq(&md->lock);
1069
1070 return err ? 0 : 1;
1071}
1072
1073static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1074{
1075 struct mmc_blk_data *md = mq->data;
1076 struct mmc_card *card = md->queue.card;
1077 int ret = 0;
1078
1079 ret = mmc_flush_cache(card);
1080 if (ret)
1081 ret = -EIO;
1082
1083 spin_lock_irq(&md->lock);
1084 __blk_end_request_all(req, ret);
1085 spin_unlock_irq(&md->lock);
1086
1087 return ret ? 0 : 1;
1088}
1089
1090/*
1091 * Reformat current write as a reliable write, supporting
1092 * both legacy and the enhanced reliable write MMC cards.
1093 * In each transfer we'll handle only as much as a single
1094 * reliable write can handle, thus finish the request in
1095 * partial completions.
1096 */
1097static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1098 struct mmc_card *card,
1099 struct request *req)
1100{
1101 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1102 /* Legacy mode imposes restrictions on transfers. */
1103 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1104 brq->data.blocks = 1;
1105
1106 if (brq->data.blocks > card->ext_csd.rel_sectors)
1107 brq->data.blocks = card->ext_csd.rel_sectors;
1108 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1109 brq->data.blocks = 1;
1110 }
1111}
1112
1113#define CMD_ERRORS \
1114 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1115 R1_ADDRESS_ERROR | /* Misaligned address */ \
1116 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1117 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1118 R1_CC_ERROR | /* Card controller error */ \
1119 R1_ERROR) /* General/unknown error */
1120
1121static int mmc_blk_err_check(struct mmc_card *card,
1122 struct mmc_async_req *areq)
1123{
1124 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1125 mmc_active);
1126 struct mmc_blk_request *brq = &mq_mrq->brq;
1127 struct request *req = mq_mrq->req;
1128 int ecc_err = 0, gen_err = 0;
1129// int check_cnt = 100;
1130 /*
1131 * sbc.error indicates a problem with the set block count
1132 * command. No data will have been transferred.
1133 *
1134 * cmd.error indicates a problem with the r/w command. No
1135 * data will have been transferred.
1136 *
1137 * stop.error indicates a problem with the stop command. Data
1138 * may have been transferred, or may still be transferring.
1139 */
1140 if (brq->sbc.error || brq->cmd.error ||
1141 brq->stop.error || brq->data.error) {
1142 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1143 case ERR_RETRY:
1144 return MMC_BLK_RETRY;
1145 case ERR_ABORT:
1146 return MMC_BLK_ABORT;
1147 case ERR_NOMEDIUM:
1148 return MMC_BLK_NOMEDIUM;
1149 case ERR_CONTINUE:
1150 break;
1151 }
1152 }
1153
1154 /*
1155 * Check for errors relating to the execution of the
1156 * initial command - such as address errors. No data
1157 * has been transferred.
1158 */
1159 if (brq->cmd.resp[0] & CMD_ERRORS) {
1160 pr_err("%s: r/w command failed, status = %#x\n",
1161 req->rq_disk->disk_name, brq->cmd.resp[0]);
1162 return MMC_BLK_ABORT;
1163 }
1164
1165 /*
1166 * Everything else is either success, or a data error of some
1167 * kind. If it was a write, we may have transitioned to
1168 * program mode, which we have to wait for it to complete.
