yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 3 | * All Rights Reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it would be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write the Free Software Foundation, |
| 16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 17 | */ |
| 18 | #include "xfs.h" |
| 19 | #include "xfs_fs.h" |
| 20 | #include "xfs_bit.h" |
| 21 | #include "xfs_log.h" |
| 22 | #include "xfs_inum.h" |
| 23 | #include "xfs_sb.h" |
| 24 | #include "xfs_ag.h" |
| 25 | #include "xfs_trans.h" |
| 26 | #include "xfs_mount.h" |
| 27 | #include "xfs_bmap_btree.h" |
| 28 | #include "xfs_alloc.h" |
| 29 | #include "xfs_dinode.h" |
| 30 | #include "xfs_inode.h" |
| 31 | #include "xfs_inode_item.h" |
| 32 | #include "xfs_bmap.h" |
| 33 | #include "xfs_error.h" |
| 34 | #include "xfs_vnodeops.h" |
| 35 | #include "xfs_da_btree.h" |
| 36 | #include "xfs_ioctl.h" |
| 37 | #include "xfs_trace.h" |
| 38 | |
| 39 | #include <linux/dcache.h> |
| 40 | #include <linux/falloc.h> |
| 41 | |
| 42 | static const struct vm_operations_struct xfs_file_vm_ops; |
| 43 | |
| 44 | /* |
| 45 | * Locking primitives for read and write IO paths to ensure we consistently use |
| 46 | * and order the inode->i_mutex, ip->i_lock and ip->i_iolock. |
| 47 | */ |
| 48 | static inline void |
| 49 | xfs_rw_ilock( |
| 50 | struct xfs_inode *ip, |
| 51 | int type) |
| 52 | { |
| 53 | if (type & XFS_IOLOCK_EXCL) |
| 54 | mutex_lock(&VFS_I(ip)->i_mutex); |
| 55 | xfs_ilock(ip, type); |
| 56 | } |
| 57 | |
| 58 | static inline void |
| 59 | xfs_rw_iunlock( |
| 60 | struct xfs_inode *ip, |
| 61 | int type) |
| 62 | { |
| 63 | xfs_iunlock(ip, type); |
| 64 | if (type & XFS_IOLOCK_EXCL) |
| 65 | mutex_unlock(&VFS_I(ip)->i_mutex); |
| 66 | } |
| 67 | |
| 68 | static inline void |
| 69 | xfs_rw_ilock_demote( |
| 70 | struct xfs_inode *ip, |
| 71 | int type) |
| 72 | { |
| 73 | xfs_ilock_demote(ip, type); |
| 74 | if (type & XFS_IOLOCK_EXCL) |
| 75 | mutex_unlock(&VFS_I(ip)->i_mutex); |
| 76 | } |
| 77 | |
| 78 | /* |
| 79 | * xfs_iozero |
| 80 | * |
| 81 | * xfs_iozero clears the specified range of buffer supplied, |
| 82 | * and marks all the affected blocks as valid and modified. If |
| 83 | * an affected block is not allocated, it will be allocated. If |
| 84 | * an affected block is not completely overwritten, and is not |
| 85 | * valid before the operation, it will be read from disk before |
| 86 | * being partially zeroed. |
| 87 | */ |
| 88 | STATIC int |
| 89 | xfs_iozero( |
| 90 | struct xfs_inode *ip, /* inode */ |
| 91 | loff_t pos, /* offset in file */ |
| 92 | size_t count) /* size of data to zero */ |
| 93 | { |
| 94 | struct page *page; |
| 95 | struct address_space *mapping; |
| 96 | int status; |
| 97 | |
| 98 | mapping = VFS_I(ip)->i_mapping; |
| 99 | do { |
| 100 | unsigned offset, bytes; |
| 101 | void *fsdata; |
| 102 | |
| 103 | offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ |
| 104 | bytes = PAGE_CACHE_SIZE - offset; |
| 105 | if (bytes > count) |
| 106 | bytes = count; |
| 107 | |
| 108 | status = pagecache_write_begin(NULL, mapping, pos, bytes, |
| 109 | AOP_FLAG_UNINTERRUPTIBLE, |
| 110 | &page, &fsdata); |
| 111 | if (status) |
| 112 | break; |
| 113 | |
| 114 | zero_user(page, offset, bytes); |
| 115 | |
| 116 | status = pagecache_write_end(NULL, mapping, pos, bytes, bytes, |
| 117 | page, fsdata); |
| 118 | WARN_ON(status <= 0); /* can't return less than zero! */ |
| 119 | pos += bytes; |
| 120 | count -= bytes; |
| 121 | status = 0; |
| 122 | } while (count); |
| 123 | |
| 124 | return (-status); |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * Fsync operations on directories are much simpler than on regular files, |
| 129 | * as there is no file data to flush, and thus also no need for explicit |
| 130 | * cache flush operations, and there are no non-transaction metadata updates |
| 131 | * on directories either. |
| 132 | */ |
| 133 | STATIC int |
| 134 | xfs_dir_fsync( |
| 135 | struct file *file, |
| 136 | loff_t start, |
| 137 | loff_t end, |
| 138 | int datasync) |
| 139 | { |
| 140 | struct xfs_inode *ip = XFS_I(file->f_mapping->host); |
| 141 | struct xfs_mount *mp = ip->i_mount; |
| 142 | xfs_lsn_t lsn = 0; |
| 143 | |
| 144 | trace_xfs_dir_fsync(ip); |
| 145 | |
| 146 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 147 | if (xfs_ipincount(ip)) |
| 148 | lsn = ip->i_itemp->ili_last_lsn; |
| 149 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 150 | |
| 151 | if (!lsn) |
| 152 | return 0; |
