yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | #include <linux/bitops.h> |
| 2 | #include <linux/slab.h> |
| 3 | #include <linux/bio.h> |
| 4 | #include <linux/mm.h> |
| 5 | #include <linux/pagemap.h> |
| 6 | #include <linux/page-flags.h> |
| 7 | #include <linux/module.h> |
| 8 | #include <linux/spinlock.h> |
| 9 | #include <linux/blkdev.h> |
| 10 | #include <linux/swap.h> |
| 11 | #include <linux/writeback.h> |
| 12 | #include <linux/pagevec.h> |
| 13 | #include <linux/prefetch.h> |
| 14 | #include <linux/cleancache.h> |
| 15 | #include "extent_io.h" |
| 16 | #include "extent_map.h" |
| 17 | #include "compat.h" |
| 18 | #include "ctree.h" |
| 19 | #include "btrfs_inode.h" |
| 20 | #include "volumes.h" |
| 21 | #include "check-integrity.h" |
| 22 | #include "locking.h" |
| 23 | |
| 24 | static struct kmem_cache *extent_state_cache; |
| 25 | static struct kmem_cache *extent_buffer_cache; |
| 26 | |
| 27 | static LIST_HEAD(buffers); |
| 28 | static LIST_HEAD(states); |
| 29 | |
| 30 | #define LEAK_DEBUG 0 |
| 31 | #if LEAK_DEBUG |
| 32 | static DEFINE_SPINLOCK(leak_lock); |
| 33 | #endif |
| 34 | |
| 35 | #define BUFFER_LRU_MAX 64 |
| 36 | |
| 37 | struct tree_entry { |
| 38 | u64 start; |
| 39 | u64 end; |
| 40 | struct rb_node rb_node; |
| 41 | }; |
| 42 | |
| 43 | struct extent_page_data { |
| 44 | struct bio *bio; |
| 45 | struct extent_io_tree *tree; |
| 46 | get_extent_t *get_extent; |
| 47 | |
| 48 | /* tells writepage not to lock the state bits for this range |
| 49 | * it still does the unlocking |
| 50 | */ |
| 51 | unsigned int extent_locked:1; |
| 52 | |
| 53 | /* tells the submit_bio code to use a WRITE_SYNC */ |
| 54 | unsigned int sync_io:1; |
| 55 | }; |
| 56 | |
| 57 | static noinline void flush_write_bio(void *data); |
| 58 | static inline struct btrfs_fs_info * |
| 59 | tree_fs_info(struct extent_io_tree *tree) |
| 60 | { |
| 61 | return btrfs_sb(tree->mapping->host->i_sb); |
| 62 | } |
| 63 | |
| 64 | int __init extent_io_init(void) |
| 65 | { |
| 66 | extent_state_cache = kmem_cache_create("extent_state", |
| 67 | sizeof(struct extent_state), 0, |
| 68 | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); |
| 69 | if (!extent_state_cache) |
| 70 | return -ENOMEM; |
| 71 | |
| 72 | extent_buffer_cache = kmem_cache_create("extent_buffers", |
| 73 | sizeof(struct extent_buffer), 0, |
| 74 | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); |
| 75 | if (!extent_buffer_cache) |
| 76 | goto free_state_cache; |
| 77 | return 0; |
| 78 | |
| 79 | free_state_cache: |
| 80 | kmem_cache_destroy(extent_state_cache); |
| 81 | return -ENOMEM; |
| 82 | } |
| 83 | |
| 84 | void extent_io_exit(void) |
| 85 | { |
| 86 | struct extent_state *state; |
| 87 | struct extent_buffer *eb; |
| 88 | |
| 89 | while (!list_empty(&states)) { |
| 90 | state = list_entry(states.next, struct extent_state, leak_list); |
| 91 | printk(KERN_ERR "btrfs state leak: start %llu end %llu " |
| 92 | "state %lu in tree %p refs %d\n", |
| 93 | (unsigned long long)state->start, |
| 94 | (unsigned long long)state->end, |
| 95 | state->state, state->tree, atomic_read(&state->refs)); |
| 96 | list_del(&state->leak_list); |
| 97 | kmem_cache_free(extent_state_cache, state); |
| 98 | |
| 99 | } |
| 100 | |
| 101 | while (!list_empty(&buffers)) { |
| 102 | eb = list_entry(buffers.next, struct extent_buffer, leak_list); |
| 103 | printk(KERN_ERR "btrfs buffer leak start %llu len %lu " |
| 104 | "refs %d\n", (unsigned long long)eb->start, |
| 105 | eb->len, atomic_read(&eb->refs)); |
| 106 | list_del(&eb->leak_list); |
| 107 | kmem_cache_free(extent_buffer_cache, eb); |
| 108 | } |
| 109 | if (extent_state_cache) |
| 110 | kmem_cache_destroy(extent_state_cache); |
| 111 | if (extent_buffer_cache) |
| 112 | kmem_cache_destroy(extent_buffer_cache); |
| 113 | } |
| 114 | |
| 115 | void extent_io_tree_init(struct extent_io_tree *tree, |
| 116 | struct address_space *mapping) |
| 117 | { |
| 118 | tree->state = RB_ROOT; |
| 119 | INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); |
| 120 | tree->ops = NULL; |
| 121 | tree->dirty_bytes = 0; |
| 122 | spin_lock_init(&tree->lock); |
| 123 | spin_lock_init(&tree->buffer_lock); |
| 124 | tree->mapping = mapping; |
| 125 | } |
| 126 | |
| 127 | static struct extent_state *alloc_extent_state(gfp_t mask) |
| 128 | { |
| 129 | struct extent_state *state; |
| 130 | #if LEAK_DEBUG |
| 131 | unsigned long flags; |
| 132 | #endif |
| 133 | |
| 134 | state = kmem_cache_alloc(extent_state_cache, mask); |
| 135 | if (!state) |
| 136 | return state; |
| 137 | state->state = 0; |
| 138 | state->private = 0; |
| 139 | state->tree = NULL; |
| 140 | #if LEAK_DEBUG |
| 141 | spin_lock_irqsave(&leak_lock, flags); |
| 142 | list_add(&state->leak_list, &states); |
| 143 | spin_unlock_irqrestore(&leak_lock, flags); |
| 144 | #endif |
| 145 | atomic_set(&state->refs, 1); |
| 146 | init_waitqueue_head(&state->wq); |
| 147 | trace_alloc_extent_state(state, mask, _RET_IP_); |
| 148 | return state; |
| 149 | } |
| 150 | |
| 151 | void free_extent_state(struct extent_state *state) |
| 152 | { |
| 153 | if (!state) |
| 154 | return; |
| 155 | if (atomic_dec_and_test(&state->refs)) { |
| 156 | #if LEAK_DEBUG |
| 157 | unsigned long flags; |
| 158 | #endif |
| 159 | WARN_ON(state->tree); |
| 160 | #if LEAK_DEBUG |
| 161 | spin_lock_irqsave(&leak_lock, flags); |
| 162 | list_del(&state->leak_list); |
| 163 | spin_unlock_irqrestore(&leak_lock, flags); |
| 164 | #endif |
| 165 | trace_free_extent_state(state, _RET_IP_); |
| 166 | kmem_cache_free(extent_state_cache, state); |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | static struct rb_node *tree_insert(struct rb_root *root, u64 offset, |
| 171 | struct rb_node *node) |
| 172 | { |
| 173 | struct rb_node **p = &root->rb_node; |
| 174 | struct rb_node *parent = NULL; |
| 175 | struct tree_entry *entry; |
| 176 | |
| 177 | while (*p) { |
| 178 | parent = *p; |
| 179 | entry = rb_entry(parent, struct tree_entry, rb_node); |
| 180 | |
| 181 | if (offset < entry->start) |
| 182 | p = &(*p)->rb_left; |
| 183 | else if (offset > entry->end) |
| 184 | p = &(*p)->rb_right; |
| 185 | else |
| 186 | return parent; |
| 187 | } |
| 188 | |
| 189 | entry = rb_entry(node, struct tree_entry, rb_node); |
| 190 | rb_link_node(node, parent, p); |
| 191 | rb_insert_color(node, root); |
| 192 | return NULL; |
| 193 | } |
| 194 | |
| 195 | static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, |
| 196 | struct rb_node **prev_ret, |
| 197 | struct rb_node **next_ret) |
| 198 | { |
| 199 | struct rb_root *root = &tree->state; |
| 200 | struct rb_node *n = root->rb_node; |
| 201 | struct rb_node *prev = NULL; |
| 202 | struct rb_node *orig_prev = NULL; |
| 203 | struct tree_entry *entry; |
| 204 | struct tree_entry *prev_entry = NULL; |
| 205 | |
| 206 | while (n) { |
| 207 | entry = rb_entry(n, struct tree_entry, rb_node); |
| 208 | prev = n; |
| 209 | prev_entry = entry; |
| 210 | |
| 211 | if (offset < entry->start) |
| 212 | n = n->rb_left; |
| 213 | else if (offset > entry->end) |
| 214 | n = n->rb_right; |
| 215 | else |
| 216 | return n; |
| 217 | } |
| 218 | |
| 219 | if (prev_ret) { |
| 220 | orig_prev = prev; |
| 221 | while (prev && offset > prev_entry->end) { |
| 222 | prev = rb_next(prev); |
| 223 | prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| 224 | } |
| 225 | *prev_ret = prev; |
| 226 | prev = orig_prev; |
| 227 | } |
| 228 | |
| 229 | if (next_ret) { |
| 230 | prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| 231 | while (prev && offset < prev_entry->start) { |
| 232 | prev = rb_prev(prev); |
| 233 | prev_entry = rb_entry(prev, struct tree_entry, rb_node); |
| 234 | } |
| 235 | *next_ret = prev; |
| 236 | } |
| 237 | return NULL; |
| 238 | } |
| 239 | |
| 240 | static inline struct rb_node *tree_search(struct extent_io_tree *tree, |
| 241 | u64 offset) |
| 242 | { |
| 243 | struct rb_node *prev = NULL; |
| 244 | struct rb_node *ret; |
| 245 | |
| 246 | ret = __etree_search(tree, offset, &prev, NULL); |
| 247 | if (!ret) |
| 248 | return prev; |
| 249 | return ret; |
| 250 | } |
| 251 | |
| 252 | static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, |
| 253 | struct extent_state *other) |
| 254 | { |
| 255 | if (tree->ops && tree->ops->merge_extent_hook) |
| 256 | tree->ops->merge_extent_hook(tree->mapping->host, new, |
| 257 | other); |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * utility function to look for merge candidates inside a given range. |
| 262 | * Any extents with matching state are merged together into a single |
| 263 | * extent in the tree. Extents with EXTENT_IO in their state field |
| 264 | * are not merged because the end_io handlers need to be able to do |
| 265 | * operations on them without sleeping (or doing allocations/splits). |
| 266 | * |
| 267 | * This should be called with the tree lock held. |
| 268 | */ |
| 269 | static void merge_state(struct extent_io_tree *tree, |
| 270 | struct extent_state *state) |
| 271 | { |
| 272 | struct extent_state *other; |
| 273 | struct rb_node *other_node; |
| 274 | |
| 275 | if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) |
| 276 | return; |
| 277 | |
| 278 | other_node = rb_prev(&state->rb_node); |
| 279 | if (other_node) { |
| 280 | other = rb_entry(other_node, struct extent_state, rb_node); |
| 281 | if (other->end == state->start - 1 && |
| 282 | other->state == state->state) { |
| 283 | merge_cb(tree, state, other); |
| 284 | state->start = other->start; |
| 285 | other->tree = NULL; |
| 286 | rb_erase(&other->rb_node, &tree->state); |
| 287 | free_extent_state(other); |
| 288 | } |
| 289 | } |
| 290 | other_node = rb_next(&state->rb_node); |
| 291 | if (other_node) { |
| 292 | other = rb_entry(other_node, struct extent_state, rb_node); |
| 293 | if (other->start == state->end + 1 && |
| 294 | other->state == state->state) { |
| 295 | merge_cb(tree, state, other); |
| 296 | state->end = other->end; |
| 297 | other->tree = NULL; |
| 298 | rb_erase(&other->rb_node, &tree->state); |
| 299 | free_extent_state(other); |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | static void set_state_cb(struct extent_io_tree *tree, |
| 305 | struct extent_state *state, int *bits) |
| 306 | { |
| 307 | if (tree->ops && tree->ops->set_bit_hook) |
| 308 | tree->ops->set_bit_hook(tree->mapping->host, state, bits); |
| 309 | } |
| 310 | |
| 311 | static void clear_state_cb(struct extent_io_tree *tree, |
| 312 | struct extent_state *state, int *bits) |
| 313 | { |
| 314 | if (tree->ops && tree->ops->clear_bit_hook) |
| 315 | tree->ops->clear_bit_hook(tree->mapping->host, state, bits); |
| 316 | } |
| 317 | |
| 318 | static void set_state_bits(struct extent_io_tree *tree, |
| 319 | struct extent_state *state, int *bits); |
| 320 | |
| 321 | /* |
| 322 | * insert an extent_state struct into the tree. 'bits' are set on the |
| 323 | * struct before it is inserted. |
| 324 | * |
| 325 | * This may return -EEXIST if the extent is already there, in which case the |
| 326 | * state struct is freed. |
| 327 | * |
| 328 | * The tree lock is not taken internally. This is a utility function and |
| 329 | * probably isn't what you want to call (see set/clear_extent_bit). |
| 330 | */ |
| 331 | static int insert_state(struct extent_io_tree *tree, |
| 332 | struct extent_state *state, u64 start, u64 end, |
| 333 | int *bits) |
| 334 | { |
| 335 | struct rb_node *node; |
| 336 | |
| 337 | if (end < start) { |
| 338 | printk(KERN_ERR "btrfs end < start %llu %llu\n", |
| 339 | (unsigned long long)end, |
| 340 | (unsigned long long)start); |
| 341 | WARN_ON(1); |
| 342 | } |
| 343 | state->start = start; |
| 344 | state->end = end; |
| 345 | |
| 346 | set_state_bits(tree, state, bits); |
| 347 | |
| 348 | node = tree_insert(&tree->state, end, &state->rb_node); |
| 349 | if (node) { |
| 350 | struct extent_state *found; |
| 351 | found = rb_entry(node, struct extent_state, rb_node); |
| 352 | printk(KERN_ERR "btrfs found node %llu %llu on insert of " |
| 353 | "%llu %llu\n", (unsigned long long)found->start, |
| 354 | (unsigned long long)found->end, |
| 355 | (unsigned long long)start, (unsigned long long)end); |
| 356 | return -EEXIST; |
| 357 | } |
| 358 | state->tree = tree; |
| 359 | merge_state(tree, state); |
| 360 | return 0; |
| 361 | } |
| 362 | |
| 363 | static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, |
| 364 | u64 split) |
| 365 | { |
| 366 | if (tree->ops && tree->ops->split_extent_hook) |
| 367 | tree->ops->split_extent_hook(tree->mapping->host, orig, split); |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | * split a given extent state struct in two, inserting the preallocated |
| 372 | * struct 'prealloc' as the newly created second half. 'split' indicates an |
| 373 | * offset inside 'orig' where it should be split. |
| 374 | * |
| 375 | * Before calling, |
| 376 | * the tree has 'orig' at [orig->start, orig->end]. After calling, there |
| 377 | * are two extent state structs in the tree: |
| 378 | * prealloc: [orig->start, split - 1] |
| 379 | * orig: [ split, orig->end ] |
| 380 | * |
| 381 | * The tree locks are not taken by this function. They need to be held |
| 382 | * by the caller. |
| 383 | */ |
| 384 | static int split_state(struct extent_io_tree *tree, struct extent_state *orig, |
| 385 | struct extent_state *prealloc, u64 split) |
| 386 | { |
| 387 | struct rb_node *node; |
| 388 | |
| 389 | split_cb(tree, orig, split); |
| 390 | |
| 391 | prealloc->start = orig->start; |
| 392 | prealloc->end = split - 1; |
| 393 | prealloc->state = orig->state; |
| 394 | orig->start = split; |
| 395 | |
| 396 | node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); |
| 397 | if (node) { |
| 398 | free_extent_state(prealloc); |
| 399 | return -EEXIST; |
| 400 | } |
| 401 | prealloc->tree = tree; |
| 402 | return 0; |
| 403 | } |
| 404 | |
| 405 | static struct extent_state *next_state(struct extent_state *state) |
| 406 | { |
| 407 | struct rb_node *next = rb_next(&state->rb_node); |
| 408 | if (next) |
| 409 | return rb_entry(next, struct extent_state, rb_node); |
| 410 | else |
| 411 | return NULL; |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * utility function to clear some bits in an extent state struct. |
| 416 | * it will optionally wake up any one waiting on this state (wake == 1) |
| 417 | * |
| 418 | * If no bits are set on the state struct after clearing things, the |
| 419 | * struct is freed and removed from the tree |
| 420 | */ |
| 421 | static struct extent_state *clear_state_bit(struct extent_io_tree *tree, |
| 422 | struct extent_state *state, |
| 423 | int *bits, int wake) |
| 424 | { |
| 425 | struct extent_state *next; |
| 426 | int bits_to_clear = *bits & ~EXTENT_CTLBITS; |
| 427 | |
| 428 | if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { |
| 429 | u64 range = state->end - state->start + 1; |
| 430 | WARN_ON(range > tree->dirty_bytes); |
| 431 | tree->dirty_bytes -= range; |
| 432 | } |
| 433 | clear_state_cb(tree, state, bits); |
| 434 | state->state &= ~bits_to_clear; |
| 435 | if (wake) |
| 436 | wake_up(&state->wq); |
| 437 | if (state->state == 0) { |
| 438 | next = next_state(state); |
| 439 | if (state->tree) { |
| 440 | rb_erase(&state->rb_node, &tree->state); |
| 441 | state->tree = NULL; |
| 442 | free_extent_state(state); |
| 443 | } else { |
| 444 | WARN_ON(1); |
| 445 | } |
| 446 | } else { |
| 447 | merge_state(tree, state); |
| 448 | next = next_state(state); |
| 449 | } |
| 450 | return next; |
| 451 | } |
| 452 | |
| 453 | static struct extent_state * |
| 454 | alloc_extent_state_atomic(struct extent_state *prealloc) |
| 455 | { |
| 456 | if (!prealloc) |
| 457 | prealloc = alloc_extent_state(GFP_ATOMIC); |
| 458 | |
| 459 | return prealloc; |
| 460 | } |
| 461 | |
| 462 | void extent_io_tree_panic(struct extent_io_tree *tree, int err) |
| 463 | { |
| 464 | btrfs_panic(tree_fs_info(tree), err, "Locking error: " |
| 465 | "Extent tree was modified by another " |
| 466 | "thread while locked."); |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * clear some bits on a range in the tree. This may require splitting |
| 471 | * or inserting elements in the tree, so the gfp mask is used to |
| 472 | * indicate which allocations or sleeping are allowed. |
| 473 | * |
| 474 | * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove |
| 475 | * the given range from the tree regardless of state (ie for truncate). |
| 476 | * |
| 477 | * the range [start, end] is inclusive. |
| 478 | * |
| 479 | * This takes the tree lock, and returns 0 on success and < 0 on error. |
| 480 | */ |
| 481 | int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, |
| 482 | int bits, int wake, int delete, |
| 483 | struct extent_state **cached_state, |
| 484 | gfp_t mask) |
| 485 | { |
| 486 | struct extent_state *state; |
| 487 | struct extent_state *cached; |
| 488 | struct extent_state *prealloc = NULL; |
| 489 | struct rb_node *node; |
| 490 | u64 last_end; |
| 491 | int err; |
| 492 | int clear = 0; |
| 493 | |
| 494 | if (delete) |
| 495 | bits |= ~EXTENT_CTLBITS; |
| 496 | bits |= EXTENT_FIRST_DELALLOC; |
| 497 | |
| 498 | if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) |
| 499 | clear = 1; |
| 500 | again: |
| 501 | if (!prealloc && (mask & __GFP_WAIT)) { |
| 502 | prealloc = alloc_extent_state(mask); |
| 503 | if (!prealloc) |
| 504 | return -ENOMEM; |
| 505 | } |
| 506 | |
| 507 | spin_lock(&tree->lock); |
| 508 | if (cached_state) { |
| 509 | cached = *cached_state; |
| 510 | |
| 511 | if (clear) { |
| 512 | *cached_state = NULL; |
| 513 | cached_state = NULL; |
| 514 | } |
| 515 | |
| 516 | if (cached && cached->tree && cached->start <= start && |
| 517 | cached->end > start) { |
| 518 | if (clear) |
| 519 | atomic_dec(&cached->refs); |
| 520 | state = cached; |
| 521 | goto hit_next; |
| 522 | } |
| 523 | if (clear) |
| 524 | free_extent_state(cached); |
| 525 | } |
| 526 | /* |
| 527 | * this search will find the extents that end after |
| 528 | * our range starts |
| 529 | */ |
| 530 | node = tree_search(tree, start); |
| 531 | if (!node) |
| 532 | goto out; |
| 533 | state = rb_entry(node, struct extent_state, rb_node); |
| 534 | hit_next: |
| 535 | if (state->start > end) |
| 536 | goto out; |
| 537 | WARN_ON(state->end < start); |
| 538 | last_end = state->end; |
| 539 | |
| 540 | /* the state doesn't have the wanted bits, go ahead */ |
| 541 | if (!(state->state & bits)) { |
| 542 | state = next_state(state); |
| 543 | goto next; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * | ---- desired range ---- | |
| 548 | * | state | or |
| 549 | * | ------------- state -------------- | |
| 550 | * |
| 551 | * We need to split the extent we found, and may flip |
| 552 | * bits on second half. |
| 553 | * |
| 554 | * If the extent we found extends past our range, we |
| 555 | * just split and search again. It'll get split again |
| 556 | * the next time though. |
| 557 | * |
| 558 | * If the extent we found is inside our range, we clear |
| 559 | * the desired bit on it. |
| 560 | */ |
| 561 | |
| 562 | if (state->start < start) { |
| 563 | prealloc = alloc_extent_state_atomic(prealloc); |
| 564 | BUG_ON(!prealloc); |
| 565 | err = split_state(tree, state, prealloc, start); |
| 566 | if (err) |
| 567 | extent_io_tree_panic(tree, err); |
| 568 | |
| 569 | prealloc = NULL; |
| 570 | if (err) |
| 571 | goto out; |
| 572 | if (state->end <= end) { |
| 573 | clear_state_bit(tree, state, &bits, wake); |
| 574 | if (last_end == (u64)-1) |
| 575 | goto out; |
| 576 | start = last_end + 1; |
| 577 | } |
| 578 | goto search_again; |
| 579 | } |
| 580 | /* |
| 581 | * | ---- desired range ---- | |
| 582 | * | state | |
| 583 | * We need to split the extent, and clear the bit |
| 584 | * on the first half |
| 585 | */ |
| 586 | if (state->start <= end && state->end > end) { |
| 587 | prealloc = alloc_extent_state_atomic(prealloc); |
| 588 | BUG_ON(!prealloc); |
| 589 | err = split_state(tree, state, prealloc, end + 1); |
| 590 | if (err) |
| 591 | extent_io_tree_panic(tree, err); |
| 592 | |
| 593 | if (wake) |
| 594 | wake_up(&state->wq); |
| 595 | |
| 596 | clear_state_bit(tree, prealloc, &bits, wake); |
| 597 | |
| 598 | prealloc = NULL; |
| 599 | goto out; |
| 600 | } |
| 601 | |
| 602 | state = clear_state_bit(tree, state, &bits, wake); |
| 603 | next: |
| 604 | if (last_end == (u64)-1) |
| 605 | goto out; |
| 606 | start = last_end + 1; |
| 607 | if (start <= end && state && !need_resched()) |
| 608 | goto hit_next; |
| 609 | goto search_again; |
| 610 | |
| 611 | out: |
| 612 | spin_unlock(&tree->lock); |
| 613 | if (prealloc) |
| 614 | free_extent_state(prealloc); |
| 615 | |
| 616 | return 0; |
| 617 | |
| 618 | search_again: |
| 619 | if (start > end) |
| 620 | goto out; |
| 621 | spin_unlock(&tree->lock); |