1169 */
1170 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1171 /* u32 status; */
1172 int err;
1173
1174 /* Check stop command response */
1175 if (brq->stop.resp[0] & R1_ERROR) {
1176 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1177 req->rq_disk->disk_name, __func__,
1178 brq->stop.resp[0]);
1179 gen_err = 1;
1180 }
1181
1182 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1183 &gen_err);
1184 if (err)
1185 return MMC_BLK_CMD_ERR;
1186 }
1187
1188 /* if general error occurs, retry the write operation. */
1189 if (gen_err) {
1190 pr_warning("%s: retrying write for general error\n",
1191 req->rq_disk->disk_name);
1192 return MMC_BLK_RETRY;
1193 }
1194
1195 if (brq->data.error) {
1196 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1197 req->rq_disk->disk_name, brq->data.error,
1198 (unsigned)blk_rq_pos(req),
1199 (unsigned)blk_rq_sectors(req),
1200 brq->cmd.resp[0], brq->stop.resp[0]);
1201
1202 if (rq_data_dir(req) == READ) {
1203 if (ecc_err)
1204 return MMC_BLK_ECC_ERR;
1205 return MMC_BLK_DATA_ERR;
1206 } else {
1207 return MMC_BLK_CMD_ERR;
1208 }
1209 }
1210
1211 if (!brq->data.bytes_xfered)
1212 return MMC_BLK_RETRY;
1213
1214 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1215 return MMC_BLK_PARTIAL;
1216
1217 return MMC_BLK_SUCCESS;
1218}
1219
1220static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1221 struct mmc_card *card,
1222 int disable_multi,
1223 struct mmc_queue *mq)
1224{
1225 u32 readcmd, writecmd;
1226 struct mmc_blk_request *brq = &mqrq->brq;
1227 struct request *req = mqrq->req;
1228 struct mmc_blk_data *md = mq->data;
1229 bool do_data_tag;
1230
1231 /*
1232 * Reliable writes are used to implement Forced Unit Access and
1233 * REQ_META accesses, and are supported only on MMCs.
1234 *
1235 * XXX: this really needs a good explanation of why REQ_META
1236 * is treated special.
1237 */
1238 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1239 (req->cmd_flags & REQ_META)) &&
1240 (rq_data_dir(req) == WRITE) &&
1241 (md->flags & MMC_BLK_REL_WR);
1242
1243 memset(brq, 0, sizeof(struct mmc_blk_request));
1244 brq->mrq.cmd = &brq->cmd;
1245 brq->mrq.data = &brq->data;
1246
1247 brq->cmd.arg = blk_rq_pos(req);
1248 if (!mmc_card_blockaddr(card))
1249 brq->cmd.arg <<= 9;
1250 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1251 brq->data.blksz = 512;
1252 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1253 brq->stop.arg = 0;
1254 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1255 brq->data.blocks = blk_rq_sectors(req);
1256
1257 /*
1258 * The block layer doesn't support all sector count
1259 * restrictions, so we need to be prepared for too big
1260 * requests.
1261 */
1262 if (brq->data.blocks > card->host->max_blk_count)
1263 brq->data.blocks = card->host->max_blk_count;
1264
1265 if (brq->data.blocks > 1) {
1266 /*
1267 * After a read error, we redo the request one sector
1268 * at a time in order to accurately determine which
1269 * sectors can be read successfully.
1270 */
1271 if (disable_multi)
1272 brq->data.blocks = 1;
1273
1274 /* Some controllers can't do multiblock reads due to hw bugs */
1275 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1276 rq_data_dir(req) == READ)
1277 brq->data.blocks = 1;
1278 }
1279
1280 if (brq->data.blocks > 1 || do_rel_wr) {
1281 /* SPI multiblock writes terminate using a special
1282 * token, not a STOP_TRANSMISSION request.
1283 */
1284 if (!mmc_host_is_spi(card->host) ||
1285 rq_data_dir(req) == READ)
1286 brq->mrq.stop = &brq->stop;
1287 readcmd = MMC_READ_MULTIPLE_BLOCK;
1288 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1289 } else {
1290 brq->mrq.stop = NULL;
1291 readcmd = MMC_READ_SINGLE_BLOCK;
1292 writecmd = MMC_WRITE_BLOCK;
1293 }
1294 if (rq_data_dir(req) == READ) {
1295 brq->cmd.opcode = readcmd;
1296 brq->data.flags |= MMC_DATA_READ;
1297 } else {
1298 brq->cmd.opcode = writecmd;
1299 brq->data.flags |= MMC_DATA_WRITE;
1300 }
1301
1302 if (do_rel_wr)
1303 mmc_apply_rel_rw(brq, card, req);
1304
1305 /*
1306 * Data tag is used only during writing meta data to speed
1307 * up write and any subsequent read of this meta data
1308 */
1309 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1310 (req->cmd_flags & REQ_META) &&
1311 (rq_data_dir(req) == WRITE) &&
1312 ((brq->data.blocks * brq->data.blksz) >=
1313 card->ext_csd.data_tag_unit_size);
1314
1315 /*
1316 * Pre-defined multi-block transfers are preferable to
1317 * open ended-ones (and necessary for reliable writes).