| 153 | return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL); |
| 154 | } |
| 155 | |
| 156 | STATIC int |
| 157 | xfs_file_fsync( |
| 158 | struct file *file, |
| 159 | loff_t start, |
| 160 | loff_t end, |
| 161 | int datasync) |
| 162 | { |
| 163 | struct inode *inode = file->f_mapping->host; |
| 164 | struct xfs_inode *ip = XFS_I(inode); |
| 165 | struct xfs_mount *mp = ip->i_mount; |
| 166 | int error = 0; |
| 167 | int log_flushed = 0; |
| 168 | xfs_lsn_t lsn = 0; |
| 169 | |
| 170 | trace_xfs_file_fsync(ip); |
| 171 | |
| 172 | error = filemap_write_and_wait_range(inode->i_mapping, start, end); |
| 173 | if (error) |
| 174 | return error; |
| 175 | |
| 176 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 177 | return -XFS_ERROR(EIO); |
| 178 | |
| 179 | xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| 180 | |
| 181 | if (mp->m_flags & XFS_MOUNT_BARRIER) { |
| 182 | /* |
| 183 | * If we have an RT and/or log subvolume we need to make sure |
| 184 | * to flush the write cache the device used for file data |
| 185 | * first. This is to ensure newly written file data make |
| 186 | * it to disk before logging the new inode size in case of |
| 187 | * an extending write. |
| 188 | */ |
| 189 | if (XFS_IS_REALTIME_INODE(ip)) |
| 190 | xfs_blkdev_issue_flush(mp->m_rtdev_targp); |
| 191 | else if (mp->m_logdev_targp != mp->m_ddev_targp) |
| 192 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * All metadata updates are logged, which means that we just have |
| 197 | * to flush the log up to the latest LSN that touched the inode. |
| 198 | */ |
| 199 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 200 | if (xfs_ipincount(ip)) { |
| 201 | if (!datasync || |
| 202 | (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP)) |
| 203 | lsn = ip->i_itemp->ili_last_lsn; |
| 204 | } |
| 205 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 206 | |
| 207 | if (lsn) |
| 208 | error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); |
| 209 | |
| 210 | /* |
| 211 | * If we only have a single device, and the log force about was |
| 212 | * a no-op we might have to flush the data device cache here. |
| 213 | * This can only happen for fdatasync/O_DSYNC if we were overwriting |
| 214 | * an already allocated file and thus do not have any metadata to |
| 215 | * commit. |
| 216 | */ |
| 217 | if ((mp->m_flags & XFS_MOUNT_BARRIER) && |
| 218 | mp->m_logdev_targp == mp->m_ddev_targp && |
| 219 | !XFS_IS_REALTIME_INODE(ip) && |
| 220 | !log_flushed) |
| 221 | xfs_blkdev_issue_flush(mp->m_ddev_targp); |
| 222 | |
| 223 | return -error; |
| 224 | } |
| 225 | |
| 226 | STATIC ssize_t |
| 227 | xfs_file_aio_read( |
| 228 | struct kiocb *iocb, |
| 229 | const struct iovec *iovp, |
| 230 | unsigned long nr_segs, |
| 231 | loff_t pos) |
| 232 | { |
| 233 | struct file *file = iocb->ki_filp; |
| 234 | struct inode *inode = file->f_mapping->host; |
| 235 | struct xfs_inode *ip = XFS_I(inode); |
| 236 | struct xfs_mount *mp = ip->i_mount; |
| 237 | size_t size = 0; |
| 238 | ssize_t ret = 0; |
| 239 | int ioflags = 0; |
| 240 | xfs_fsize_t n; |
| 241 | unsigned long seg; |
| 242 | |
| 243 | XFS_STATS_INC(xs_read_calls); |
| 244 | |
| 245 | BUG_ON(iocb->ki_pos != pos); |
| 246 | |
| 247 | if (unlikely(file->f_flags & O_DIRECT)) |
| 248 | ioflags |= IO_ISDIRECT; |
| 249 | if (file->f_mode & FMODE_NOCMTIME) |
| 250 | ioflags |= IO_INVIS; |
| 251 | |
| 252 | /* START copy & waste from filemap.c */ |
| 253 | for (seg = 0; seg < nr_segs; seg++) { |
| 254 | const struct iovec *iv = &iovp[seg]; |
| 255 | |
| 256 | /* |
| 257 | * If any segment has a negative length, or the cumulative |
| 258 | * length ever wraps negative then return -EINVAL. |
| 259 | */ |
| 260 | size += iv->iov_len; |
| 261 | if (unlikely((ssize_t)(size|iv->iov_len) < 0)) |
| 262 | return XFS_ERROR(-EINVAL); |
| 263 | } |
| 264 | /* END copy & waste from filemap.c */ |
| 265 | |
| 266 | if (unlikely(ioflags & IO_ISDIRECT)) { |
| 267 | xfs_buftarg_t *target = |
| 268 | XFS_IS_REALTIME_INODE(ip) ? |
| 269 | mp->m_rtdev_targp : mp->m_ddev_targp; |
| 270 | if ((iocb->ki_pos & target->bt_smask) || |
| 271 | (size & target->bt_smask)) { |
| 272 | if (iocb->ki_pos == i_size_read(inode)) |
| 273 | return 0; |
| 274 | return -XFS_ERROR(EINVAL); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | n = XFS_MAXIOFFSET(mp) - iocb->ki_pos; |
| 279 | if (n <= 0 || size == 0) |
| 280 | return 0; |
| 281 | |
| 282 | if (n < size) |
| 283 | size = n; |
| 284 | |
| 285 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 286 | return -EIO; |