| 622 | if (mask & __GFP_WAIT) |
| 623 | cond_resched(); |
| 624 | goto again; |
| 625 | } |
| 626 | |
| 627 | static void wait_on_state(struct extent_io_tree *tree, |
| 628 | struct extent_state *state) |
| 629 | __releases(tree->lock) |
| 630 | __acquires(tree->lock) |
| 631 | { |
| 632 | DEFINE_WAIT(wait); |
| 633 | prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); |
| 634 | spin_unlock(&tree->lock); |
| 635 | schedule(); |
| 636 | spin_lock(&tree->lock); |
| 637 | finish_wait(&state->wq, &wait); |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * waits for one or more bits to clear on a range in the state tree. |
| 642 | * The range [start, end] is inclusive. |
| 643 | * The tree lock is taken by this function |
| 644 | */ |
| 645 | void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) |
| 646 | { |
| 647 | struct extent_state *state; |
| 648 | struct rb_node *node; |
| 649 | |
| 650 | spin_lock(&tree->lock); |
| 651 | again: |
| 652 | while (1) { |
| 653 | /* |
| 654 | * this search will find all the extents that end after |
| 655 | * our range starts |
| 656 | */ |
| 657 | node = tree_search(tree, start); |
| 658 | if (!node) |
| 659 | break; |
| 660 | |
| 661 | state = rb_entry(node, struct extent_state, rb_node); |
| 662 | |
| 663 | if (state->start > end) |
| 664 | goto out; |
| 665 | |
| 666 | if (state->state & bits) { |
| 667 | start = state->start; |
| 668 | atomic_inc(&state->refs); |
| 669 | wait_on_state(tree, state); |
| 670 | free_extent_state(state); |
| 671 | goto again; |
| 672 | } |
| 673 | start = state->end + 1; |
| 674 | |
| 675 | if (start > end) |
| 676 | break; |
| 677 | |
| 678 | cond_resched_lock(&tree->lock); |
| 679 | } |
| 680 | out: |
| 681 | spin_unlock(&tree->lock); |
| 682 | } |
| 683 | |
| 684 | static void set_state_bits(struct extent_io_tree *tree, |
| 685 | struct extent_state *state, |
| 686 | int *bits) |
| 687 | { |
| 688 | int bits_to_set = *bits & ~EXTENT_CTLBITS; |
| 689 | |
| 690 | set_state_cb(tree, state, bits); |
| 691 | if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { |
| 692 | u64 range = state->end - state->start + 1; |
| 693 | tree->dirty_bytes += range; |
| 694 | } |
| 695 | state->state |= bits_to_set; |
| 696 | } |
| 697 | |
| 698 | static void cache_state(struct extent_state *state, |
| 699 | struct extent_state **cached_ptr) |
| 700 | { |
| 701 | if (cached_ptr && !(*cached_ptr)) { |
| 702 | if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { |
| 703 | *cached_ptr = state; |
| 704 | atomic_inc(&state->refs); |
| 705 | } |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | static void uncache_state(struct extent_state **cached_ptr) |
| 710 | { |
| 711 | if (cached_ptr && (*cached_ptr)) { |
| 712 | struct extent_state *state = *cached_ptr; |
| 713 | *cached_ptr = NULL; |
| 714 | free_extent_state(state); |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * set some bits on a range in the tree. This may require allocations or |
| 720 | * sleeping, so the gfp mask is used to indicate what is allowed. |
| 721 | * |
| 722 | * If any of the exclusive bits are set, this will fail with -EEXIST if some |
| 723 | * part of the range already has the desired bits set. The start of the |
| 724 | * existing range is returned in failed_start in this case. |
| 725 | * |
| 726 | * [start, end] is inclusive This takes the tree lock. |
| 727 | */ |
| 728 | |
| 729 | static int __must_check |
| 730 | __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, |
| 731 | int bits, int exclusive_bits, u64 *failed_start, |
| 732 | struct extent_state **cached_state, gfp_t mask) |
| 733 | { |
| 734 | struct extent_state *state; |
| 735 | struct extent_state *prealloc = NULL; |
| 736 | struct rb_node *node; |
| 737 | int err = 0; |
| 738 | u64 last_start; |
| 739 | u64 last_end; |
| 740 | |
| 741 | bits |= EXTENT_FIRST_DELALLOC; |
| 742 | again: |
| 743 | if (!prealloc && (mask & __GFP_WAIT)) { |
| 744 | prealloc = alloc_extent_state(mask); |
| 745 | BUG_ON(!prealloc); |
| 746 | } |
| 747 | |
| 748 | spin_lock(&tree->lock); |
| 749 | if (cached_state && *cached_state) { |
| 750 | state = *cached_state; |
| 751 | if (state->start <= start && state->end > start && |
| 752 | state->tree) { |
| 753 | node = &state->rb_node; |
| 754 | goto hit_next; |
| 755 | } |
| 756 | } |
| 757 | /* |
| 758 | * this search will find all the extents that end after |
| 759 | * our range starts. |
| 760 | */ |
| 761 | node = tree_search(tree, start); |
| 762 | if (!node) { |
| 763 | prealloc = alloc_extent_state_atomic(prealloc); |
| 764 | BUG_ON(!prealloc); |
| 765 | err = insert_state(tree, prealloc, start, end, &bits); |
| 766 | if (err) |
| 767 | extent_io_tree_panic(tree, err); |
| 768 | |
| 769 | prealloc = NULL; |
| 770 | goto out; |
| 771 | } |
| 772 | state = rb_entry(node, struct extent_state, rb_node); |
| 773 | hit_next: |
| 774 | last_start = state->start; |
| 775 | last_end = state->end; |
| 776 | |
| 777 | /* |
| 778 | * | ---- desired range ---- | |
| 779 | * | state | |
| 780 | * |
| 781 | * Just lock what we found and keep going |
| 782 | */ |
| 783 | if (state->start == start && state->end <= end) { |
| 784 | struct rb_node *next_node; |
| 785 | if (state->state & exclusive_bits) { |
| 786 | *failed_start = state->start; |
| 787 | err = -EEXIST; |
| 788 | goto out; |
| 789 | } |
| 790 | |
| 791 | set_state_bits(tree, state, &bits); |
| 792 | |
| 793 | cache_state(state, cached_state); |
| 794 | merge_state(tree, state); |
| 795 | if (last_end == (u64)-1) |
| 796 | goto out; |
| 797 | |
| 798 | start = last_end + 1; |
| 799 | next_node = rb_next(&state->rb_node); |
| 800 | if (next_node && start < end && prealloc && !need_resched()) { |
| 801 | state = rb_entry(next_node, struct extent_state, |
| 802 | rb_node); |
| 803 | if (state->start == start) |
| 804 | goto hit_next; |
| 805 | } |
| 806 | goto search_again; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * | ---- desired range ---- | |
| 811 | * | state | |
| 812 | * or |
| 813 | * | ------------- state -------------- | |
| 814 | * |
| 815 | * We need to split the extent we found, and may flip bits on |
| 816 | * second half. |
| 817 | * |
| 818 | * If the extent we found extends past our |
| 819 | * range, we just split and search again. It'll get split |
| 820 | * again the next time though. |
| 821 | * |
| 822 | * If the extent we found is inside our range, we set the |
| 823 | * desired bit on it. |
| 824 | */ |
| 825 | if (state->start < start) { |
| 826 | if (state->state & exclusive_bits) { |
| 827 | *failed_start = start; |
| 828 | err = -EEXIST; |
| 829 | goto out; |
| 830 | } |
| 831 | |
| 832 | prealloc = alloc_extent_state_atomic(prealloc); |
| 833 | BUG_ON(!prealloc); |
| 834 | err = split_state(tree, state, prealloc, start); |
| 835 | if (err) |
| 836 | extent_io_tree_panic(tree, err); |
| 837 | |
| 838 | prealloc = NULL; |
| 839 | if (err) |
| 840 | goto out; |
| 841 | if (state->end <= end) { |
| 842 | set_state_bits(tree, state, &bits); |
| 843 | cache_state(state, cached_state); |
| 844 | merge_state(tree, state); |
| 845 | if (last_end == (u64)-1) |
| 846 | goto out; |
| 847 | start = last_end + 1; |
| 848 | } |
| 849 | goto search_again; |
| 850 | } |
| 851 | /* |
| 852 | * | ---- desired range ---- | |
| 853 | * | state | or | state | |
| 854 | * |
| 855 | * There's a hole, we need to insert something in it and |
| 856 | * ignore the extent we found. |
| 857 | */ |
| 858 | if (state->start > start) { |
| 859 | u64 this_end; |
| 860 | if (end < last_start) |
| 861 | this_end = end; |
| 862 | else |
| 863 | this_end = last_start - 1; |
| 864 | |
| 865 | prealloc = alloc_extent_state_atomic(prealloc); |
| 866 | BUG_ON(!prealloc); |
| 867 | |
| 868 | /* |
| 869 | * Avoid to free 'prealloc' if it can be merged with |
| 870 | * the later extent. |
| 871 | */ |
| 872 | err = insert_state(tree, prealloc, start, this_end, |
| 873 | &bits); |
| 874 | if (err) |
| 875 | extent_io_tree_panic(tree, err); |
| 876 | |
| 877 | cache_state(prealloc, cached_state); |
| 878 | prealloc = NULL; |
| 879 | start = this_end + 1; |
| 880 | goto search_again; |
| 881 | } |
| 882 | /* |
| 883 | * | ---- desired range ---- | |
| 884 | * | state | |
| 885 | * We need to split the extent, and set the bit |
| 886 | * on the first half |
| 887 | */ |
| 888 | if (state->start <= end && state->end > end) { |
| 889 | if (state->state & exclusive_bits) { |
| 890 | *failed_start = start; |
| 891 | err = -EEXIST; |
| 892 | goto out; |
| 893 | } |
| 894 | |
| 895 | prealloc = alloc_extent_state_atomic(prealloc); |
| 896 | BUG_ON(!prealloc); |
| 897 | err = split_state(tree, state, prealloc, end + 1); |
| 898 | if (err) |
| 899 | extent_io_tree_panic(tree, err); |
| 900 | |
| 901 | set_state_bits(tree, prealloc, &bits); |
| 902 | cache_state(prealloc, cached_state); |
| 903 | merge_state(tree, prealloc); |
| 904 | prealloc = NULL; |
| 905 | goto out; |
| 906 | } |
| 907 | |
| 908 | goto search_again; |
| 909 | |
| 910 | out: |
| 911 | spin_unlock(&tree->lock); |
| 912 | if (prealloc) |
| 913 | free_extent_state(prealloc); |
| 914 | |
| 915 | return err; |
| 916 | |
| 917 | search_again: |
| 918 | if (start > end) |
| 919 | goto out; |
| 920 | spin_unlock(&tree->lock); |
| 921 | if (mask & __GFP_WAIT) |
| 922 | cond_resched(); |
| 923 | goto again; |
| 924 | } |
| 925 | |
| 926 | int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, |
| 927 | u64 *failed_start, struct extent_state **cached_state, |
| 928 | gfp_t mask) |
| 929 | { |
| 930 | return __set_extent_bit(tree, start, end, bits, 0, failed_start, |
| 931 | cached_state, mask); |
| 932 | } |
| 933 | |
| 934 | |
| 935 | /** |
| 936 | * convert_extent - convert all bits in a given range from one bit to another |
| 937 | * @tree: the io tree to search |
| 938 | * @start: the start offset in bytes |
| 939 | * @end: the end offset in bytes (inclusive) |
| 940 | * @bits: the bits to set in this range |
| 941 | * @clear_bits: the bits to clear in this range |
| 942 | * @mask: the allocation mask |
| 943 | * |
| 944 | * This will go through and set bits for the given range. If any states exist |
| 945 | * already in this range they are set with the given bit and cleared of the |
| 946 | * clear_bits. This is only meant to be used by things that are mergeable, ie |
| 947 | * converting from say DELALLOC to DIRTY. This is not meant to be used with |
| 948 | * boundary bits like LOCK. |
| 949 | */ |
| 950 | int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, |
| 951 | int bits, int clear_bits, gfp_t mask) |
| 952 | { |
| 953 | struct extent_state *state; |
| 954 | struct extent_state *prealloc = NULL; |
| 955 | struct rb_node *node; |
| 956 | int err = 0; |
| 957 | u64 last_start; |
| 958 | u64 last_end; |
| 959 | |
| 960 | again: |
| 961 | if (!prealloc && (mask & __GFP_WAIT)) { |
| 962 | prealloc = alloc_extent_state(mask); |
| 963 | if (!prealloc) |
| 964 | return -ENOMEM; |
| 965 | } |
| 966 | |
| 967 | spin_lock(&tree->lock); |
| 968 | /* |
| 969 | * this search will find all the extents that end after |
| 970 | * our range starts. |
| 971 | */ |
| 972 | node = tree_search(tree, start); |
| 973 | if (!node) { |
| 974 | prealloc = alloc_extent_state_atomic(prealloc); |
| 975 | if (!prealloc) { |
| 976 | err = -ENOMEM; |
| 977 | goto out; |
| 978 | } |
| 979 | err = insert_state(tree, prealloc, start, end, &bits); |
| 980 | prealloc = NULL; |
| 981 | if (err) |
| 982 | extent_io_tree_panic(tree, err); |
| 983 | goto out; |
| 984 | } |
| 985 | state = rb_entry(node, struct extent_state, rb_node); |
| 986 | hit_next: |
| 987 | last_start = state->start; |
| 988 | last_end = state->end; |
| 989 | |
| 990 | /* |
| 991 | * | ---- desired range ---- | |
| 992 | * | state | |
| 993 | * |
| 994 | * Just lock what we found and keep going |
| 995 | */ |
| 996 | if (state->start == start && state->end <= end) { |
| 997 | struct rb_node *next_node; |
| 998 | |
| 999 | set_state_bits(tree, state, &bits); |
| 1000 | clear_state_bit(tree, state, &clear_bits, 0); |
| 1001 | if (last_end == (u64)-1) |
| 1002 | goto out; |
| 1003 | |
| 1004 | start = last_end + 1; |
| 1005 | next_node = rb_next(&state->rb_node); |
| 1006 | if (next_node && start < end && prealloc && !need_resched()) { |
| 1007 | state = rb_entry(next_node, struct extent_state, |
| 1008 | rb_node); |
| 1009 | if (state->start == start) |
| 1010 | goto hit_next; |
| 1011 | } |
| 1012 | goto search_again; |
| 1013 | } |
| 1014 | |
| 1015 | /* |
| 1016 | * | ---- desired range ---- | |
| 1017 | * | state | |
| 1018 | * or |
| 1019 | * | ------------- state -------------- | |
| 1020 | * |
| 1021 | * We need to split the extent we found, and may flip bits on |
| 1022 | * second half. |
| 1023 | * |
| 1024 | * If the extent we found extends past our |
| 1025 | * range, we just split and search again. It'll get split |
| 1026 | * again the next time though. |
| 1027 | * |
| 1028 | * If the extent we found is inside our range, we set the |
| 1029 | * desired bit on it. |
| 1030 | */ |
| 1031 | if (state->start < start) { |
| 1032 | prealloc = alloc_extent_state_atomic(prealloc); |
| 1033 | if (!prealloc) { |
| 1034 | err = -ENOMEM; |
| 1035 | goto out; |
| 1036 | } |
| 1037 | err = split_state(tree, state, prealloc, start); |
| 1038 | if (err) |
| 1039 | extent_io_tree_panic(tree, err); |
| 1040 | prealloc = NULL; |
| 1041 | if (err) |
| 1042 | goto out; |
| 1043 | if (state->end <= end) { |
| 1044 | set_state_bits(tree, state, &bits); |
| 1045 | clear_state_bit(tree, state, &clear_bits, 0); |
| 1046 | if (last_end == (u64)-1) |
| 1047 | goto out; |
| 1048 | start = last_end + 1; |
| 1049 | } |
| 1050 | goto search_again; |
| 1051 | } |
| 1052 | /* |
| 1053 | * | ---- desired range ---- | |
| 1054 | * | state | or | state | |
| 1055 | * |
| 1056 | * There's a hole, we need to insert something in it and |
| 1057 | * ignore the extent we found. |
| 1058 | */ |
| 1059 | if (state->start > start) { |
| 1060 | u64 this_end; |
| 1061 | if (end < last_start) |
| 1062 | this_end = end; |
| 1063 | else |
| 1064 | this_end = last_start - 1; |
| 1065 | |
| 1066 | prealloc = alloc_extent_state_atomic(prealloc); |
| 1067 | if (!prealloc) { |
| 1068 | err = -ENOMEM; |
| 1069 | goto out; |
| 1070 | } |
| 1071 | |
| 1072 | /* |
| 1073 | * Avoid to free 'prealloc' if it can be merged with |
| 1074 | * the later extent. |
| 1075 | */ |
| 1076 | err = insert_state(tree, prealloc, start, this_end, |
| 1077 | &bits); |
| 1078 | if (err) |
| 1079 | extent_io_tree_panic(tree, err); |
| 1080 | prealloc = NULL; |
| 1081 | start = this_end + 1; |
| 1082 | goto search_again; |
| 1083 | } |
| 1084 | /* |
| 1085 | * | ---- desired range ---- | |
| 1086 | * | state | |
| 1087 | * We need to split the extent, and set the bit |
| 1088 | * on the first half |
| 1089 | */ |
| 1090 | if (state->start <= end && state->end > end) { |
| 1091 | prealloc = alloc_extent_state_atomic(prealloc); |
| 1092 | if (!prealloc) { |
| 1093 | err = -ENOMEM; |
| 1094 | goto out; |
| 1095 | } |
| 1096 | |
| 1097 | err = split_state(tree, state, prealloc, end + 1); |
| 1098 | if (err) |
| 1099 | extent_io_tree_panic(tree, err); |
| 1100 | |
| 1101 | set_state_bits(tree, prealloc, &bits); |
| 1102 | clear_state_bit(tree, prealloc, &clear_bits, 0); |
| 1103 | prealloc = NULL; |
| 1104 | goto out; |
| 1105 | } |
| 1106 | |
| 1107 | goto search_again; |
| 1108 | |
| 1109 | out: |
| 1110 | spin_unlock(&tree->lock); |
| 1111 | if (prealloc) |
| 1112 | free_extent_state(prealloc); |
| 1113 | |
| 1114 | return err; |
| 1115 | |
| 1116 | search_again: |
| 1117 | if (start > end) |
| 1118 | goto out; |
| 1119 | spin_unlock(&tree->lock); |
| 1120 | if (mask & __GFP_WAIT) |
| 1121 | cond_resched(); |
| 1122 | goto again; |
| 1123 | } |
| 1124 | |
| 1125 | /* wrappers around set/clear extent bit */ |
| 1126 | int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, |
| 1127 | gfp_t mask) |
| 1128 | { |
| 1129 | return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, |
| 1130 | NULL, mask); |
| 1131 | } |
| 1132 | |
| 1133 | int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, |
| 1134 | int bits, gfp_t mask) |
| 1135 | { |
| 1136 | return set_extent_bit(tree, start, end, bits, NULL, |
| 1137 | NULL, mask); |
| 1138 | } |
| 1139 | |
| 1140 | int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, |
| 1141 | int bits, gfp_t mask) |
| 1142 | { |
| 1143 | return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); |
| 1144 | } |
| 1145 | |
| 1146 | int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, |
| 1147 | struct extent_state **cached_state, gfp_t mask) |
| 1148 | { |
| 1149 | return set_extent_bit(tree, start, end, |
| 1150 | EXTENT_DELALLOC | EXTENT_UPTODATE, |
| 1151 | NULL, cached_state, mask); |
| 1152 | } |
| 1153 | |
| 1154 | int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, |
| 1155 | gfp_t mask) |
| 1156 | { |
| 1157 | return clear_extent_bit(tree, start, end, |
| 1158 | EXTENT_DIRTY | EXTENT_DELALLOC | |
| 1159 | EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); |
| 1160 | } |
| 1161 | |
| 1162 | int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, |
| 1163 | gfp_t mask) |
| 1164 | { |
| 1165 | return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, |
| 1166 | NULL, mask); |
| 1167 | } |
| 1168 | |
| 1169 | int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, |
| 1170 | struct extent_state **cached_state, gfp_t mask) |
| 1171 | { |
| 1172 | return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, |
| 1173 | cached_state, mask); |
| 1174 | } |
| 1175 | |
| 1176 | static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, |
| 1177 | u64 end, struct extent_state **cached_state, |
| 1178 | gfp_t mask) |
| 1179 | { |
| 1180 | return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, |
| 1181 | cached_state, mask); |
| 1182 | } |
| 1183 | |
| 1184 | /* |
| 1185 | * either insert or lock state struct between start and end use mask to tell |
| 1186 | * us if waiting is desired. |
| 1187 | */ |
| 1188 | int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, |
| 1189 | int bits, struct extent_state **cached_state) |
| 1190 | { |
| 1191 | int err; |
| 1192 | u64 failed_start; |
| 1193 | while (1) { |
| 1194 | err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, |
| 1195 | EXTENT_LOCKED, &failed_start, |
| 1196 | cached_state, GFP_NOFS); |
| 1197 | if (err == -EEXIST) { |
| 1198 | wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); |
| 1199 | start = failed_start; |
| 1200 | } else |
| 1201 | break; |
| 1202 | WARN_ON(start > end); |
| 1203 | } |
| 1204 | return err; |
| 1205 | } |
| 1206 | |
| 1207 | int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) |
| 1208 | { |
| 1209 | return lock_extent_bits(tree, start, end, 0, NULL); |
| 1210 | } |
| 1211 | |
| 1212 | int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) |
| 1213 | { |
| 1214 | int err; |
| 1215 | u64 failed_start; |
| 1216 | |
| 1217 | err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, |
| 1218 | &failed_start, NULL, GFP_NOFS); |
| 1219 | if (err == -EEXIST) { |
| 1220 | if (failed_start > start) |
| 1221 | clear_extent_bit(tree, start, failed_start - 1, |
| 1222 | EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); |
| 1223 | return 0; |
| 1224 | } |
| 1225 | return 1; |
| 1226 | } |
| 1227 | |
| 1228 | int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, |
| 1229 | struct extent_state **cached, gfp_t mask) |
| 1230 | { |
| 1231 | return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, |
| 1232 | mask); |
| 1233 | } |
| 1234 | |
| 1235 | int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) |
| 1236 | { |
| 1237 | return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, |
| 1238 | GFP_NOFS); |
| 1239 | } |
| 1240 | |
| 1241 | int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) |
| 1242 | { |
| 1243 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 1244 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| 1245 | struct page *page; |
| 1246 | |
| 1247 | while (index <= end_index) { |
| 1248 | page = find_get_page(inode->i_mapping, index); |
| 1249 | BUG_ON(!page); /* Pages should be in the extent_io_tree */ |
| 1250 | clear_page_dirty_for_io(page); |
| 1251 | page_cache_release(page); |
| 1252 | index++; |
| 1253 | } |
| 1254 | return 0; |
| 1255 | } |
| 1256 | |
| 1257 | int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) |
| 1258 | { |
| 1259 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 1260 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| 1261 | struct page *page; |
| 1262 | |
| 1263 | while (index <= end_index) { |
| 1264 | page = find_get_page(inode->i_mapping, index); |
| 1265 | BUG_ON(!page); /* Pages should be in the extent_io_tree */ |