1318 * However, it is not sufficient to just send CMD23,
1319 * and avoid the final CMD12, as on an error condition
1320 * CMD12 (stop) needs to be sent anyway. This, coupled
1321 * with Auto-CMD23 enhancements provided by some
1322 * hosts, means that the complexity of dealing
1323 * with this is best left to the host. If CMD23 is
1324 * supported by card and host, we'll fill sbc in and let
1325 * the host deal with handling it correctly. This means
1326 * that for hosts that don't expose MMC_CAP_CMD23, no
1327 * change of behavior will be observed.
1328 *
1329 * N.B: Some MMC cards experience perf degradation.
1330 * We'll avoid using CMD23-bounded multiblock writes for
1331 * these, while retaining features like reliable writes.
1332 */
1333 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1334 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1335 do_data_tag)) {
1336 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1337 brq->sbc.arg = brq->data.blocks |
1338 (do_rel_wr ? (1 << 31) : 0) |
1339 (do_data_tag ? (1 << 29) : 0);
1340 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1341 brq->mrq.sbc = &brq->sbc;
1342 }
1343
1344 mmc_set_data_timeout(&brq->data, card);
1345
1346 brq->data.sg = mqrq->sg;
1347 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1348
1349 /*
1350 * Adjust the sg list so it is the same size as the
1351 * request.
1352 */
1353 if (brq->data.blocks != blk_rq_sectors(req)) {
1354 int i, data_size = brq->data.blocks << 9;
1355 struct scatterlist *sg;
1356
1357 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1358 data_size -= sg->length;
1359 if (data_size <= 0) {
1360 sg->length += data_size;
1361 i++;
1362 break;
1363 }
1364 }
1365 brq->data.sg_len = i;
1366 }
1367
1368 mqrq->mmc_active.mrq = &brq->mrq;
1369 mqrq->mmc_active.err_check = mmc_blk_err_check;
1370
1371 mmc_queue_bounce_pre(mqrq);
1372}
1373
1374static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1375 struct mmc_blk_request *brq, struct request *req,
1376 int ret)
1377{
1378 /*
1379 * If this is an SD card and we're writing, we can first
1380 * mark the known good sectors as ok.
1381 *
1382 * If the card is not SD, we can still ok written sectors
1383 * as reported by the controller (which might be less than
1384 * the real number of written sectors, but never more).
1385 */
1386 if (mmc_card_sd(card)) {
1387 u32 blocks;
1388
1389 blocks = mmc_sd_num_wr_blocks(card);
1390 if (blocks != (u32)-1) {
1391 spin_lock_irq(&md->lock);
1392 ret = __blk_end_request(req, 0, blocks << 9);
1393 spin_unlock_irq(&md->lock);
1394 }
1395 } else {
1396 spin_lock_irq(&md->lock);
1397 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1398 spin_unlock_irq(&md->lock);
1399 }
1400 return ret;
1401}
1402
1403static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1404{
1405 struct mmc_blk_data *md = mq->data;
1406 struct mmc_card *card = md->queue.card;
1407 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1408 int ret = 1, disable_multi = 0, retry = 0, type;
1409 enum mmc_blk_status status;
1410 struct mmc_queue_req *mq_rq;
1411 struct request *req;
1412 struct mmc_async_req *areq;
1413
1414 if (!rqc && !mq->mqrq_prev->req)
1415 return 0;
1416
1417 do {
1418 if (rqc) {
1419 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1420 areq = &mq->mqrq_cur->mmc_active;
1421 } else
1422 areq = NULL;
1423 areq = mmc_start_req(card->host, areq, (int *) &status);
1424 if (!areq)
1425 return 0;
1426
1427 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1428 brq = &mq_rq->brq;
1429 req = mq_rq->req;
1430 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1431 mmc_queue_bounce_post(mq_rq);
1432
1433 switch (status) {
1434 case MMC_BLK_SUCCESS:
1435 case MMC_BLK_PARTIAL:
1436 /*
1437 * A block was successfully transferred.