| 287 | |
| 288 | /* |
| 289 | * Locking is a bit tricky here. If we take an exclusive lock |
| 290 | * for direct IO, we effectively serialise all new concurrent |
| 291 | * read IO to this file and block it behind IO that is currently in |
| 292 | * progress because IO in progress holds the IO lock shared. We only |
| 293 | * need to hold the lock exclusive to blow away the page cache, so |
| 294 | * only take lock exclusively if the page cache needs invalidation. |
| 295 | * This allows the normal direct IO case of no page cache pages to |
| 296 | * proceeed concurrently without serialisation. |
| 297 | */ |
| 298 | xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); |
| 299 | if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) { |
| 300 | xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); |
| 301 | xfs_rw_ilock(ip, XFS_IOLOCK_EXCL); |
| 302 | |
| 303 | if (inode->i_mapping->nrpages) { |
| 304 | ret = -xfs_flushinval_pages(ip, |
| 305 | (iocb->ki_pos & PAGE_CACHE_MASK), |
| 306 | -1, FI_REMAPF_LOCKED); |
| 307 | if (ret) { |
| 308 | xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL); |
| 309 | return ret; |
| 310 | } |
| 311 | } |
| 312 | xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| 313 | } |
| 314 | |
| 315 | trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags); |
| 316 | |
| 317 | ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos); |
| 318 | if (ret > 0) |
| 319 | XFS_STATS_ADD(xs_read_bytes, ret); |
| 320 | |
| 321 | xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); |
| 322 | return ret; |
| 323 | } |
| 324 | |
| 325 | STATIC ssize_t |
| 326 | xfs_file_splice_read( |
| 327 | struct file *infilp, |
| 328 | loff_t *ppos, |
| 329 | struct pipe_inode_info *pipe, |
| 330 | size_t count, |
| 331 | unsigned int flags) |
| 332 | { |
| 333 | struct xfs_inode *ip = XFS_I(infilp->f_mapping->host); |
| 334 | int ioflags = 0; |
| 335 | ssize_t ret; |
| 336 | |
| 337 | XFS_STATS_INC(xs_read_calls); |
| 338 | |
| 339 | if (infilp->f_mode & FMODE_NOCMTIME) |
| 340 | ioflags |= IO_INVIS; |
| 341 | |
| 342 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 343 | return -EIO; |
| 344 | |
| 345 | xfs_rw_ilock(ip, XFS_IOLOCK_SHARED); |
| 346 | |
| 347 | trace_xfs_file_splice_read(ip, count, *ppos, ioflags); |
| 348 | |
| 349 | ret = generic_file_splice_read(infilp, ppos, pipe, count, flags); |
| 350 | if (ret > 0) |
| 351 | XFS_STATS_ADD(xs_read_bytes, ret); |
| 352 | |
| 353 | xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED); |
| 354 | return ret; |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | * xfs_file_splice_write() does not use xfs_rw_ilock() because |
| 359 | * generic_file_splice_write() takes the i_mutex itself. This, in theory, |
| 360 | * couuld cause lock inversions between the aio_write path and the splice path |
| 361 | * if someone is doing concurrent splice(2) based writes and write(2) based |
| 362 | * writes to the same inode. The only real way to fix this is to re-implement |
| 363 | * the generic code here with correct locking orders. |
| 364 | */ |
| 365 | STATIC ssize_t |
| 366 | xfs_file_splice_write( |
| 367 | struct pipe_inode_info *pipe, |
| 368 | struct file *outfilp, |
| 369 | loff_t *ppos, |
| 370 | size_t count, |
| 371 | unsigned int flags) |
| 372 | { |
| 373 | struct inode *inode = outfilp->f_mapping->host; |
| 374 | struct xfs_inode *ip = XFS_I(inode); |
| 375 | int ioflags = 0; |
| 376 | ssize_t ret; |
| 377 | |
| 378 | XFS_STATS_INC(xs_write_calls); |
| 379 | |
| 380 | if (outfilp->f_mode & FMODE_NOCMTIME) |
| 381 | ioflags |= IO_INVIS; |
| 382 | |
| 383 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 384 | return -EIO; |
| 385 | |
| 386 | xfs_ilock(ip, XFS_IOLOCK_EXCL); |
| 387 | |
| 388 | trace_xfs_file_splice_write(ip, count, *ppos, ioflags); |
| 389 | |
| 390 | ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags); |
| 391 | if (ret > 0) |
| 392 | XFS_STATS_ADD(xs_write_bytes, ret); |
| 393 | |
| 394 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| 395 | return ret; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * This routine is called to handle zeroing any space in the last |
| 400 | * block of the file that is beyond the EOF. We do this since the |
| 401 | * size is being increased without writing anything to that block |
| 402 | * and we don't want anyone to read the garbage on the disk. |
| 403 | */ |
| 404 | STATIC int /* error (positive) */ |
| 405 | xfs_zero_last_block( |
| 406 | xfs_inode_t *ip, |
| 407 | xfs_fsize_t offset, |
