blob: a30f7a06ee41dee58ecc61d2135641aecbc7ac51 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/bitops.h>
12#include <linux/blkdev.h>
13#include <linux/completion.h>
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/mempool.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hardirq.h>
22#include <linux/scatterlist.h>
23
24#include <scsi/scsi.h>
25#include <scsi/scsi_cmnd.h>
26#include <scsi/scsi_dbg.h>
27#include <scsi/scsi_device.h>
28#include <scsi/scsi_driver.h>
29#include <scsi/scsi_eh.h>
30#include <scsi/scsi_host.h>
31
32#include "scsi_priv.h"
33#include "scsi_logging.h"
34
35
36#define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37#define SG_MEMPOOL_SIZE 2
38
39struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44};
45
46#define SP(x) { x, "sgpool-" __stringify(x) }
47#if (SCSI_MAX_SG_SEGMENTS < 32)
48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49#endif
50static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53#if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55#if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57#if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59#if (SCSI_MAX_SG_SEGMENTS > 256)
60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61#endif
62#endif
63#endif
64#endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66};
67#undef SP
68
69struct kmem_cache *scsi_sdb_cache;
70
71/*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76#define SCSI_QUEUE_DELAY 3
77
78/*
79 * Function: scsi_unprep_request()
80 *
81 * Purpose: Remove all preparation done for a request, including its
82 * associated scsi_cmnd, so that it can be requeued.
83 *
84 * Arguments: req - request to unprepare
85 *
86 * Lock status: Assumed that no locks are held upon entry.
87 *
88 * Returns: Nothing.
89 */
90static void scsi_unprep_request(struct request *req)
91{
92 struct scsi_cmnd *cmd = req->special;
93
94 blk_unprep_request(req);
95 req->special = NULL;
96
97 scsi_put_command(cmd);
98}
99
100/**
101 * __scsi_queue_insert - private queue insertion
102 * @cmd: The SCSI command being requeued
103 * @reason: The reason for the requeue
104 * @unbusy: Whether the queue should be unbusied
105 *
106 * This is a private queue insertion. The public interface
107 * scsi_queue_insert() always assumes the queue should be unbusied
108 * because it's always called before the completion. This function is
109 * for a requeue after completion, which should only occur in this
110 * file.
111 */
112static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113{
114 struct Scsi_Host *host = cmd->device->host;
115 struct scsi_device *device = cmd->device;
116 struct scsi_target *starget = scsi_target(device);
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
119
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
122
123 /*
124 * Set the appropriate busy bit for the device/host.
125 *
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
128 *
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
135 */
136 switch (reason) {
137 case SCSI_MLQUEUE_HOST_BUSY:
138 host->host_blocked = host->max_host_blocked;
139 break;
140 case SCSI_MLQUEUE_DEVICE_BUSY:
141 case SCSI_MLQUEUE_EH_RETRY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 if (unbusy)
154 scsi_device_unbusy(device);
155
156 /*
157 * Requeue this command. It will go before all other commands
158 * that are already in the queue.
159 */
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
163
164 kblockd_schedule_work(q, &device->requeue_work);
165
166 return 0;
167}
168
169/*
170 * Function: scsi_queue_insert()
171 *
172 * Purpose: Insert a command in the midlevel queue.
173 *
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
176 *
177 * Lock status: Assumed that lock is not held upon entry.
178 *
179 * Returns: Nothing.
180 *
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
187 */
188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189{
190 return __scsi_queue_insert(cmd, reason, 1);
191}
192/**
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
204 *
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
207 */
208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
212{
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
216
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218 if (!req)
219 return ret;
220
221 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
222 buffer, bufflen, __GFP_WAIT))
223 goto out;
224
225 req->cmd_len = COMMAND_SIZE(cmd[0]);
226 memcpy(req->cmd, cmd, req->cmd_len);
227 req->sense = sense;
228 req->sense_len = 0;
229 req->retries = retries;
230 req->timeout = timeout;
231 req->cmd_type = REQ_TYPE_BLOCK_PC;
232 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233
234 /*
235 * head injection *required* here otherwise quiesce won't work
236 */
237 blk_execute_rq(req->q, NULL, req, 1);
238
239 /*
240 * Some devices (USB mass-storage in particular) may transfer
241 * garbage data together with a residue indicating that the data
242 * is invalid. Prevent the garbage from being misinterpreted
243 * and prevent security leaks by zeroing out the excess data.
244 */
245 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247
248 if (resid)
249 *resid = req->resid_len;
250 ret = req->errors;
251 out:
252 blk_put_request(req);
253
254 return ret;
255}
256EXPORT_SYMBOL(scsi_execute);
257
258
259int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260 int data_direction, void *buffer, unsigned bufflen,
261 struct scsi_sense_hdr *sshdr, int timeout, int retries,
262 int *resid)
263{
264 char *sense = NULL;
265 int result;
266
267 if (sshdr) {
268 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269 if (!sense)
270 return DRIVER_ERROR << 24;
271 }
272 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273 sense, timeout, retries, 0, resid);
274 if (sshdr)
275 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276
277 kfree(sense);
278 return result;
279}
280EXPORT_SYMBOL(scsi_execute_req);
281
282/*
283 * Function: scsi_init_cmd_errh()
284 *
285 * Purpose: Initialize cmd fields related to error handling.
286 *
287 * Arguments: cmd - command that is ready to be queued.
288 *
289 * Notes: This function has the job of initializing a number of
290 * fields related to error handling. Typically this will
291 * be called once for each command, as required.
292 */
293static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294{
295 cmd->serial_number = 0;
296 scsi_set_resid(cmd, 0);
297 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298 if (cmd->cmd_len == 0)
299 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300}
301
302void scsi_device_unbusy(struct scsi_device *sdev)
303{
304 struct Scsi_Host *shost = sdev->host;
305 struct scsi_target *starget = scsi_target(sdev);
306 unsigned long flags;
307
308 spin_lock_irqsave(shost->host_lock, flags);
309 shost->host_busy--;
310 starget->target_busy--;
311 if (unlikely(scsi_host_in_recovery(shost) &&
312 (shost->host_failed || shost->host_eh_scheduled)))
313 scsi_eh_wakeup(shost);
314 spin_unlock(shost->host_lock);
315 spin_lock(sdev->request_queue->queue_lock);
316 sdev->device_busy--;
317 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318}
319
320/*
321 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322 * and call blk_run_queue for all the scsi_devices on the target -
323 * including current_sdev first.
324 *
325 * Called with *no* scsi locks held.
326 */
327static void scsi_single_lun_run(struct scsi_device *current_sdev)
328{
329 struct Scsi_Host *shost = current_sdev->host;
330 struct scsi_device *sdev, *tmp;
331 struct scsi_target *starget = scsi_target(current_sdev);
332 unsigned long flags;
333
334 spin_lock_irqsave(shost->host_lock, flags);
335 starget->starget_sdev_user = NULL;
336 spin_unlock_irqrestore(shost->host_lock, flags);
337
338 /*
339 * Call blk_run_queue for all LUNs on the target, starting with
340 * current_sdev. We race with others (to set starget_sdev_user),
341 * but in most cases, we will be first. Ideally, each LU on the
342 * target would get some limited time or requests on the target.
343 */
344 blk_run_queue(current_sdev->request_queue);
345
346 spin_lock_irqsave(shost->host_lock, flags);
347 if (starget->starget_sdev_user)
348 goto out;
349 list_for_each_entry_safe(sdev, tmp, &starget->devices,
350 same_target_siblings) {
351 if (sdev == current_sdev)
352 continue;
353 if (scsi_device_get(sdev))
354 continue;
355
356 spin_unlock_irqrestore(shost->host_lock, flags);
357 blk_run_queue(sdev->request_queue);
358 spin_lock_irqsave(shost->host_lock, flags);
359
360 scsi_device_put(sdev);
361 }
362 out:
363 spin_unlock_irqrestore(shost->host_lock, flags);
364}
365
366static inline int scsi_device_is_busy(struct scsi_device *sdev)
367{
368 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369 return 1;
370
371 return 0;
372}
373
374static inline int scsi_target_is_busy(struct scsi_target *starget)
375{
376 return ((starget->can_queue > 0 &&
377 starget->target_busy >= starget->can_queue) ||
378 starget->target_blocked);
379}
380
381static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382{
383 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384 shost->host_blocked || shost->host_self_blocked)
385 return 1;
386
387 return 0;
388}
389
390/*
391 * Function: scsi_run_queue()
392 *
393 * Purpose: Select a proper request queue to serve next
394 *
395 * Arguments: q - last request's queue
396 *
397 * Returns: Nothing
398 *
399 * Notes: The previous command was completely finished, start
400 * a new one if possible.
401 */
402static void scsi_run_queue(struct request_queue *q)
403{
404 struct scsi_device *sdev = q->queuedata;
405 struct Scsi_Host *shost;
406 LIST_HEAD(starved_list);
407 unsigned long flags;
408
409 shost = sdev->host;
410 if (scsi_target(sdev)->single_lun)
411 scsi_single_lun_run(sdev);
412
413 spin_lock_irqsave(shost->host_lock, flags);
414 list_splice_init(&shost->starved_list, &starved_list);
415
416 while (!list_empty(&starved_list)) {
417 /*
418 * As long as shost is accepting commands and we have
419 * starved queues, call blk_run_queue. scsi_request_fn
420 * drops the queue_lock and can add us back to the
421 * starved_list.