1438 */
1439 mmc_blk_reset_success(md, type);
1440 spin_lock_irq(&md->lock);
1441 ret = __blk_end_request(req, 0,
1442 brq->data.bytes_xfered);
1443 spin_unlock_irq(&md->lock);
1444 /*
1445 * If the blk_end_request function returns non-zero even
1446 * though all data has been transferred and no errors
1447 * were returned by the host controller, it's a bug.
1448 */
1449 if (status == MMC_BLK_SUCCESS && ret) {
1450 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1451 __func__, blk_rq_bytes(req),
1452 brq->data.bytes_xfered);
1453 rqc = NULL;
1454 goto cmd_abort;
1455 }
1456 break;
1457 case MMC_BLK_CMD_ERR:
1458 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1459 if (mmc_blk_reset(md, card->host, type))
1460 goto cmd_abort;
1461 if (!ret)
1462 goto start_new_req;
1463 break;
1464 case MMC_BLK_RETRY:
1465 if (retry++ < 5)
1466 break;
1467 /* Fall through */
1468 case MMC_BLK_ABORT:
1469 if (!mmc_blk_reset(md, card->host, type))
1470 break;
1471 goto cmd_abort;
1472 case MMC_BLK_DATA_ERR: {
1473 int err;
1474
1475 err = mmc_blk_reset(md, card->host, type);
1476 if (!err)
1477 break;
1478 if (err == -ENODEV)
1479 goto cmd_abort;
1480 /* Fall through */
1481 }
1482 case MMC_BLK_ECC_ERR:
1483 if (brq->data.blocks > 1) {
1484 /* Redo read one sector at a time */
1485 pr_warning("%s: retrying using single block read\n",
1486 req->rq_disk->disk_name);
1487 disable_multi = 1;
1488 break;
1489 }
1490 /*
1491 * After an error, we redo I/O one sector at a
1492 * time, so we only reach here after trying to
1493 * read a single sector.
1494 */
1495 spin_lock_irq(&md->lock);
1496 ret = __blk_end_request(req, -EIO,
1497 brq->data.blksz);
1498 spin_unlock_irq(&md->lock);
1499 if (!ret)
1500 goto start_new_req;
1501 break;
1502 case MMC_BLK_NOMEDIUM:
1503 goto cmd_abort;
1504 }
1505
1506 if (ret) {
1507 /*
1508 * In case of a incomplete request
1509 * prepare it again and resend.
1510 */
1511 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1512 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1513 }
1514 } while (ret);
1515
1516 return 1;
1517
1518 cmd_abort:
1519 spin_lock_irq(&md->lock);
1520 if (mmc_card_removed(card))
1521 req->cmd_flags |= REQ_QUIET;
1522 while (ret)
1523 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1524 spin_unlock_irq(&md->lock);
1525
1526 start_new_req:
1527 if (rqc) {
1528 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1529 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1530 }
1531
1532 return 0;
1533}
1534
1535#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
1536static int mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1537{
1538 int err;
1539
1540 mmc_claim_host(card->host);
1541 err = mmc_set_blocklen(card, 512);
1542 mmc_release_host(card->host);
1543
1544 if (err) {
1545 printk(KERN_ERR "%s: unable to set block size to 512: %d\n",
1546 md->disk->disk_name, err);
1547 return -EINVAL;
1548 }
1549
1550 return 0;
1551}
1552
1553#endif
1554
1555static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1556{
1557 int ret;
1558 struct mmc_blk_data *md = mq->data;
1559 struct mmc_card *card = md->queue.card;
1560
1561#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
1562 if (mmc_bus_needs_resume(card->host)) {
1563 mmc_resume_bus(card->host);
1564 mmc_blk_set_blksize(md, card);
1565 }
1566#endif
1567
1568 if (req && !mq->mqrq_prev->req)
1569 /* claim host only for the first request */
1570 mmc_claim_host(card->host);
1571
1572 ret = mmc_blk_part_switch(card, md);
1573 if (ret) {
1574 if (req) {
1575 spin_lock_irq(&md->lock);