| 408 | xfs_fsize_t isize) |
| 409 | { |
| 410 | xfs_fileoff_t last_fsb; |
| 411 | xfs_mount_t *mp = ip->i_mount; |
| 412 | int nimaps; |
| 413 | int zero_offset; |
| 414 | int zero_len; |
| 415 | int error = 0; |
| 416 | xfs_bmbt_irec_t imap; |
| 417 | |
| 418 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| 419 | |
| 420 | zero_offset = XFS_B_FSB_OFFSET(mp, isize); |
| 421 | if (zero_offset == 0) { |
| 422 | /* |
| 423 | * There are no extra bytes in the last block on disk to |
| 424 | * zero, so return. |
| 425 | */ |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | last_fsb = XFS_B_TO_FSBT(mp, isize); |
| 430 | nimaps = 1; |
| 431 | error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0); |
| 432 | if (error) |
| 433 | return error; |
| 434 | ASSERT(nimaps > 0); |
| 435 | /* |
| 436 | * If the block underlying isize is just a hole, then there |
| 437 | * is nothing to zero. |
| 438 | */ |
| 439 | if (imap.br_startblock == HOLESTARTBLOCK) { |
| 440 | return 0; |
| 441 | } |
| 442 | /* |
| 443 | * Zero the part of the last block beyond the EOF, and write it |
| 444 | * out sync. We need to drop the ilock while we do this so we |
| 445 | * don't deadlock when the buffer cache calls back to us. |
| 446 | */ |
| 447 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 448 | |
| 449 | zero_len = mp->m_sb.sb_blocksize - zero_offset; |
| 450 | if (isize + zero_len > offset) |
| 451 | zero_len = offset - isize; |
| 452 | error = xfs_iozero(ip, isize, zero_len); |
| 453 | |
| 454 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 455 | ASSERT(error >= 0); |
| 456 | return error; |
| 457 | } |
| 458 | |
| 459 | /* |
| 460 | * Zero any on disk space between the current EOF and the new, |
| 461 | * larger EOF. This handles the normal case of zeroing the remainder |
| 462 | * of the last block in the file and the unusual case of zeroing blocks |
| 463 | * out beyond the size of the file. This second case only happens |
| 464 | * with fixed size extents and when the system crashes before the inode |
| 465 | * size was updated but after blocks were allocated. If fill is set, |
| 466 | * then any holes in the range are filled and zeroed. If not, the holes |
| 467 | * are left alone as holes. |
| 468 | */ |
| 469 | |
| 470 | int /* error (positive) */ |
| 471 | xfs_zero_eof( |
| 472 | xfs_inode_t *ip, |
| 473 | xfs_off_t offset, /* starting I/O offset */ |
| 474 | xfs_fsize_t isize) /* current inode size */ |
| 475 | { |
| 476 | xfs_mount_t *mp = ip->i_mount; |
| 477 | xfs_fileoff_t start_zero_fsb; |
| 478 | xfs_fileoff_t end_zero_fsb; |
| 479 | xfs_fileoff_t zero_count_fsb; |
| 480 | xfs_fileoff_t last_fsb; |
| 481 | xfs_fileoff_t zero_off; |
| 482 | xfs_fsize_t zero_len; |
| 483 | int nimaps; |
| 484 | int error = 0; |
| 485 | xfs_bmbt_irec_t imap; |
| 486 | |
| 487 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); |
| 488 | ASSERT(offset > isize); |
| 489 | |
| 490 | /* |
| 491 | * First handle zeroing the block on which isize resides. |
| 492 | * We only zero a part of that block so it is handled specially. |
| 493 | */ |
| 494 | error = xfs_zero_last_block(ip, offset, isize); |
| 495 | if (error) { |
| 496 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); |
| 497 | return error; |
| 498 | } |
| 499 | |
| 500 | /* |
| 501 | * Calculate the range between the new size and the old |
| 502 | * where blocks needing to be zeroed may exist. To get the |
| 503 | * block where the last byte in the file currently resides, |
| 504 | * we need to subtract one from the size and truncate back |
| 505 | * to a block boundary. We subtract 1 in case the size is |
| 506 | * exactly on a block boundary. |
| 507 | */ |
| 508 | last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1; |
| 509 | start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); |
| 510 | end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1); |
| 511 | ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb); |
| 512 | if (last_fsb == end_zero_fsb) { |
| 513 | /* |
| 514 | * The size was only incremented on its last block. |
| 515 | * We took care of that above, so just return. |
| 516 | */ |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | ASSERT(start_zero_fsb <= end_zero_fsb); |
| 521 | while (start_zero_fsb <= end_zero_fsb) { |
| 522 | nimaps = 1; |
| 523 | zero_count_fsb = end_zero_fsb - start_zero_fsb + 1; |
| 524 | error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb, |
| 525 | &imap, &nimaps, 0); |
| 526 | if (error) { |
| 527 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL)); |