| 1266 | account_page_redirty(page); |
| 1267 | __set_page_dirty_nobuffers(page); |
| 1268 | page_cache_release(page); |
| 1269 | index++; |
| 1270 | } |
| 1271 | return 0; |
| 1272 | } |
| 1273 | |
| 1274 | /* |
| 1275 | * helper function to set both pages and extents in the tree writeback |
| 1276 | */ |
| 1277 | static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) |
| 1278 | { |
| 1279 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 1280 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| 1281 | struct page *page; |
| 1282 | |
| 1283 | while (index <= end_index) { |
| 1284 | page = find_get_page(tree->mapping, index); |
| 1285 | BUG_ON(!page); /* Pages should be in the extent_io_tree */ |
| 1286 | set_page_writeback(page); |
| 1287 | page_cache_release(page); |
| 1288 | index++; |
| 1289 | } |
| 1290 | return 0; |
| 1291 | } |
| 1292 | |
| 1293 | /* find the first state struct with 'bits' set after 'start', and |
| 1294 | * return it. tree->lock must be held. NULL will returned if |
| 1295 | * nothing was found after 'start' |
| 1296 | */ |
| 1297 | struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, |
| 1298 | u64 start, int bits) |
| 1299 | { |
| 1300 | struct rb_node *node; |
| 1301 | struct extent_state *state; |
| 1302 | |
| 1303 | /* |
| 1304 | * this search will find all the extents that end after |
| 1305 | * our range starts. |
| 1306 | */ |
| 1307 | node = tree_search(tree, start); |
| 1308 | if (!node) |
| 1309 | goto out; |
| 1310 | |
| 1311 | while (1) { |
| 1312 | state = rb_entry(node, struct extent_state, rb_node); |
| 1313 | if (state->end >= start && (state->state & bits)) |
| 1314 | return state; |
| 1315 | |
| 1316 | node = rb_next(node); |
| 1317 | if (!node) |
| 1318 | break; |
| 1319 | } |
| 1320 | out: |
| 1321 | return NULL; |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * find the first offset in the io tree with 'bits' set. zero is |
| 1326 | * returned if we find something, and *start_ret and *end_ret are |
| 1327 | * set to reflect the state struct that was found. |
| 1328 | * |
| 1329 | * If nothing was found, 1 is returned, < 0 on error |
| 1330 | */ |
| 1331 | int find_first_extent_bit(struct extent_io_tree *tree, u64 start, |
| 1332 | u64 *start_ret, u64 *end_ret, int bits) |
| 1333 | { |
| 1334 | struct extent_state *state; |
| 1335 | int ret = 1; |
| 1336 | |
| 1337 | spin_lock(&tree->lock); |
| 1338 | state = find_first_extent_bit_state(tree, start, bits); |
| 1339 | if (state) { |
| 1340 | *start_ret = state->start; |
| 1341 | *end_ret = state->end; |
| 1342 | ret = 0; |
| 1343 | } |
| 1344 | spin_unlock(&tree->lock); |
| 1345 | return ret; |
| 1346 | } |
| 1347 | |
| 1348 | /* |
| 1349 | * find a contiguous range of bytes in the file marked as delalloc, not |
| 1350 | * more than 'max_bytes'. start and end are used to return the range, |
| 1351 | * |
| 1352 | * 1 is returned if we find something, 0 if nothing was in the tree |
| 1353 | */ |
| 1354 | static noinline u64 find_delalloc_range(struct extent_io_tree *tree, |
| 1355 | u64 *start, u64 *end, u64 max_bytes, |
| 1356 | struct extent_state **cached_state) |
| 1357 | { |
| 1358 | struct rb_node *node; |
| 1359 | struct extent_state *state; |
| 1360 | u64 cur_start = *start; |
| 1361 | u64 found = 0; |
| 1362 | u64 total_bytes = 0; |
| 1363 | |
| 1364 | spin_lock(&tree->lock); |
| 1365 | |
| 1366 | /* |
| 1367 | * this search will find all the extents that end after |
| 1368 | * our range starts. |
| 1369 | */ |
| 1370 | node = tree_search(tree, cur_start); |
| 1371 | if (!node) { |
| 1372 | if (!found) |
| 1373 | *end = (u64)-1; |
| 1374 | goto out; |
| 1375 | } |
| 1376 | |
| 1377 | while (1) { |
| 1378 | state = rb_entry(node, struct extent_state, rb_node); |
| 1379 | if (found && (state->start != cur_start || |
| 1380 | (state->state & EXTENT_BOUNDARY))) { |
| 1381 | goto out; |
| 1382 | } |
| 1383 | if (!(state->state & EXTENT_DELALLOC)) { |
| 1384 | if (!found) |
| 1385 | *end = state->end; |
| 1386 | goto out; |
| 1387 | } |
| 1388 | if (!found) { |
| 1389 | *start = state->start; |
| 1390 | *cached_state = state; |
| 1391 | atomic_inc(&state->refs); |
| 1392 | } |
| 1393 | found++; |
| 1394 | *end = state->end; |
| 1395 | cur_start = state->end + 1; |
| 1396 | node = rb_next(node); |
| 1397 | if (!node) |
| 1398 | break; |
| 1399 | total_bytes += state->end - state->start + 1; |
| 1400 | if (total_bytes >= max_bytes) |
| 1401 | break; |
| 1402 | } |
| 1403 | out: |
| 1404 | spin_unlock(&tree->lock); |
| 1405 | return found; |
| 1406 | } |
| 1407 | |
| 1408 | static noinline void __unlock_for_delalloc(struct inode *inode, |
| 1409 | struct page *locked_page, |
| 1410 | u64 start, u64 end) |
| 1411 | { |
| 1412 | int ret; |
| 1413 | struct page *pages[16]; |
| 1414 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 1415 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| 1416 | unsigned long nr_pages = end_index - index + 1; |
| 1417 | int i; |
| 1418 | |
| 1419 | if (index == locked_page->index && end_index == index) |
| 1420 | return; |
| 1421 | |
| 1422 | while (nr_pages > 0) { |
| 1423 | ret = find_get_pages_contig(inode->i_mapping, index, |
| 1424 | min_t(unsigned long, nr_pages, |
| 1425 | ARRAY_SIZE(pages)), pages); |
| 1426 | for (i = 0; i < ret; i++) { |
| 1427 | if (pages[i] != locked_page) |
| 1428 | unlock_page(pages[i]); |
| 1429 | page_cache_release(pages[i]); |
| 1430 | } |
| 1431 | nr_pages -= ret; |
| 1432 | index += ret; |
| 1433 | cond_resched(); |
| 1434 | } |
| 1435 | } |
| 1436 | |
| 1437 | static noinline int lock_delalloc_pages(struct inode *inode, |
| 1438 | struct page *locked_page, |
| 1439 | u64 delalloc_start, |
| 1440 | u64 delalloc_end) |
| 1441 | { |
| 1442 | unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; |
| 1443 | unsigned long start_index = index; |
| 1444 | unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; |
| 1445 | unsigned long pages_locked = 0; |
| 1446 | struct page *pages[16]; |
| 1447 | unsigned long nrpages; |
| 1448 | int ret; |
| 1449 | int i; |
| 1450 | |
| 1451 | /* the caller is responsible for locking the start index */ |
| 1452 | if (index == locked_page->index && index == end_index) |
| 1453 | return 0; |
| 1454 | |
| 1455 | /* skip the page at the start index */ |
| 1456 | nrpages = end_index - index + 1; |
| 1457 | while (nrpages > 0) { |
| 1458 | ret = find_get_pages_contig(inode->i_mapping, index, |
| 1459 | min_t(unsigned long, |
| 1460 | nrpages, ARRAY_SIZE(pages)), pages); |
| 1461 | if (ret == 0) { |
| 1462 | ret = -EAGAIN; |
| 1463 | goto done; |
| 1464 | } |
| 1465 | /* now we have an array of pages, lock them all */ |
| 1466 | for (i = 0; i < ret; i++) { |
| 1467 | /* |
| 1468 | * the caller is taking responsibility for |
| 1469 | * locked_page |
| 1470 | */ |
| 1471 | if (pages[i] != locked_page) { |
| 1472 | lock_page(pages[i]); |
| 1473 | if (!PageDirty(pages[i]) || |
| 1474 | pages[i]->mapping != inode->i_mapping) { |
| 1475 | ret = -EAGAIN; |
| 1476 | unlock_page(pages[i]); |
| 1477 | page_cache_release(pages[i]); |
| 1478 | goto done; |
| 1479 | } |
| 1480 | } |
| 1481 | page_cache_release(pages[i]); |
| 1482 | pages_locked++; |
| 1483 | } |
| 1484 | nrpages -= ret; |
| 1485 | index += ret; |
| 1486 | cond_resched(); |
| 1487 | } |
| 1488 | ret = 0; |
| 1489 | done: |
| 1490 | if (ret && pages_locked) { |
| 1491 | __unlock_for_delalloc(inode, locked_page, |
| 1492 | delalloc_start, |
| 1493 | ((u64)(start_index + pages_locked - 1)) << |
| 1494 | PAGE_CACHE_SHIFT); |
| 1495 | } |
| 1496 | return ret; |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * find a contiguous range of bytes in the file marked as delalloc, not |
| 1501 | * more than 'max_bytes'. start and end are used to return the range, |
| 1502 | * |
| 1503 | * 1 is returned if we find something, 0 if nothing was in the tree |
| 1504 | */ |
| 1505 | static noinline u64 find_lock_delalloc_range(struct inode *inode, |
| 1506 | struct extent_io_tree *tree, |
| 1507 | struct page *locked_page, |
| 1508 | u64 *start, u64 *end, |
| 1509 | u64 max_bytes) |
| 1510 | { |
| 1511 | u64 delalloc_start; |
| 1512 | u64 delalloc_end; |
| 1513 | u64 found; |
| 1514 | struct extent_state *cached_state = NULL; |
| 1515 | int ret; |
| 1516 | int loops = 0; |
| 1517 | |
| 1518 | again: |
| 1519 | /* step one, find a bunch of delalloc bytes starting at start */ |
| 1520 | delalloc_start = *start; |
| 1521 | delalloc_end = 0; |
| 1522 | found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, |
| 1523 | max_bytes, &cached_state); |
| 1524 | if (!found || delalloc_end <= *start) { |
| 1525 | *start = delalloc_start; |
| 1526 | *end = delalloc_end; |
| 1527 | free_extent_state(cached_state); |
| 1528 | return found; |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * start comes from the offset of locked_page. We have to lock |
| 1533 | * pages in order, so we can't process delalloc bytes before |
| 1534 | * locked_page |
| 1535 | */ |
| 1536 | if (delalloc_start < *start) |
| 1537 | delalloc_start = *start; |
| 1538 | |
| 1539 | /* |
| 1540 | * make sure to limit the number of pages we try to lock down |
| 1541 | * if we're looping. |
| 1542 | */ |
| 1543 | if (delalloc_end + 1 - delalloc_start > max_bytes && loops) |
| 1544 | delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; |
| 1545 | |
| 1546 | /* step two, lock all the pages after the page that has start */ |
| 1547 | ret = lock_delalloc_pages(inode, locked_page, |
| 1548 | delalloc_start, delalloc_end); |
| 1549 | if (ret == -EAGAIN) { |
| 1550 | /* some of the pages are gone, lets avoid looping by |
| 1551 | * shortening the size of the delalloc range we're searching |
| 1552 | */ |
| 1553 | free_extent_state(cached_state); |
| 1554 | cached_state = NULL; |
| 1555 | if (!loops) { |
| 1556 | unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); |
| 1557 | max_bytes = PAGE_CACHE_SIZE - offset; |
| 1558 | loops = 1; |
| 1559 | goto again; |
| 1560 | } else { |
| 1561 | found = 0; |
| 1562 | goto out_failed; |
| 1563 | } |
| 1564 | } |
| 1565 | BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ |
| 1566 | |
| 1567 | /* step three, lock the state bits for the whole range */ |
| 1568 | lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); |
| 1569 | |
| 1570 | /* then test to make sure it is all still delalloc */ |
| 1571 | ret = test_range_bit(tree, delalloc_start, delalloc_end, |
| 1572 | EXTENT_DELALLOC, 1, cached_state); |
| 1573 | if (!ret) { |
| 1574 | unlock_extent_cached(tree, delalloc_start, delalloc_end, |
| 1575 | &cached_state, GFP_NOFS); |
| 1576 | __unlock_for_delalloc(inode, locked_page, |
| 1577 | delalloc_start, delalloc_end); |
| 1578 | cond_resched(); |
| 1579 | goto again; |
| 1580 | } |
| 1581 | free_extent_state(cached_state); |
| 1582 | *start = delalloc_start; |
| 1583 | *end = delalloc_end; |
| 1584 | out_failed: |
| 1585 | return found; |
| 1586 | } |
| 1587 | |
| 1588 | int extent_clear_unlock_delalloc(struct inode *inode, |
| 1589 | struct extent_io_tree *tree, |
| 1590 | u64 start, u64 end, struct page *locked_page, |
| 1591 | unsigned long op) |
| 1592 | { |
| 1593 | int ret; |
| 1594 | struct page *pages[16]; |
| 1595 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 1596 | unsigned long end_index = end >> PAGE_CACHE_SHIFT; |
| 1597 | unsigned long nr_pages = end_index - index + 1; |
| 1598 | int i; |
| 1599 | int clear_bits = 0; |
| 1600 | |
| 1601 | if (op & EXTENT_CLEAR_UNLOCK) |
| 1602 | clear_bits |= EXTENT_LOCKED; |
| 1603 | if (op & EXTENT_CLEAR_DIRTY) |
| 1604 | clear_bits |= EXTENT_DIRTY; |
| 1605 | |
| 1606 | if (op & EXTENT_CLEAR_DELALLOC) |
| 1607 | clear_bits |= EXTENT_DELALLOC; |
| 1608 | |
| 1609 | clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); |
| 1610 | if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | |
| 1611 | EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | |
| 1612 | EXTENT_SET_PRIVATE2))) |
| 1613 | return 0; |
| 1614 | |
| 1615 | while (nr_pages > 0) { |
| 1616 | ret = find_get_pages_contig(inode->i_mapping, index, |
| 1617 | min_t(unsigned long, |
| 1618 | nr_pages, ARRAY_SIZE(pages)), pages); |
| 1619 | for (i = 0; i < ret; i++) { |
| 1620 | |
| 1621 | if (op & EXTENT_SET_PRIVATE2) |
| 1622 | SetPagePrivate2(pages[i]); |
| 1623 | |
| 1624 | if (pages[i] == locked_page) { |
| 1625 | page_cache_release(pages[i]); |
| 1626 | continue; |
| 1627 | } |
| 1628 | if (op & EXTENT_CLEAR_DIRTY) |
| 1629 | clear_page_dirty_for_io(pages[i]); |
| 1630 | if (op & EXTENT_SET_WRITEBACK) |
| 1631 | set_page_writeback(pages[i]); |
| 1632 | if (op & EXTENT_END_WRITEBACK) |
| 1633 | end_page_writeback(pages[i]); |
| 1634 | if (op & EXTENT_CLEAR_UNLOCK_PAGE) |
| 1635 | unlock_page(pages[i]); |
| 1636 | page_cache_release(pages[i]); |
| 1637 | } |
| 1638 | nr_pages -= ret; |
| 1639 | index += ret; |
| 1640 | cond_resched(); |
| 1641 | } |
| 1642 | return 0; |
| 1643 | } |
| 1644 | |
| 1645 | /* |
| 1646 | * count the number of bytes in the tree that have a given bit(s) |
| 1647 | * set. This can be fairly slow, except for EXTENT_DIRTY which is |
| 1648 | * cached. The total number found is returned. |
| 1649 | */ |
| 1650 | u64 count_range_bits(struct extent_io_tree *tree, |
| 1651 | u64 *start, u64 search_end, u64 max_bytes, |
| 1652 | unsigned long bits, int contig) |
| 1653 | { |
| 1654 | struct rb_node *node; |
| 1655 | struct extent_state *state; |
| 1656 | u64 cur_start = *start; |
| 1657 | u64 total_bytes = 0; |
| 1658 | u64 last = 0; |
| 1659 | int found = 0; |
| 1660 | |
| 1661 | if (search_end <= cur_start) { |
| 1662 | WARN_ON(1); |
| 1663 | return 0; |
| 1664 | } |
| 1665 | |
| 1666 | spin_lock(&tree->lock); |
| 1667 | if (cur_start == 0 && bits == EXTENT_DIRTY) { |
| 1668 | total_bytes = tree->dirty_bytes; |
| 1669 | goto out; |
| 1670 | } |
| 1671 | /* |
| 1672 | * this search will find all the extents that end after |
| 1673 | * our range starts. |
| 1674 | */ |
| 1675 | node = tree_search(tree, cur_start); |
| 1676 | if (!node) |
| 1677 | goto out; |
| 1678 | |
| 1679 | while (1) { |
| 1680 | state = rb_entry(node, struct extent_state, rb_node); |
| 1681 | if (state->start > search_end) |
| 1682 | break; |
| 1683 | if (contig && found && state->start > last + 1) |
| 1684 | break; |
| 1685 | if (state->end >= cur_start && (state->state & bits) == bits) { |
| 1686 | total_bytes += min(search_end, state->end) + 1 - |
| 1687 | max(cur_start, state->start); |
| 1688 | if (total_bytes >= max_bytes) |
| 1689 | break; |
| 1690 | if (!found) { |
| 1691 | *start = max(cur_start, state->start); |
| 1692 | found = 1; |
| 1693 | } |
| 1694 | last = state->end; |
| 1695 | } else if (contig && found) { |
| 1696 | break; |
| 1697 | } |
| 1698 | node = rb_next(node); |
| 1699 | if (!node) |
| 1700 | break; |
| 1701 | } |
| 1702 | out: |
| 1703 | spin_unlock(&tree->lock); |
| 1704 | return total_bytes; |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * set the private field for a given byte offset in the tree. If there isn't |
| 1709 | * an extent_state there already, this does nothing. |
| 1710 | */ |
| 1711 | int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) |
| 1712 | { |
| 1713 | struct rb_node *node; |
| 1714 | struct extent_state *state; |
| 1715 | int ret = 0; |
| 1716 | |
| 1717 | spin_lock(&tree->lock); |
| 1718 | /* |
| 1719 | * this search will find all the extents that end after |
| 1720 | * our range starts. |
| 1721 | */ |
| 1722 | node = tree_search(tree, start); |
| 1723 | if (!node) { |
| 1724 | ret = -ENOENT; |
| 1725 | goto out; |
| 1726 | } |
| 1727 | state = rb_entry(node, struct extent_state, rb_node); |
| 1728 | if (state->start != start) { |
| 1729 | ret = -ENOENT; |
| 1730 | goto out; |
| 1731 | } |
| 1732 | state->private = private; |
| 1733 | out: |
| 1734 | spin_unlock(&tree->lock); |
| 1735 | return ret; |
| 1736 | } |
| 1737 | |
| 1738 | int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) |
| 1739 | { |
| 1740 | struct rb_node *node; |
| 1741 | struct extent_state *state; |
| 1742 | int ret = 0; |
| 1743 | |
| 1744 | spin_lock(&tree->lock); |
| 1745 | /* |
| 1746 | * this search will find all the extents that end after |
| 1747 | * our range starts. |
| 1748 | */ |
| 1749 | node = tree_search(tree, start); |
| 1750 | if (!node) { |
| 1751 | ret = -ENOENT; |
| 1752 | goto out; |
| 1753 | } |
| 1754 | state = rb_entry(node, struct extent_state, rb_node); |
| 1755 | if (state->start != start) { |
| 1756 | ret = -ENOENT; |
| 1757 | goto out; |
| 1758 | } |
| 1759 | *private = state->private; |
| 1760 | out: |
| 1761 | spin_unlock(&tree->lock); |
| 1762 | return ret; |
| 1763 | } |
| 1764 | |
| 1765 | /* |
| 1766 | * searches a range in the state tree for a given mask. |
| 1767 | * If 'filled' == 1, this returns 1 only if every extent in the tree |
| 1768 | * has the bits set. Otherwise, 1 is returned if any bit in the |
| 1769 | * range is found set. |
| 1770 | */ |
| 1771 | int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, |
| 1772 | int bits, int filled, struct extent_state *cached) |
| 1773 | { |
| 1774 | struct extent_state *state = NULL; |
| 1775 | struct rb_node *node; |
| 1776 | int bitset = 0; |
| 1777 | |
| 1778 | spin_lock(&tree->lock); |
| 1779 | if (cached && cached->tree && cached->start <= start && |
| 1780 | cached->end > start) |
| 1781 | node = &cached->rb_node; |
| 1782 | else |
| 1783 | node = tree_search(tree, start); |
| 1784 | while (node && start <= end) { |
| 1785 | state = rb_entry(node, struct extent_state, rb_node); |
| 1786 | |
| 1787 | if (filled && state->start > start) { |
| 1788 | bitset = 0; |
| 1789 | break; |
| 1790 | } |
| 1791 | |
| 1792 | if (state->start > end) |
| 1793 | break; |
| 1794 | |
| 1795 | if (state->state & bits) { |
| 1796 | bitset = 1; |
| 1797 | if (!filled) |
| 1798 | break; |
| 1799 | } else if (filled) { |
| 1800 | bitset = 0; |
| 1801 | break; |
| 1802 | } |
| 1803 | |
| 1804 | if (state->end == (u64)-1) |
| 1805 | break; |
| 1806 | |
| 1807 | start = state->end + 1; |
| 1808 | if (start > end) |
| 1809 | break; |
| 1810 | node = rb_next(node); |
| 1811 | if (!node) { |
| 1812 | if (filled) |
| 1813 | bitset = 0; |
| 1814 | break; |
| 1815 | } |
| 1816 | } |
| 1817 | spin_unlock(&tree->lock); |
| 1818 | return bitset; |
| 1819 | } |
| 1820 | |
| 1821 | /* |
| 1822 | * helper function to set a given page up to date if all the |
| 1823 | * extents in the tree for that page are up to date |
| 1824 | */ |
| 1825 | static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) |
| 1826 | { |
| 1827 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| 1828 | u64 end = start + PAGE_CACHE_SIZE - 1; |
| 1829 | if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) |
| 1830 | SetPageUptodate(page); |
| 1831 | } |
| 1832 | |
| 1833 | /* |
| 1834 | * helper function to unlock a page if all the extents in the tree |
| 1835 | * for that page are unlocked |
| 1836 | */ |
| 1837 | static void check_page_locked(struct extent_io_tree *tree, struct page *page) |
| 1838 | { |
| 1839 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| 1840 | u64 end = start + PAGE_CACHE_SIZE - 1; |
| 1841 | if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) |
| 1842 | unlock_page(page); |
| 1843 | } |
| 1844 | |
| 1845 | /* |
| 1846 | * helper function to end page writeback if all the extents |
| 1847 | * in the tree for that page are done with writeback |
| 1848 | */ |
| 1849 | static void check_page_writeback(struct extent_io_tree *tree, |
| 1850 | struct page *page) |
| 1851 | { |
| 1852 | end_page_writeback(page); |
| 1853 | } |
| 1854 | |
| 1855 | /* |
| 1856 | * When IO fails, either with EIO or csum verification fails, we |
| 1857 | * try other mirrors that might have a good copy of the data. This |
| 1858 | * io_failure_record is used to record state as we go through all the |
| 1859 | * mirrors. If another mirror has good data, the page is set up to date |
| 1860 | * and things continue. If a good mirror can't be found, the original |
| 1861 | * bio end_io callback is called to indicate things have failed. |
| 1862 | */ |
| 1863 | struct io_failure_record { |
| 1864 | struct page *page; |
| 1865 | u64 start; |
| 1866 | u64 len; |
| 1867 | u64 logical; |
| 1868 | unsigned long bio_flags; |
| 1869 | int this_mirror; |
| 1870 | int failed_mirror; |
| 1871 | int in_validation; |
| 1872 | }; |
| 1873 | |
| 1874 | static int free_io_failure(struct inode *inode, struct io_failure_record *rec, |
| 1875 | int did_repair) |
| 1876 | { |
| 1877 | int ret; |
| 1878 | int err = 0; |
| 1879 | struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; |
| 1880 | |
| 1881 | set_state_private(failure_tree, rec->start, 0); |
| 1882 | ret = clear_extent_bits(failure_tree, rec->start, |
| 1883 | rec->start + rec->len - 1, |