1576 __blk_end_request_all(req, -EIO);
1577 spin_unlock_irq(&md->lock);
1578 }
1579 ret = 0;
1580 goto out;
1581 }
1582
1583 if (req && req->cmd_flags & REQ_DISCARD) {
1584 /* complete ongoing async transfer before issuing discard */
1585 if (card->host->areq)
1586 mmc_blk_issue_rw_rq(mq, NULL);
1587 if (req->cmd_flags & REQ_SECURE &&
1588 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1589 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1590 else
1591 ret = mmc_blk_issue_discard_rq(mq, req);
1592 } else if (req && req->cmd_flags & REQ_FLUSH) {
1593 /* complete ongoing async transfer before issuing flush */
1594 if (card->host->areq)
1595 mmc_blk_issue_rw_rq(mq, NULL);
1596 ret = mmc_blk_issue_flush(mq, req);
1597 } else {
1598 ret = mmc_blk_issue_rw_rq(mq, req);
1599 }
1600
1601out:
1602 if (!req)
1603 /* release host only when there are no more requests */
1604 mmc_release_host(card->host);
1605 return ret;
1606}
1607
1608static inline int mmc_blk_readonly(struct mmc_card *card)
1609{
1610 return mmc_card_readonly(card) ||
1611 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1612}
1613
1614static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1615 struct device *parent,
1616 sector_t size,
1617 bool default_ro,
1618 const char *subname,
1619 int area_type)
1620{
1621 struct mmc_blk_data *md;
1622 int devidx, ret;
1623
1624 devidx = find_first_zero_bit(dev_use, max_devices);
1625 if (devidx >= max_devices)
1626 return ERR_PTR(-ENOSPC);
1627 __set_bit(devidx, dev_use);
1628
1629 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1630 if (!md) {
1631 ret = -ENOMEM;
1632 goto out;
1633 }
1634
1635 /*
1636 * !subname implies we are creating main mmc_blk_data that will be
1637 * associated with mmc_card with mmc_set_drvdata. Due to device
1638 * partitions, devidx will not coincide with a per-physical card
1639 * index anymore so we keep track of a name index.
1640 */
1641 if (!subname) {
1642 md->name_idx = find_first_zero_bit(name_use, max_devices);
1643 __set_bit(md->name_idx, name_use);
1644 } else
1645 md->name_idx = ((struct mmc_blk_data *)
1646 dev_to_disk(parent)->private_data)->name_idx;
1647
1648 md->area_type = area_type;
1649
1650 /*
1651 * Set the read-only status based on the supported commands
1652 * and the write protect switch.
1653 */
1654 md->read_only = mmc_blk_readonly(card);
1655
1656 md->disk = alloc_disk(perdev_minors);
1657 if (md->disk == NULL) {
1658 ret = -ENOMEM;
1659 goto err_kfree;
1660 }
1661
1662 spin_lock_init(&md->lock);
1663 INIT_LIST_HEAD(&md->part);
1664 md->usage = 1;
1665
1666 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1667 if (ret)
1668 goto err_putdisk;
1669
1670 md->queue.issue_fn = mmc_blk_issue_rq;
1671 md->queue.data = md;
1672
1673 md->disk->major = MMC_BLOCK_MAJOR;
1674 md->disk->first_minor = devidx * perdev_minors;
1675 md->disk->fops = &mmc_bdops;
1676 md->disk->private_data = md;
1677 md->disk->queue = md->queue.queue;
1678 md->disk->driverfs_dev = parent;
1679 set_disk_ro(md->disk, md->read_only || default_ro);
1680 md->disk->flags = GENHD_FL_EXT_DEVT;
1681
1682 /*
1683 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1684 *
1685 * - be set for removable media with permanent block devices
1686 * - be unset for removable block devices with permanent media
1687 *
1688 * Since MMC block devices clearly fall under the second
1689 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1690 * should use the block device creation/destruction hotplug
1691 * messages to tell when the card is present.