| 528 | return error; |
| 529 | } |
| 530 | ASSERT(nimaps > 0); |
| 531 | |
| 532 | if (imap.br_state == XFS_EXT_UNWRITTEN || |
| 533 | imap.br_startblock == HOLESTARTBLOCK) { |
| 534 | /* |
| 535 | * This loop handles initializing pages that were |
| 536 | * partially initialized by the code below this |
| 537 | * loop. It basically zeroes the part of the page |
| 538 | * that sits on a hole and sets the page as P_HOLE |
| 539 | * and calls remapf if it is a mapped file. |
| 540 | */ |
| 541 | start_zero_fsb = imap.br_startoff + imap.br_blockcount; |
| 542 | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); |
| 543 | continue; |
| 544 | } |
| 545 | |
| 546 | /* |
| 547 | * There are blocks we need to zero. |
| 548 | * Drop the inode lock while we're doing the I/O. |
| 549 | * We'll still have the iolock to protect us. |
| 550 | */ |
| 551 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 552 | |
| 553 | zero_off = XFS_FSB_TO_B(mp, start_zero_fsb); |
| 554 | zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount); |
| 555 | |
| 556 | if ((zero_off + zero_len) > offset) |
| 557 | zero_len = offset - zero_off; |
| 558 | |
| 559 | error = xfs_iozero(ip, zero_off, zero_len); |
| 560 | if (error) { |
| 561 | goto out_lock; |
| 562 | } |
| 563 | |
| 564 | start_zero_fsb = imap.br_startoff + imap.br_blockcount; |
| 565 | ASSERT(start_zero_fsb <= (end_zero_fsb + 1)); |
| 566 | |
| 567 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 568 | } |
| 569 | |
| 570 | return 0; |
| 571 | |
| 572 | out_lock: |
| 573 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 574 | ASSERT(error >= 0); |
| 575 | return error; |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * Common pre-write limit and setup checks. |
| 580 | * |
| 581 | * Called with the iolocked held either shared and exclusive according to |
| 582 | * @iolock, and returns with it held. Might upgrade the iolock to exclusive |
| 583 | * if called for a direct write beyond i_size. |
| 584 | */ |
| 585 | STATIC ssize_t |
| 586 | xfs_file_aio_write_checks( |
| 587 | struct file *file, |
| 588 | loff_t *pos, |
| 589 | size_t *count, |
| 590 | int *iolock) |
| 591 | { |
| 592 | struct inode *inode = file->f_mapping->host; |
| 593 | struct xfs_inode *ip = XFS_I(inode); |
| 594 | int error = 0; |
| 595 | |
| 596 | xfs_rw_ilock(ip, XFS_ILOCK_EXCL); |
| 597 | restart: |
| 598 | error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode)); |
| 599 | if (error) { |
| 600 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); |
| 601 | return error; |
| 602 | } |
| 603 | |
| 604 | /* |
| 605 | * If the offset is beyond the size of the file, we need to zero any |
| 606 | * blocks that fall between the existing EOF and the start of this |
| 607 | * write. If zeroing is needed and we are currently holding the |
| 608 | * iolock shared, we need to update it to exclusive which involves |
| 609 | * dropping all locks and relocking to maintain correct locking order. |
| 610 | * If we do this, restart the function to ensure all checks and values |
| 611 | * are still valid. |
| 612 | */ |
| 613 | if (*pos > i_size_read(inode)) { |
| 614 | if (*iolock == XFS_IOLOCK_SHARED) { |
| 615 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock); |
| 616 | *iolock = XFS_IOLOCK_EXCL; |
| 617 | xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock); |
| 618 | goto restart; |
| 619 | } |
| 620 | error = -xfs_zero_eof(ip, *pos, i_size_read(inode)); |
| 621 | } |
| 622 | xfs_rw_iunlock(ip, XFS_ILOCK_EXCL); |
| 623 | if (error) |
| 624 | return error; |
| 625 | |
| 626 | /* |
| 627 | * Updating the timestamps will grab the ilock again from |
| 628 | * xfs_fs_dirty_inode, so we have to call it after dropping the |
| 629 | * lock above. Eventually we should look into a way to avoid |
| 630 | * the pointless lock roundtrip. |
| 631 | */ |
| 632 | if (likely(!(file->f_mode & FMODE_NOCMTIME))) |
| 633 | file_update_time(file); |
| 634 | |
| 635 | /* |
| 636 | * If we're writing the file then make sure to clear the setuid and |
| 637 | * setgid bits if the process is not being run by root. This keeps |
| 638 | * people from modifying setuid and setgid binaries. |
| 639 | */ |
| 640 | return file_remove_suid(file); |
| 641 | |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * xfs_file_dio_aio_write - handle direct IO writes |
| 646 | * |
| 647 | * Lock the inode appropriately to prepare for and issue a direct IO write. |
| 648 | * By separating it from the buffered write path we remove all the tricky to |