| 1884 | EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); |
| 1885 | if (ret) |
| 1886 | err = ret; |
| 1887 | |
| 1888 | if (did_repair) { |
| 1889 | ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, |
| 1890 | rec->start + rec->len - 1, |
| 1891 | EXTENT_DAMAGED, GFP_NOFS); |
| 1892 | if (ret && !err) |
| 1893 | err = ret; |
| 1894 | } |
| 1895 | |
| 1896 | kfree(rec); |
| 1897 | return err; |
| 1898 | } |
| 1899 | |
| 1900 | static void repair_io_failure_callback(struct bio *bio, int err) |
| 1901 | { |
| 1902 | complete(bio->bi_private); |
| 1903 | } |
| 1904 | |
| 1905 | /* |
| 1906 | * this bypasses the standard btrfs submit functions deliberately, as |
| 1907 | * the standard behavior is to write all copies in a raid setup. here we only |
| 1908 | * want to write the one bad copy. so we do the mapping for ourselves and issue |
| 1909 | * submit_bio directly. |
| 1910 | * to avoid any synchonization issues, wait for the data after writing, which |
| 1911 | * actually prevents the read that triggered the error from finishing. |
| 1912 | * currently, there can be no more than two copies of every data bit. thus, |
| 1913 | * exactly one rewrite is required. |
| 1914 | */ |
| 1915 | int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start, |
| 1916 | u64 length, u64 logical, struct page *page, |
| 1917 | int mirror_num) |
| 1918 | { |
| 1919 | struct bio *bio; |
| 1920 | struct btrfs_device *dev; |
| 1921 | DECLARE_COMPLETION_ONSTACK(compl); |
| 1922 | u64 map_length = 0; |
| 1923 | u64 sector; |
| 1924 | struct btrfs_bio *bbio = NULL; |
| 1925 | int ret; |
| 1926 | |
| 1927 | BUG_ON(!mirror_num); |
| 1928 | |
| 1929 | bio = bio_alloc(GFP_NOFS, 1); |
| 1930 | if (!bio) |
| 1931 | return -EIO; |
| 1932 | bio->bi_private = &compl; |
| 1933 | bio->bi_end_io = repair_io_failure_callback; |
| 1934 | bio->bi_size = 0; |
| 1935 | map_length = length; |
| 1936 | |
| 1937 | ret = btrfs_map_block(map_tree, WRITE, logical, |
| 1938 | &map_length, &bbio, mirror_num); |
| 1939 | if (ret) { |
| 1940 | bio_put(bio); |
| 1941 | return -EIO; |
| 1942 | } |
| 1943 | BUG_ON(mirror_num != bbio->mirror_num); |
| 1944 | sector = bbio->stripes[mirror_num-1].physical >> 9; |
| 1945 | bio->bi_sector = sector; |
| 1946 | dev = bbio->stripes[mirror_num-1].dev; |
| 1947 | kfree(bbio); |
| 1948 | if (!dev || !dev->bdev || !dev->writeable) { |
| 1949 | bio_put(bio); |
| 1950 | return -EIO; |
| 1951 | } |
| 1952 | bio->bi_bdev = dev->bdev; |
| 1953 | bio_add_page(bio, page, length, start-page_offset(page)); |
| 1954 | btrfsic_submit_bio(WRITE_SYNC, bio); |
| 1955 | wait_for_completion(&compl); |
| 1956 | |
| 1957 | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { |
| 1958 | /* try to remap that extent elsewhere? */ |
| 1959 | bio_put(bio); |
| 1960 | return -EIO; |
| 1961 | } |
| 1962 | |
| 1963 | printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s " |
| 1964 | "sector %llu)\n", page->mapping->host->i_ino, start, |
| 1965 | dev->name, sector); |
| 1966 | |
| 1967 | bio_put(bio); |
| 1968 | return 0; |
| 1969 | } |
| 1970 | |
| 1971 | int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, |
| 1972 | int mirror_num) |
| 1973 | { |
| 1974 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; |
| 1975 | u64 start = eb->start; |
| 1976 | unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); |
| 1977 | int ret = 0; |
| 1978 | |
| 1979 | for (i = 0; i < num_pages; i++) { |
| 1980 | struct page *p = extent_buffer_page(eb, i); |
| 1981 | ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE, |
| 1982 | start, p, mirror_num); |
| 1983 | if (ret) |
| 1984 | break; |
| 1985 | start += PAGE_CACHE_SIZE; |
| 1986 | } |
| 1987 | |
| 1988 | return ret; |
| 1989 | } |
| 1990 | |
| 1991 | /* |
| 1992 | * each time an IO finishes, we do a fast check in the IO failure tree |
| 1993 | * to see if we need to process or clean up an io_failure_record |
| 1994 | */ |
| 1995 | static int clean_io_failure(u64 start, struct page *page) |
| 1996 | { |
| 1997 | u64 private; |
| 1998 | u64 private_failure; |
| 1999 | struct io_failure_record *failrec; |
| 2000 | struct btrfs_mapping_tree *map_tree; |
| 2001 | struct extent_state *state; |
| 2002 | int num_copies; |
| 2003 | int did_repair = 0; |
| 2004 | int ret; |
| 2005 | struct inode *inode = page->mapping->host; |
| 2006 | |
| 2007 | private = 0; |
| 2008 | ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, |
| 2009 | (u64)-1, 1, EXTENT_DIRTY, 0); |
| 2010 | if (!ret) |
| 2011 | return 0; |
| 2012 | |
| 2013 | ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, |
| 2014 | &private_failure); |
| 2015 | if (ret) |
| 2016 | return 0; |
| 2017 | |
| 2018 | failrec = (struct io_failure_record *)(unsigned long) private_failure; |
| 2019 | BUG_ON(!failrec->this_mirror); |
| 2020 | |
| 2021 | if (failrec->in_validation) { |
| 2022 | /* there was no real error, just free the record */ |
| 2023 | pr_debug("clean_io_failure: freeing dummy error at %llu\n", |
| 2024 | failrec->start); |
| 2025 | did_repair = 1; |
| 2026 | goto out; |
| 2027 | } |
| 2028 | |
| 2029 | spin_lock(&BTRFS_I(inode)->io_tree.lock); |
| 2030 | state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, |
| 2031 | failrec->start, |
| 2032 | EXTENT_LOCKED); |
| 2033 | spin_unlock(&BTRFS_I(inode)->io_tree.lock); |
| 2034 | |
| 2035 | if (state && state->start == failrec->start) { |
| 2036 | map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; |
| 2037 | num_copies = btrfs_num_copies(map_tree, failrec->logical, |
| 2038 | failrec->len); |
| 2039 | if (num_copies > 1) { |
| 2040 | ret = repair_io_failure(map_tree, start, failrec->len, |
| 2041 | failrec->logical, page, |
| 2042 | failrec->failed_mirror); |
| 2043 | did_repair = !ret; |
| 2044 | } |
| 2045 | } |
| 2046 | |
| 2047 | out: |
| 2048 | if (!ret) |
| 2049 | ret = free_io_failure(inode, failrec, did_repair); |
| 2050 | |
| 2051 | return ret; |
| 2052 | } |
| 2053 | |
| 2054 | /* |
| 2055 | * this is a generic handler for readpage errors (default |
| 2056 | * readpage_io_failed_hook). if other copies exist, read those and write back |
| 2057 | * good data to the failed position. does not investigate in remapping the |
| 2058 | * failed extent elsewhere, hoping the device will be smart enough to do this as |
| 2059 | * needed |
| 2060 | */ |
| 2061 | |
| 2062 | static int bio_readpage_error(struct bio *failed_bio, struct page *page, |
| 2063 | u64 start, u64 end, int failed_mirror, |
| 2064 | struct extent_state *state) |
| 2065 | { |
| 2066 | struct io_failure_record *failrec = NULL; |
| 2067 | u64 private; |
| 2068 | struct extent_map *em; |
| 2069 | struct inode *inode = page->mapping->host; |
| 2070 | struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; |
| 2071 | struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; |
| 2072 | struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; |
| 2073 | struct bio *bio; |
| 2074 | int num_copies; |
| 2075 | int ret; |
| 2076 | int read_mode; |
| 2077 | u64 logical; |
| 2078 | |
| 2079 | BUG_ON(failed_bio->bi_rw & REQ_WRITE); |
| 2080 | |
| 2081 | ret = get_state_private(failure_tree, start, &private); |
| 2082 | if (ret) { |
| 2083 | failrec = kzalloc(sizeof(*failrec), GFP_NOFS); |
| 2084 | if (!failrec) |
| 2085 | return -ENOMEM; |
| 2086 | failrec->start = start; |
| 2087 | failrec->len = end - start + 1; |
| 2088 | failrec->this_mirror = 0; |
| 2089 | failrec->bio_flags = 0; |
| 2090 | failrec->in_validation = 0; |
| 2091 | |
| 2092 | read_lock(&em_tree->lock); |
| 2093 | em = lookup_extent_mapping(em_tree, start, failrec->len); |
| 2094 | if (!em) { |
| 2095 | read_unlock(&em_tree->lock); |
| 2096 | kfree(failrec); |
| 2097 | return -EIO; |
| 2098 | } |
| 2099 | |
| 2100 | if (em->start > start || em->start + em->len < start) { |
| 2101 | free_extent_map(em); |
| 2102 | em = NULL; |
| 2103 | } |
| 2104 | read_unlock(&em_tree->lock); |
| 2105 | |
| 2106 | if (!em || IS_ERR(em)) { |
| 2107 | kfree(failrec); |
| 2108 | return -EIO; |
| 2109 | } |
| 2110 | logical = start - em->start; |
| 2111 | logical = em->block_start + logical; |
| 2112 | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { |
| 2113 | logical = em->block_start; |
| 2114 | failrec->bio_flags = EXTENT_BIO_COMPRESSED; |
| 2115 | extent_set_compress_type(&failrec->bio_flags, |
| 2116 | em->compress_type); |
| 2117 | } |
| 2118 | pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " |
| 2119 | "len=%llu\n", logical, start, failrec->len); |
| 2120 | failrec->logical = logical; |
| 2121 | free_extent_map(em); |
| 2122 | |
| 2123 | /* set the bits in the private failure tree */ |
| 2124 | ret = set_extent_bits(failure_tree, start, end, |
| 2125 | EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); |
| 2126 | if (ret >= 0) |
| 2127 | ret = set_state_private(failure_tree, start, |
| 2128 | (u64)(unsigned long)failrec); |
| 2129 | /* set the bits in the inode's tree */ |
| 2130 | if (ret >= 0) |
| 2131 | ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, |
| 2132 | GFP_NOFS); |
| 2133 | if (ret < 0) { |
| 2134 | kfree(failrec); |
| 2135 | return ret; |
| 2136 | } |
| 2137 | } else { |
| 2138 | failrec = (struct io_failure_record *)(unsigned long)private; |
| 2139 | pr_debug("bio_readpage_error: (found) logical=%llu, " |
| 2140 | "start=%llu, len=%llu, validation=%d\n", |
| 2141 | failrec->logical, failrec->start, failrec->len, |
| 2142 | failrec->in_validation); |
| 2143 | /* |
| 2144 | * when data can be on disk more than twice, add to failrec here |
| 2145 | * (e.g. with a list for failed_mirror) to make |
| 2146 | * clean_io_failure() clean all those errors at once. |
| 2147 | */ |
| 2148 | } |
| 2149 | num_copies = btrfs_num_copies( |
| 2150 | &BTRFS_I(inode)->root->fs_info->mapping_tree, |
| 2151 | failrec->logical, failrec->len); |
| 2152 | if (num_copies == 1) { |
| 2153 | /* |
| 2154 | * we only have a single copy of the data, so don't bother with |
| 2155 | * all the retry and error correction code that follows. no |
| 2156 | * matter what the error is, it is very likely to persist. |
| 2157 | */ |
| 2158 | pr_debug("bio_readpage_error: cannot repair, num_copies == 1. " |
| 2159 | "state=%p, num_copies=%d, next_mirror %d, " |
| 2160 | "failed_mirror %d\n", state, num_copies, |
| 2161 | failrec->this_mirror, failed_mirror); |
| 2162 | free_io_failure(inode, failrec, 0); |
| 2163 | return -EIO; |
| 2164 | } |
| 2165 | |
| 2166 | if (!state) { |
| 2167 | spin_lock(&tree->lock); |
| 2168 | state = find_first_extent_bit_state(tree, failrec->start, |
| 2169 | EXTENT_LOCKED); |
| 2170 | if (state && state->start != failrec->start) |
| 2171 | state = NULL; |
| 2172 | spin_unlock(&tree->lock); |
| 2173 | } |
| 2174 | |
| 2175 | /* |
| 2176 | * there are two premises: |
| 2177 | * a) deliver good data to the caller |
| 2178 | * b) correct the bad sectors on disk |
| 2179 | */ |
| 2180 | if (failed_bio->bi_vcnt > 1) { |
| 2181 | /* |
| 2182 | * to fulfill b), we need to know the exact failing sectors, as |
| 2183 | * we don't want to rewrite any more than the failed ones. thus, |
| 2184 | * we need separate read requests for the failed bio |
| 2185 | * |
| 2186 | * if the following BUG_ON triggers, our validation request got |
| 2187 | * merged. we need separate requests for our algorithm to work. |
| 2188 | */ |
| 2189 | BUG_ON(failrec->in_validation); |
| 2190 | failrec->in_validation = 1; |
| 2191 | failrec->this_mirror = failed_mirror; |
| 2192 | read_mode = READ_SYNC | REQ_FAILFAST_DEV; |
| 2193 | } else { |
| 2194 | /* |
| 2195 | * we're ready to fulfill a) and b) alongside. get a good copy |
| 2196 | * of the failed sector and if we succeed, we have setup |
| 2197 | * everything for repair_io_failure to do the rest for us. |
| 2198 | */ |
| 2199 | if (failrec->in_validation) { |
| 2200 | BUG_ON(failrec->this_mirror != failed_mirror); |
| 2201 | failrec->in_validation = 0; |
| 2202 | failrec->this_mirror = 0; |
| 2203 | } |
| 2204 | failrec->failed_mirror = failed_mirror; |
| 2205 | failrec->this_mirror++; |
| 2206 | if (failrec->this_mirror == failed_mirror) |
| 2207 | failrec->this_mirror++; |
| 2208 | read_mode = READ_SYNC; |
| 2209 | } |
| 2210 | |
| 2211 | if (!state || failrec->this_mirror > num_copies) { |
| 2212 | pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, " |
| 2213 | "next_mirror %d, failed_mirror %d\n", state, |
| 2214 | num_copies, failrec->this_mirror, failed_mirror); |
| 2215 | free_io_failure(inode, failrec, 0); |
| 2216 | return -EIO; |
| 2217 | } |
| 2218 | |
| 2219 | bio = bio_alloc(GFP_NOFS, 1); |
| 2220 | if (!bio) { |
| 2221 | free_io_failure(inode, failrec, 0); |
| 2222 | return -EIO; |
| 2223 | } |
| 2224 | bio->bi_private = state; |
| 2225 | bio->bi_end_io = failed_bio->bi_end_io; |
| 2226 | bio->bi_sector = failrec->logical >> 9; |
| 2227 | bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; |
| 2228 | bio->bi_size = 0; |
| 2229 | |
| 2230 | bio_add_page(bio, page, failrec->len, start - page_offset(page)); |
| 2231 | |
| 2232 | pr_debug("bio_readpage_error: submitting new read[%#x] to " |
| 2233 | "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, |
| 2234 | failrec->this_mirror, num_copies, failrec->in_validation); |
| 2235 | |
| 2236 | ret = tree->ops->submit_bio_hook(inode, read_mode, bio, |
| 2237 | failrec->this_mirror, |
| 2238 | failrec->bio_flags, 0); |
| 2239 | return ret; |
| 2240 | } |
| 2241 | |
| 2242 | /* lots and lots of room for performance fixes in the end_bio funcs */ |
| 2243 | |
| 2244 | int end_extent_writepage(struct page *page, int err, u64 start, u64 end) |
| 2245 | { |
| 2246 | int uptodate = (err == 0); |
| 2247 | struct extent_io_tree *tree; |
| 2248 | int ret = 0; |
| 2249 | |
| 2250 | tree = &BTRFS_I(page->mapping->host)->io_tree; |
| 2251 | |
| 2252 | if (tree->ops && tree->ops->writepage_end_io_hook) { |
| 2253 | ret = tree->ops->writepage_end_io_hook(page, start, |
| 2254 | end, NULL, uptodate); |
| 2255 | if (ret) |
| 2256 | uptodate = 0; |
| 2257 | } |
| 2258 | |
| 2259 | if (!uptodate && tree->ops && |
| 2260 | tree->ops->writepage_io_failed_hook) { |
| 2261 | ret = tree->ops->writepage_io_failed_hook(NULL, page, |
| 2262 | start, end, NULL); |
| 2263 | /* Writeback already completed */ |
| 2264 | if (ret == 0) |
| 2265 | return 1; |
| 2266 | } |
| 2267 | |
| 2268 | if (!uptodate) { |
| 2269 | clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS); |
| 2270 | ClearPageUptodate(page); |
| 2271 | SetPageError(page); |
| 2272 | } |
| 2273 | return 0; |
| 2274 | } |
| 2275 | |
| 2276 | /* |
| 2277 | * after a writepage IO is done, we need to: |
| 2278 | * clear the uptodate bits on error |
| 2279 | * clear the writeback bits in the extent tree for this IO |
| 2280 | * end_page_writeback if the page has no more pending IO |
| 2281 | * |
| 2282 | * Scheduling is not allowed, so the extent state tree is expected |
| 2283 | * to have one and only one object corresponding to this IO. |
| 2284 | */ |
| 2285 | static void end_bio_extent_writepage(struct bio *bio, int err) |
| 2286 | { |
| 2287 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| 2288 | struct extent_io_tree *tree; |
| 2289 | u64 start; |
| 2290 | u64 end; |
| 2291 | int whole_page; |
| 2292 | |
| 2293 | do { |
| 2294 | struct page *page = bvec->bv_page; |
| 2295 | tree = &BTRFS_I(page->mapping->host)->io_tree; |
| 2296 | |
| 2297 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + |
| 2298 | bvec->bv_offset; |
| 2299 | end = start + bvec->bv_len - 1; |
| 2300 | |
| 2301 | if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) |
| 2302 | whole_page = 1; |
| 2303 | else |
| 2304 | whole_page = 0; |
| 2305 | |
| 2306 | if (--bvec >= bio->bi_io_vec) |
| 2307 | prefetchw(&bvec->bv_page->flags); |
| 2308 | |
| 2309 | if (end_extent_writepage(page, err, start, end)) |
| 2310 | continue; |
| 2311 | |
| 2312 | if (whole_page) |
| 2313 | end_page_writeback(page); |
| 2314 | else |
| 2315 | check_page_writeback(tree, page); |
| 2316 | } while (bvec >= bio->bi_io_vec); |
| 2317 | |
| 2318 | bio_put(bio); |
| 2319 | } |
| 2320 | |
| 2321 | /* |
| 2322 | * after a readpage IO is done, we need to: |
| 2323 | * clear the uptodate bits on error |
| 2324 | * set the uptodate bits if things worked |
| 2325 | * set the page up to date if all extents in the tree are uptodate |
| 2326 | * clear the lock bit in the extent tree |
| 2327 | * unlock the page if there are no other extents locked for it |
| 2328 | * |
| 2329 | * Scheduling is not allowed, so the extent state tree is expected |
| 2330 | * to have one and only one object corresponding to this IO. |
| 2331 | */ |
| 2332 | static void end_bio_extent_readpage(struct bio *bio, int err) |
| 2333 | { |
| 2334 | int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
| 2335 | struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; |
| 2336 | struct bio_vec *bvec = bio->bi_io_vec; |
| 2337 | struct extent_io_tree *tree; |
| 2338 | u64 start; |
| 2339 | u64 end; |
| 2340 | int whole_page; |
| 2341 | int mirror; |
| 2342 | int ret; |
| 2343 | |
| 2344 | if (err) |
| 2345 | uptodate = 0; |
| 2346 | |
| 2347 | do { |
| 2348 | struct page *page = bvec->bv_page; |
| 2349 | struct extent_state *cached = NULL; |
| 2350 | struct extent_state *state; |
| 2351 | |
| 2352 | pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, " |
| 2353 | "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err, |
| 2354 | (long int)bio->bi_bdev); |
| 2355 | tree = &BTRFS_I(page->mapping->host)->io_tree; |
| 2356 | |
| 2357 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + |
| 2358 | bvec->bv_offset; |
| 2359 | end = start + bvec->bv_len - 1; |
| 2360 | |
| 2361 | if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) |
| 2362 | whole_page = 1; |
| 2363 | else |
| 2364 | whole_page = 0; |
| 2365 | |
| 2366 | if (++bvec <= bvec_end) |
| 2367 | prefetchw(&bvec->bv_page->flags); |
| 2368 | |
| 2369 | spin_lock(&tree->lock); |
| 2370 | state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); |
| 2371 | if (state && state->start == start) { |
| 2372 | /* |
| 2373 | * take a reference on the state, unlock will drop |
| 2374 | * the ref |
| 2375 | */ |
| 2376 | cache_state(state, &cached); |
| 2377 | } |
| 2378 | spin_unlock(&tree->lock); |
| 2379 | |
| 2380 | mirror = (int)(unsigned long)bio->bi_bdev; |
| 2381 | if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { |
| 2382 | ret = tree->ops->readpage_end_io_hook(page, start, end, |
| 2383 | state, mirror); |
| 2384 | if (ret) |
| 2385 | uptodate = 0; |
| 2386 | else |
| 2387 | clean_io_failure(start, page); |
| 2388 | } |
| 2389 | |
| 2390 | if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { |
| 2391 | ret = tree->ops->readpage_io_failed_hook(page, mirror); |
| 2392 | if (!ret && !err && |
| 2393 | test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| 2394 | uptodate = 1; |
| 2395 | } else if (!uptodate) { |
| 2396 | /* |
| 2397 | * The generic bio_readpage_error handles errors the |
| 2398 | * following way: If possible, new read requests are |
| 2399 | * created and submitted and will end up in |
| 2400 | * end_bio_extent_readpage as well (if we're lucky, not |
| 2401 | * in the !uptodate case). In that case it returns 0 and |
| 2402 | * we just go on with the next page in our bio. If it |
| 2403 | * can't handle the error it will return -EIO and we |
| 2404 | * remain responsible for that page. |
| 2405 | */ |
| 2406 | ret = bio_readpage_error(bio, page, start, end, mirror, NULL); |
| 2407 | if (ret == 0) { |
| 2408 | uptodate = |
| 2409 | test_bit(BIO_UPTODATE, &bio->bi_flags); |
| 2410 | if (err) |
| 2411 | uptodate = 0; |
| 2412 | uncache_state(&cached); |
| 2413 | continue; |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | if (uptodate && tree->track_uptodate) { |
| 2418 | set_extent_uptodate(tree, start, end, &cached, |
| 2419 | GFP_ATOMIC); |
| 2420 | } |
| 2421 | unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); |
| 2422 | |
| 2423 | if (whole_page) { |
| 2424 | if (uptodate) { |
| 2425 | SetPageUptodate(page); |
| 2426 | } else { |
| 2427 | ClearPageUptodate(page); |
| 2428 | SetPageError(page); |
| 2429 | } |
| 2430 | unlock_page(page); |
| 2431 | } else { |
| 2432 | if (uptodate) { |
| 2433 | check_page_uptodate(tree, page); |
| 2434 | } else { |
| 2435 | ClearPageUptodate(page); |
| 2436 | SetPageError(page); |
| 2437 | } |
| 2438 | check_page_locked(tree, page); |
| 2439 | } |
| 2440 | } while (bvec <= bvec_end); |
| 2441 | |
| 2442 | bio_put(bio); |
| 2443 | } |
| 2444 | |
| 2445 | struct bio * |
| 2446 | btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, |
| 2447 | gfp_t gfp_flags) |
| 2448 | { |
| 2449 | struct bio *bio; |
| 2450 | |
| 2451 | bio = bio_alloc(gfp_flags, nr_vecs); |
| 2452 | |
| 2453 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { |
| 2454 | while (!bio && (nr_vecs /= 2)) |