422 *
423 * host_lock protects the starved_list and starved_entry.
424 * scsi_request_fn must get the host_lock before checking
425 * or modifying starved_list or starved_entry.
426 */
427 if (scsi_host_is_busy(shost))
428 break;
429
430 sdev = list_entry(starved_list.next,
431 struct scsi_device, starved_entry);
432 list_del_init(&sdev->starved_entry);
433 if (scsi_target_is_busy(scsi_target(sdev))) {
434 list_move_tail(&sdev->starved_entry,
435 &shost->starved_list);
436 continue;
437 }
438
439 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 __blk_run_queue(sdev->request_queue);
442 spin_unlock(sdev->request_queue->queue_lock);
443 spin_lock(shost->host_lock);
444 }
445 /* put any unprocessed entries back */
446 list_splice(&starved_list, &shost->starved_list);
447 spin_unlock_irqrestore(shost->host_lock, flags);
448
449 blk_run_queue(q);
450}
451
452void scsi_requeue_run_queue(struct work_struct *work)
453{
454 struct scsi_device *sdev;
455 struct request_queue *q;
456
457 sdev = container_of(work, struct scsi_device, requeue_work);
458 q = sdev->request_queue;
459 scsi_run_queue(q);
460}
461
462/*
463 * Function: scsi_requeue_command()
464 *
465 * Purpose: Handle post-processing of completed commands.
466 *
467 * Arguments: q - queue to operate on
468 * cmd - command that may need to be requeued.
469 *
470 * Returns: Nothing
471 *
472 * Notes: After command completion, there may be blocks left
473 * over which weren't finished by the previous command
474 * this can be for a number of reasons - the main one is
475 * I/O errors in the middle of the request, in which case
476 * we need to request the blocks that come after the bad
477 * sector.
478 * Notes: Upon return, cmd is a stale pointer.
479 */
480static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481{
482 struct scsi_device *sdev = cmd->device;
483 struct request *req = cmd->request;
484 unsigned long flags;
485
486 /*
487 * We need to hold a reference on the device to avoid the queue being
488 * killed after the unlock and before scsi_run_queue is invoked which
489 * may happen because scsi_unprep_request() puts the command which
490 * releases its reference on the device.
491 */
492 get_device(&sdev->sdev_gendev);
493
494 spin_lock_irqsave(q->queue_lock, flags);
495 scsi_unprep_request(req);
496 blk_requeue_request(q, req);
497 spin_unlock_irqrestore(q->queue_lock, flags);
498
499 scsi_run_queue(q);
500
501 put_device(&sdev->sdev_gendev);
502}
503
504void scsi_next_command(struct scsi_cmnd *cmd)
505{
506 struct scsi_device *sdev = cmd->device;
507 struct request_queue *q = sdev->request_queue;
508
509 /* need to hold a reference on the device before we let go of the cmd */
510 get_device(&sdev->sdev_gendev);
511
512 scsi_put_command(cmd);
513 scsi_run_queue(q);
514
515 /* ok to remove device now */
516 put_device(&sdev->sdev_gendev);
517}
518
519void scsi_run_host_queues(struct Scsi_Host *shost)
520{
521 struct scsi_device *sdev;
522
523 shost_for_each_device(sdev, shost)
524 scsi_run_queue(sdev->request_queue);
525}
526
527static void __scsi_release_buffers(struct scsi_cmnd *, int);
528
529/*
530 * Function: scsi_end_request()
531 *
532 * Purpose: Post-processing of completed commands (usually invoked at end
533 * of upper level post-processing and scsi_io_completion).
534 *
535 * Arguments: cmd - command that is complete.
536 * error - 0 if I/O indicates success, < 0 for I/O error.
537 * bytes - number of bytes of completed I/O
538 * requeue - indicates whether we should requeue leftovers.
539 *
540 * Lock status: Assumed that lock is not held upon entry.
541 *
542 * Returns: cmd if requeue required, NULL otherwise.
543 *
544 * Notes: This is called for block device requests in order to
545 * mark some number of sectors as complete.
546 *
547 * We are guaranteeing that the request queue will be goosed
548 * at some point during this call.
549 * Notes: If cmd was requeued, upon return it will be a stale pointer.
550 */
551static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
552 int bytes, int requeue)
553{
554 struct request_queue *q = cmd->device->request_queue;
555 struct request *req = cmd->request;
556
557 /*
558 * If there are blocks left over at the end, set up the command
559 * to queue the remainder of them.
560 */
561 if (blk_end_request(req, error, bytes)) {
562 /* kill remainder if no retrys */
563 if (error && scsi_noretry_cmd(cmd))
564 blk_end_request_all(req, error);
565 else {
566 if (requeue) {
567 /*
568 * Bleah. Leftovers again. Stick the
569 * leftovers in the front of the
570 * queue, and goose the queue again.
571 */
572 scsi_release_buffers(cmd);
573 scsi_requeue_command(q, cmd);
574 cmd = NULL;
575 }
576 return cmd;
577 }
578 }
579
580 /*
581 * This will goose the queue request function at the end, so we don't
582 * need to worry about launching another command.
583 */
584 __scsi_release_buffers(cmd, 0);
585 scsi_next_command(cmd);
586 return NULL;
587}
588
589static inline unsigned int scsi_sgtable_index(unsigned short nents)
590{
591 unsigned int index;
592
593 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
594
595 if (nents <= 8)
596 index = 0;
597 else
598 index = get_count_order(nents) - 3;
599
600 return index;
601}
602
603static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
604{
605 struct scsi_host_sg_pool *sgp;
606
607 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608 mempool_free(sgl, sgp->pool);
609}
610
611static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
612{
613 struct scsi_host_sg_pool *sgp;
614
615 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
616 return mempool_alloc(sgp->pool, gfp_mask);
617}
618
619static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
620 gfp_t gfp_mask)
621{
622 int ret;
623
624 BUG_ON(!nents);
625
626 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
627 gfp_mask, scsi_sg_alloc);
628 if (unlikely(ret))
629 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
630 scsi_sg_free);
631
632 return ret;
633}
634
635static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
636{
637 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
638}
639
640static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
641{
642
643 if (cmd->sdb.table.nents)
644 scsi_free_sgtable(&cmd->sdb);
645
646 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
647
648 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
649 struct scsi_data_buffer *bidi_sdb =
650 cmd->request->next_rq->special;
651 scsi_free_sgtable(bidi_sdb);
652 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
653 cmd->request->next_rq->special = NULL;
654 }
655
656 if (scsi_prot_sg_count(cmd))
657 scsi_free_sgtable(cmd->prot_sdb);
658}
659
660/*
661 * Function: scsi_release_buffers()
662 *
663 * Purpose: Completion processing for block device I/O requests.
664 *
665 * Arguments: cmd - command that we are bailing.
666 *
667 * Lock status: Assumed that no lock is held upon entry.
668 *
669 * Returns: Nothing
670 *
671 * Notes: In the event that an upper level driver rejects a
672 * command, we must release resources allocated during
673 * the __init_io() function. Primarily this would involve
674 * the scatter-gather table, and potentially any bounce
675 * buffers.
676 */
677void scsi_release_buffers(struct scsi_cmnd *cmd)
678{
679 __scsi_release_buffers(cmd, 1);
680}
681EXPORT_SYMBOL(scsi_release_buffers);
682
683static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
684{
685 int error = 0;
686
687 switch(host_byte(result)) {
688 case DID_TRANSPORT_FAILFAST:
689 error = -ENOLINK;
690 break;
691 case DID_TARGET_FAILURE:
692 set_host_byte(cmd, DID_OK);
693 error = -EREMOTEIO;
694 break;
695 case DID_NEXUS_FAILURE:
696 set_host_byte(cmd, DID_OK);
697 error = -EBADE;
698 break;
699 default:
700 error = -EIO;
701 break;
702 }
703
704 return error;
705}
706
707/*
708 * Function: scsi_io_completion()
709 *
710 * Purpose: Completion processing for block device I/O requests.
711 *
712 * Arguments: cmd - command that is finished.
713 *
714 * Lock status: Assumed that no lock is held upon entry.
715 *
716 * Returns: Nothing
717 *
718 * Notes: This function is matched in terms of capabilities to
719 * the function that created the scatter-gather list.
720 * In other words, if there are no bounce buffers
721 * (the normal case for most drivers), we don't need
722 * the logic to deal with cleaning up afterwards.
723 *
724 * We must call scsi_end_request(). This will finish off
725 * the specified number of sectors. If we are done, the
726 * command block will be released and the queue function
727 * will be goosed. If we are not done then we have to
728 * figure out what to do next:
729 *
730 * a) We can call scsi_requeue_command(). The request
731 * will be unprepared and put back on the queue. Then
732 * a new command will be created for it. This should
733 * be used if we made forward progress, or if we want
734 * to switch from READ(10) to READ(6) for example.
735 *
736 * b) We can call scsi_queue_insert(). The request will
737 * be put back on the queue and retried using the same
738 * command as before, possibly after a delay.
739 *
740 * c) We can call blk_end_request() with -EIO to fail
741 * the remainder of the request.