| 649 | * follow locking changes and looping. |
| 650 | * |
| 651 | * If there are cached pages or we're extending the file, we need IOLOCK_EXCL |
| 652 | * until we're sure the bytes at the new EOF have been zeroed and/or the cached |
| 653 | * pages are flushed out. |
| 654 | * |
| 655 | * In most cases the direct IO writes will be done holding IOLOCK_SHARED |
| 656 | * allowing them to be done in parallel with reads and other direct IO writes. |
| 657 | * However, if the IO is not aligned to filesystem blocks, the direct IO layer |
| 658 | * needs to do sub-block zeroing and that requires serialisation against other |
| 659 | * direct IOs to the same block. In this case we need to serialise the |
| 660 | * submission of the unaligned IOs so that we don't get racing block zeroing in |
| 661 | * the dio layer. To avoid the problem with aio, we also need to wait for |
| 662 | * outstanding IOs to complete so that unwritten extent conversion is completed |
| 663 | * before we try to map the overlapping block. This is currently implemented by |
| 664 | * hitting it with a big hammer (i.e. inode_dio_wait()). |
| 665 | * |
| 666 | * Returns with locks held indicated by @iolock and errors indicated by |
| 667 | * negative return values. |
| 668 | */ |
| 669 | STATIC ssize_t |
| 670 | xfs_file_dio_aio_write( |
| 671 | struct kiocb *iocb, |
| 672 | const struct iovec *iovp, |
| 673 | unsigned long nr_segs, |
| 674 | loff_t pos, |
| 675 | size_t ocount) |
| 676 | { |
| 677 | struct file *file = iocb->ki_filp; |
| 678 | struct address_space *mapping = file->f_mapping; |
| 679 | struct inode *inode = mapping->host; |
| 680 | struct xfs_inode *ip = XFS_I(inode); |
| 681 | struct xfs_mount *mp = ip->i_mount; |
| 682 | ssize_t ret = 0; |
| 683 | size_t count = ocount; |
| 684 | int unaligned_io = 0; |
| 685 | int iolock; |
| 686 | struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ? |
| 687 | mp->m_rtdev_targp : mp->m_ddev_targp; |
| 688 | |
| 689 | if ((pos & target->bt_smask) || (count & target->bt_smask)) |
| 690 | return -XFS_ERROR(EINVAL); |
| 691 | |
| 692 | if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)) |
| 693 | unaligned_io = 1; |
| 694 | |
| 695 | /* |
| 696 | * We don't need to take an exclusive lock unless there page cache needs |
| 697 | * to be invalidated or unaligned IO is being executed. We don't need to |
| 698 | * consider the EOF extension case here because |
| 699 | * xfs_file_aio_write_checks() will relock the inode as necessary for |
| 700 | * EOF zeroing cases and fill out the new inode size as appropriate. |
| 701 | */ |
| 702 | if (unaligned_io || mapping->nrpages) |
| 703 | iolock = XFS_IOLOCK_EXCL; |
| 704 | else |
| 705 | iolock = XFS_IOLOCK_SHARED; |
| 706 | xfs_rw_ilock(ip, iolock); |
| 707 | |
| 708 | /* |
| 709 | * Recheck if there are cached pages that need invalidate after we got |
| 710 | * the iolock to protect against other threads adding new pages while |
| 711 | * we were waiting for the iolock. |
| 712 | */ |
| 713 | if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) { |
| 714 | xfs_rw_iunlock(ip, iolock); |
| 715 | iolock = XFS_IOLOCK_EXCL; |
| 716 | xfs_rw_ilock(ip, iolock); |
| 717 | } |
| 718 | |
| 719 | ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); |
| 720 | if (ret) |
| 721 | goto out; |
| 722 | |
| 723 | if (mapping->nrpages) { |
| 724 | ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1, |
| 725 | FI_REMAPF_LOCKED); |
| 726 | if (ret) |
| 727 | goto out; |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | * If we are doing unaligned IO, wait for all other IO to drain, |
| 732 | * otherwise demote the lock if we had to flush cached pages |
| 733 | */ |
| 734 | if (unaligned_io) |
| 735 | inode_dio_wait(inode); |
| 736 | else if (iolock == XFS_IOLOCK_EXCL) { |
| 737 | xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| 738 | iolock = XFS_IOLOCK_SHARED; |
| 739 | } |
| 740 | |
| 741 | trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0); |
| 742 | ret = generic_file_direct_write(iocb, iovp, |
| 743 | &nr_segs, pos, &iocb->ki_pos, count, ocount); |
| 744 | |
| 745 | out: |
| 746 | xfs_rw_iunlock(ip, iolock); |
| 747 | |
| 748 | /* No fallback to buffered IO on errors for XFS. */ |
| 749 | ASSERT(ret < 0 || ret == count); |
| 750 | return ret; |
| 751 | } |
| 752 | |
| 753 | STATIC ssize_t |
| 754 | xfs_file_buffered_aio_write( |
| 755 | struct kiocb *iocb, |
| 756 | const struct iovec *iovp, |
| 757 | unsigned long nr_segs, |
| 758 | loff_t pos, |
| 759 | size_t ocount) |
| 760 | { |