| 2455 | bio = bio_alloc(gfp_flags, nr_vecs); |
| 2456 | } |
| 2457 | |
| 2458 | if (bio) { |
| 2459 | bio->bi_size = 0; |
| 2460 | bio->bi_bdev = bdev; |
| 2461 | bio->bi_sector = first_sector; |
| 2462 | } |
| 2463 | return bio; |
| 2464 | } |
| 2465 | |
| 2466 | /* |
| 2467 | * Since writes are async, they will only return -ENOMEM. |
| 2468 | * Reads can return the full range of I/O error conditions. |
| 2469 | */ |
| 2470 | static int __must_check submit_one_bio(int rw, struct bio *bio, |
| 2471 | int mirror_num, unsigned long bio_flags) |
| 2472 | { |
| 2473 | int ret = 0; |
| 2474 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| 2475 | struct page *page = bvec->bv_page; |
| 2476 | struct extent_io_tree *tree = bio->bi_private; |
| 2477 | u64 start; |
| 2478 | |
| 2479 | start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; |
| 2480 | |
| 2481 | bio->bi_private = NULL; |
| 2482 | |
| 2483 | bio_get(bio); |
| 2484 | |
| 2485 | if (tree->ops && tree->ops->submit_bio_hook) |
| 2486 | ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, |
| 2487 | mirror_num, bio_flags, start); |
| 2488 | else |
| 2489 | btrfsic_submit_bio(rw, bio); |
| 2490 | |
| 2491 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) |
| 2492 | ret = -EOPNOTSUPP; |
| 2493 | bio_put(bio); |
| 2494 | return ret; |
| 2495 | } |
| 2496 | |
| 2497 | static int merge_bio(struct extent_io_tree *tree, struct page *page, |
| 2498 | unsigned long offset, size_t size, struct bio *bio, |
| 2499 | unsigned long bio_flags) |
| 2500 | { |
| 2501 | int ret = 0; |
| 2502 | if (tree->ops && tree->ops->merge_bio_hook) |
| 2503 | ret = tree->ops->merge_bio_hook(page, offset, size, bio, |
| 2504 | bio_flags); |
| 2505 | BUG_ON(ret < 0); |
| 2506 | return ret; |
| 2507 | |
| 2508 | } |
| 2509 | |
| 2510 | static int submit_extent_page(int rw, struct extent_io_tree *tree, |
| 2511 | struct page *page, sector_t sector, |
| 2512 | size_t size, unsigned long offset, |
| 2513 | struct block_device *bdev, |
| 2514 | struct bio **bio_ret, |
| 2515 | unsigned long max_pages, |
| 2516 | bio_end_io_t end_io_func, |
| 2517 | int mirror_num, |
| 2518 | unsigned long prev_bio_flags, |
| 2519 | unsigned long bio_flags) |
| 2520 | { |
| 2521 | int ret = 0; |
| 2522 | struct bio *bio; |
| 2523 | int nr; |
| 2524 | int contig = 0; |
| 2525 | int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; |
| 2526 | int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; |
| 2527 | size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); |
| 2528 | |
| 2529 | if (bio_ret && *bio_ret) { |
| 2530 | bio = *bio_ret; |
| 2531 | if (old_compressed) |
| 2532 | contig = bio->bi_sector == sector; |
| 2533 | else |
| 2534 | contig = bio->bi_sector + (bio->bi_size >> 9) == |
| 2535 | sector; |
| 2536 | |
| 2537 | if (prev_bio_flags != bio_flags || !contig || |
| 2538 | merge_bio(tree, page, offset, page_size, bio, bio_flags) || |
| 2539 | bio_add_page(bio, page, page_size, offset) < page_size) { |
| 2540 | ret = submit_one_bio(rw, bio, mirror_num, |
| 2541 | prev_bio_flags); |
| 2542 | if (ret < 0) |
| 2543 | return ret; |
| 2544 | bio = NULL; |
| 2545 | } else { |
| 2546 | return 0; |
| 2547 | } |
| 2548 | } |
| 2549 | if (this_compressed) |
| 2550 | nr = BIO_MAX_PAGES; |
| 2551 | else |
| 2552 | nr = bio_get_nr_vecs(bdev); |
| 2553 | |
| 2554 | bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); |
| 2555 | if (!bio) |
| 2556 | return -ENOMEM; |
| 2557 | |
| 2558 | bio_add_page(bio, page, page_size, offset); |
| 2559 | bio->bi_end_io = end_io_func; |
| 2560 | bio->bi_private = tree; |
| 2561 | |
| 2562 | if (bio_ret) |
| 2563 | *bio_ret = bio; |
| 2564 | else |
| 2565 | ret = submit_one_bio(rw, bio, mirror_num, bio_flags); |
| 2566 | |
| 2567 | return ret; |
| 2568 | } |
| 2569 | |
| 2570 | void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page) |
| 2571 | { |
| 2572 | if (!PagePrivate(page)) { |
| 2573 | SetPagePrivate(page); |
| 2574 | page_cache_get(page); |
| 2575 | set_page_private(page, (unsigned long)eb); |
| 2576 | } else { |
| 2577 | WARN_ON(page->private != (unsigned long)eb); |
| 2578 | } |
| 2579 | } |
| 2580 | |
| 2581 | void set_page_extent_mapped(struct page *page) |
| 2582 | { |
| 2583 | if (!PagePrivate(page)) { |
| 2584 | SetPagePrivate(page); |
| 2585 | page_cache_get(page); |
| 2586 | set_page_private(page, EXTENT_PAGE_PRIVATE); |
| 2587 | } |
| 2588 | } |
| 2589 | |
| 2590 | /* |
| 2591 | * basic readpage implementation. Locked extent state structs are inserted |
| 2592 | * into the tree that are removed when the IO is done (by the end_io |
| 2593 | * handlers) |
| 2594 | * XXX JDM: This needs looking at to ensure proper page locking |
| 2595 | */ |
| 2596 | static int __extent_read_full_page(struct extent_io_tree *tree, |
| 2597 | struct page *page, |
| 2598 | get_extent_t *get_extent, |
| 2599 | struct bio **bio, int mirror_num, |
| 2600 | unsigned long *bio_flags) |
| 2601 | { |
| 2602 | struct inode *inode = page->mapping->host; |
| 2603 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| 2604 | u64 page_end = start + PAGE_CACHE_SIZE - 1; |
| 2605 | u64 end; |
| 2606 | u64 cur = start; |
| 2607 | u64 extent_offset; |
| 2608 | u64 last_byte = i_size_read(inode); |
| 2609 | u64 block_start; |
| 2610 | u64 cur_end; |
| 2611 | sector_t sector; |
| 2612 | struct extent_map *em; |
| 2613 | struct block_device *bdev; |
| 2614 | struct btrfs_ordered_extent *ordered; |
| 2615 | int ret; |
| 2616 | int nr = 0; |
| 2617 | size_t pg_offset = 0; |
| 2618 | size_t iosize; |
| 2619 | size_t disk_io_size; |
| 2620 | size_t blocksize = inode->i_sb->s_blocksize; |
| 2621 | unsigned long this_bio_flag = 0; |
| 2622 | |
| 2623 | set_page_extent_mapped(page); |
| 2624 | |
| 2625 | if (!PageUptodate(page)) { |
| 2626 | if (cleancache_get_page(page) == 0) { |
| 2627 | BUG_ON(blocksize != PAGE_SIZE); |
| 2628 | goto out; |
| 2629 | } |
| 2630 | } |
| 2631 | |
| 2632 | end = page_end; |
| 2633 | while (1) { |
| 2634 | lock_extent(tree, start, end); |
| 2635 | ordered = btrfs_lookup_ordered_extent(inode, start); |
| 2636 | if (!ordered) |
| 2637 | break; |
| 2638 | unlock_extent(tree, start, end); |
| 2639 | btrfs_start_ordered_extent(inode, ordered, 1); |
| 2640 | btrfs_put_ordered_extent(ordered); |
| 2641 | } |
| 2642 | |
| 2643 | if (page->index == last_byte >> PAGE_CACHE_SHIFT) { |
| 2644 | char *userpage; |
| 2645 | size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); |
| 2646 | |
| 2647 | if (zero_offset) { |
| 2648 | iosize = PAGE_CACHE_SIZE - zero_offset; |
| 2649 | userpage = kmap_atomic(page); |
| 2650 | memset(userpage + zero_offset, 0, iosize); |
| 2651 | flush_dcache_page(page); |
| 2652 | kunmap_atomic(userpage); |
| 2653 | } |
| 2654 | } |
| 2655 | while (cur <= end) { |
| 2656 | if (cur >= last_byte) { |
| 2657 | char *userpage; |
| 2658 | struct extent_state *cached = NULL; |
| 2659 | |
| 2660 | iosize = PAGE_CACHE_SIZE - pg_offset; |
| 2661 | userpage = kmap_atomic(page); |
| 2662 | memset(userpage + pg_offset, 0, iosize); |
| 2663 | flush_dcache_page(page); |
| 2664 | kunmap_atomic(userpage); |
| 2665 | set_extent_uptodate(tree, cur, cur + iosize - 1, |
| 2666 | &cached, GFP_NOFS); |
| 2667 | unlock_extent_cached(tree, cur, cur + iosize - 1, |
| 2668 | &cached, GFP_NOFS); |
| 2669 | break; |
| 2670 | } |
| 2671 | em = get_extent(inode, page, pg_offset, cur, |
| 2672 | end - cur + 1, 0); |
| 2673 | if (IS_ERR_OR_NULL(em)) { |
| 2674 | SetPageError(page); |
| 2675 | unlock_extent(tree, cur, end); |
| 2676 | break; |
| 2677 | } |
| 2678 | extent_offset = cur - em->start; |
| 2679 | BUG_ON(extent_map_end(em) <= cur); |
| 2680 | BUG_ON(end < cur); |
| 2681 | |
| 2682 | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { |
| 2683 | this_bio_flag = EXTENT_BIO_COMPRESSED; |
| 2684 | extent_set_compress_type(&this_bio_flag, |
| 2685 | em->compress_type); |
| 2686 | } |
| 2687 | |
| 2688 | iosize = min(extent_map_end(em) - cur, end - cur + 1); |
| 2689 | cur_end = min(extent_map_end(em) - 1, end); |
| 2690 | iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); |
| 2691 | if (this_bio_flag & EXTENT_BIO_COMPRESSED) { |
| 2692 | disk_io_size = em->block_len; |
| 2693 | sector = em->block_start >> 9; |
| 2694 | } else { |
| 2695 | sector = (em->block_start + extent_offset) >> 9; |
| 2696 | disk_io_size = iosize; |
| 2697 | } |
| 2698 | bdev = em->bdev; |
| 2699 | block_start = em->block_start; |
| 2700 | if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) |
| 2701 | block_start = EXTENT_MAP_HOLE; |
| 2702 | free_extent_map(em); |
| 2703 | em = NULL; |
| 2704 | |
| 2705 | /* we've found a hole, just zero and go on */ |
| 2706 | if (block_start == EXTENT_MAP_HOLE) { |
| 2707 | char *userpage; |
| 2708 | struct extent_state *cached = NULL; |
| 2709 | |
| 2710 | userpage = kmap_atomic(page); |
| 2711 | memset(userpage + pg_offset, 0, iosize); |
| 2712 | flush_dcache_page(page); |
| 2713 | kunmap_atomic(userpage); |
| 2714 | |
| 2715 | set_extent_uptodate(tree, cur, cur + iosize - 1, |
| 2716 | &cached, GFP_NOFS); |
| 2717 | unlock_extent_cached(tree, cur, cur + iosize - 1, |
| 2718 | &cached, GFP_NOFS); |
| 2719 | cur = cur + iosize; |
| 2720 | pg_offset += iosize; |
| 2721 | continue; |
| 2722 | } |
| 2723 | /* the get_extent function already copied into the page */ |
| 2724 | if (test_range_bit(tree, cur, cur_end, |
| 2725 | EXTENT_UPTODATE, 1, NULL)) { |
| 2726 | check_page_uptodate(tree, page); |
| 2727 | unlock_extent(tree, cur, cur + iosize - 1); |
| 2728 | cur = cur + iosize; |
| 2729 | pg_offset += iosize; |
| 2730 | continue; |
| 2731 | } |
| 2732 | /* we have an inline extent but it didn't get marked up |
| 2733 | * to date. Error out |
| 2734 | */ |
| 2735 | if (block_start == EXTENT_MAP_INLINE) { |
| 2736 | SetPageError(page); |
| 2737 | unlock_extent(tree, cur, cur + iosize - 1); |
| 2738 | cur = cur + iosize; |
| 2739 | pg_offset += iosize; |
| 2740 | continue; |
| 2741 | } |
| 2742 | |
| 2743 | ret = 0; |
| 2744 | if (tree->ops && tree->ops->readpage_io_hook) { |
| 2745 | ret = tree->ops->readpage_io_hook(page, cur, |
| 2746 | cur + iosize - 1); |
| 2747 | } |
| 2748 | if (!ret) { |
| 2749 | unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; |
| 2750 | pnr -= page->index; |
| 2751 | ret = submit_extent_page(READ, tree, page, |
| 2752 | sector, disk_io_size, pg_offset, |
| 2753 | bdev, bio, pnr, |
| 2754 | end_bio_extent_readpage, mirror_num, |
| 2755 | *bio_flags, |
| 2756 | this_bio_flag); |
| 2757 | BUG_ON(ret == -ENOMEM); |
| 2758 | nr++; |
| 2759 | *bio_flags = this_bio_flag; |
| 2760 | } |
| 2761 | if (ret) |
| 2762 | SetPageError(page); |
| 2763 | cur = cur + iosize; |
| 2764 | pg_offset += iosize; |
| 2765 | } |
| 2766 | out: |
| 2767 | if (!nr) { |
| 2768 | if (!PageError(page)) |
| 2769 | SetPageUptodate(page); |
| 2770 | unlock_page(page); |
| 2771 | } |
| 2772 | return 0; |
| 2773 | } |
| 2774 | |
| 2775 | int extent_read_full_page(struct extent_io_tree *tree, struct page *page, |
| 2776 | get_extent_t *get_extent, int mirror_num) |
| 2777 | { |
| 2778 | struct bio *bio = NULL; |
| 2779 | unsigned long bio_flags = 0; |
| 2780 | int ret; |
| 2781 | |
| 2782 | ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, |
| 2783 | &bio_flags); |
| 2784 | if (bio) |
| 2785 | ret = submit_one_bio(READ, bio, mirror_num, bio_flags); |
| 2786 | return ret; |
| 2787 | } |
| 2788 | |
| 2789 | static noinline void update_nr_written(struct page *page, |
| 2790 | struct writeback_control *wbc, |
| 2791 | unsigned long nr_written) |
| 2792 | { |
| 2793 | wbc->nr_to_write -= nr_written; |
| 2794 | if (wbc->range_cyclic || (wbc->nr_to_write > 0 && |
| 2795 | wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) |
| 2796 | page->mapping->writeback_index = page->index + nr_written; |
| 2797 | } |
| 2798 | |
| 2799 | /* |
| 2800 | * the writepage semantics are similar to regular writepage. extent |
| 2801 | * records are inserted to lock ranges in the tree, and as dirty areas |
| 2802 | * are found, they are marked writeback. Then the lock bits are removed |
| 2803 | * and the end_io handler clears the writeback ranges |
| 2804 | */ |
| 2805 | static int __extent_writepage(struct page *page, struct writeback_control *wbc, |
| 2806 | void *data) |
| 2807 | { |
| 2808 | struct inode *inode = page->mapping->host; |
| 2809 | struct extent_page_data *epd = data; |
| 2810 | struct extent_io_tree *tree = epd->tree; |
| 2811 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| 2812 | u64 delalloc_start; |
| 2813 | u64 page_end = start + PAGE_CACHE_SIZE - 1; |
| 2814 | u64 end; |
| 2815 | u64 cur = start; |
| 2816 | u64 extent_offset; |
| 2817 | u64 last_byte = i_size_read(inode); |
| 2818 | u64 block_start; |
| 2819 | u64 iosize; |
| 2820 | sector_t sector; |
| 2821 | struct extent_state *cached_state = NULL; |
| 2822 | struct extent_map *em; |
| 2823 | struct block_device *bdev; |
| 2824 | int ret; |
| 2825 | int nr = 0; |
| 2826 | size_t pg_offset = 0; |
| 2827 | size_t blocksize; |
| 2828 | loff_t i_size = i_size_read(inode); |
| 2829 | unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; |
| 2830 | u64 nr_delalloc; |
| 2831 | u64 delalloc_end; |
| 2832 | int page_started; |
| 2833 | int compressed; |
| 2834 | int write_flags; |
| 2835 | unsigned long nr_written = 0; |
| 2836 | bool fill_delalloc = true; |
| 2837 | |
| 2838 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 2839 | write_flags = WRITE_SYNC; |
| 2840 | else |
| 2841 | write_flags = WRITE; |
| 2842 | |
| 2843 | trace___extent_writepage(page, inode, wbc); |
| 2844 | |
| 2845 | WARN_ON(!PageLocked(page)); |
| 2846 | |
| 2847 | ClearPageError(page); |
| 2848 | |
| 2849 | pg_offset = i_size & (PAGE_CACHE_SIZE - 1); |
| 2850 | if (page->index > end_index || |
| 2851 | (page->index == end_index && !pg_offset)) { |
| 2852 | page->mapping->a_ops->invalidatepage(page, 0); |
| 2853 | unlock_page(page); |
| 2854 | return 0; |
| 2855 | } |
| 2856 | |
| 2857 | if (page->index == end_index) { |
| 2858 | char *userpage; |
| 2859 | |
| 2860 | userpage = kmap_atomic(page); |
| 2861 | memset(userpage + pg_offset, 0, |
| 2862 | PAGE_CACHE_SIZE - pg_offset); |
| 2863 | kunmap_atomic(userpage); |
| 2864 | flush_dcache_page(page); |
| 2865 | } |
| 2866 | pg_offset = 0; |
| 2867 | |
| 2868 | set_page_extent_mapped(page); |
| 2869 | |
| 2870 | if (!tree->ops || !tree->ops->fill_delalloc) |
| 2871 | fill_delalloc = false; |
| 2872 | |
| 2873 | delalloc_start = start; |
| 2874 | delalloc_end = 0; |
| 2875 | page_started = 0; |
| 2876 | if (!epd->extent_locked && fill_delalloc) { |
| 2877 | u64 delalloc_to_write = 0; |
| 2878 | /* |
| 2879 | * make sure the wbc mapping index is at least updated |
| 2880 | * to this page. |
| 2881 | */ |
| 2882 | update_nr_written(page, wbc, 0); |
| 2883 | |
| 2884 | while (delalloc_end < page_end) { |
| 2885 | nr_delalloc = find_lock_delalloc_range(inode, tree, |
| 2886 | page, |
| 2887 | &delalloc_start, |
| 2888 | &delalloc_end, |
| 2889 | 128 * 1024 * 1024); |
| 2890 | if (nr_delalloc == 0) { |
| 2891 | delalloc_start = delalloc_end + 1; |
| 2892 | continue; |
| 2893 | } |
| 2894 | ret = tree->ops->fill_delalloc(inode, page, |
| 2895 | delalloc_start, |
| 2896 | delalloc_end, |
| 2897 | &page_started, |
| 2898 | &nr_written); |
| 2899 | /* File system has been set read-only */ |
| 2900 | if (ret) { |
| 2901 | SetPageError(page); |
| 2902 | goto done; |
| 2903 | } |
| 2904 | /* |
| 2905 | * delalloc_end is already one less than the total |
| 2906 | * length, so we don't subtract one from |
| 2907 | * PAGE_CACHE_SIZE |
| 2908 | */ |
| 2909 | delalloc_to_write += (delalloc_end - delalloc_start + |
| 2910 | PAGE_CACHE_SIZE) >> |
| 2911 | PAGE_CACHE_SHIFT; |
| 2912 | delalloc_start = delalloc_end + 1; |
| 2913 | } |
| 2914 | if (wbc->nr_to_write < delalloc_to_write) { |
| 2915 | int thresh = 8192; |
| 2916 | |
| 2917 | if (delalloc_to_write < thresh * 2) |
| 2918 | thresh = delalloc_to_write; |
| 2919 | wbc->nr_to_write = min_t(u64, delalloc_to_write, |
| 2920 | thresh); |
| 2921 | } |
| 2922 | |
| 2923 | /* did the fill delalloc function already unlock and start |
| 2924 | * the IO? |
| 2925 | */ |
| 2926 | if (page_started) { |
| 2927 | ret = 0; |
| 2928 | /* |
| 2929 | * we've unlocked the page, so we can't update |
| 2930 | * the mapping's writeback index, just update |
| 2931 | * nr_to_write. |
| 2932 | */ |
| 2933 | wbc->nr_to_write -= nr_written; |
| 2934 | goto done_unlocked; |
| 2935 | } |
| 2936 | } |
| 2937 | if (tree->ops && tree->ops->writepage_start_hook) { |
| 2938 | ret = tree->ops->writepage_start_hook(page, start, |
| 2939 | page_end); |
| 2940 | if (ret) { |
| 2941 | /* Fixup worker will requeue */ |
| 2942 | if (ret == -EBUSY) |
| 2943 | wbc->pages_skipped++; |
| 2944 | else |
| 2945 | redirty_page_for_writepage(wbc, page); |
| 2946 | update_nr_written(page, wbc, nr_written); |
| 2947 | unlock_page(page); |
| 2948 | ret = 0; |
| 2949 | goto done_unlocked; |
| 2950 | } |
| 2951 | } |
| 2952 | |
| 2953 | /* |
| 2954 | * we don't want to touch the inode after unlocking the page, |
| 2955 | * so we update the mapping writeback index now |
| 2956 | */ |
| 2957 | update_nr_written(page, wbc, nr_written + 1); |
| 2958 | |
| 2959 | end = page_end; |
| 2960 | if (last_byte <= start) { |
| 2961 | if (tree->ops && tree->ops->writepage_end_io_hook) |
| 2962 | tree->ops->writepage_end_io_hook(page, start, |
| 2963 | page_end, NULL, 1); |
| 2964 | goto done; |
| 2965 | } |
| 2966 | |
| 2967 | blocksize = inode->i_sb->s_blocksize; |
| 2968 | |
| 2969 | while (cur <= end) { |
| 2970 | if (cur >= last_byte) { |
| 2971 | if (tree->ops && tree->ops->writepage_end_io_hook) |
| 2972 | tree->ops->writepage_end_io_hook(page, cur, |
| 2973 | page_end, NULL, 1); |
| 2974 | break; |
| 2975 | } |
| 2976 | em = epd->get_extent(inode, page, pg_offset, cur, |
| 2977 | end - cur + 1, 1); |
| 2978 | if (IS_ERR_OR_NULL(em)) { |
| 2979 | SetPageError(page); |
| 2980 | break; |
| 2981 | } |
| 2982 | |
| 2983 | extent_offset = cur - em->start; |
| 2984 | BUG_ON(extent_map_end(em) <= cur); |
| 2985 | BUG_ON(end < cur); |
| 2986 | iosize = min(extent_map_end(em) - cur, end - cur + 1); |
| 2987 | iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); |
| 2988 | sector = (em->block_start + extent_offset) >> 9; |
| 2989 | bdev = em->bdev; |
| 2990 | block_start = em->block_start; |
| 2991 | compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); |
| 2992 | free_extent_map(em); |
| 2993 | em = NULL; |
| 2994 | |
| 2995 | /* |
| 2996 | * compressed and inline extents are written through other |
| 2997 | * paths in the FS |
| 2998 | */ |
| 2999 | if (compressed || block_start == EXTENT_MAP_HOLE || |
| 3000 | block_start == EXTENT_MAP_INLINE) { |
| 3001 | /* |
| 3002 | * end_io notification does not happen here for |
| 3003 | * compressed extents |
| 3004 | */ |
| 3005 | if (!compressed && tree->ops && |
| 3006 | tree->ops->writepage_end_io_hook) |
| 3007 | tree->ops->writepage_end_io_hook(page, cur, |
| 3008 | cur + iosize - 1, |
| 3009 | NULL, 1); |
| 3010 | else if (compressed) { |
| 3011 | /* we don't want to end_page_writeback on |
| 3012 | * a compressed extent. this happens |
| 3013 | * elsewhere |
| 3014 | */ |
| 3015 | nr++; |
| 3016 | } |
| 3017 | |
| 3018 | cur += iosize; |
| 3019 | pg_offset += iosize; |
| 3020 | continue; |
| 3021 | } |
| 3022 | /* leave this out until we have a page_mkwrite call */ |
| 3023 | if (0 && !test_range_bit(tree, cur, cur + iosize - 1, |
| 3024 | EXTENT_DIRTY, 0, NULL)) { |
| 3025 | cur = cur + iosize; |
| 3026 | pg_offset += iosize; |
| 3027 | continue; |
| 3028 | } |
| 3029 | |
| 3030 | if (tree->ops && tree->ops->writepage_io_hook) { |
| 3031 | ret = tree->ops->writepage_io_hook(page, cur, |
| 3032 | cur + iosize - 1); |
| 3033 | } else { |
| 3034 | ret = 0; |
| 3035 | } |
| 3036 | if (ret) { |
| 3037 | SetPageError(page); |
| 3038 | } else { |
| 3039 | unsigned long max_nr = end_index + 1; |
| 3040 | |
| 3041 | set_range_writeback(tree, cur, cur + iosize - 1); |
| 3042 | if (!PageWriteback(page)) { |
| 3043 | printk(KERN_ERR "btrfs warning page %lu not " |
| 3044 | "writeback, cur %llu end %llu\n", |
| 3045 | page->index, (unsigned long long)cur, |
| 3046 | (unsigned long long)end); |
| 3047 | } |
| 3048 | |
| 3049 | ret = submit_extent_page(write_flags, tree, page, |
| 3050 | sector, iosize, pg_offset, |
| 3051 | bdev, &epd->bio, max_nr, |
| 3052 | end_bio_extent_writepage, |
| 3053 | 0, 0, 0); |
| 3054 | if (ret) |
| 3055 | SetPageError(page); |
| 3056 | } |
| 3057 | cur = cur + iosize; |
| 3058 | pg_offset += iosize; |
| 3059 | nr++; |
| 3060 | } |
| 3061 | done: |
| 3062 | if (nr == 0) { |
| 3063 | /* make sure the mapping tag for page dirty gets cleared */ |
| 3064 | set_page_writeback(page); |
| 3065 | end_page_writeback(page); |