1692 */
1693
1694 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1695 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1696
1697 blk_queue_logical_block_size(md->queue.queue, 512);
1698 set_capacity(md->disk, size);
1699
1700 if (mmc_host_cmd23(card->host)) {
1701 if (mmc_card_mmc(card) ||
1702 (mmc_card_sd(card) &&
1703 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1704 md->flags |= MMC_BLK_CMD23;
1705 }
1706
1707 if (mmc_card_mmc(card) &&
1708 md->flags & MMC_BLK_CMD23 &&
1709 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1710 card->ext_csd.rel_sectors)) {
1711 md->flags |= MMC_BLK_REL_WR;
1712 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1713 }
1714
1715 return md;
1716
1717 err_putdisk:
1718 put_disk(md->disk);
1719 err_kfree:
1720 kfree(md);
1721 out:
1722 return ERR_PTR(ret);
1723}
1724
1725static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1726{
1727 sector_t size;
1728 struct mmc_blk_data *md;
1729
1730 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1731 /*
1732 * The EXT_CSD sector count is in number or 512 byte
1733 * sectors.
1734 */
1735 size = card->ext_csd.sectors;
1736 } else {
1737 /*
1738 * The CSD capacity field is in units of read_blkbits.
1739 * set_capacity takes units of 512 bytes.
1740 */
1741 size = (sector_t)card->csd.capacity << (card->csd.read_blkbits - 9);
1742 }
1743
1744 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1745 MMC_BLK_DATA_AREA_MAIN);
1746 return md;
1747}
1748
1749static int mmc_blk_alloc_part(struct mmc_card *card,
1750 struct mmc_blk_data *md,
1751 unsigned int part_type,
1752 sector_t size,
1753 bool default_ro,
1754 const char *subname,
1755 int area_type)
1756{
1757 char cap_str[10];
1758 struct mmc_blk_data *part_md;
1759
1760 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1761 subname, area_type);
1762 if (IS_ERR(part_md))
1763 return PTR_ERR(part_md);
1764 part_md->part_type = part_type;
1765 list_add(&part_md->part, &md->part);
1766
1767 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1768 cap_str, sizeof(cap_str));
1769 pr_info("%s: %s %s partition %u %s\n",
1770 part_md->disk->disk_name, mmc_card_id(card),
1771 mmc_card_name(card), part_md->part_type, cap_str);
1772 return 0;
1773}
1774
1775/* MMC Physical partitions consist of two boot partitions and
1776 * up to four general purpose partitions.
1777 * For each partition enabled in EXT_CSD a block device will be allocatedi
1778 * to provide access to the partition.