| 761 | struct file *file = iocb->ki_filp; |
| 762 | struct address_space *mapping = file->f_mapping; |
| 763 | struct inode *inode = mapping->host; |
| 764 | struct xfs_inode *ip = XFS_I(inode); |
| 765 | ssize_t ret; |
| 766 | int enospc = 0; |
| 767 | int iolock = XFS_IOLOCK_EXCL; |
| 768 | size_t count = ocount; |
| 769 | |
| 770 | xfs_rw_ilock(ip, iolock); |
| 771 | |
| 772 | ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock); |
| 773 | if (ret) |
| 774 | goto out; |
| 775 | |
| 776 | /* We can write back this queue in page reclaim */ |
| 777 | current->backing_dev_info = mapping->backing_dev_info; |
| 778 | |
| 779 | write_retry: |
| 780 | trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0); |
| 781 | ret = generic_file_buffered_write(iocb, iovp, nr_segs, |
| 782 | pos, &iocb->ki_pos, count, ret); |
| 783 | /* |
| 784 | * if we just got an ENOSPC, flush the inode now we aren't holding any |
| 785 | * page locks and retry *once* |
| 786 | */ |
| 787 | if (ret == -ENOSPC && !enospc) { |
| 788 | enospc = 1; |
| 789 | ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE); |
| 790 | if (!ret) |
| 791 | goto write_retry; |
| 792 | } |
| 793 | |
| 794 | current->backing_dev_info = NULL; |
| 795 | out: |
| 796 | xfs_rw_iunlock(ip, iolock); |
| 797 | return ret; |
| 798 | } |
| 799 | |
| 800 | STATIC ssize_t |
| 801 | xfs_file_aio_write( |
| 802 | struct kiocb *iocb, |
| 803 | const struct iovec *iovp, |
| 804 | unsigned long nr_segs, |
| 805 | loff_t pos) |
| 806 | { |
| 807 | struct file *file = iocb->ki_filp; |
| 808 | struct address_space *mapping = file->f_mapping; |
| 809 | struct inode *inode = mapping->host; |
| 810 | struct xfs_inode *ip = XFS_I(inode); |
| 811 | ssize_t ret; |
| 812 | size_t ocount = 0; |
| 813 | |
| 814 | XFS_STATS_INC(xs_write_calls); |
| 815 | |
| 816 | BUG_ON(iocb->ki_pos != pos); |
| 817 | |
| 818 | ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ); |
| 819 | if (ret) |
| 820 | return ret; |
| 821 | |
| 822 | if (ocount == 0) |
| 823 | return 0; |
| 824 | |
| 825 | xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE); |
| 826 | |
| 827 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) |
| 828 | return -EIO; |
| 829 | |
| 830 | if (unlikely(file->f_flags & O_DIRECT)) |
| 831 | ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount); |
| 832 | else |
| 833 | ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos, |
| 834 | ocount); |
| 835 | |
| 836 | if (ret > 0) { |
| 837 | ssize_t err; |
| 838 | |
| 839 | XFS_STATS_ADD(xs_write_bytes, ret); |
| 840 | |
| 841 | /* Handle various SYNC-type writes */ |
| 842 | err = generic_write_sync(file, pos, ret); |
| 843 | if (err < 0) |
| 844 | ret = err; |
| 845 | } |
| 846 | |
| 847 | return ret; |
| 848 | } |
| 849 | |
| 850 | STATIC long |
| 851 | xfs_file_fallocate( |
| 852 | struct file *file, |
| 853 | int mode, |
| 854 | loff_t offset, |
| 855 | loff_t len) |
| 856 | { |
| 857 | struct inode *inode = file->f_path.dentry->d_inode; |
| 858 | long error; |
| 859 | loff_t new_size = 0; |
| 860 | xfs_flock64_t bf; |
| 861 | xfs_inode_t *ip = XFS_I(inode); |
| 862 | int cmd = XFS_IOC_RESVSP; |
| 863 | int attr_flags = XFS_ATTR_NOLOCK; |
| 864 | |
| 865 | if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) |
| 866 | return -EOPNOTSUPP; |
| 867 | |
| 868 | bf.l_whence = 0; |
| 869 | bf.l_start = offset; |
| 870 | bf.l_len = len; |
| 871 | |
| 872 | xfs_ilock(ip, XFS_IOLOCK_EXCL); |
| 873 | |
| 874 | if (mode & FALLOC_FL_PUNCH_HOLE) |
| 875 | cmd = XFS_IOC_UNRESVSP; |
| 876 | |
| 877 | /* check the new inode size is valid before allocating */ |
| 878 | if (!(mode & FALLOC_FL_KEEP_SIZE) && |
| 879 | offset + len > i_size_read(inode)) { |
| 880 | new_size = offset + len; |
| 881 | error = inode_newsize_ok(inode, new_size); |
| 882 | if (error) |
| 883 | goto out_unlock; |
| 884 | } |
| 885 | |
| 886 | if (file->f_flags & O_DSYNC) |
| 887 | attr_flags |= XFS_ATTR_SYNC; |
| 888 | |
| 889 | error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags); |
| 890 | if (error) |
| 891 | goto out_unlock; |
| 892 | |
| 893 | /* Change file size if needed */ |
| 894 | if (new_size) { |
| 895 | struct iattr iattr; |
| 896 | |
| 897 | iattr.ia_valid = ATTR_SIZE; |
| 898 | iattr.ia_size = new_size; |
| 899 | error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK); |
| 900 | } |
| 901 | |
| 902 | out_unlock: |
| 903 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| 904 | return error; |
| 905 | } |
| 906 | |
| 907 | |
| 908 | STATIC int |
| 909 | xfs_file_open( |