742 */
743void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
744{
745 int result = cmd->result;
746 struct request_queue *q = cmd->device->request_queue;
747 struct request *req = cmd->request;
748 int error = 0;
749 struct scsi_sense_hdr sshdr;
750 int sense_valid = 0;
751 int sense_deferred = 0;
752 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
753 ACTION_DELAYED_RETRY} action;
754 char *description = NULL;
755
756 if (result) {
757 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
758 if (sense_valid)
759 sense_deferred = scsi_sense_is_deferred(&sshdr);
760 }
761
762 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
763 if (result) {
764 if (sense_valid && req->sense) {
765 /*
766 * SG_IO wants current and deferred errors
767 */
768 int len = 8 + cmd->sense_buffer[7];
769
770 if (len > SCSI_SENSE_BUFFERSIZE)
771 len = SCSI_SENSE_BUFFERSIZE;
772 memcpy(req->sense, cmd->sense_buffer, len);
773 req->sense_len = len;
774 }
775 if (!sense_deferred)
776 error = __scsi_error_from_host_byte(cmd, result);
777 }
778 /*
779 * __scsi_error_from_host_byte may have reset the host_byte
780 */
781 req->errors = cmd->result;
782
783 req->resid_len = scsi_get_resid(cmd);
784
785 if (scsi_bidi_cmnd(cmd)) {
786 /*
787 * Bidi commands Must be complete as a whole,
788 * both sides at once.
789 */
790 req->next_rq->resid_len = scsi_in(cmd)->resid;
791
792 scsi_release_buffers(cmd);
793 blk_end_request_all(req, 0);
794
795 scsi_next_command(cmd);
796 return;
797 }
798 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
799 /*
800 * Certain non BLOCK_PC requests are commands that don't
801 * actually transfer anything (FLUSH), so cannot use
802 * good_bytes != blk_rq_bytes(req) as the signal for an error.
803 * This sets the error explicitly for the problem case.
804 */
805 error = __scsi_error_from_host_byte(cmd, result);
806 }
807
808 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
809 BUG_ON(blk_bidi_rq(req));
810
811 /*
812 * Next deal with any sectors which we were able to correctly
813 * handle.
814 */
815 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
816 "%d bytes done.\n",
817 blk_rq_sectors(req), good_bytes));
818
819 /*
820 * Recovered errors need reporting, but they're always treated
821 * as success, so fiddle the result code here. For BLOCK_PC
822 * we already took a copy of the original into rq->errors which
823 * is what gets returned to the user
824 */
825 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
826 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
827 * print since caller wants ATA registers. Only occurs on
828 * SCSI ATA PASS_THROUGH commands when CK_COND=1
829 */
830 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
831 ;
832 else if (!(req->cmd_flags & REQ_QUIET))
833 scsi_print_sense("", cmd);
834 result = 0;
835 /* BLOCK_PC may have set error */
836 error = 0;
837 }
838
839 /*
840 * A number of bytes were successfully read. If there
841 * are leftovers and there is some kind of error
842 * (result != 0), retry the rest.
843 */
844 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
845 return;
846
847 error = __scsi_error_from_host_byte(cmd, result);
848
849 if (host_byte(result) == DID_RESET) {
850 /* Third party bus reset or reset for error recovery
851 * reasons. Just retry the command and see what
852 * happens.
853 */
854 action = ACTION_RETRY;
855 } else if (sense_valid && !sense_deferred) {
856 switch (sshdr.sense_key) {
857 case UNIT_ATTENTION:
858 if (cmd->device->removable) {
859 /* Detected disc change. Set a bit
860 * and quietly refuse further access.
861 */
862 cmd->device->changed = 1;
863 description = "Media Changed";
864 action = ACTION_FAIL;
865 } else {
866 /* Must have been a power glitch, or a
867 * bus reset. Could not have been a
868 * media change, so we just retry the
869 * command and see what happens.
870 */
871 action = ACTION_RETRY;
872 }
873 break;
874 case ILLEGAL_REQUEST:
875 /* If we had an ILLEGAL REQUEST returned, then
876 * we may have performed an unsupported
877 * command. The only thing this should be
878 * would be a ten byte read where only a six
879 * byte read was supported. Also, on a system
880 * where READ CAPACITY failed, we may have
881 * read past the end of the disk.
882 */
883 if ((cmd->device->use_10_for_rw &&
884 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
885 (cmd->cmnd[0] == READ_10 ||
886 cmd->cmnd[0] == WRITE_10)) {
887 /* This will issue a new 6-byte command. */
888 cmd->device->use_10_for_rw = 0;
889 action = ACTION_REPREP;
890 } else if (sshdr.asc == 0x10) /* DIX */ {
891 description = "Host Data Integrity Failure";
892 action = ACTION_FAIL;
893 error = -EILSEQ;
894 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
895 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
896 (cmd->cmnd[0] == UNMAP ||
897 cmd->cmnd[0] == WRITE_SAME_16 ||
898 cmd->cmnd[0] == WRITE_SAME)) {
899 description = "Discard failure";
900 action = ACTION_FAIL;
901 error = -EREMOTEIO;
902 } else
903 action = ACTION_FAIL;
904 break;
905 case ABORTED_COMMAND:
906 action = ACTION_FAIL;
907 if (sshdr.asc == 0x10) { /* DIF */
908 description = "Target Data Integrity Failure";
909 error = -EILSEQ;
910 }
911 break;
912 case NOT_READY:
913 /* If the device is in the process of becoming
914 * ready, or has a temporary blockage, retry.
915 */
916 if (sshdr.asc == 0x04) {
917 switch (sshdr.ascq) {
918 case 0x01: /* becoming ready */
919 case 0x04: /* format in progress */
920 case 0x05: /* rebuild in progress */
921 case 0x06: /* recalculation in progress */
922 case 0x07: /* operation in progress */
923 case 0x08: /* Long write in progress */
924 case 0x09: /* self test in progress */
925 case 0x14: /* space allocation in progress */
926 action = ACTION_DELAYED_RETRY;
927 break;
928 default:
929 description = "Device not ready";
930 action = ACTION_FAIL;
931 break;
932 }
933 } else {
934 description = "Device not ready";
935 action = ACTION_FAIL;
936 }
937 break;
938 case VOLUME_OVERFLOW:
939 /* See SSC3rXX or current. */
940 action = ACTION_FAIL;
941 break;
942 default:
943 description = "Unhandled sense code";
944 action = ACTION_FAIL;
945 break;
946 }
947 } else {
948 description = "Unhandled error code";
949 action = ACTION_FAIL;
950 }
951
952 switch (action) {
953 case ACTION_FAIL:
954 /* Give up and fail the remainder of the request */
955 scsi_release_buffers(cmd);
956 if (!(req->cmd_flags & REQ_QUIET)) {
957 if (description)
958 scmd_printk(KERN_INFO, cmd, "%s\n",
959 description);
960 scsi_print_result(cmd);
961 if (driver_byte(result) & DRIVER_SENSE)
962 scsi_print_sense("", cmd);
963 scsi_print_command(cmd);
964 }
965 if (blk_end_request_err(req, error))
966 scsi_requeue_command(q, cmd);
967 else
968 scsi_next_command(cmd);
969 break;
970 case ACTION_REPREP:
971 /* Unprep the request and put it back at the head of the queue.
972 * A new command will be prepared and issued.
973 */
974 scsi_release_buffers(cmd);
975 scsi_requeue_command(q, cmd);
976 break;
977 case ACTION_RETRY:
978 /* Retry the same command immediately */
979 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
980 break;
981 case ACTION_DELAYED_RETRY:
982 /* Retry the same command after a delay */
983 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
984 break;
985 }
986}
987
988static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
989 gfp_t gfp_mask)
990{
991 int count;
992
993 /*
994 * If sg table allocation fails, requeue request later.
995 */
996 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
997 gfp_mask))) {
998 return BLKPREP_DEFER;
999 }
1000
1001 req->buffer = NULL;
1002
1003 /*
1004 * Next, walk the list, and fill in the addresses and sizes of
1005 * each segment.
1006 */
1007 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1008 BUG_ON(count > sdb->table.nents);
1009 sdb->table.nents = count;
1010 sdb->length = blk_rq_bytes(req);
1011 return BLKPREP_OK;
1012}
1013
1014/*
1015 * Function: scsi_init_io()
1016 *
1017 * Purpose: SCSI I/O initialize function.