1779 */
1780
1781static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1782{
1783 int idx, ret = 0;
1784
1785 if (!mmc_card_mmc(card))
1786 return 0;
1787
1788 for (idx = 0; idx < card->nr_parts; idx++) {
1789 if (card->part[idx].size) {
1790 ret = mmc_blk_alloc_part(card, md,
1791 card->part[idx].part_cfg,
1792 card->part[idx].size >> 9,
1793 card->part[idx].force_ro,
1794 card->part[idx].name,
1795 card->part[idx].area_type);
1796 if (ret)
1797 return ret;
1798 }
1799 }
1800
1801 return ret;
1802}
1803
1804static void mmc_blk_remove_req(struct mmc_blk_data *md)
1805{
1806 struct mmc_card *card;
1807
1808 if (md) {
1809 card = md->queue.card;
1810 if (md->disk->flags & GENHD_FL_UP) {
1811 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1812 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1813 card->ext_csd.boot_ro_lockable)
1814 device_remove_file(disk_to_dev(md->disk),
1815 &md->power_ro_lock);
1816
1817 /* Stop new requests from getting into the queue */
1818 del_gendisk(md->disk);
1819 }
1820
1821 /* Then flush out any already in there */
1822 mmc_cleanup_queue(&md->queue);
1823 mmc_blk_put(md);
1824 }
1825}
1826
1827static void mmc_blk_remove_parts(struct mmc_card *card,
1828 struct mmc_blk_data *md)
1829{
1830 struct list_head *pos, *q;
1831 struct mmc_blk_data *part_md;
1832
1833 __clear_bit(md->name_idx, name_use);
1834 list_for_each_safe(pos, q, &md->part) {
1835 part_md = list_entry(pos, struct mmc_blk_data, part);
1836 list_del(pos);
1837 mmc_blk_remove_req(part_md);
1838 }
1839}
1840
1841static int mmc_add_disk(struct mmc_blk_data *md)
1842{
1843 int ret;
1844 struct mmc_card *card = md->queue.card;
1845
1846 add_disk(md->disk);
1847 md->force_ro.show = force_ro_show;
1848 md->force_ro.store = force_ro_store;
1849 sysfs_attr_init(&md->force_ro.attr);
1850 md->force_ro.attr.name = "force_ro";
1851 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1852 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1853 if (ret)
1854 goto force_ro_fail;
1855
1856 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1857 card->ext_csd.boot_ro_lockable) {
1858 umode_t mode;
1859
1860 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1861 mode = S_IRUGO;
1862 else
1863 mode = S_IRUGO | S_IWUSR;
1864
1865 md->power_ro_lock.show = power_ro_lock_show;
1866 md->power_ro_lock.store = power_ro_lock_store;
1867 sysfs_attr_init(&md->power_ro_lock.attr);
1868 md->power_ro_lock.attr.mode = mode;
1869 md->power_ro_lock.attr.name =
1870 "ro_lock_until_next_power_on";
1871 ret = device_create_file(disk_to_dev(md->disk),
1872 &md->power_ro_lock);
1873 if (ret)
1874 goto power_ro_lock_fail;
1875 }
1876 return ret;
1877
1878power_ro_lock_fail:
1879 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1880force_ro_fail:
1881 del_gendisk(md->disk);
1882
1883 return ret;
1884}
1885
1886#define CID_MANFID_SANDISK 0x2
1887#define CID_MANFID_TOSHIBA 0x11
1888#define CID_MANFID_MICRON 0x13
1889#define CID_MANFID_SAMSUNG 0x15
1890
1891static const struct mmc_fixup blk_fixups[] =
1892{
1893 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1894 MMC_QUIRK_INAND_CMD38),
1895 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1896 MMC_QUIRK_INAND_CMD38),
1897 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1898 MMC_QUIRK_INAND_CMD38),
1899 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1900 MMC_QUIRK_INAND_CMD38),
1901 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1902 MMC_QUIRK_INAND_CMD38),
1903
1904 /*
1905 * Some MMC cards experience performance degradation with CMD23
1906 * instead of CMD12-bounded multiblock transfers. For now we'll
1907 * black list what's bad...
1908 * - Certain Toshiba cards.
1909 *
1910 * N.B. This doesn't affect SD cards.
1911 */
1912 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1913 MMC_QUIRK_BLK_NO_CMD23),
1914 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1915 MMC_QUIRK_BLK_NO_CMD23),
1916 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1917 MMC_QUIRK_BLK_NO_CMD23),
1918
1919 /*
1920 * Some Micron MMC cards needs longer data read timeout than
1921 * indicated in CSD.
1922 */
1923 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1924 MMC_QUIRK_LONG_READ_TIME),
1925
1926 /*
1927 * On these Samsung MoviNAND parts, performing secure erase or
1928 * secure trim can result in unrecoverable corruption due to a
1929 * firmware bug.
1930 */
1931 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1932 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1933 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1934 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1935 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1936 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1937 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1938 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1939 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1940 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1941 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1942 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1943 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1944 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1945 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
1946 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
1947
1948 END_FIXUP
1949};
1950
1951static int mmc_blk_probe(struct mmc_card *card)
1952{
1953 struct mmc_blk_data *md, *part_md;
1954 char cap_str[10];
1955
1956 /*
1957 * Check that the card supports the command class(es) we need.