| 3066 | } |
| 3067 | unlock_page(page); |
| 3068 | |
| 3069 | done_unlocked: |
| 3070 | |
| 3071 | /* drop our reference on any cached states */ |
| 3072 | free_extent_state(cached_state); |
| 3073 | return 0; |
| 3074 | } |
| 3075 | |
| 3076 | static int eb_wait(void *word) |
| 3077 | { |
| 3078 | io_schedule(); |
| 3079 | return 0; |
| 3080 | } |
| 3081 | |
| 3082 | static void wait_on_extent_buffer_writeback(struct extent_buffer *eb) |
| 3083 | { |
| 3084 | wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait, |
| 3085 | TASK_UNINTERRUPTIBLE); |
| 3086 | } |
| 3087 | |
| 3088 | static int lock_extent_buffer_for_io(struct extent_buffer *eb, |
| 3089 | struct btrfs_fs_info *fs_info, |
| 3090 | struct extent_page_data *epd) |
| 3091 | { |
| 3092 | unsigned long i, num_pages; |
| 3093 | int flush = 0; |
| 3094 | int ret = 0; |
| 3095 | |
| 3096 | if (!btrfs_try_tree_write_lock(eb)) { |
| 3097 | flush = 1; |
| 3098 | flush_write_bio(epd); |
| 3099 | btrfs_tree_lock(eb); |
| 3100 | } |
| 3101 | |
| 3102 | if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { |
| 3103 | btrfs_tree_unlock(eb); |
| 3104 | if (!epd->sync_io) |
| 3105 | return 0; |
| 3106 | if (!flush) { |
| 3107 | flush_write_bio(epd); |
| 3108 | flush = 1; |
| 3109 | } |
| 3110 | while (1) { |
| 3111 | wait_on_extent_buffer_writeback(eb); |
| 3112 | btrfs_tree_lock(eb); |
| 3113 | if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) |
| 3114 | break; |
| 3115 | btrfs_tree_unlock(eb); |
| 3116 | } |
| 3117 | } |
| 3118 | |
| 3119 | if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { |
| 3120 | set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); |
| 3121 | btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); |
| 3122 | spin_lock(&fs_info->delalloc_lock); |
| 3123 | if (fs_info->dirty_metadata_bytes >= eb->len) |
| 3124 | fs_info->dirty_metadata_bytes -= eb->len; |
| 3125 | else |
| 3126 | WARN_ON(1); |
| 3127 | spin_unlock(&fs_info->delalloc_lock); |
| 3128 | ret = 1; |
| 3129 | } |
| 3130 | |
| 3131 | btrfs_tree_unlock(eb); |
| 3132 | |
| 3133 | if (!ret) |
| 3134 | return ret; |
| 3135 | |
| 3136 | num_pages = num_extent_pages(eb->start, eb->len); |
| 3137 | for (i = 0; i < num_pages; i++) { |
| 3138 | struct page *p = extent_buffer_page(eb, i); |
| 3139 | |
| 3140 | if (!trylock_page(p)) { |
| 3141 | if (!flush) { |
| 3142 | flush_write_bio(epd); |
| 3143 | flush = 1; |
| 3144 | } |
| 3145 | lock_page(p); |
| 3146 | } |
| 3147 | } |
| 3148 | |
| 3149 | return ret; |
| 3150 | } |
| 3151 | |
| 3152 | static void end_extent_buffer_writeback(struct extent_buffer *eb) |
| 3153 | { |
| 3154 | clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); |
| 3155 | smp_mb__after_clear_bit(); |
| 3156 | wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); |
| 3157 | } |
| 3158 | |
| 3159 | static void end_bio_extent_buffer_writepage(struct bio *bio, int err) |
| 3160 | { |
| 3161 | int uptodate = err == 0; |
| 3162 | struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; |
| 3163 | struct extent_buffer *eb; |
| 3164 | int done; |
| 3165 | |
| 3166 | do { |
| 3167 | struct page *page = bvec->bv_page; |
| 3168 | |
| 3169 | bvec--; |
| 3170 | eb = (struct extent_buffer *)page->private; |
| 3171 | BUG_ON(!eb); |
| 3172 | done = atomic_dec_and_test(&eb->io_pages); |
| 3173 | |
| 3174 | if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { |
| 3175 | set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); |
| 3176 | ClearPageUptodate(page); |
| 3177 | SetPageError(page); |
| 3178 | } |
| 3179 | |
| 3180 | end_page_writeback(page); |
| 3181 | |
| 3182 | if (!done) |
| 3183 | continue; |
| 3184 | |
| 3185 | end_extent_buffer_writeback(eb); |
| 3186 | } while (bvec >= bio->bi_io_vec); |
| 3187 | |
| 3188 | bio_put(bio); |
| 3189 | |
| 3190 | } |
| 3191 | |
| 3192 | static int write_one_eb(struct extent_buffer *eb, |
| 3193 | struct btrfs_fs_info *fs_info, |
| 3194 | struct writeback_control *wbc, |
| 3195 | struct extent_page_data *epd) |
| 3196 | { |
| 3197 | struct block_device *bdev = fs_info->fs_devices->latest_bdev; |
| 3198 | u64 offset = eb->start; |
| 3199 | unsigned long i, num_pages; |
| 3200 | int rw = (epd->sync_io ? WRITE_SYNC : WRITE); |
| 3201 | int ret; |
| 3202 | |
| 3203 | clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); |
| 3204 | num_pages = num_extent_pages(eb->start, eb->len); |
| 3205 | atomic_set(&eb->io_pages, num_pages); |
| 3206 | for (i = 0; i < num_pages; i++) { |
| 3207 | struct page *p = extent_buffer_page(eb, i); |
| 3208 | |
| 3209 | clear_page_dirty_for_io(p); |
| 3210 | set_page_writeback(p); |
| 3211 | ret = submit_extent_page(rw, eb->tree, p, offset >> 9, |
| 3212 | PAGE_CACHE_SIZE, 0, bdev, &epd->bio, |
| 3213 | -1, end_bio_extent_buffer_writepage, |
| 3214 | 0, 0, 0); |
| 3215 | if (ret) { |
| 3216 | set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); |
| 3217 | SetPageError(p); |
| 3218 | if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) |
| 3219 | end_extent_buffer_writeback(eb); |
| 3220 | ret = -EIO; |
| 3221 | break; |
| 3222 | } |
| 3223 | offset += PAGE_CACHE_SIZE; |
| 3224 | update_nr_written(p, wbc, 1); |
| 3225 | unlock_page(p); |
| 3226 | } |
| 3227 | |
| 3228 | if (unlikely(ret)) { |
| 3229 | for (; i < num_pages; i++) { |
| 3230 | struct page *p = extent_buffer_page(eb, i); |
| 3231 | unlock_page(p); |
| 3232 | } |
| 3233 | } |
| 3234 | |
| 3235 | return ret; |
| 3236 | } |
| 3237 | |
| 3238 | int btree_write_cache_pages(struct address_space *mapping, |
| 3239 | struct writeback_control *wbc) |
| 3240 | { |
| 3241 | struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; |
| 3242 | struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; |
| 3243 | struct extent_buffer *eb, *prev_eb = NULL; |
| 3244 | struct extent_page_data epd = { |
| 3245 | .bio = NULL, |
| 3246 | .tree = tree, |
| 3247 | .extent_locked = 0, |
| 3248 | .sync_io = wbc->sync_mode == WB_SYNC_ALL, |
| 3249 | }; |
| 3250 | int ret = 0; |
| 3251 | int done = 0; |
| 3252 | int nr_to_write_done = 0; |
| 3253 | struct pagevec pvec; |
| 3254 | int nr_pages; |
| 3255 | pgoff_t index; |
| 3256 | pgoff_t end; /* Inclusive */ |
| 3257 | int scanned = 0; |
| 3258 | int tag; |
| 3259 | |
| 3260 | pagevec_init(&pvec, 0); |
| 3261 | if (wbc->range_cyclic) { |
| 3262 | index = mapping->writeback_index; /* Start from prev offset */ |
| 3263 | end = -1; |
| 3264 | } else { |
| 3265 | index = wbc->range_start >> PAGE_CACHE_SHIFT; |
| 3266 | end = wbc->range_end >> PAGE_CACHE_SHIFT; |
| 3267 | scanned = 1; |
| 3268 | } |
| 3269 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 3270 | tag = PAGECACHE_TAG_TOWRITE; |
| 3271 | else |
| 3272 | tag = PAGECACHE_TAG_DIRTY; |
| 3273 | retry: |
| 3274 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 3275 | tag_pages_for_writeback(mapping, index, end); |
| 3276 | while (!done && !nr_to_write_done && (index <= end) && |
| 3277 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, |
| 3278 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { |
| 3279 | unsigned i; |
| 3280 | |
| 3281 | scanned = 1; |
| 3282 | for (i = 0; i < nr_pages; i++) { |
| 3283 | struct page *page = pvec.pages[i]; |
| 3284 | |
| 3285 | if (!PagePrivate(page)) |
| 3286 | continue; |
| 3287 | |
| 3288 | if (!wbc->range_cyclic && page->index > end) { |
| 3289 | done = 1; |
| 3290 | break; |
| 3291 | } |
| 3292 | |
| 3293 | eb = (struct extent_buffer *)page->private; |
| 3294 | if (!eb) { |
| 3295 | WARN_ON(1); |
| 3296 | continue; |
| 3297 | } |
| 3298 | |
| 3299 | if (eb == prev_eb) |
| 3300 | continue; |
| 3301 | |
| 3302 | if (!atomic_inc_not_zero(&eb->refs)) { |
| 3303 | WARN_ON(1); |
| 3304 | continue; |
| 3305 | } |
| 3306 | |
| 3307 | prev_eb = eb; |
| 3308 | ret = lock_extent_buffer_for_io(eb, fs_info, &epd); |
| 3309 | if (!ret) { |
| 3310 | free_extent_buffer(eb); |
| 3311 | continue; |
| 3312 | } |
| 3313 | |
| 3314 | ret = write_one_eb(eb, fs_info, wbc, &epd); |
| 3315 | if (ret) { |
| 3316 | done = 1; |
| 3317 | free_extent_buffer(eb); |
| 3318 | break; |
| 3319 | } |
| 3320 | free_extent_buffer(eb); |
| 3321 | |
| 3322 | /* |
| 3323 | * the filesystem may choose to bump up nr_to_write. |
| 3324 | * We have to make sure to honor the new nr_to_write |
| 3325 | * at any time |
| 3326 | */ |
| 3327 | nr_to_write_done = wbc->nr_to_write <= 0; |
| 3328 | } |
| 3329 | pagevec_release(&pvec); |
| 3330 | cond_resched(); |
| 3331 | } |
| 3332 | if (!scanned && !done) { |
| 3333 | /* |
| 3334 | * We hit the last page and there is more work to be done: wrap |
| 3335 | * back to the start of the file |
| 3336 | */ |
| 3337 | scanned = 1; |
| 3338 | index = 0; |
| 3339 | goto retry; |
| 3340 | } |
| 3341 | flush_write_bio(&epd); |
| 3342 | return ret; |
| 3343 | } |
| 3344 | |
| 3345 | /** |
| 3346 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
| 3347 | * @mapping: address space structure to write |
| 3348 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
| 3349 | * @writepage: function called for each page |
| 3350 | * @data: data passed to writepage function |
| 3351 | * |
| 3352 | * If a page is already under I/O, write_cache_pages() skips it, even |
| 3353 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, |
| 3354 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() |
| 3355 | * and msync() need to guarantee that all the data which was dirty at the time |
| 3356 | * the call was made get new I/O started against them. If wbc->sync_mode is |
| 3357 | * WB_SYNC_ALL then we were called for data integrity and we must wait for |
| 3358 | * existing IO to complete. |
| 3359 | */ |
| 3360 | static int extent_write_cache_pages(struct extent_io_tree *tree, |
| 3361 | struct address_space *mapping, |
| 3362 | struct writeback_control *wbc, |
| 3363 | writepage_t writepage, void *data, |
| 3364 | void (*flush_fn)(void *)) |
| 3365 | { |
| 3366 | int ret = 0; |
| 3367 | int done = 0; |
| 3368 | int nr_to_write_done = 0; |
| 3369 | struct pagevec pvec; |
| 3370 | int nr_pages; |
| 3371 | pgoff_t index; |
| 3372 | pgoff_t end; /* Inclusive */ |
| 3373 | int scanned = 0; |
| 3374 | int tag; |
| 3375 | |
| 3376 | pagevec_init(&pvec, 0); |
| 3377 | if (wbc->range_cyclic) { |
| 3378 | index = mapping->writeback_index; /* Start from prev offset */ |
| 3379 | end = -1; |
| 3380 | } else { |
| 3381 | index = wbc->range_start >> PAGE_CACHE_SHIFT; |
| 3382 | end = wbc->range_end >> PAGE_CACHE_SHIFT; |
| 3383 | scanned = 1; |
| 3384 | } |
| 3385 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 3386 | tag = PAGECACHE_TAG_TOWRITE; |
| 3387 | else |
| 3388 | tag = PAGECACHE_TAG_DIRTY; |
| 3389 | retry: |
| 3390 | if (wbc->sync_mode == WB_SYNC_ALL) |
| 3391 | tag_pages_for_writeback(mapping, index, end); |
| 3392 | while (!done && !nr_to_write_done && (index <= end) && |
| 3393 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, |
| 3394 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { |
| 3395 | unsigned i; |
| 3396 | |
| 3397 | scanned = 1; |
| 3398 | for (i = 0; i < nr_pages; i++) { |
| 3399 | struct page *page = pvec.pages[i]; |
| 3400 | |
| 3401 | /* |
| 3402 | * At this point we hold neither mapping->tree_lock nor |
| 3403 | * lock on the page itself: the page may be truncated or |
| 3404 | * invalidated (changing page->mapping to NULL), or even |
| 3405 | * swizzled back from swapper_space to tmpfs file |
| 3406 | * mapping |
| 3407 | */ |
| 3408 | if (tree->ops && |
| 3409 | tree->ops->write_cache_pages_lock_hook) { |
| 3410 | tree->ops->write_cache_pages_lock_hook(page, |
| 3411 | data, flush_fn); |
| 3412 | } else { |
| 3413 | if (!trylock_page(page)) { |
| 3414 | flush_fn(data); |
| 3415 | lock_page(page); |
| 3416 | } |
| 3417 | } |
| 3418 | |
| 3419 | if (unlikely(page->mapping != mapping)) { |
| 3420 | unlock_page(page); |
| 3421 | continue; |
| 3422 | } |
| 3423 | |
| 3424 | if (!wbc->range_cyclic && page->index > end) { |
| 3425 | done = 1; |
| 3426 | unlock_page(page); |
| 3427 | continue; |
| 3428 | } |
| 3429 | |
| 3430 | if (wbc->sync_mode != WB_SYNC_NONE) { |
| 3431 | if (PageWriteback(page)) |
| 3432 | flush_fn(data); |
| 3433 | wait_on_page_writeback(page); |
| 3434 | } |
| 3435 | |
| 3436 | if (PageWriteback(page) || |
| 3437 | !clear_page_dirty_for_io(page)) { |
| 3438 | unlock_page(page); |
| 3439 | continue; |
| 3440 | } |
| 3441 | |
| 3442 | ret = (*writepage)(page, wbc, data); |
| 3443 | |
| 3444 | if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { |
| 3445 | unlock_page(page); |
| 3446 | ret = 0; |
| 3447 | } |
| 3448 | if (ret) |
| 3449 | done = 1; |
| 3450 | |
| 3451 | /* |
| 3452 | * the filesystem may choose to bump up nr_to_write. |
| 3453 | * We have to make sure to honor the new nr_to_write |
| 3454 | * at any time |
| 3455 | */ |
| 3456 | nr_to_write_done = wbc->nr_to_write <= 0; |
| 3457 | } |
| 3458 | pagevec_release(&pvec); |
| 3459 | cond_resched(); |
| 3460 | } |
| 3461 | if (!scanned && !done) { |
| 3462 | /* |
| 3463 | * We hit the last page and there is more work to be done: wrap |
| 3464 | * back to the start of the file |
| 3465 | */ |
| 3466 | scanned = 1; |
| 3467 | index = 0; |
| 3468 | goto retry; |
| 3469 | } |
| 3470 | return ret; |
| 3471 | } |
| 3472 | |
| 3473 | static void flush_epd_write_bio(struct extent_page_data *epd) |
| 3474 | { |
| 3475 | if (epd->bio) { |
| 3476 | int rw = WRITE; |
| 3477 | int ret; |
| 3478 | |
| 3479 | if (epd->sync_io) |
| 3480 | rw = WRITE_SYNC; |
| 3481 | |
| 3482 | ret = submit_one_bio(rw, epd->bio, 0, 0); |
| 3483 | BUG_ON(ret < 0); /* -ENOMEM */ |
| 3484 | epd->bio = NULL; |
| 3485 | } |
| 3486 | } |
| 3487 | |
| 3488 | static noinline void flush_write_bio(void *data) |
| 3489 | { |
| 3490 | struct extent_page_data *epd = data; |
| 3491 | flush_epd_write_bio(epd); |
| 3492 | } |
| 3493 | |
| 3494 | int extent_write_full_page(struct extent_io_tree *tree, struct page *page, |
| 3495 | get_extent_t *get_extent, |
| 3496 | struct writeback_control *wbc) |
| 3497 | { |
| 3498 | int ret; |
| 3499 | struct extent_page_data epd = { |
| 3500 | .bio = NULL, |
| 3501 | .tree = tree, |
| 3502 | .get_extent = get_extent, |
| 3503 | .extent_locked = 0, |
| 3504 | .sync_io = wbc->sync_mode == WB_SYNC_ALL, |
| 3505 | }; |
| 3506 | |
| 3507 | ret = __extent_writepage(page, wbc, &epd); |
| 3508 | |
| 3509 | flush_epd_write_bio(&epd); |
| 3510 | return ret; |
| 3511 | } |
| 3512 | |
| 3513 | int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, |
| 3514 | u64 start, u64 end, get_extent_t *get_extent, |
| 3515 | int mode) |
| 3516 | { |
| 3517 | int ret = 0; |
| 3518 | struct address_space *mapping = inode->i_mapping; |
| 3519 | struct page *page; |
| 3520 | unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> |
| 3521 | PAGE_CACHE_SHIFT; |
| 3522 | |
| 3523 | struct extent_page_data epd = { |
| 3524 | .bio = NULL, |
| 3525 | .tree = tree, |
| 3526 | .get_extent = get_extent, |
| 3527 | .extent_locked = 1, |
| 3528 | .sync_io = mode == WB_SYNC_ALL, |
| 3529 | }; |
| 3530 | struct writeback_control wbc_writepages = { |
| 3531 | .sync_mode = mode, |
| 3532 | .nr_to_write = nr_pages * 2, |
| 3533 | .range_start = start, |
| 3534 | .range_end = end + 1, |
| 3535 | }; |
| 3536 | |
| 3537 | while (start <= end) { |
| 3538 | page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); |
| 3539 | if (clear_page_dirty_for_io(page)) |
| 3540 | ret = __extent_writepage(page, &wbc_writepages, &epd); |
| 3541 | else { |
| 3542 | if (tree->ops && tree->ops->writepage_end_io_hook) |
| 3543 | tree->ops->writepage_end_io_hook(page, start, |
| 3544 | start + PAGE_CACHE_SIZE - 1, |
| 3545 | NULL, 1); |
| 3546 | unlock_page(page); |
| 3547 | } |
| 3548 | page_cache_release(page); |
| 3549 | start += PAGE_CACHE_SIZE; |
| 3550 | } |
| 3551 | |
| 3552 | flush_epd_write_bio(&epd); |
| 3553 | return ret; |
| 3554 | } |
| 3555 | |
| 3556 | int extent_writepages(struct extent_io_tree *tree, |
| 3557 | struct address_space *mapping, |
| 3558 | get_extent_t *get_extent, |
| 3559 | struct writeback_control *wbc) |
| 3560 | { |
| 3561 | int ret = 0; |
| 3562 | struct extent_page_data epd = { |
| 3563 | .bio = NULL, |
| 3564 | .tree = tree, |
| 3565 | .get_extent = get_extent, |
| 3566 | .extent_locked = 0, |
| 3567 | .sync_io = wbc->sync_mode == WB_SYNC_ALL, |
| 3568 | }; |
| 3569 | |
| 3570 | ret = extent_write_cache_pages(tree, mapping, wbc, |
| 3571 | __extent_writepage, &epd, |
| 3572 | flush_write_bio); |
| 3573 | flush_epd_write_bio(&epd); |
| 3574 | return ret; |
| 3575 | } |
| 3576 | |
| 3577 | int extent_readpages(struct extent_io_tree *tree, |
| 3578 | struct address_space *mapping, |
| 3579 | struct list_head *pages, unsigned nr_pages, |
| 3580 | get_extent_t get_extent) |
| 3581 | { |
| 3582 | struct bio *bio = NULL; |
| 3583 | unsigned page_idx; |
| 3584 | unsigned long bio_flags = 0; |
| 3585 | |
| 3586 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { |
| 3587 | struct page *page = list_entry(pages->prev, struct page, lru); |
| 3588 | |
| 3589 | prefetchw(&page->flags); |
| 3590 | list_del(&page->lru); |
| 3591 | if (!add_to_page_cache_lru(page, mapping, |
| 3592 | page->index, GFP_NOFS)) { |
| 3593 | __extent_read_full_page(tree, page, get_extent, |
| 3594 | &bio, 0, &bio_flags); |
| 3595 | } |
| 3596 | page_cache_release(page); |
| 3597 | } |
| 3598 | BUG_ON(!list_empty(pages)); |
| 3599 | if (bio) |
| 3600 | return submit_one_bio(READ, bio, 0, bio_flags); |
| 3601 | return 0; |
| 3602 | } |
| 3603 | |
| 3604 | /* |
| 3605 | * basic invalidatepage code, this waits on any locked or writeback |
| 3606 | * ranges corresponding to the page, and then deletes any extent state |
| 3607 | * records from the tree |
| 3608 | */ |
| 3609 | int extent_invalidatepage(struct extent_io_tree *tree, |
| 3610 | struct page *page, unsigned long offset) |
| 3611 | { |
| 3612 | struct extent_state *cached_state = NULL; |
| 3613 | u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); |
| 3614 | u64 end = start + PAGE_CACHE_SIZE - 1; |
| 3615 | size_t blocksize = page->mapping->host->i_sb->s_blocksize; |
| 3616 | |
| 3617 | start += (offset + blocksize - 1) & ~(blocksize - 1); |
| 3618 | if (start > end) |
| 3619 | return 0; |
| 3620 | |
| 3621 | lock_extent_bits(tree, start, end, 0, &cached_state); |
| 3622 | wait_on_page_writeback(page); |
| 3623 | clear_extent_bit(tree, start, end, |
| 3624 | EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | |
| 3625 | EXTENT_DO_ACCOUNTING, |
| 3626 | 1, 1, &cached_state, GFP_NOFS); |
| 3627 | return 0; |
| 3628 | } |
| 3629 | |
| 3630 | /* |
| 3631 | * a helper for releasepage, this tests for areas of the page that |
| 3632 | * are locked or under IO and drops the related state bits if it is safe |
| 3633 | * to drop the page. |
| 3634 | */ |
| 3635 | int try_release_extent_state(struct extent_map_tree *map, |
| 3636 | struct extent_io_tree *tree, struct page *page, |
| 3637 | gfp_t mask) |
| 3638 | { |
| 3639 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| 3640 | u64 end = start + PAGE_CACHE_SIZE - 1; |
| 3641 | int ret = 1; |
| 3642 | |
| 3643 | if (test_range_bit(tree, start, end, |
| 3644 | EXTENT_IOBITS, 0, NULL)) |
| 3645 | ret = 0; |
| 3646 | else { |
| 3647 | if ((mask & GFP_NOFS) == GFP_NOFS) |
| 3648 | mask = GFP_NOFS; |
| 3649 | /* |
| 3650 | * at this point we can safely clear everything except the |
| 3651 | * locked bit and the nodatasum bit |
| 3652 | */ |
| 3653 | ret = clear_extent_bit(tree, start, end, |
| 3654 | ~(EXTENT_LOCKED | EXTENT_NODATASUM), |
| 3655 | 0, 0, NULL, mask); |
| 3656 | |
| 3657 | /* if clear_extent_bit failed for enomem reasons, |
| 3658 | * we can't allow the release to continue. |
| 3659 | */ |
| 3660 | if (ret < 0) |
| 3661 | ret = 0; |
| 3662 | else |
| 3663 | ret = 1; |
| 3664 | } |
| 3665 | return ret; |
| 3666 | } |
| 3667 | |
| 3668 | /* |
| 3669 | * a helper for releasepage. As long as there are no locked extents |
| 3670 | * in the range corresponding to the page, both state records and extent |
| 3671 | * map records are removed |
| 3672 | */ |
| 3673 | int try_release_extent_mapping(struct extent_map_tree *map, |
| 3674 | struct extent_io_tree *tree, struct page *page, |
| 3675 | gfp_t mask) |
| 3676 | { |
| 3677 | struct extent_map *em; |
| 3678 | u64 start = (u64)page->index << PAGE_CACHE_SHIFT; |
| 3679 | u64 end = start + PAGE_CACHE_SIZE - 1; |
| 3680 | |
| 3681 | if ((mask & __GFP_WAIT) && |
| 3682 | page->mapping->host->i_size > 16 * 1024 * 1024) { |
| 3683 | u64 len; |
| 3684 | while (start <= end) { |
| 3685 | len = end - start + 1; |
| 3686 | write_lock(&map->lock); |
| 3687 | em = lookup_extent_mapping(map, start, len); |
| 3688 | if (!em) { |
| 3689 | write_unlock(&map->lock); |
| 3690 | break; |
| 3691 | } |
| 3692 | if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || |
| 3693 | em->start != start) { |