1018 *
1019 * Arguments: cmd - Command descriptor we wish to initialize
1020 *
1021 * Returns: 0 on success
1022 * BLKPREP_DEFER if the failure is retryable
1023 * BLKPREP_KILL if the failure is fatal
1024 */
1025int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1026{
1027 struct request *rq = cmd->request;
1028
1029 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1030 if (error)
1031 goto err_exit;
1032
1033 if (blk_bidi_rq(rq)) {
1034 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1035 scsi_sdb_cache, GFP_ATOMIC);
1036 if (!bidi_sdb) {
1037 error = BLKPREP_DEFER;
1038 goto err_exit;
1039 }
1040
1041 rq->next_rq->special = bidi_sdb;
1042 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1043 if (error)
1044 goto err_exit;
1045 }
1046
1047 if (blk_integrity_rq(rq)) {
1048 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1049 int ivecs, count;
1050
1051 BUG_ON(prot_sdb == NULL);
1052 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1053
1054 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1055 error = BLKPREP_DEFER;
1056 goto err_exit;
1057 }
1058
1059 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1060 prot_sdb->table.sgl);
1061 BUG_ON(unlikely(count > ivecs));
1062 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1063
1064 cmd->prot_sdb = prot_sdb;
1065 cmd->prot_sdb->table.nents = count;
1066 }
1067
1068 return BLKPREP_OK ;
1069
1070err_exit:
1071 scsi_release_buffers(cmd);
1072 cmd->request->special = NULL;
1073 scsi_put_command(cmd);
1074 return error;
1075}
1076EXPORT_SYMBOL(scsi_init_io);
1077
1078static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1079 struct request *req)
1080{
1081 struct scsi_cmnd *cmd;
1082
1083 if (!req->special) {
1084 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1085 if (unlikely(!cmd))
1086 return NULL;
1087 req->special = cmd;
1088 } else {
1089 cmd = req->special;
1090 }
1091
1092 /* pull a tag out of the request if we have one */
1093 cmd->tag = req->tag;
1094 cmd->request = req;
1095
1096 cmd->cmnd = req->cmd;
1097 cmd->prot_op = SCSI_PROT_NORMAL;
1098
1099 return cmd;
1100}
1101
1102int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1103{
1104 struct scsi_cmnd *cmd;
1105 int ret = scsi_prep_state_check(sdev, req);
1106
1107 if (ret != BLKPREP_OK)
1108 return ret;
1109
1110 cmd = scsi_get_cmd_from_req(sdev, req);
1111 if (unlikely(!cmd))
1112 return BLKPREP_DEFER;
1113
1114 /*
1115 * BLOCK_PC requests may transfer data, in which case they must
1116 * a bio attached to them. Or they might contain a SCSI command
1117 * that does not transfer data, in which case they may optionally
1118 * submit a request without an attached bio.
1119 */
1120 if (req->bio) {
1121 int ret;
1122
1123 BUG_ON(!req->nr_phys_segments);
1124
1125 ret = scsi_init_io(cmd, GFP_ATOMIC);
1126 if (unlikely(ret))
1127 return ret;
1128 } else {
1129 BUG_ON(blk_rq_bytes(req));
1130
1131 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1132 req->buffer = NULL;
1133 }
1134
1135 cmd->cmd_len = req->cmd_len;
1136 if (!blk_rq_bytes(req))
1137 cmd->sc_data_direction = DMA_NONE;
1138 else if (rq_data_dir(req) == WRITE)
1139 cmd->sc_data_direction = DMA_TO_DEVICE;
1140 else
1141 cmd->sc_data_direction = DMA_FROM_DEVICE;
1142
1143 cmd->transfersize = blk_rq_bytes(req);
1144 cmd->allowed = req->retries;
1145 return BLKPREP_OK;
1146}
1147EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1148
1149/*
1150 * Setup a REQ_TYPE_FS command. These are simple read/write request
1151 * from filesystems that still need to be translated to SCSI CDBs from
1152 * the ULD.
1153 */
1154int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1155{
1156 struct scsi_cmnd *cmd;
1157 int ret = scsi_prep_state_check(sdev, req);
1158
1159 if (ret != BLKPREP_OK)
1160 return ret;
1161
1162 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1163 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1164 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1165 if (ret != BLKPREP_OK)
1166 return ret;
1167 }
1168
1169 /*
1170 * Filesystem requests must transfer data.
1171 */
1172 BUG_ON(!req->nr_phys_segments);
1173
1174 cmd = scsi_get_cmd_from_req(sdev, req);
1175 if (unlikely(!cmd))
1176 return BLKPREP_DEFER;
1177
1178 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1179 return scsi_init_io(cmd, GFP_ATOMIC);
1180}
1181EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1182
1183int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1184{
1185 int ret = BLKPREP_OK;
1186
1187 /*
1188 * If the device is not in running state we will reject some
1189 * or all commands.
1190 */
1191 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1192 switch (sdev->sdev_state) {
1193 case SDEV_OFFLINE:
1194 /*
1195 * If the device is offline we refuse to process any
1196 * commands. The device must be brought online
1197 * before trying any recovery commands.
1198 */
1199 sdev_printk(KERN_ERR, sdev,
1200 "rejecting I/O to offline device\n");
1201 ret = BLKPREP_KILL;
1202 break;
1203 case SDEV_DEL:
1204 /*
1205 * If the device is fully deleted, we refuse to
1206 * process any commands as well.
1207 */
1208 sdev_printk(KERN_ERR, sdev,
1209 "rejecting I/O to dead device\n");
1210 ret = BLKPREP_KILL;
1211 break;
1212 case SDEV_BLOCK:
1213 case SDEV_CREATED_BLOCK:
1214 ret = BLKPREP_DEFER;
1215 break;
1216 case SDEV_QUIESCE:
1217 /*
1218 * If the devices is blocked we defer normal commands.
1219 */
1220 if (!(req->cmd_flags & REQ_PREEMPT))
1221 ret = BLKPREP_DEFER;
1222 break;
1223 default:
1224 /*
1225 * For any other not fully online state we only allow
1226 * special commands. In particular any user initiated
1227 * command is not allowed.
1228 */
1229 if (!(req->cmd_flags & REQ_PREEMPT))
1230 ret = BLKPREP_KILL;
1231 break;
1232 }
1233 }
1234 return ret;
1235}
1236EXPORT_SYMBOL(scsi_prep_state_check);
1237
1238int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1239{
1240 struct scsi_device *sdev = q->queuedata;
1241
1242 switch (ret) {
1243 case BLKPREP_KILL:
1244 req->errors = DID_NO_CONNECT << 16;
1245 /* release the command and kill it */
1246 if (req->special) {
1247 struct scsi_cmnd *cmd = req->special;
1248 scsi_release_buffers(cmd);
1249 scsi_put_command(cmd);
1250 req->special = NULL;
1251 }
1252 break;
1253 case BLKPREP_DEFER:
1254 /*
1255 * If we defer, the blk_peek_request() returns NULL, but the
1256 * queue must be restarted, so we schedule a callback to happen
1257 * shortly.
1258 */
1259 if (sdev->device_busy == 0)
1260 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1261 break;
1262 default:
1263 req->cmd_flags |= REQ_DONTPREP;
1264 }
1265
1266 return ret;
1267}
1268EXPORT_SYMBOL(scsi_prep_return);
1269
1270int scsi_prep_fn(struct request_queue *q, struct request *req)
1271{
1272 struct scsi_device *sdev = q->queuedata;
1273 int ret = BLKPREP_KILL;
1274
1275 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1276 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1277 return scsi_prep_return(q, req, ret);
1278}
1279EXPORT_SYMBOL(scsi_prep_fn);
1280
1281/*
1282 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1283 * return 0.
1284 *
1285 * Called with the queue_lock held.
1286 */
1287static inline int scsi_dev_queue_ready(struct request_queue *q,
1288 struct scsi_device *sdev)
1289{
1290 if (sdev->device_busy == 0 && sdev->device_blocked) {
1291 /*
1292 * unblock after device_blocked iterates to zero
1293 */
1294 if (--sdev->device_blocked == 0) {
1295 SCSI_LOG_MLQUEUE(3,
1296 sdev_printk(KERN_INFO, sdev,
1297 "unblocking device at zero depth\n"));
1298 } else {
1299 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1300 return 0;
1301 }
1302 }
1303 if (scsi_device_is_busy(sdev))
1304 return 0;
1305
1306 return 1;
1307}
1308
1309
1310/*
1311 * scsi_target_queue_ready: checks if there we can send commands to target
1312 * @sdev: scsi device on starget to check.
1313 *
1314 * Called with the host lock held.
1315 */
1316static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1317 struct scsi_device *sdev)
1318{
1319 struct scsi_target *starget = scsi_target(sdev);
1320
1321 if (starget->single_lun) {
1322 if (starget->starget_sdev_user &&
1323 starget->starget_sdev_user != sdev)
1324 return 0;
1325 starget->starget_sdev_user = sdev;
1326 }
1327
1328 if (starget->target_busy == 0 && starget->target_blocked) {
1329 /*
1330 * unblock after target_blocked iterates to zero
1331 */
1332 if (--starget->target_blocked == 0) {
1333 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1334 "unblocking target at zero depth\n"));
1335 } else
1336 return 0;
1337 }
1338
1339 if (scsi_target_is_busy(starget)) {
1340 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1341 return 0;
1342 }
1343
1344 return 1;
1345}
1346
1347/*
1348 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1349 * return 0. We must end up running the queue again whenever 0 is
1350 * returned, else IO can hang.
1351 *
1352 * Called with host_lock held.