1958 */
1959 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1960 return -ENODEV;
1961
1962 md = mmc_blk_alloc(card);
1963 if (IS_ERR(md))
1964 return PTR_ERR(md);
1965
1966 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1967 cap_str, sizeof(cap_str));
1968 pr_info("%s: %s %s %s %s\n",
1969 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1970 cap_str, md->read_only ? "(ro)" : "");
1971
1972 if (mmc_blk_alloc_parts(card, md))
1973 goto out;
1974
1975 mmc_set_drvdata(card, md);
1976 mmc_fixup_device(card, blk_fixups);
1977
1978#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
1979 mmc_set_bus_resume_policy(card->host, 1);
1980#endif
1981 if (mmc_add_disk(md))
1982 goto out;
1983
1984 list_for_each_entry(part_md, &md->part, part) {
1985 if (mmc_add_disk(part_md))
1986 goto out;
1987 }
1988 return 0;
1989
1990 out:
1991 mmc_blk_remove_parts(card, md);
1992 mmc_blk_remove_req(md);
1993 return 0;
1994}
1995
1996static void mmc_blk_remove(struct mmc_card *card)
1997{
1998 struct mmc_blk_data *md = mmc_get_drvdata(card);
1999
2000 if(!md)
2001 return;
2002
2003 mmc_blk_remove_parts(card, md);
2004 mmc_claim_host(card->host);
2005 mmc_blk_part_switch(card, md);
2006 mmc_release_host(card->host);
2007 mmc_blk_remove_req(md);
2008 mmc_set_drvdata(card, NULL);
2009#ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME
2010 mmc_set_bus_resume_policy(card->host, 0);
2011#endif
2012}
2013
2014#ifdef CONFIG_PM
2015static int mmc_blk_suspend(struct mmc_card *card)
2016{
2017 struct mmc_blk_data *part_md;
2018 struct mmc_blk_data *md = mmc_get_drvdata(card);
2019
2020 if (md) {
2021 mmc_queue_suspend(&md->queue);
2022 list_for_each_entry(part_md, &md->part, part) {
2023 mmc_queue_suspend(&part_md->queue);
2024 }
2025 }
2026 return 0;
2027}
2028
2029static int mmc_blk_resume(struct mmc_card *card)
2030{
2031 struct mmc_blk_data *part_md;
2032 struct mmc_blk_data *md = mmc_get_drvdata(card);
2033
2034 if (md) {
2035 /*
2036 * Resume involves the card going into idle state,
2037 * so current partition is always the main one.
2038 */
2039 md->part_curr = md->part_type;
2040 mmc_queue_resume(&md->queue);
2041 list_for_each_entry(part_md, &md->part, part) {
2042 mmc_queue_resume(&part_md->queue);
2043 }
2044 }
2045 return 0;
2046}
2047#else
2048#define mmc_blk_suspend NULL
2049#define mmc_blk_resume NULL
2050#endif
2051
2052static struct mmc_driver mmc_driver = {
2053 .drv = {
2054 .name = "mmcblk",
2055 },
2056 .probe = mmc_blk_probe,
2057 .remove = mmc_blk_remove,
2058 .suspend = mmc_blk_suspend,
2059 .resume = mmc_blk_resume,
2060};
2061
2062static int __init mmc_blk_init(void)
2063{
2064 int res;
2065
2066 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2067 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2068
2069 max_devices = 256 / perdev_minors;
2070
2071 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2072 if (res)
2073 goto out;
2074
2075 res = mmc_register_driver(&mmc_driver);
2076 if (res)
2077 goto out2;
2078
2079 return 0;
2080 out2:
2081 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2082 out:
2083 return res;
2084}
2085
2086static void __exit mmc_blk_exit(void)
2087{
2088 mmc_unregister_driver(&mmc_driver);
2089 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2090}
2091
2092module_init(mmc_blk_init);
2093module_exit(mmc_blk_exit);
2094
2095MODULE_LICENSE("GPL");
2096MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2097