| 3694 | write_unlock(&map->lock); |
| 3695 | free_extent_map(em); |
| 3696 | break; |
| 3697 | } |
| 3698 | if (!test_range_bit(tree, em->start, |
| 3699 | extent_map_end(em) - 1, |
| 3700 | EXTENT_LOCKED | EXTENT_WRITEBACK, |
| 3701 | 0, NULL)) { |
| 3702 | remove_extent_mapping(map, em); |
| 3703 | /* once for the rb tree */ |
| 3704 | free_extent_map(em); |
| 3705 | } |
| 3706 | start = extent_map_end(em); |
| 3707 | write_unlock(&map->lock); |
| 3708 | |
| 3709 | /* once for us */ |
| 3710 | free_extent_map(em); |
| 3711 | } |
| 3712 | } |
| 3713 | return try_release_extent_state(map, tree, page, mask); |
| 3714 | } |
| 3715 | |
| 3716 | /* |
| 3717 | * helper function for fiemap, which doesn't want to see any holes. |
| 3718 | * This maps until we find something past 'last' |
| 3719 | */ |
| 3720 | static struct extent_map *get_extent_skip_holes(struct inode *inode, |
| 3721 | u64 offset, |
| 3722 | u64 last, |
| 3723 | get_extent_t *get_extent) |
| 3724 | { |
| 3725 | u64 sectorsize = BTRFS_I(inode)->root->sectorsize; |
| 3726 | struct extent_map *em; |
| 3727 | u64 len; |
| 3728 | |
| 3729 | if (offset >= last) |
| 3730 | return NULL; |
| 3731 | |
| 3732 | while(1) { |
| 3733 | len = last - offset; |
| 3734 | if (len == 0) |
| 3735 | break; |
| 3736 | len = (len + sectorsize - 1) & ~(sectorsize - 1); |
| 3737 | em = get_extent(inode, NULL, 0, offset, len, 0); |
| 3738 | if (IS_ERR_OR_NULL(em)) |
| 3739 | return em; |
| 3740 | |
| 3741 | /* if this isn't a hole return it */ |
| 3742 | if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && |
| 3743 | em->block_start != EXTENT_MAP_HOLE) { |
| 3744 | return em; |
| 3745 | } |
| 3746 | |
| 3747 | /* this is a hole, advance to the next extent */ |
| 3748 | offset = extent_map_end(em); |
| 3749 | free_extent_map(em); |
| 3750 | if (offset >= last) |
| 3751 | break; |
| 3752 | } |
| 3753 | return NULL; |
| 3754 | } |
| 3755 | |
| 3756 | int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, |
| 3757 | __u64 start, __u64 len, get_extent_t *get_extent) |
| 3758 | { |
| 3759 | int ret = 0; |
| 3760 | u64 off = start; |
| 3761 | u64 max = start + len; |
| 3762 | u32 flags = 0; |
| 3763 | u32 found_type; |
| 3764 | u64 last; |
| 3765 | u64 last_for_get_extent = 0; |
| 3766 | u64 disko = 0; |
| 3767 | u64 isize = i_size_read(inode); |
| 3768 | struct btrfs_key found_key; |
| 3769 | struct extent_map *em = NULL; |
| 3770 | struct extent_state *cached_state = NULL; |
| 3771 | struct btrfs_path *path; |
| 3772 | struct btrfs_file_extent_item *item; |
| 3773 | int end = 0; |
| 3774 | u64 em_start = 0; |
| 3775 | u64 em_len = 0; |
| 3776 | u64 em_end = 0; |
| 3777 | unsigned long emflags; |
| 3778 | |
| 3779 | if (len == 0) |
| 3780 | return -EINVAL; |
| 3781 | |
| 3782 | path = btrfs_alloc_path(); |
| 3783 | if (!path) |
| 3784 | return -ENOMEM; |
| 3785 | path->leave_spinning = 1; |
| 3786 | |
| 3787 | start = ALIGN(start, BTRFS_I(inode)->root->sectorsize); |
| 3788 | len = ALIGN(len, BTRFS_I(inode)->root->sectorsize); |
| 3789 | |
| 3790 | /* |
| 3791 | * lookup the last file extent. We're not using i_size here |
| 3792 | * because there might be preallocation past i_size |
| 3793 | */ |
| 3794 | ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, |
| 3795 | path, btrfs_ino(inode), -1, 0); |
| 3796 | if (ret < 0) { |
| 3797 | btrfs_free_path(path); |
| 3798 | return ret; |
| 3799 | } |
| 3800 | WARN_ON(!ret); |
| 3801 | path->slots[0]--; |
| 3802 | item = btrfs_item_ptr(path->nodes[0], path->slots[0], |
| 3803 | struct btrfs_file_extent_item); |
| 3804 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); |
| 3805 | found_type = btrfs_key_type(&found_key); |
| 3806 | |
| 3807 | /* No extents, but there might be delalloc bits */ |
| 3808 | if (found_key.objectid != btrfs_ino(inode) || |
| 3809 | found_type != BTRFS_EXTENT_DATA_KEY) { |
| 3810 | /* have to trust i_size as the end */ |
| 3811 | last = (u64)-1; |
| 3812 | last_for_get_extent = isize; |
| 3813 | } else { |
| 3814 | /* |
| 3815 | * remember the start of the last extent. There are a |
| 3816 | * bunch of different factors that go into the length of the |
| 3817 | * extent, so its much less complex to remember where it started |
| 3818 | */ |
| 3819 | last = found_key.offset; |
| 3820 | last_for_get_extent = last + 1; |
| 3821 | } |
| 3822 | btrfs_free_path(path); |
| 3823 | |
| 3824 | /* |
| 3825 | * we might have some extents allocated but more delalloc past those |
| 3826 | * extents. so, we trust isize unless the start of the last extent is |
| 3827 | * beyond isize |
| 3828 | */ |
| 3829 | if (last < isize) { |
| 3830 | last = (u64)-1; |
| 3831 | last_for_get_extent = isize; |
| 3832 | } |
| 3833 | |
| 3834 | lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, |
| 3835 | &cached_state); |
| 3836 | |
| 3837 | em = get_extent_skip_holes(inode, start, last_for_get_extent, |
| 3838 | get_extent); |
| 3839 | if (!em) |
| 3840 | goto out; |
| 3841 | if (IS_ERR(em)) { |
| 3842 | ret = PTR_ERR(em); |
| 3843 | goto out; |
| 3844 | } |
| 3845 | |
| 3846 | while (!end) { |
| 3847 | u64 offset_in_extent; |
| 3848 | |
| 3849 | /* break if the extent we found is outside the range */ |
| 3850 | if (em->start >= max || extent_map_end(em) < off) |
| 3851 | break; |
| 3852 | |
| 3853 | /* |
| 3854 | * get_extent may return an extent that starts before our |
| 3855 | * requested range. We have to make sure the ranges |
| 3856 | * we return to fiemap always move forward and don't |
| 3857 | * overlap, so adjust the offsets here |
| 3858 | */ |
| 3859 | em_start = max(em->start, off); |
| 3860 | |
| 3861 | /* |
| 3862 | * record the offset from the start of the extent |
| 3863 | * for adjusting the disk offset below |
| 3864 | */ |
| 3865 | offset_in_extent = em_start - em->start; |
| 3866 | em_end = extent_map_end(em); |
| 3867 | em_len = em_end - em_start; |
| 3868 | emflags = em->flags; |
| 3869 | disko = 0; |
| 3870 | flags = 0; |
| 3871 | |
| 3872 | /* |
| 3873 | * bump off for our next call to get_extent |
| 3874 | */ |
| 3875 | off = extent_map_end(em); |
| 3876 | if (off >= max) |
| 3877 | end = 1; |
| 3878 | |
| 3879 | if (em->block_start == EXTENT_MAP_LAST_BYTE) { |
| 3880 | end = 1; |
| 3881 | flags |= FIEMAP_EXTENT_LAST; |
| 3882 | } else if (em->block_start == EXTENT_MAP_INLINE) { |
| 3883 | flags |= (FIEMAP_EXTENT_DATA_INLINE | |
| 3884 | FIEMAP_EXTENT_NOT_ALIGNED); |
| 3885 | } else if (em->block_start == EXTENT_MAP_DELALLOC) { |
| 3886 | flags |= (FIEMAP_EXTENT_DELALLOC | |
| 3887 | FIEMAP_EXTENT_UNKNOWN); |
| 3888 | } else { |
| 3889 | disko = em->block_start + offset_in_extent; |
| 3890 | } |
| 3891 | if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) |
| 3892 | flags |= FIEMAP_EXTENT_ENCODED; |
| 3893 | |
| 3894 | free_extent_map(em); |
| 3895 | em = NULL; |
| 3896 | if ((em_start >= last) || em_len == (u64)-1 || |
| 3897 | (last == (u64)-1 && isize <= em_end)) { |
| 3898 | flags |= FIEMAP_EXTENT_LAST; |
| 3899 | end = 1; |
| 3900 | } |
| 3901 | |
| 3902 | /* now scan forward to see if this is really the last extent. */ |
| 3903 | em = get_extent_skip_holes(inode, off, last_for_get_extent, |
| 3904 | get_extent); |
| 3905 | if (IS_ERR(em)) { |
| 3906 | ret = PTR_ERR(em); |
| 3907 | goto out; |
| 3908 | } |
| 3909 | if (!em) { |
| 3910 | flags |= FIEMAP_EXTENT_LAST; |
| 3911 | end = 1; |
| 3912 | } |
| 3913 | ret = fiemap_fill_next_extent(fieinfo, em_start, disko, |
| 3914 | em_len, flags); |
| 3915 | if (ret) |
| 3916 | goto out_free; |
| 3917 | } |
| 3918 | out_free: |
| 3919 | free_extent_map(em); |
| 3920 | out: |
| 3921 | unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, |
| 3922 | &cached_state, GFP_NOFS); |
| 3923 | return ret; |
| 3924 | } |
| 3925 | |
| 3926 | inline struct page *extent_buffer_page(struct extent_buffer *eb, |
| 3927 | unsigned long i) |
| 3928 | { |
| 3929 | return eb->pages[i]; |
| 3930 | } |
| 3931 | |
| 3932 | inline unsigned long num_extent_pages(u64 start, u64 len) |
| 3933 | { |
| 3934 | return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - |
| 3935 | (start >> PAGE_CACHE_SHIFT); |
| 3936 | } |
| 3937 | |
| 3938 | static void __free_extent_buffer(struct extent_buffer *eb) |
| 3939 | { |
| 3940 | #if LEAK_DEBUG |
| 3941 | unsigned long flags; |
| 3942 | spin_lock_irqsave(&leak_lock, flags); |
| 3943 | list_del(&eb->leak_list); |
| 3944 | spin_unlock_irqrestore(&leak_lock, flags); |
| 3945 | #endif |
| 3946 | if (eb->pages && eb->pages != eb->inline_pages) |
| 3947 | kfree(eb->pages); |
| 3948 | kmem_cache_free(extent_buffer_cache, eb); |
| 3949 | } |
| 3950 | |
| 3951 | static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, |
| 3952 | u64 start, |
| 3953 | unsigned long len, |
| 3954 | gfp_t mask) |
| 3955 | { |
| 3956 | struct extent_buffer *eb = NULL; |
| 3957 | #if LEAK_DEBUG |
| 3958 | unsigned long flags; |
| 3959 | #endif |
| 3960 | |
| 3961 | eb = kmem_cache_zalloc(extent_buffer_cache, mask); |
| 3962 | if (eb == NULL) |
| 3963 | return NULL; |
| 3964 | eb->start = start; |
| 3965 | eb->len = len; |
| 3966 | eb->tree = tree; |
| 3967 | rwlock_init(&eb->lock); |
| 3968 | atomic_set(&eb->write_locks, 0); |
| 3969 | atomic_set(&eb->read_locks, 0); |
| 3970 | atomic_set(&eb->blocking_readers, 0); |
| 3971 | atomic_set(&eb->blocking_writers, 0); |
| 3972 | atomic_set(&eb->spinning_readers, 0); |
| 3973 | atomic_set(&eb->spinning_writers, 0); |
| 3974 | eb->lock_nested = 0; |
| 3975 | init_waitqueue_head(&eb->write_lock_wq); |
| 3976 | init_waitqueue_head(&eb->read_lock_wq); |
| 3977 | |
| 3978 | #if LEAK_DEBUG |
| 3979 | spin_lock_irqsave(&leak_lock, flags); |
| 3980 | list_add(&eb->leak_list, &buffers); |
| 3981 | spin_unlock_irqrestore(&leak_lock, flags); |
| 3982 | #endif |
| 3983 | spin_lock_init(&eb->refs_lock); |
| 3984 | atomic_set(&eb->refs, 1); |
| 3985 | atomic_set(&eb->io_pages, 0); |
| 3986 | |
| 3987 | if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) { |
| 3988 | struct page **pages; |
| 3989 | int num_pages = (len + PAGE_CACHE_SIZE - 1) >> |
| 3990 | PAGE_CACHE_SHIFT; |
| 3991 | pages = kzalloc(num_pages, mask); |
| 3992 | if (!pages) { |
| 3993 | __free_extent_buffer(eb); |
| 3994 | return NULL; |
| 3995 | } |
| 3996 | eb->pages = pages; |
| 3997 | } else { |
| 3998 | eb->pages = eb->inline_pages; |
| 3999 | } |
| 4000 | |
| 4001 | return eb; |
| 4002 | } |
| 4003 | |
| 4004 | static int extent_buffer_under_io(struct extent_buffer *eb) |
| 4005 | { |
| 4006 | return (atomic_read(&eb->io_pages) || |
| 4007 | test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || |
| 4008 | test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| 4009 | } |
| 4010 | |
| 4011 | /* |
| 4012 | * Helper for releasing extent buffer page. |
| 4013 | */ |
| 4014 | static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, |
| 4015 | unsigned long start_idx) |
| 4016 | { |
| 4017 | unsigned long index; |
| 4018 | struct page *page; |
| 4019 | |
| 4020 | BUG_ON(extent_buffer_under_io(eb)); |
| 4021 | |
| 4022 | index = num_extent_pages(eb->start, eb->len); |
| 4023 | if (start_idx >= index) |
| 4024 | return; |
| 4025 | |
| 4026 | do { |
| 4027 | index--; |
| 4028 | page = extent_buffer_page(eb, index); |
| 4029 | if (page) { |
| 4030 | spin_lock(&page->mapping->private_lock); |
| 4031 | /* |
| 4032 | * We do this since we'll remove the pages after we've |
| 4033 | * removed the eb from the radix tree, so we could race |
| 4034 | * and have this page now attached to the new eb. So |
| 4035 | * only clear page_private if it's still connected to |
| 4036 | * this eb. |
| 4037 | */ |
| 4038 | if (PagePrivate(page) && |
| 4039 | page->private == (unsigned long)eb) { |
| 4040 | BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| 4041 | BUG_ON(PageDirty(page)); |
| 4042 | BUG_ON(PageWriteback(page)); |
| 4043 | /* |
| 4044 | * We need to make sure we haven't be attached |
| 4045 | * to a new eb. |
| 4046 | */ |
| 4047 | ClearPagePrivate(page); |
| 4048 | set_page_private(page, 0); |
| 4049 | /* One for the page private */ |
| 4050 | page_cache_release(page); |
| 4051 | } |
| 4052 | spin_unlock(&page->mapping->private_lock); |
| 4053 | |
| 4054 | /* One for when we alloced the page */ |
| 4055 | page_cache_release(page); |
| 4056 | } |
| 4057 | } while (index != start_idx); |
| 4058 | } |
| 4059 | |
| 4060 | /* |
| 4061 | * Helper for releasing the extent buffer. |
| 4062 | */ |
| 4063 | static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) |
| 4064 | { |
| 4065 | btrfs_release_extent_buffer_page(eb, 0); |
| 4066 | __free_extent_buffer(eb); |
| 4067 | } |
| 4068 | |
| 4069 | static void check_buffer_tree_ref(struct extent_buffer *eb) |
| 4070 | { |
| 4071 | /* the ref bit is tricky. We have to make sure it is set |
| 4072 | * if we have the buffer dirty. Otherwise the |
| 4073 | * code to free a buffer can end up dropping a dirty |
| 4074 | * page |
| 4075 | * |
| 4076 | * Once the ref bit is set, it won't go away while the |
| 4077 | * buffer is dirty or in writeback, and it also won't |
| 4078 | * go away while we have the reference count on the |
| 4079 | * eb bumped. |
| 4080 | * |
| 4081 | * We can't just set the ref bit without bumping the |
| 4082 | * ref on the eb because free_extent_buffer might |
| 4083 | * see the ref bit and try to clear it. If this happens |
| 4084 | * free_extent_buffer might end up dropping our original |
| 4085 | * ref by mistake and freeing the page before we are able |
| 4086 | * to add one more ref. |
| 4087 | * |
| 4088 | * So bump the ref count first, then set the bit. If someone |
| 4089 | * beat us to it, drop the ref we added. |
| 4090 | */ |
| 4091 | if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { |
| 4092 | atomic_inc(&eb->refs); |
| 4093 | if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) |
| 4094 | atomic_dec(&eb->refs); |
| 4095 | } |
| 4096 | } |
| 4097 | |
| 4098 | static void mark_extent_buffer_accessed(struct extent_buffer *eb) |
| 4099 | { |
| 4100 | unsigned long num_pages, i; |
| 4101 | |
| 4102 | check_buffer_tree_ref(eb); |
| 4103 | |
| 4104 | num_pages = num_extent_pages(eb->start, eb->len); |
| 4105 | for (i = 0; i < num_pages; i++) { |
| 4106 | struct page *p = extent_buffer_page(eb, i); |
| 4107 | mark_page_accessed(p); |
| 4108 | } |
| 4109 | } |
| 4110 | |
| 4111 | struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, |
| 4112 | u64 start, unsigned long len) |
| 4113 | { |
| 4114 | unsigned long num_pages = num_extent_pages(start, len); |
| 4115 | unsigned long i; |
| 4116 | unsigned long index = start >> PAGE_CACHE_SHIFT; |
| 4117 | struct extent_buffer *eb; |
| 4118 | struct extent_buffer *exists = NULL; |
| 4119 | struct page *p; |
| 4120 | struct address_space *mapping = tree->mapping; |
| 4121 | int uptodate = 1; |
| 4122 | int ret; |
| 4123 | |
| 4124 | rcu_read_lock(); |
| 4125 | eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); |
| 4126 | if (eb && atomic_inc_not_zero(&eb->refs)) { |
| 4127 | rcu_read_unlock(); |
| 4128 | mark_extent_buffer_accessed(eb); |
| 4129 | return eb; |
| 4130 | } |
| 4131 | rcu_read_unlock(); |
| 4132 | |
| 4133 | eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); |
| 4134 | if (!eb) |
| 4135 | return NULL; |
| 4136 | |
| 4137 | for (i = 0; i < num_pages; i++, index++) { |
| 4138 | p = find_or_create_page(mapping, index, GFP_NOFS); |
| 4139 | if (!p) { |
| 4140 | WARN_ON(1); |
| 4141 | goto free_eb; |
| 4142 | } |
| 4143 | |
| 4144 | spin_lock(&mapping->private_lock); |
| 4145 | if (PagePrivate(p)) { |
| 4146 | /* |
| 4147 | * We could have already allocated an eb for this page |
| 4148 | * and attached one so lets see if we can get a ref on |
| 4149 | * the existing eb, and if we can we know it's good and |
| 4150 | * we can just return that one, else we know we can just |
| 4151 | * overwrite page->private. |
| 4152 | */ |
| 4153 | exists = (struct extent_buffer *)p->private; |
| 4154 | if (atomic_inc_not_zero(&exists->refs)) { |
| 4155 | spin_unlock(&mapping->private_lock); |
| 4156 | unlock_page(p); |
| 4157 | page_cache_release(p); |
| 4158 | mark_extent_buffer_accessed(exists); |
| 4159 | goto free_eb; |
| 4160 | } |
| 4161 | |
| 4162 | /* |
| 4163 | * Do this so attach doesn't complain and we need to |
| 4164 | * drop the ref the old guy had. |
| 4165 | */ |
| 4166 | ClearPagePrivate(p); |
| 4167 | WARN_ON(PageDirty(p)); |
| 4168 | page_cache_release(p); |
| 4169 | } |
| 4170 | attach_extent_buffer_page(eb, p); |
| 4171 | spin_unlock(&mapping->private_lock); |
| 4172 | WARN_ON(PageDirty(p)); |
| 4173 | mark_page_accessed(p); |
| 4174 | eb->pages[i] = p; |
| 4175 | if (!PageUptodate(p)) |
| 4176 | uptodate = 0; |
| 4177 | |
| 4178 | /* |
| 4179 | * see below about how we avoid a nasty race with release page |
| 4180 | * and why we unlock later |
| 4181 | */ |
| 4182 | } |
| 4183 | if (uptodate) |
| 4184 | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); |
| 4185 | again: |
| 4186 | ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); |
| 4187 | if (ret) |
| 4188 | goto free_eb; |
| 4189 | |
| 4190 | spin_lock(&tree->buffer_lock); |
| 4191 | ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); |
| 4192 | if (ret == -EEXIST) { |
| 4193 | exists = radix_tree_lookup(&tree->buffer, |
| 4194 | start >> PAGE_CACHE_SHIFT); |
| 4195 | if (!atomic_inc_not_zero(&exists->refs)) { |
| 4196 | spin_unlock(&tree->buffer_lock); |
| 4197 | radix_tree_preload_end(); |
| 4198 | exists = NULL; |
| 4199 | goto again; |
| 4200 | } |
| 4201 | spin_unlock(&tree->buffer_lock); |
| 4202 | radix_tree_preload_end(); |
| 4203 | mark_extent_buffer_accessed(exists); |
| 4204 | goto free_eb; |
| 4205 | } |
| 4206 | /* add one reference for the tree */ |
| 4207 | spin_lock(&eb->refs_lock); |
| 4208 | check_buffer_tree_ref(eb); |
| 4209 | spin_unlock(&eb->refs_lock); |
| 4210 | spin_unlock(&tree->buffer_lock); |
| 4211 | radix_tree_preload_end(); |
| 4212 | |
| 4213 | /* |
| 4214 | * there is a race where release page may have |
| 4215 | * tried to find this extent buffer in the radix |
| 4216 | * but failed. It will tell the VM it is safe to |
| 4217 | * reclaim the, and it will clear the page private bit. |
| 4218 | * We must make sure to set the page private bit properly |
| 4219 | * after the extent buffer is in the radix tree so |
| 4220 | * it doesn't get lost |
| 4221 | */ |
| 4222 | SetPageChecked(eb->pages[0]); |
| 4223 | for (i = 1; i < num_pages; i++) { |
| 4224 | p = extent_buffer_page(eb, i); |
| 4225 | ClearPageChecked(p); |
| 4226 | unlock_page(p); |
| 4227 | } |
| 4228 | unlock_page(eb->pages[0]); |
| 4229 | return eb; |
| 4230 | |
| 4231 | free_eb: |
| 4232 | for (i = 0; i < num_pages; i++) { |
| 4233 | if (eb->pages[i]) |
| 4234 | unlock_page(eb->pages[i]); |
| 4235 | } |
| 4236 | |
| 4237 | WARN_ON(!atomic_dec_and_test(&eb->refs)); |
| 4238 | btrfs_release_extent_buffer(eb); |
| 4239 | return exists; |
| 4240 | } |
| 4241 | |
| 4242 | struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, |
| 4243 | u64 start, unsigned long len) |
| 4244 | { |
| 4245 | struct extent_buffer *eb; |
| 4246 | |
| 4247 | rcu_read_lock(); |
| 4248 | eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); |
| 4249 | if (eb && atomic_inc_not_zero(&eb->refs)) { |
| 4250 | rcu_read_unlock(); |
| 4251 | mark_extent_buffer_accessed(eb); |
| 4252 | return eb; |
| 4253 | } |
| 4254 | rcu_read_unlock(); |
| 4255 | |
| 4256 | return NULL; |
| 4257 | } |
| 4258 | |
| 4259 | static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) |
| 4260 | { |
| 4261 | struct extent_buffer *eb = |
| 4262 | container_of(head, struct extent_buffer, rcu_head); |
| 4263 | |
| 4264 | __free_extent_buffer(eb); |
| 4265 | } |
| 4266 | |
| 4267 | /* Expects to have eb->eb_lock already held */ |
| 4268 | static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask) |
| 4269 | { |
| 4270 | WARN_ON(atomic_read(&eb->refs) == 0); |
| 4271 | if (atomic_dec_and_test(&eb->refs)) { |
| 4272 | struct extent_io_tree *tree = eb->tree; |
| 4273 | |
| 4274 | spin_unlock(&eb->refs_lock); |
| 4275 | |
| 4276 | spin_lock(&tree->buffer_lock); |
| 4277 | radix_tree_delete(&tree->buffer, |
| 4278 | eb->start >> PAGE_CACHE_SHIFT); |
| 4279 | spin_unlock(&tree->buffer_lock); |
| 4280 | |
| 4281 | /* Should be safe to release our pages at this point */ |
| 4282 | btrfs_release_extent_buffer_page(eb, 0); |
| 4283 | |
| 4284 | call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); |
| 4285 | return; |
| 4286 | } |
| 4287 | spin_unlock(&eb->refs_lock); |
| 4288 | } |
| 4289 | |
| 4290 | void free_extent_buffer(struct extent_buffer *eb) |
| 4291 | { |
| 4292 | if (!eb) |
| 4293 | return; |
| 4294 | |
| 4295 | spin_lock(&eb->refs_lock); |
| 4296 | if (atomic_read(&eb->refs) == 2 && |
| 4297 | test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && |
| 4298 | !extent_buffer_under_io(eb) && |
| 4299 | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) |
| 4300 | atomic_dec(&eb->refs); |
| 4301 | |
| 4302 | /* |
| 4303 | * I know this is terrible, but it's temporary until we stop tracking |
| 4304 | * the uptodate bits and such for the extent buffers. |
| 4305 | */ |
| 4306 | release_extent_buffer(eb, GFP_ATOMIC); |
| 4307 | } |
| 4308 | |
| 4309 | void free_extent_buffer_stale(struct extent_buffer *eb) |
| 4310 | { |
| 4311 | if (!eb) |
| 4312 | return; |
| 4313 | |
| 4314 | spin_lock(&eb->refs_lock); |
| 4315 | set_bit(EXTENT_BUFFER_STALE, &eb->bflags); |
| 4316 | |
| 4317 | if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && |
| 4318 | test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) |
| 4319 | atomic_dec(&eb->refs); |
| 4320 | release_extent_buffer(eb, GFP_NOFS); |
| 4321 | } |
| 4322 | |
| 4323 | void clear_extent_buffer_dirty(struct extent_buffer *eb) |
| 4324 | { |
| 4325 | unsigned long i; |
| 4326 | unsigned long num_pages; |
| 4327 | struct page *page; |
| 4328 | |
| 4329 | num_pages = num_extent_pages(eb->start, eb->len); |
| 4330 | |
| 4331 | for (i = 0; i < num_pages; i++) { |
| 4332 | page = extent_buffer_page(eb, i); |
| 4333 | if (!PageDirty(page)) |
| 4334 | continue; |
| 4335 | |
| 4336 | lock_page(page); |
| 4337 | WARN_ON(!PagePrivate(page)); |
| 4338 | |
| 4339 | clear_page_dirty_for_io(page); |
| 4340 | spin_lock_irq(&page->mapping->tree_lock); |
| 4341 | if (!PageDirty(page)) { |
| 4342 | radix_tree_tag_clear(&page->mapping->page_tree, |
| 4343 | page_index(page), |
| 4344 | PAGECACHE_TAG_DIRTY); |
| 4345 | } |
| 4346 | spin_unlock_irq(&page->mapping->tree_lock); |
| 4347 | ClearPageError(page); |
| 4348 | unlock_page(page); |
| 4349 | } |
| 4350 | WARN_ON(atomic_read(&eb->refs) == 0); |
| 4351 | } |
| 4352 | |
| 4353 | int set_extent_buffer_dirty(struct extent_buffer *eb) |
| 4354 | { |
| 4355 | unsigned long i; |
| 4356 | unsigned long num_pages; |
| 4357 | int was_dirty = 0; |
| 4358 | |
| 4359 | check_buffer_tree_ref(eb); |
| 4360 | |
| 4361 | was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); |
| 4362 | |
| 4363 | num_pages = num_extent_pages(eb->start, eb->len); |
| 4364 | WARN_ON(atomic_read(&eb->refs) == 0); |
| 4365 | WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); |
| 4366 | |
| 4367 | for (i = 0; i < num_pages; i++) |
| 4368 | set_page_dirty(extent_buffer_page(eb, i)); |
| 4369 | return was_dirty; |
| 4370 | } |
| 4371 | |
| 4372 | static int range_straddles_pages(u64 start, u64 len) |
| 4373 | { |
| 4374 | if (len < PAGE_CACHE_SIZE) |
| 4375 | return 1; |
| 4376 | if (start & (PAGE_CACHE_SIZE - 1)) |
| 4377 | return 1; |
| 4378 | if ((start + len) & (PAGE_CACHE_SIZE - 1)) |
| 4379 | return 1; |
| 4380 | return 0; |
| 4381 | } |
| 4382 | |
| 4383 | int clear_extent_buffer_uptodate(struct extent_buffer *eb) |
| 4384 | { |
| 4385 | unsigned long i; |
| 4386 | struct page *page; |
| 4387 | unsigned long num_pages; |
| 4388 | |
| 4389 | clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); |
| 4390 | num_pages = num_extent_pages(eb->start, eb->len); |
| 4391 | for (i = 0; i < num_pages; i++) { |
| 4392 | page = extent_buffer_page(eb, i); |
| 4393 | if (page) |
| 4394 | ClearPageUptodate(page); |
| 4395 | } |
| 4396 | return 0; |
| 4397 | } |
| 4398 | |
| 4399 | int set_extent_buffer_uptodate(struct extent_buffer *eb) |
| 4400 | { |
| 4401 | unsigned long i; |
| 4402 | struct page *page; |
| 4403 | unsigned long num_pages; |
| 4404 | |
| 4405 | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); |
| 4406 | num_pages = num_extent_pages(eb->start, eb->len); |
| 4407 | for (i = 0; i < num_pages; i++) { |
| 4408 | page = extent_buffer_page(eb, i); |
| 4409 | SetPageUptodate(page); |
| 4410 | } |
| 4411 | return 0; |
| 4412 | } |
| 4413 | |
| 4414 | int extent_range_uptodate(struct extent_io_tree *tree, |
| 4415 | u64 start, u64 end) |
| 4416 | { |
| 4417 | struct page *page; |
| 4418 | int ret; |
| 4419 | int pg_uptodate = 1; |
| 4420 | int uptodate; |
| 4421 | unsigned long index; |
| 4422 | |
| 4423 | if (range_straddles_pages(start, end - start + 1)) { |
| 4424 | ret = test_range_bit(tree, start, end, |
| 4425 | EXTENT_UPTODATE, 1, NULL); |
| 4426 | if (ret) |
| 4427 | return 1; |
| 4428 | } |
| 4429 | while (start <= end) { |
| 4430 | index = start >> PAGE_CACHE_SHIFT; |
| 4431 | page = find_get_page(tree->mapping, index); |
| 4432 | if (!page) |
| 4433 | return 1; |
| 4434 | uptodate = PageUptodate(page); |
| 4435 | page_cache_release(page); |
| 4436 | if (!uptodate) { |
| 4437 | pg_uptodate = 0; |
| 4438 | break; |
| 4439 | } |
| 4440 | start += PAGE_CACHE_SIZE; |
| 4441 | } |
| 4442 | return pg_uptodate; |
| 4443 | } |
| 4444 | |
| 4445 | int extent_buffer_uptodate(struct extent_buffer *eb) |
| 4446 | { |
| 4447 | return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); |
| 4448 | } |
| 4449 | |
| 4450 | int read_extent_buffer_pages(struct extent_io_tree *tree, |
| 4451 | struct extent_buffer *eb, u64 start, int wait, |
| 4452 | get_extent_t *get_extent, int mirror_num) |
| 4453 | { |
| 4454 | unsigned long i; |
| 4455 | unsigned long start_i; |
| 4456 | struct page *page; |
| 4457 | int err; |
| 4458 | int ret = 0; |
| 4459 | int locked_pages = 0; |
| 4460 | int all_uptodate = 1; |
| 4461 | unsigned long num_pages; |
| 4462 | unsigned long num_reads = 0; |
| 4463 | struct bio *bio = NULL; |
| 4464 | unsigned long bio_flags = 0; |
| 4465 | |
| 4466 | if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) |
| 4467 | return 0; |
| 4468 | |
| 4469 | if (start) { |
| 4470 | WARN_ON(start < eb->start); |
| 4471 | start_i = (start >> PAGE_CACHE_SHIFT) - |
| 4472 | (eb->start >> PAGE_CACHE_SHIFT); |
| 4473 | } else { |
| 4474 | start_i = 0; |
| 4475 | } |
| 4476 | |
| 4477 | num_pages = num_extent_pages(eb->start, eb->len); |
| 4478 | for (i = start_i; i < num_pages; i++) { |
| 4479 | page = extent_buffer_page(eb, i); |
| 4480 | if (wait == WAIT_NONE) { |
| 4481 | if (!trylock_page(page)) |
| 4482 | goto unlock_exit; |
| 4483 | } else { |
| 4484 | lock_page(page); |
| 4485 | } |
| 4486 | locked_pages++; |
| 4487 | if (!PageUptodate(page)) { |
| 4488 | num_reads++; |
| 4489 | all_uptodate = 0; |
| 4490 | } |
| 4491 | } |
| 4492 | if (all_uptodate) { |
| 4493 | if (start_i == 0) |
| 4494 | set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); |
| 4495 | goto unlock_exit; |
| 4496 | } |
| 4497 | |
| 4498 | clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); |
| 4499 | eb->read_mirror = 0; |
| 4500 | atomic_set(&eb->io_pages, num_reads); |
| 4501 | for (i = start_i; i < num_pages; i++) { |
| 4502 | page = extent_buffer_page(eb, i); |
| 4503 | if (!PageUptodate(page)) { |
| 4504 | ClearPageError(page); |
| 4505 | err = __extent_read_full_page(tree, page, |
| 4506 | get_extent, &bio, |
| 4507 | mirror_num, &bio_flags); |
| 4508 | if (err) |
| 4509 | ret = err; |
| 4510 | } else { |
| 4511 | unlock_page(page); |
| 4512 | } |
| 4513 | } |
| 4514 | |
| 4515 | if (bio) { |
| 4516 | err = submit_one_bio(READ, bio, mirror_num, bio_flags); |
| 4517 | if (err) |
| 4518 | return err; |
| 4519 | } |
| 4520 | |
| 4521 | if (ret || wait != WAIT_COMPLETE) |
| 4522 | return ret; |
| 4523 | |
| 4524 | for (i = start_i; i < num_pages; i++) { |
| 4525 | page = extent_buffer_page(eb, i); |
| 4526 | wait_on_page_locked(page); |
| 4527 | if (!PageUptodate(page)) |
| 4528 | ret = -EIO; |
| 4529 | } |
| 4530 | |
| 4531 | return ret; |
| 4532 | |
| 4533 | unlock_exit: |
| 4534 | i = start_i; |
| 4535 | while (locked_pages > 0) { |
| 4536 | page = extent_buffer_page(eb, i); |
| 4537 | i++; |
| 4538 | unlock_page(page); |
| 4539 | locked_pages--; |
| 4540 | } |
| 4541 | return ret; |
| 4542 | } |
| 4543 | |
| 4544 | void read_extent_buffer(struct extent_buffer *eb, void *dstv, |
| 4545 | unsigned long start, |
| 4546 | unsigned long len) |
| 4547 | { |
| 4548 | size_t cur; |
| 4549 | size_t offset; |
| 4550 | struct page *page; |
| 4551 | char *kaddr; |
| 4552 | char *dst = (char *)dstv; |
| 4553 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4554 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| 4555 | |
| 4556 | WARN_ON(start > eb->len); |
| 4557 | WARN_ON(start + len > eb->start + eb->len); |
| 4558 | |
| 4559 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4560 | |
| 4561 | while (len > 0) { |
| 4562 | page = extent_buffer_page(eb, i); |
| 4563 | |
| 4564 | cur = min(len, (PAGE_CACHE_SIZE - offset)); |
| 4565 | kaddr = page_address(page); |
| 4566 | memcpy(dst, kaddr + offset, cur); |
| 4567 | |
| 4568 | dst += cur; |
| 4569 | len -= cur; |
| 4570 | offset = 0; |
| 4571 | i++; |
| 4572 | } |
| 4573 | } |
| 4574 | |
| 4575 | int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, |
| 4576 | unsigned long min_len, char **map, |
| 4577 | unsigned long *map_start, |
| 4578 | unsigned long *map_len) |
| 4579 | { |
| 4580 | size_t offset = start & (PAGE_CACHE_SIZE - 1); |
| 4581 | char *kaddr; |
| 4582 | struct page *p; |
| 4583 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4584 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| 4585 | unsigned long end_i = (start_offset + start + min_len - 1) >> |
| 4586 | PAGE_CACHE_SHIFT; |
| 4587 | |
| 4588 | if (i != end_i) |
| 4589 | return -EINVAL; |
| 4590 | |
| 4591 | if (i == 0) { |
| 4592 | offset = start_offset; |
| 4593 | *map_start = 0; |
| 4594 | } else { |
| 4595 | offset = 0; |
| 4596 | *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; |
| 4597 | } |
| 4598 | |
| 4599 | if (start + min_len > eb->len) { |
| 4600 | printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " |
| 4601 | "wanted %lu %lu\n", (unsigned long long)eb->start, |
| 4602 | eb->len, start, min_len); |
| 4603 | WARN_ON(1); |
| 4604 | return -EINVAL; |
| 4605 | } |
| 4606 | |
| 4607 | p = extent_buffer_page(eb, i); |
| 4608 | kaddr = page_address(p); |
| 4609 | *map = kaddr + offset; |
| 4610 | *map_len = PAGE_CACHE_SIZE - offset; |
| 4611 | return 0; |
| 4612 | } |
| 4613 | |
| 4614 | int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, |
| 4615 | unsigned long start, |
| 4616 | unsigned long len) |
| 4617 | { |
| 4618 | size_t cur; |
| 4619 | size_t offset; |
| 4620 | struct page *page; |
| 4621 | char *kaddr; |
| 4622 | char *ptr = (char *)ptrv; |
| 4623 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4624 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| 4625 | int ret = 0; |
| 4626 | |
| 4627 | WARN_ON(start > eb->len); |
| 4628 | WARN_ON(start + len > eb->start + eb->len); |
| 4629 | |
| 4630 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4631 | |
| 4632 | while (len > 0) { |
| 4633 | page = extent_buffer_page(eb, i); |
| 4634 | |
| 4635 | cur = min(len, (PAGE_CACHE_SIZE - offset)); |
| 4636 | |
| 4637 | kaddr = page_address(page); |
| 4638 | ret = memcmp(ptr, kaddr + offset, cur); |
| 4639 | if (ret) |
| 4640 | break; |
| 4641 | |
| 4642 | ptr += cur; |
| 4643 | len -= cur; |
| 4644 | offset = 0; |
| 4645 | i++; |
| 4646 | } |
| 4647 | return ret; |
| 4648 | } |
| 4649 | |
| 4650 | void write_extent_buffer(struct extent_buffer *eb, const void *srcv, |
| 4651 | unsigned long start, unsigned long len) |
| 4652 | { |
| 4653 | size_t cur; |
| 4654 | size_t offset; |
| 4655 | struct page *page; |
| 4656 | char *kaddr; |
| 4657 | char *src = (char *)srcv; |
| 4658 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4659 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| 4660 | |
| 4661 | WARN_ON(start > eb->len); |
| 4662 | WARN_ON(start + len > eb->start + eb->len); |
| 4663 | |
| 4664 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4665 | |
| 4666 | while (len > 0) { |
| 4667 | page = extent_buffer_page(eb, i); |
| 4668 | WARN_ON(!PageUptodate(page)); |
| 4669 | |
| 4670 | cur = min(len, PAGE_CACHE_SIZE - offset); |
| 4671 | kaddr = page_address(page); |
| 4672 | memcpy(kaddr + offset, src, cur); |
| 4673 | |
| 4674 | src += cur; |
| 4675 | len -= cur; |
| 4676 | offset = 0; |
| 4677 | i++; |
| 4678 | } |
| 4679 | } |
| 4680 | |
| 4681 | void memset_extent_buffer(struct extent_buffer *eb, char c, |
| 4682 | unsigned long start, unsigned long len) |
| 4683 | { |
| 4684 | size_t cur; |
| 4685 | size_t offset; |
| 4686 | struct page *page; |
| 4687 | char *kaddr; |
| 4688 | size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4689 | unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; |
| 4690 | |
| 4691 | WARN_ON(start > eb->len); |
| 4692 | WARN_ON(start + len > eb->start + eb->len); |
| 4693 | |
| 4694 | offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4695 | |
| 4696 | while (len > 0) { |
| 4697 | page = extent_buffer_page(eb, i); |
| 4698 | WARN_ON(!PageUptodate(page)); |
| 4699 | |
| 4700 | cur = min(len, PAGE_CACHE_SIZE - offset); |
| 4701 | kaddr = page_address(page); |
| 4702 | memset(kaddr + offset, c, cur); |
| 4703 | |
| 4704 | len -= cur; |
| 4705 | offset = 0; |
| 4706 | i++; |
| 4707 | } |
| 4708 | } |
| 4709 | |
| 4710 | void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, |
| 4711 | unsigned long dst_offset, unsigned long src_offset, |
| 4712 | unsigned long len) |
| 4713 | { |
| 4714 | u64 dst_len = dst->len; |
| 4715 | size_t cur; |
| 4716 | size_t offset; |
| 4717 | struct page *page; |
| 4718 | char *kaddr; |
| 4719 | size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4720 | unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; |
| 4721 | |
| 4722 | WARN_ON(src->len != dst_len); |
| 4723 | |
| 4724 | offset = (start_offset + dst_offset) & |
| 4725 | ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4726 | |
| 4727 | while (len > 0) { |
| 4728 | page = extent_buffer_page(dst, i); |
| 4729 | WARN_ON(!PageUptodate(page)); |
| 4730 | |
| 4731 | cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); |
| 4732 | |
| 4733 | kaddr = page_address(page); |
| 4734 | read_extent_buffer(src, kaddr + offset, src_offset, cur); |
| 4735 | |
| 4736 | src_offset += cur; |
| 4737 | len -= cur; |
| 4738 | offset = 0; |
| 4739 | i++; |
| 4740 | } |
| 4741 | } |
| 4742 | |
| 4743 | static void move_pages(struct page *dst_page, struct page *src_page, |
| 4744 | unsigned long dst_off, unsigned long src_off, |
| 4745 | unsigned long len) |
| 4746 | { |
| 4747 | char *dst_kaddr = page_address(dst_page); |
| 4748 | if (dst_page == src_page) { |
| 4749 | memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); |
| 4750 | } else { |
| 4751 | char *src_kaddr = page_address(src_page); |
| 4752 | char *p = dst_kaddr + dst_off + len; |
| 4753 | char *s = src_kaddr + src_off + len; |
| 4754 | |
| 4755 | while (len--) |
| 4756 | *--p = *--s; |
| 4757 | } |
| 4758 | } |
| 4759 | |
| 4760 | static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) |
| 4761 | { |
| 4762 | unsigned long distance = (src > dst) ? src - dst : dst - src; |
| 4763 | return distance < len; |
| 4764 | } |
| 4765 | |
| 4766 | static void copy_pages(struct page *dst_page, struct page *src_page, |
| 4767 | unsigned long dst_off, unsigned long src_off, |
| 4768 | unsigned long len) |
| 4769 | { |
| 4770 | char *dst_kaddr = page_address(dst_page); |
| 4771 | char *src_kaddr; |
| 4772 | int must_memmove = 0; |
| 4773 | |
| 4774 | if (dst_page != src_page) { |
| 4775 | src_kaddr = page_address(src_page); |
| 4776 | } else { |
| 4777 | src_kaddr = dst_kaddr; |
| 4778 | if (areas_overlap(src_off, dst_off, len)) |
| 4779 | must_memmove = 1; |
| 4780 | } |
| 4781 | |
| 4782 | if (must_memmove) |
| 4783 | memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); |
| 4784 | else |
| 4785 | memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); |
| 4786 | } |
| 4787 | |
| 4788 | void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, |
| 4789 | unsigned long src_offset, unsigned long len) |
| 4790 | { |
| 4791 | size_t cur; |
| 4792 | size_t dst_off_in_page; |
| 4793 | size_t src_off_in_page; |
| 4794 | size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4795 | unsigned long dst_i; |
| 4796 | unsigned long src_i; |
| 4797 | |
| 4798 | if (src_offset + len > dst->len) { |
| 4799 | printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " |
| 4800 | "len %lu dst len %lu\n", src_offset, len, dst->len); |
| 4801 | BUG_ON(1); |
| 4802 | } |
| 4803 | if (dst_offset + len > dst->len) { |
| 4804 | printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " |
| 4805 | "len %lu dst len %lu\n", dst_offset, len, dst->len); |
| 4806 | BUG_ON(1); |
| 4807 | } |
| 4808 | |
| 4809 | while (len > 0) { |
| 4810 | dst_off_in_page = (start_offset + dst_offset) & |
| 4811 | ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4812 | src_off_in_page = (start_offset + src_offset) & |
| 4813 | ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4814 | |
| 4815 | dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; |
| 4816 | src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; |
| 4817 | |
| 4818 | cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - |
| 4819 | src_off_in_page)); |
| 4820 | cur = min_t(unsigned long, cur, |
| 4821 | (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); |
| 4822 | |
| 4823 | copy_pages(extent_buffer_page(dst, dst_i), |
| 4824 | extent_buffer_page(dst, src_i), |
| 4825 | dst_off_in_page, src_off_in_page, cur); |
| 4826 | |
| 4827 | src_offset += cur; |
| 4828 | dst_offset += cur; |
| 4829 | len -= cur; |
| 4830 | } |
| 4831 | } |
| 4832 | |
| 4833 | void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, |
| 4834 | unsigned long src_offset, unsigned long len) |
| 4835 | { |
| 4836 | size_t cur; |
| 4837 | size_t dst_off_in_page; |
| 4838 | size_t src_off_in_page; |
| 4839 | unsigned long dst_end = dst_offset + len - 1; |
| 4840 | unsigned long src_end = src_offset + len - 1; |
| 4841 | size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); |
| 4842 | unsigned long dst_i; |
| 4843 | unsigned long src_i; |
| 4844 | |
| 4845 | if (src_offset + len > dst->len) { |
| 4846 | printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " |
| 4847 | "len %lu len %lu\n", src_offset, len, dst->len); |
| 4848 | BUG_ON(1); |
| 4849 | } |
| 4850 | if (dst_offset + len > dst->len) { |
| 4851 | printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " |
| 4852 | "len %lu len %lu\n", dst_offset, len, dst->len); |
| 4853 | BUG_ON(1); |
| 4854 | } |
| 4855 | if (dst_offset < src_offset) { |
| 4856 | memcpy_extent_buffer(dst, dst_offset, src_offset, len); |
| 4857 | return; |
| 4858 | } |
| 4859 | while (len > 0) { |
| 4860 | dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; |
| 4861 | src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; |
| 4862 | |
| 4863 | dst_off_in_page = (start_offset + dst_end) & |
| 4864 | ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4865 | src_off_in_page = (start_offset + src_end) & |
| 4866 | ((unsigned long)PAGE_CACHE_SIZE - 1); |
| 4867 | |
| 4868 | cur = min_t(unsigned long, len, src_off_in_page + 1); |
| 4869 | cur = min(cur, dst_off_in_page + 1); |
| 4870 | move_pages(extent_buffer_page(dst, dst_i), |
| 4871 | extent_buffer_page(dst, src_i), |
| 4872 | dst_off_in_page - cur + 1, |
| 4873 | src_off_in_page - cur + 1, cur); |
| 4874 | |
| 4875 | dst_end -= cur; |
| 4876 | src_end -= cur; |
| 4877 | len -= cur; |
| 4878 | } |
| 4879 | } |
| 4880 | |
| 4881 | int try_release_extent_buffer(struct page *page, gfp_t mask) |
| 4882 | { |
| 4883 | struct extent_buffer *eb; |
| 4884 | |
| 4885 | /* |
| 4886 | * We need to make sure noboody is attaching this page to an eb right |
| 4887 | * now. |
| 4888 | */ |
| 4889 | spin_lock(&page->mapping->private_lock); |
| 4890 | if (!PagePrivate(page)) { |
| 4891 | spin_unlock(&page->mapping->private_lock); |
| 4892 | return 1; |
| 4893 | } |
| 4894 | |
| 4895 | eb = (struct extent_buffer *)page->private; |
| 4896 | BUG_ON(!eb); |
| 4897 | |
| 4898 | /* |
| 4899 | * This is a little awful but should be ok, we need to make sure that |
| 4900 | * the eb doesn't disappear out from under us while we're looking at |
| 4901 | * this page. |
| 4902 | */ |
| 4903 | spin_lock(&eb->refs_lock); |
| 4904 | if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { |
| 4905 | spin_unlock(&eb->refs_lock); |
| 4906 | spin_unlock(&page->mapping->private_lock); |
| 4907 | return 0; |
| 4908 | } |
| 4909 | spin_unlock(&page->mapping->private_lock); |
| 4910 | |
| 4911 | if ((mask & GFP_NOFS) == GFP_NOFS) |
| 4912 | mask = GFP_NOFS; |
| 4913 | |
| 4914 | /* |
| 4915 | * If tree ref isn't set then we know the ref on this eb is a real ref, |
| 4916 | * so just return, this page will likely be freed soon anyway. |
| 4917 | */ |
| 4918 | if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { |
| 4919 | spin_unlock(&eb->refs_lock); |
| 4920 | return 0; |
| 4921 | } |
| 4922 | release_extent_buffer(eb, mask); |
| 4923 | |
| 4924 | return 1; |
| 4925 | } |