1353 */
1354static inline int scsi_host_queue_ready(struct request_queue *q,
1355 struct Scsi_Host *shost,
1356 struct scsi_device *sdev)
1357{
1358 if (scsi_host_in_recovery(shost))
1359 return 0;
1360 if (shost->host_busy == 0 && shost->host_blocked) {
1361 /*
1362 * unblock after host_blocked iterates to zero
1363 */
1364 if (--shost->host_blocked == 0) {
1365 SCSI_LOG_MLQUEUE(3,
1366 printk("scsi%d unblocking host at zero depth\n",
1367 shost->host_no));
1368 } else {
1369 return 0;
1370 }
1371 }
1372 if (scsi_host_is_busy(shost)) {
1373 if (list_empty(&sdev->starved_entry))
1374 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375 return 0;
1376 }
1377
1378 /* We're OK to process the command, so we can't be starved */
1379 if (!list_empty(&sdev->starved_entry))
1380 list_del_init(&sdev->starved_entry);
1381
1382 return 1;
1383}
1384
1385/*
1386 * Busy state exporting function for request stacking drivers.
1387 *
1388 * For efficiency, no lock is taken to check the busy state of
1389 * shost/starget/sdev, since the returned value is not guaranteed and
1390 * may be changed after request stacking drivers call the function,
1391 * regardless of taking lock or not.
1392 *
1393 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1394 * needs to return 'not busy'. Otherwise, request stacking drivers
1395 * may hold requests forever.
1396 */
1397static int scsi_lld_busy(struct request_queue *q)
1398{
1399 struct scsi_device *sdev = q->queuedata;
1400 struct Scsi_Host *shost;
1401
1402 if (blk_queue_dead(q))
1403 return 0;
1404
1405 shost = sdev->host;
1406
1407 /*
1408 * Ignore host/starget busy state.
1409 * Since block layer does not have a concept of fairness across
1410 * multiple queues, congestion of host/starget needs to be handled
1411 * in SCSI layer.
1412 */
1413 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1414 return 1;
1415
1416 return 0;
1417}
1418
1419/*
1420 * Kill a request for a dead device
1421 */
1422static void scsi_kill_request(struct request *req, struct request_queue *q)
1423{
1424 struct scsi_cmnd *cmd = req->special;
1425 struct scsi_device *sdev;
1426 struct scsi_target *starget;
1427 struct Scsi_Host *shost;
1428
1429 blk_start_request(req);
1430
1431 scmd_printk(KERN_INFO, cmd, "killing request\n");
1432
1433 sdev = cmd->device;
1434 starget = scsi_target(sdev);
1435 shost = sdev->host;
1436 scsi_init_cmd_errh(cmd);
1437 cmd->result = DID_NO_CONNECT << 16;
1438 atomic_inc(&cmd->device->iorequest_cnt);
1439
1440 /*
1441 * SCSI request completion path will do scsi_device_unbusy(),
1442 * bump busy counts. To bump the counters, we need to dance
1443 * with the locks as normal issue path does.
1444 */
1445 sdev->device_busy++;
1446 spin_unlock(sdev->request_queue->queue_lock);
1447 spin_lock(shost->host_lock);
1448 shost->host_busy++;
1449 starget->target_busy++;
1450 spin_unlock(shost->host_lock);
1451 spin_lock(sdev->request_queue->queue_lock);
1452
1453 blk_complete_request(req);
1454}
1455
1456static void scsi_softirq_done(struct request *rq)
1457{
1458 struct scsi_cmnd *cmd = rq->special;
1459 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1460 int disposition;
1461
1462 INIT_LIST_HEAD(&cmd->eh_entry);
1463
1464 atomic_inc(&cmd->device->iodone_cnt);
1465 if (cmd->result)
1466 atomic_inc(&cmd->device->ioerr_cnt);
1467
1468 disposition = scsi_decide_disposition(cmd);
1469 if (disposition != SUCCESS &&
1470 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1471 sdev_printk(KERN_ERR, cmd->device,
1472 "timing out command, waited %lus\n",
1473 wait_for/HZ);
1474 disposition = SUCCESS;
1475 }
1476
1477 scsi_log_completion(cmd, disposition);
1478
1479 switch (disposition) {
1480 case SUCCESS:
1481 scsi_finish_command(cmd);
1482 break;
1483 case NEEDS_RETRY:
1484 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1485 break;
1486 case ADD_TO_MLQUEUE:
1487 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1488 break;
1489 default:
1490 if (!scsi_eh_scmd_add(cmd, 0))
1491 scsi_finish_command(cmd);
1492 }
1493}
1494
1495/*
1496 * Function: scsi_request_fn()
1497 *
1498 * Purpose: Main strategy routine for SCSI.
1499 *
1500 * Arguments: q - Pointer to actual queue.
1501 *
1502 * Returns: Nothing
1503 *
1504 * Lock status: IO request lock assumed to be held when called.
1505 */
1506static void scsi_request_fn(struct request_queue *q)
1507{
1508 struct scsi_device *sdev = q->queuedata;
1509 struct Scsi_Host *shost;
1510 struct scsi_cmnd *cmd;
1511 struct request *req;
1512
1513 if(!get_device(&sdev->sdev_gendev))
1514 /* We must be tearing the block queue down already */
1515 return;
1516
1517 /*
1518 * To start with, we keep looping until the queue is empty, or until
1519 * the host is no longer able to accept any more requests.
1520 */
1521 shost = sdev->host;
1522 for (;;) {
1523 int rtn;
1524 /*
1525 * get next queueable request. We do this early to make sure
1526 * that the request is fully prepared even if we cannot
1527 * accept it.
1528 */
1529 req = blk_peek_request(q);
1530 if (!req || !scsi_dev_queue_ready(q, sdev))
1531 break;
1532
1533 if (unlikely(!scsi_device_online(sdev))) {
1534 sdev_printk(KERN_ERR, sdev,
1535 "rejecting I/O to offline device\n");
1536 scsi_kill_request(req, q);
1537 continue;
1538 }
1539
1540
1541 /*
1542 * Remove the request from the request list.
1543 */
1544 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1545 blk_start_request(req);
1546 sdev->device_busy++;
1547
1548 spin_unlock(q->queue_lock);
1549 cmd = req->special;
1550 if (unlikely(cmd == NULL)) {
1551 printk(KERN_CRIT "impossible request in %s.\n"
1552 "please mail a stack trace to "
1553 "linux-scsi@vger.kernel.org\n",
1554 __func__);
1555 blk_dump_rq_flags(req, "foo");
1556 BUG();
1557 }
1558 spin_lock(shost->host_lock);
1559
1560 /*
1561 * We hit this when the driver is using a host wide
1562 * tag map. For device level tag maps the queue_depth check
1563 * in the device ready fn would prevent us from trying
1564 * to allocate a tag. Since the map is a shared host resource
1565 * we add the dev to the starved list so it eventually gets
1566 * a run when a tag is freed.
1567 */
1568 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1569 if (list_empty(&sdev->starved_entry))
1570 list_add_tail(&sdev->starved_entry,
1571 &shost->starved_list);
1572 goto not_ready;
1573 }
1574
1575 if (!scsi_target_queue_ready(shost, sdev))
1576 goto not_ready;
1577
1578 if (!scsi_host_queue_ready(q, shost, sdev))
1579 goto not_ready;
1580
1581 scsi_target(sdev)->target_busy++;
1582 shost->host_busy++;
1583
1584 /*
1585 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1586 * take the lock again.
1587 */
1588 spin_unlock_irq(shost->host_lock);
1589
1590 /*
1591 * Finally, initialize any error handling parameters, and set up
1592 * the timers for timeouts.
1593 */
1594 scsi_init_cmd_errh(cmd);
1595
1596 /*
1597 * Dispatch the command to the low-level driver.
1598 */
1599 rtn = scsi_dispatch_cmd(cmd);
1600 spin_lock_irq(q->queue_lock);
1601 if (rtn)
1602 goto out_delay;
1603 }
1604
1605 goto out;
1606
1607 not_ready:
1608 spin_unlock_irq(shost->host_lock);
1609
1610 /*
1611 * lock q, handle tag, requeue req, and decrement device_busy. We
1612 * must return with queue_lock held.
1613 *
1614 * Decrementing device_busy without checking it is OK, as all such
1615 * cases (host limits or settings) should run the queue at some
1616 * later time.
1617 */
1618 spin_lock_irq(q->queue_lock);
1619 blk_requeue_request(q, req);
1620 sdev->device_busy--;
1621out_delay:
1622 if (sdev->device_busy == 0)
1623 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1624out:
1625 /* must be careful here...if we trigger the ->remove() function
1626 * we cannot be holding the q lock */
1627 spin_unlock_irq(q->queue_lock);
1628 put_device(&sdev->sdev_gendev);
1629 spin_lock_irq(q->queue_lock);
1630}
1631
1632u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1633{
1634 struct device *host_dev;
1635 u64 bounce_limit = 0xffffffff;
1636
1637 if (shost->unchecked_isa_dma)
1638 return BLK_BOUNCE_ISA;
1639 /*
1640 * Platforms with virtual-DMA translation
1641 * hardware have no practical limit.