| 910 | struct inode *inode, |
| 911 | struct file *file) |
| 912 | { |
| 913 | if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) |
| 914 | return -EFBIG; |
| 915 | if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb))) |
| 916 | return -EIO; |
| 917 | return 0; |
| 918 | } |
| 919 | |
| 920 | STATIC int |
| 921 | xfs_dir_open( |
| 922 | struct inode *inode, |
| 923 | struct file *file) |
| 924 | { |
| 925 | struct xfs_inode *ip = XFS_I(inode); |
| 926 | int mode; |
| 927 | int error; |
| 928 | |
| 929 | error = xfs_file_open(inode, file); |
| 930 | if (error) |
| 931 | return error; |
| 932 | |
| 933 | /* |
| 934 | * If there are any blocks, read-ahead block 0 as we're almost |
| 935 | * certain to have the next operation be a read there. |
| 936 | */ |
| 937 | mode = xfs_ilock_map_shared(ip); |
| 938 | if (ip->i_d.di_nextents > 0) |
| 939 | xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK); |
| 940 | xfs_iunlock(ip, mode); |
| 941 | return 0; |
| 942 | } |
| 943 | |
| 944 | STATIC int |
| 945 | xfs_file_release( |
| 946 | struct inode *inode, |
| 947 | struct file *filp) |
| 948 | { |
| 949 | return -xfs_release(XFS_I(inode)); |
| 950 | } |
| 951 | |
| 952 | STATIC int |
| 953 | xfs_file_readdir( |
| 954 | struct file *filp, |
| 955 | void *dirent, |
| 956 | filldir_t filldir) |
| 957 | { |
| 958 | struct inode *inode = filp->f_path.dentry->d_inode; |
| 959 | xfs_inode_t *ip = XFS_I(inode); |
| 960 | int error; |
| 961 | size_t bufsize; |
| 962 | |
| 963 | /* |
| 964 | * The Linux API doesn't pass down the total size of the buffer |
| 965 | * we read into down to the filesystem. With the filldir concept |
| 966 | * it's not needed for correct information, but the XFS dir2 leaf |
| 967 | * code wants an estimate of the buffer size to calculate it's |
| 968 | * readahead window and size the buffers used for mapping to |
| 969 | * physical blocks. |
| 970 | * |
| 971 | * Try to give it an estimate that's good enough, maybe at some |
| 972 | * point we can change the ->readdir prototype to include the |
| 973 | * buffer size. For now we use the current glibc buffer size. |
| 974 | */ |
| 975 | bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size); |
| 976 | |
| 977 | error = xfs_readdir(ip, dirent, bufsize, |
| 978 | (xfs_off_t *)&filp->f_pos, filldir); |
| 979 | if (error) |
| 980 | return -error; |
| 981 | return 0; |
| 982 | } |
| 983 | |
| 984 | STATIC int |
| 985 | xfs_file_mmap( |
| 986 | struct file *filp, |
| 987 | struct vm_area_struct *vma) |
| 988 | { |
| 989 | vma->vm_ops = &xfs_file_vm_ops; |
| 990 | vma->vm_flags |= VM_CAN_NONLINEAR; |
| 991 | |
| 992 | file_accessed(filp); |
| 993 | return 0; |
| 994 | } |
| 995 | |
| 996 | /* |
| 997 | * mmap()d file has taken write protection fault and is being made |
| 998 | * writable. We can set the page state up correctly for a writable |
| 999 | * page, which means we can do correct delalloc accounting (ENOSPC |
| 1000 | * checking!) and unwritten extent mapping. |
| 1001 | */ |
| 1002 | STATIC int |
| 1003 | xfs_vm_page_mkwrite( |
| 1004 | struct vm_area_struct *vma, |
| 1005 | struct vm_fault *vmf) |
| 1006 | { |
| 1007 | return block_page_mkwrite(vma, vmf, xfs_get_blocks); |
| 1008 | } |
| 1009 | |
| 1010 | const struct file_operations xfs_file_operations = { |
| 1011 | .llseek = generic_file_llseek, |
| 1012 | .read = do_sync_read, |
| 1013 | .write = do_sync_write, |
| 1014 | .aio_read = xfs_file_aio_read, |
| 1015 | .aio_write = xfs_file_aio_write, |
| 1016 | .splice_read = xfs_file_splice_read, |
| 1017 | .splice_write = xfs_file_splice_write, |
| 1018 | .unlocked_ioctl = xfs_file_ioctl, |
| 1019 | #ifdef CONFIG_COMPAT |
| 1020 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1021 | #endif |
| 1022 | .mmap = xfs_file_mmap, |
| 1023 | .open = xfs_file_open, |
| 1024 | .release = xfs_file_release, |
| 1025 | .fsync = xfs_file_fsync, |
| 1026 | .fallocate = xfs_file_fallocate, |
| 1027 | }; |
| 1028 | |
| 1029 | const struct file_operations xfs_dir_file_operations = { |
| 1030 | .open = xfs_dir_open, |
| 1031 | .read = generic_read_dir, |
| 1032 | .readdir = xfs_file_readdir, |
| 1033 | .llseek = generic_file_llseek, |
| 1034 | .unlocked_ioctl = xfs_file_ioctl, |
| 1035 | #ifdef CONFIG_COMPAT |
| 1036 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1037 | #endif |
| 1038 | .fsync = xfs_dir_fsync, |
| 1039 | }; |
| 1040 | |
| 1041 | static const struct vm_operations_struct xfs_file_vm_ops = { |
| 1042 | .fault = filemap_fault, |
| 1043 | .page_mkwrite = xfs_vm_page_mkwrite, |
| 1044 | }; |