1642 */
1643 if (!PCI_DMA_BUS_IS_PHYS)
1644 return BLK_BOUNCE_ANY;
1645
1646 host_dev = scsi_get_device(shost);
1647 if (host_dev && host_dev->dma_mask)
1648 bounce_limit = *host_dev->dma_mask;
1649
1650 return bounce_limit;
1651}
1652EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1653
1654struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1655 request_fn_proc *request_fn)
1656{
1657 struct request_queue *q;
1658 struct device *dev = shost->dma_dev;
1659
1660 q = blk_init_queue(request_fn, NULL);
1661 if (!q)
1662 return NULL;
1663
1664 /*
1665 * this limit is imposed by hardware restrictions
1666 */
1667 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1668 SCSI_MAX_SG_CHAIN_SEGMENTS));
1669
1670 if (scsi_host_prot_dma(shost)) {
1671 shost->sg_prot_tablesize =
1672 min_not_zero(shost->sg_prot_tablesize,
1673 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1674 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1675 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1676 }
1677
1678 blk_queue_max_hw_sectors(q, shost->max_sectors);
1679 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1680 blk_queue_segment_boundary(q, shost->dma_boundary);
1681 dma_set_seg_boundary(dev, shost->dma_boundary);
1682
1683 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1684
1685 if (!shost->use_clustering)
1686 q->limits.cluster = 0;
1687
1688 /*
1689 * set a reasonable default alignment on word boundaries: the
1690 * host and device may alter it using
1691 * blk_queue_update_dma_alignment() later.
1692 */
1693 blk_queue_dma_alignment(q, 0x03);
1694
1695 return q;
1696}
1697EXPORT_SYMBOL(__scsi_alloc_queue);
1698
1699struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1700{
1701 struct request_queue *q;
1702
1703 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1704 if (!q)
1705 return NULL;
1706
1707 blk_queue_prep_rq(q, scsi_prep_fn);
1708 blk_queue_softirq_done(q, scsi_softirq_done);
1709 blk_queue_rq_timed_out(q, scsi_times_out);
1710 blk_queue_lld_busy(q, scsi_lld_busy);
1711 return q;
1712}
1713
1714/*
1715 * Function: scsi_block_requests()
1716 *
1717 * Purpose: Utility function used by low-level drivers to prevent further
1718 * commands from being queued to the device.
1719 *
1720 * Arguments: shost - Host in question
1721 *
1722 * Returns: Nothing
1723 *
1724 * Lock status: No locks are assumed held.
1725 *
1726 * Notes: There is no timer nor any other means by which the requests
1727 * get unblocked other than the low-level driver calling
1728 * scsi_unblock_requests().
1729 */
1730void scsi_block_requests(struct Scsi_Host *shost)
1731{
1732 shost->host_self_blocked = 1;
1733}
1734EXPORT_SYMBOL(scsi_block_requests);
1735
1736/*
1737 * Function: scsi_unblock_requests()
1738 *
1739 * Purpose: Utility function used by low-level drivers to allow further
1740 * commands from being queued to the device.
1741 *
1742 * Arguments: shost - Host in question
1743 *
1744 * Returns: Nothing
1745 *
1746 * Lock status: No locks are assumed held.
1747 *
1748 * Notes: There is no timer nor any other means by which the requests
1749 * get unblocked other than the low-level driver calling
1750 * scsi_unblock_requests().
1751 *
1752 * This is done as an API function so that changes to the
1753 * internals of the scsi mid-layer won't require wholesale
1754 * changes to drivers that use this feature.
1755 */
1756void scsi_unblock_requests(struct Scsi_Host *shost)
1757{
1758 shost->host_self_blocked = 0;
1759 scsi_run_host_queues(shost);
1760}
1761EXPORT_SYMBOL(scsi_unblock_requests);
1762
1763int __init scsi_init_queue(void)
1764{
1765 int i;
1766
1767 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1768 sizeof(struct scsi_data_buffer),
1769 0, 0, NULL);
1770 if (!scsi_sdb_cache) {
1771 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1772 return -ENOMEM;
1773 }
1774
1775 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1776 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1777 int size = sgp->size * sizeof(struct scatterlist);
1778
1779 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1780 SLAB_HWCACHE_ALIGN, NULL);
1781 if (!sgp->slab) {
1782 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1783 sgp->name);
1784 goto cleanup_sdb;
1785 }
1786
1787 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1788 sgp->slab);
1789 if (!sgp->pool) {
1790 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1791 sgp->name);
1792 goto cleanup_sdb;
1793 }
1794 }
1795
1796 return 0;
1797
1798cleanup_sdb:
1799 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801 if (sgp->pool)
1802 mempool_destroy(sgp->pool);
1803 if (sgp->slab)
1804 kmem_cache_destroy(sgp->slab);
1805 }
1806 kmem_cache_destroy(scsi_sdb_cache);
1807
1808 return -ENOMEM;
1809}
1810
1811void scsi_exit_queue(void)
1812{
1813 int i;
1814
1815 kmem_cache_destroy(scsi_sdb_cache);
1816
1817 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1818 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1819 mempool_destroy(sgp->pool);
1820 kmem_cache_destroy(sgp->slab);
1821 }
1822}
1823
1824/**
1825 * scsi_mode_select - issue a mode select
1826 * @sdev: SCSI device to be queried
1827 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1828 * @sp: Save page bit (0 == don't save, 1 == save)
1829 * @modepage: mode page being requested
1830 * @buffer: request buffer (may not be smaller than eight bytes)
1831 * @len: length of request buffer.
1832 * @timeout: command timeout
1833 * @retries: number of retries before failing
1834 * @data: returns a structure abstracting the mode header data
1835 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1836 * must be SCSI_SENSE_BUFFERSIZE big.
1837 *
1838 * Returns zero if successful; negative error number or scsi
1839 * status on error
1840 *
1841 */
1842int
1843scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1844 unsigned char *buffer, int len, int timeout, int retries,
1845 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1846{
1847 unsigned char cmd[10];
1848 unsigned char *real_buffer;
1849 int ret;
1850
1851 memset(cmd, 0, sizeof(cmd));
1852 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1853
1854 if (sdev->use_10_for_ms) {
1855 if (len > 65535)
1856 return -EINVAL;
1857 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1858 if (!real_buffer)
1859 return -ENOMEM;
1860 memcpy(real_buffer + 8, buffer, len);
1861 len += 8;
1862 real_buffer[0] = 0;
1863 real_buffer[1] = 0;
1864 real_buffer[2] = data->medium_type;
1865 real_buffer[3] = data->device_specific;
1866 real_buffer[4] = data->longlba ? 0x01 : 0;
1867 real_buffer[5] = 0;
1868 real_buffer[6] = data->block_descriptor_length >> 8;
1869 real_buffer[7] = data->block_descriptor_length;
1870
1871 cmd[0] = MODE_SELECT_10;
1872 cmd[7] = len >> 8;
1873 cmd[8] = len;
1874 } else {
1875 if (len > 255 || data->block_descriptor_length > 255 ||
1876 data->longlba)
1877 return -EINVAL;
1878
1879 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1880 if (!real_buffer)
1881 return -ENOMEM;
1882 memcpy(real_buffer + 4, buffer, len);
1883 len += 4;
1884 real_buffer[0] = 0;
1885 real_buffer[1] = data->medium_type;
1886 real_buffer[2] = data->device_specific;
1887 real_buffer[3] = data->block_descriptor_length;
1888
1889
1890 cmd[0] = MODE_SELECT;
1891 cmd[4] = len;
1892 }
1893
1894 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1895 sshdr, timeout, retries, NULL);
1896 kfree(real_buffer);
1897 return ret;
1898}
1899EXPORT_SYMBOL_GPL(scsi_mode_select);
1900
1901/**
1902 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1903 * @sdev: SCSI device to be queried
1904 * @dbd: set if mode sense will allow block descriptors to be returned
1905 * @modepage: mode page being requested
1906 * @buffer: request buffer (may not be smaller than eight bytes)
1907 * @len: length of request buffer.
1908 * @timeout: command timeout
1909 * @retries: number of retries before failing
1910 * @data: returns a structure abstracting the mode header data
1911 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1912 * must be SCSI_SENSE_BUFFERSIZE big.
1913 *
1914 * Returns zero if unsuccessful, or the header offset (either 4
1915 * or 8 depending on whether a six or ten byte command was
1916 * issued) if successful.
1917 */
1918int
1919scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1920 unsigned char *buffer, int len, int timeout, int retries,
1921 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1922{
1923 unsigned char cmd[12];
1924 int use_10_for_ms;
1925 int header_length;
1926 int result;
1927 struct scsi_sense_hdr my_sshdr;
1928
1929 memset(data, 0, sizeof(*data));
1930 memset(&cmd[0], 0, 12);
1931 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1932 cmd[2] = modepage;
1933
1934 /* caller might not be interested in sense, but we need it */
1935 if (!sshdr)
1936 sshdr = &my_sshdr;
1937
1938 retry:
1939 use_10_for_ms = sdev->use_10_for_ms;
1940
1941 if (use_10_for_ms) {
1942 if (len < 8)
1943 len = 8;
1944
1945 cmd[0] = MODE_SENSE_10;
1946 cmd[8] = len;
1947 header_length = 8;
1948 } else {
1949 if (len < 4)
1950 len = 4;
1951
1952 cmd[0] = MODE_SENSE;
1953 cmd[4] = len;
1954 header_length = 4;
1955 }
1956
1957 memset(buffer, 0, len);
1958
1959 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1960 sshdr, timeout, retries, NULL);
1961
1962 /* This code looks awful: what it's doing is making sure an
1963 * ILLEGAL REQUEST sense return identifies the actual command
1964 * byte as the problem. MODE_SENSE commands can return
1965 * ILLEGAL REQUEST if the code page isn't supported */
1966
1967 if (use_10_for_ms && !scsi_status_is_good(result) &&
1968 (driver_byte(result) & DRIVER_SENSE)) {
1969 if (scsi_sense_valid(sshdr)) {
1970 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1971 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1972 /*
1973 * Invalid command operation code
1974 */
1975 sdev->use_10_for_ms = 0;
1976 goto retry;
1977 }
1978 }
1979 }
1980
1981 if(scsi_status_is_good(result)) {
1982 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1983 (modepage == 6 || modepage == 8))) {
1984 /* Initio breakage? */
1985 header_length = 0;
1986 data->length = 13;
1987 data->medium_type = 0;
1988 data->device_specific = 0;
1989 data->longlba = 0;
1990 data->block_descriptor_length = 0;
1991 } else if(use_10_for_ms) {
1992 data->length = buffer[0]*256 + buffer[1] + 2;
1993 data->medium_type = buffer[2];
1994 data->device_specific = buffer[3];
1995 data->longlba = buffer[4] & 0x01;
1996 data->block_descriptor_length = buffer[6]*256
1997 + buffer[7];
1998 } else {
1999 data->length = buffer[0] + 1;
2000 data->medium_type = buffer[1];
2001 data->device_specific = buffer[2];
2002 data->block_descriptor_length = buffer[3];
2003 }
2004 data->header_length = header_length;
2005 }
2006
2007 return result;
2008}
2009EXPORT_SYMBOL(scsi_mode_sense);
2010
2011/**
2012 * scsi_test_unit_ready - test if unit is ready
2013 * @sdev: scsi device to change the state of.
2014 * @timeout: command timeout
2015 * @retries: number of retries before failing
2016 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2017 * returning sense. Make sure that this is cleared before passing
2018 * in.
2019 *
2020 * Returns zero if unsuccessful or an error if TUR failed. For
2021 * removable media, UNIT_ATTENTION sets ->changed flag.
2022 **/
2023int
2024scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2025 struct scsi_sense_hdr *sshdr_external)
2026{
2027 char cmd[] = {
2028 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2029 };
2030 struct scsi_sense_hdr *sshdr;
2031 int result;
2032
2033 if (!sshdr_external)
2034 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2035 else
2036 sshdr = sshdr_external;
2037
2038 /* try to eat the UNIT_ATTENTION if there are enough retries */
2039 do {
2040 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2041 timeout, retries, NULL);
2042 if (sdev->removable && scsi_sense_valid(sshdr) &&
2043 sshdr->sense_key == UNIT_ATTENTION)
2044 sdev->changed = 1;
2045 } while (scsi_sense_valid(sshdr) &&
2046 sshdr->sense_key == UNIT_ATTENTION && --retries);
2047
2048 if (!sshdr_external)
2049 kfree(sshdr);
2050 return result;
2051}
2052EXPORT_SYMBOL(scsi_test_unit_ready);
2053
2054/**
2055 * scsi_device_set_state - Take the given device through the device state model.
2056 * @sdev: scsi device to change the state of.
2057 * @state: state to change to.
2058 *
2059 * Returns zero if unsuccessful or an error if the requested
2060 * transition is illegal.
2061 */
2062int
2063scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2064{
2065 enum scsi_device_state oldstate = sdev->sdev_state;
2066
2067 if (state == oldstate)
2068 return 0;
2069
2070 switch (state) {
2071 case SDEV_CREATED:
2072 switch (oldstate) {
2073 case SDEV_CREATED_BLOCK:
2074 break;
2075 default:
2076 goto illegal;
2077 }
2078 break;
2079
2080 case SDEV_RUNNING:
2081 switch (oldstate) {
2082 case SDEV_CREATED:
2083 case SDEV_OFFLINE:
2084 case SDEV_QUIESCE:
2085 case SDEV_BLOCK:
2086 break;
2087 default:
2088 goto illegal;
2089 }
2090 break;
2091
2092 case SDEV_QUIESCE:
2093 switch (oldstate) {
2094 case SDEV_RUNNING:
2095 case SDEV_OFFLINE:
2096 break;
2097 default:
2098 goto illegal;
2099 }
2100 break;
2101
2102 case SDEV_OFFLINE:
2103 switch (oldstate) {
2104 case SDEV_CREATED:
2105 case SDEV_RUNNING:
2106 case SDEV_QUIESCE:
2107 case SDEV_BLOCK:
2108 break;
2109 default:
2110 goto illegal;
2111 }
2112 break;
2113
2114 case SDEV_BLOCK:
2115 switch (oldstate) {
2116 case SDEV_RUNNING:
2117 case SDEV_CREATED_BLOCK:
2118 break;
2119 default:
2120 goto illegal;
2121 }
2122 break;
2123
2124 case SDEV_CREATED_BLOCK:
2125 switch (oldstate) {
2126 case SDEV_CREATED:
2127 break;
2128 default:
2129 goto illegal;
2130 }
2131 break;
2132
2133 case SDEV_CANCEL:
2134 switch (oldstate) {
2135 case SDEV_CREATED:
2136 case SDEV_RUNNING:
2137 case SDEV_QUIESCE:
2138 case SDEV_OFFLINE:
2139 case SDEV_BLOCK:
2140 break;
2141 default:
2142 goto illegal;
2143 }
2144 break;
2145
2146 case SDEV_DEL:
2147 switch (oldstate) {
2148 case SDEV_CREATED:
2149 case SDEV_RUNNING:
2150 case SDEV_OFFLINE:
2151 case SDEV_CANCEL:
2152 break;
2153 default:
2154 goto illegal;
2155 }
2156 break;
2157
2158 }
2159 sdev->sdev_state = state;
2160 return 0;
2161
2162 illegal:
2163 SCSI_LOG_ERROR_RECOVERY(1,
2164 sdev_printk(KERN_ERR, sdev,
2165 "Illegal state transition %s->%s\n",
2166 scsi_device_state_name(oldstate),
2167 scsi_device_state_name(state))
2168 );
2169 return -EINVAL;
2170}
2171EXPORT_SYMBOL(scsi_device_set_state);
2172
2173/**
2174 * sdev_evt_emit - emit a single SCSI device uevent
2175 * @sdev: associated SCSI device
2176 * @evt: event to emit
2177 *
2178 * Send a single uevent (scsi_event) to the associated scsi_device.
2179 */
2180static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2181{
2182 int idx = 0;
2183 char *envp[3];
2184
2185 switch (evt->evt_type) {
2186 case SDEV_EVT_MEDIA_CHANGE:
2187 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2188 break;
2189
2190 default:
2191 /* do nothing */
2192 break;
2193 }
2194
2195 envp[idx++] = NULL;
2196
2197 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2198}
2199
2200/**
2201 * sdev_evt_thread - send a uevent for each scsi event
2202 * @work: work struct for scsi_device
2203 *
2204 * Dispatch queued events to their associated scsi_device kobjects
2205 * as uevents.
2206 */
2207void scsi_evt_thread(struct work_struct *work)
2208{
2209 struct scsi_device *sdev;
2210 LIST_HEAD(event_list);
2211
2212 sdev = container_of(work, struct scsi_device, event_work);
2213
2214 while (1) {
2215 struct scsi_event *evt;
2216 struct list_head *this, *tmp;
2217 unsigned long flags;
2218
2219 spin_lock_irqsave(&sdev->list_lock, flags);
2220 list_splice_init(&sdev->event_list, &event_list);
2221 spin_unlock_irqrestore(&sdev->list_lock, flags);
2222
2223 if (list_empty(&event_list))
2224 break;
2225
2226 list_for_each_safe(this, tmp, &event_list) {
2227 evt = list_entry(this, struct scsi_event, node);
2228 list_del(&evt->node);
2229 scsi_evt_emit(sdev, evt);
2230 kfree(evt);
2231 }
2232 }
2233}
2234
2235/**
2236 * sdev_evt_send - send asserted event to uevent thread
2237 * @sdev: scsi_device event occurred on
2238 * @evt: event to send
2239 *
2240 * Assert scsi device event asynchronously.
2241 */
2242void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2243{
2244 unsigned long flags;
2245
2246#if 0
2247 /* FIXME: currently this check eliminates all media change events
2248 * for polled devices. Need to update to discriminate between AN
2249 * and polled events */
2250 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2251 kfree(evt);
2252 return;
2253 }
2254#endif
2255
2256 spin_lock_irqsave(&sdev->list_lock, flags);
2257 list_add_tail(&evt->node, &sdev->event_list);
2258 schedule_work(&sdev->event_work);
2259 spin_unlock_irqrestore(&sdev->list_lock, flags);
2260}
2261EXPORT_SYMBOL_GPL(sdev_evt_send);
2262
2263/**
2264 * sdev_evt_alloc - allocate a new scsi event
2265 * @evt_type: type of event to allocate
2266 * @gfpflags: GFP flags for allocation
2267 *
2268 * Allocates and returns a new scsi_event.
2269 */
2270struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2271 gfp_t gfpflags)
2272{
2273 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2274 if (!evt)
2275 return NULL;
2276
2277 evt->evt_type = evt_type;
2278 INIT_LIST_HEAD(&evt->node);
2279
2280 /* evt_type-specific initialization, if any */
2281 switch (evt_type) {
2282 case SDEV_EVT_MEDIA_CHANGE:
2283 default:
2284 /* do nothing */
2285 break;
2286 }
2287
2288 return evt;
2289}
2290EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2291
2292/**
2293 * sdev_evt_send_simple - send asserted event to uevent thread
2294 * @sdev: scsi_device event occurred on
2295 * @evt_type: type of event to send
2296 * @gfpflags: GFP flags for allocation
2297 *
2298 * Assert scsi device event asynchronously, given an event type.
2299 */
2300void sdev_evt_send_simple(struct scsi_device *sdev,
2301 enum scsi_device_event evt_type, gfp_t gfpflags)
2302{
2303 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2304 if (!evt) {
2305 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2306 evt_type);
2307 return;
2308 }
2309
2310 sdev_evt_send(sdev, evt);
2311}
2312EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2313
2314/**
2315 * scsi_device_quiesce - Block user issued commands.
2316 * @sdev: scsi device to quiesce.
2317 *
2318 * This works by trying to transition to the SDEV_QUIESCE state
2319 * (which must be a legal transition). When the device is in this
2320 * state, only special requests will be accepted, all others will
2321 * be deferred. Since special requests may also be requeued requests,
2322 * a successful return doesn't guarantee the device will be
2323 * totally quiescent.
2324 *
2325 * Must be called with user context, may sleep.
2326 *
2327 * Returns zero if unsuccessful or an error if not.
2328 */
2329int
2330scsi_device_quiesce(struct scsi_device *sdev)
2331{
2332 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2333 if (err)
2334 return err;
2335
2336 scsi_run_queue(sdev->request_queue);
2337 while (sdev->device_busy) {
2338 msleep_interruptible(200);
2339 scsi_run_queue(sdev->request_queue);
2340 }
2341 return 0;
2342}
2343EXPORT_SYMBOL(scsi_device_quiesce);
2344
2345/**
2346 * scsi_device_resume - Restart user issued commands to a quiesced device.
2347 * @sdev: scsi device to resume.
2348 *
2349 * Moves the device from quiesced back to running and restarts the
2350 * queues.
2351 *
2352 * Must be called with user context, may sleep.
2353 */
2354void
2355scsi_device_resume(struct scsi_device *sdev)
2356{
2357 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2358 return;
2359 scsi_run_queue(sdev->request_queue);
2360}
2361EXPORT_SYMBOL(scsi_device_resume);
2362
2363static void
2364device_quiesce_fn(struct scsi_device *sdev, void *data)
2365{
2366 scsi_device_quiesce(sdev);
2367}
2368
2369void
2370scsi_target_quiesce(struct scsi_target *starget)
2371{
2372 starget_for_each_device(starget, NULL, device_quiesce_fn);
2373}
2374EXPORT_SYMBOL(scsi_target_quiesce);
2375
2376static void
2377device_resume_fn(struct scsi_device *sdev, void *data)
2378{
2379 scsi_device_resume(sdev);
2380}
2381
2382void
2383scsi_target_resume(struct scsi_target *starget)
2384{
2385 starget_for_each_device(starget, NULL, device_resume_fn);
2386}
2387EXPORT_SYMBOL(scsi_target_resume);
2388
2389/**
2390 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2391 * @sdev: device to block
2392 *
2393 * Block request made by scsi lld's to temporarily stop all
2394 * scsi commands on the specified device. Called from interrupt
2395 * or normal process context.
2396 *
2397 * Returns zero if successful or error if not
2398 *
2399 * Notes:
2400 * This routine transitions the device to the SDEV_BLOCK state
2401 * (which must be a legal transition). When the device is in this
2402 * state, all commands are deferred until the scsi lld reenables
2403 * the device with scsi_device_unblock or device_block_tmo fires.
2404 * This routine assumes the host_lock is held on entry.
2405 */
2406int
2407scsi_internal_device_block(struct scsi_device *sdev)
2408{
2409 struct request_queue *q = sdev->request_queue;
2410 unsigned long flags;
2411 int err = 0;
2412
2413 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2414 if (err) {
2415 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2416
2417 if (err)
2418 return err;
2419 }
2420
2421 /*
2422 * The device has transitioned to SDEV_BLOCK. Stop the
2423 * block layer from calling the midlayer with this device's
2424 * request queue.
2425 */
2426 spin_lock_irqsave(q->queue_lock, flags);
2427 blk_stop_queue(q);
2428 spin_unlock_irqrestore(q->queue_lock, flags);
2429
2430 return 0;
2431}
2432EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2433
2434/**
2435 * scsi_internal_device_unblock - resume a device after a block request
2436 * @sdev: device to resume
2437 *
2438 * Called by scsi lld's or the midlayer to restart the device queue
2439 * for the previously suspended scsi device. Called from interrupt or
2440 * normal process context.
2441 *
2442 * Returns zero if successful or error if not.
2443 *
2444 * Notes:
2445 * This routine transitions the device to the SDEV_RUNNING state
2446 * (which must be a legal transition) allowing the midlayer to
2447 * goose the queue for this device. This routine assumes the
2448 * host_lock is held upon entry.
2449 */
2450int
2451scsi_internal_device_unblock(struct scsi_device *sdev)
2452{
2453 struct request_queue *q = sdev->request_queue;
2454 unsigned long flags;
2455
2456 /*
2457 * Try to transition the scsi device to SDEV_RUNNING
2458 * and goose the device queue if successful.
2459 */
2460 if (sdev->sdev_state == SDEV_BLOCK)
2461 sdev->sdev_state = SDEV_RUNNING;
2462 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2463 sdev->sdev_state = SDEV_CREATED;
2464 else if (sdev->sdev_state != SDEV_CANCEL &&
2465 sdev->sdev_state != SDEV_OFFLINE)
2466 return -EINVAL;
2467
2468 spin_lock_irqsave(q->queue_lock, flags);
2469 blk_start_queue(q);
2470 spin_unlock_irqrestore(q->queue_lock, flags);
2471
2472 return 0;
2473}
2474EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2475
2476static void
2477device_block(struct scsi_device *sdev, void *data)
2478{
2479 scsi_internal_device_block(sdev);
2480}
2481
2482static int
2483target_block(struct device *dev, void *data)
2484{
2485 if (scsi_is_target_device(dev))
2486 starget_for_each_device(to_scsi_target(dev), NULL,
2487 device_block);
2488 return 0;
2489}
2490
2491void
2492scsi_target_block(struct device *dev)
2493{
2494 if (scsi_is_target_device(dev))
2495 starget_for_each_device(to_scsi_target(dev), NULL,
2496 device_block);
2497 else
2498 device_for_each_child(dev, NULL, target_block);
2499}
2500EXPORT_SYMBOL_GPL(scsi_target_block);
2501
2502static void
2503device_unblock(struct scsi_device *sdev, void *data)
2504{
2505 scsi_internal_device_unblock(sdev);
2506}
2507
2508static int
2509target_unblock(struct device *dev, void *data)
2510{
2511 if (scsi_is_target_device(dev))
2512 starget_for_each_device(to_scsi_target(dev), NULL,
2513 device_unblock);
2514 return 0;
2515}
2516
2517void
2518scsi_target_unblock(struct device *dev)
2519{
2520 if (scsi_is_target_device(dev))
2521 starget_for_each_device(to_scsi_target(dev), NULL,
2522 device_unblock);
2523 else
2524 device_for_each_child(dev, NULL, target_unblock);
2525}
2526EXPORT_SYMBOL_GPL(scsi_target_unblock);
2527
2528/**
2529 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2530 * @sgl: scatter-gather list
2531 * @sg_count: number of segments in sg
2532 * @offset: offset in bytes into sg, on return offset into the mapped area
2533 * @len: bytes to map, on return number of bytes mapped
2534 *
2535 * Returns virtual address of the start of the mapped page
2536 */
2537void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2538 size_t *offset, size_t *len)
2539{
2540 int i;
2541 size_t sg_len = 0, len_complete = 0;
2542 struct scatterlist *sg;
2543 struct page *page;
2544
2545 WARN_ON(!irqs_disabled());
2546
2547 for_each_sg(sgl, sg, sg_count, i) {
2548 len_complete = sg_len; /* Complete sg-entries */
2549 sg_len += sg->length;
2550 if (sg_len > *offset)
2551 break;
2552 }
2553
2554 if (unlikely(i == sg_count)) {
2555 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2556 "elements %d\n",
2557 __func__, sg_len, *offset, sg_count);
2558 WARN_ON(1);
2559 return NULL;
2560 }
2561
2562 /* Offset starting from the beginning of first page in this sg-entry */
2563 *offset = *offset - len_complete + sg->offset;
2564
2565 /* Assumption: contiguous pages can be accessed as "page + i" */
2566 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2567 *offset &= ~PAGE_MASK;
2568
2569 /* Bytes in this sg-entry from *offset to the end of the page */
2570 sg_len = PAGE_SIZE - *offset;
2571 if (*len > sg_len)
2572 *len = sg_len;
2573
2574 return kmap_atomic(page);
2575}
2576EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2577
2578/**
2579 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2580 * @virt: virtual address to be unmapped
2581 */
2582void scsi_kunmap_atomic_sg(void *virt)
2583{
2584 kunmap_atomic(virt);
2585}
2586EXPORT_SYMBOL(scsi_kunmap_atomic_sg);