yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 3 | * operating system. INET is implemented using the BSD Socket |
| 4 | * interface as the means of communication with the user level. |
| 5 | * |
| 6 | * The Internet Protocol (IP) output module. |
| 7 | * |
| 8 | * Authors: Ross Biro |
| 9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 10 | * Donald Becker, <becker@super.org> |
| 11 | * Alan Cox, <Alan.Cox@linux.org> |
| 12 | * Richard Underwood |
| 13 | * Stefan Becker, <stefanb@yello.ping.de> |
| 14 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 15 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 16 | * Hirokazu Takahashi, <taka@valinux.co.jp> |
| 17 | * |
| 18 | * See ip_input.c for original log |
| 19 | * |
| 20 | * Fixes: |
| 21 | * Alan Cox : Missing nonblock feature in ip_build_xmit. |
| 22 | * Mike Kilburn : htons() missing in ip_build_xmit. |
| 23 | * Bradford Johnson: Fix faulty handling of some frames when |
| 24 | * no route is found. |
| 25 | * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit |
| 26 | * (in case if packet not accepted by |
| 27 | * output firewall rules) |
| 28 | * Mike McLagan : Routing by source |
| 29 | * Alexey Kuznetsov: use new route cache |
| 30 | * Andi Kleen: Fix broken PMTU recovery and remove |
| 31 | * some redundant tests. |
| 32 | * Vitaly E. Lavrov : Transparent proxy revived after year coma. |
| 33 | * Andi Kleen : Replace ip_reply with ip_send_reply. |
| 34 | * Andi Kleen : Split fast and slow ip_build_xmit path |
| 35 | * for decreased register pressure on x86 |
| 36 | * and more readibility. |
| 37 | * Marc Boucher : When call_out_firewall returns FW_QUEUE, |
| 38 | * silently drop skb instead of failing with -EPERM. |
| 39 | * Detlev Wengorz : Copy protocol for fragments. |
| 40 | * Hirokazu Takahashi: HW checksumming for outgoing UDP |
| 41 | * datagrams. |
| 42 | * Hirokazu Takahashi: sendfile() on UDP works now. |
| 43 | */ |
| 44 | |
| 45 | #include <asm/uaccess.h> |
| 46 | #include <linux/module.h> |
| 47 | #include <linux/types.h> |
| 48 | #include <linux/kernel.h> |
| 49 | #include <linux/mm.h> |
| 50 | #include <linux/string.h> |
| 51 | #include <linux/errno.h> |
| 52 | #include <linux/highmem.h> |
| 53 | #include <linux/slab.h> |
| 54 | |
| 55 | #include <linux/socket.h> |
| 56 | #include <linux/sockios.h> |
| 57 | #include <linux/in.h> |
| 58 | #include <linux/inet.h> |
| 59 | #include <linux/netdevice.h> |
| 60 | #include <linux/etherdevice.h> |
| 61 | #include <linux/proc_fs.h> |
| 62 | #include <linux/stat.h> |
| 63 | #include <linux/init.h> |
| 64 | |
| 65 | #include <net/snmp.h> |
| 66 | #include <net/ip.h> |
| 67 | #include <net/protocol.h> |
| 68 | #include <net/route.h> |
| 69 | #include <net/xfrm.h> |
| 70 | #include <linux/skbuff.h> |
| 71 | #include <net/sock.h> |
| 72 | #include <net/arp.h> |
| 73 | #include <net/icmp.h> |
| 74 | #include <net/checksum.h> |
| 75 | #include <net/inetpeer.h> |
| 76 | #include <linux/igmp.h> |
| 77 | #include <linux/netfilter_ipv4.h> |
| 78 | #include <linux/netfilter_bridge.h> |
| 79 | #include <linux/mroute.h> |
| 80 | #include <linux/netlink.h> |
| 81 | #include <linux/tcp.h> |
| 82 | |
| 83 | #include <net/SI/fast_common.h> |
| 84 | |
| 85 | |
| 86 | int sysctl_ip_default_ttl __read_mostly = IPDEFTTL; |
| 87 | EXPORT_SYMBOL(sysctl_ip_default_ttl); |
| 88 | |
| 89 | /* Generate a checksum for an outgoing IP datagram. */ |
| 90 | __inline__ void ip_send_check(struct iphdr *iph) |
| 91 | { |
| 92 | iph->check = 0; |
| 93 | iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); |
| 94 | } |
| 95 | EXPORT_SYMBOL(ip_send_check); |
| 96 | |
| 97 | int __ip_local_out(struct sk_buff *skb) |
| 98 | { |
| 99 | struct iphdr *iph = ip_hdr(skb); |
| 100 | |
| 101 | iph->tot_len = htons(skb->len); |
| 102 | ip_send_check(iph); |
| 103 | return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL, |
| 104 | skb_dst(skb)->dev, dst_output); |
| 105 | } |
| 106 | |
| 107 | int ip_local_out(struct sk_buff *skb) |
| 108 | { |
| 109 | int err; |
| 110 | |
| 111 | err = __ip_local_out(skb); |
| 112 | if (likely(err == 1)) |
| 113 | err = dst_output(skb); |
| 114 | |
| 115 | return err; |
| 116 | } |
| 117 | EXPORT_SYMBOL_GPL(ip_local_out); |
| 118 | |
| 119 | /* dev_loopback_xmit for use with netfilter. */ |
| 120 | static int ip_dev_loopback_xmit(struct sk_buff *newskb) |
| 121 | { |
| 122 | skb_reset_mac_header(newskb); |
| 123 | __skb_pull(newskb, skb_network_offset(newskb)); |
| 124 | newskb->pkt_type = PACKET_LOOPBACK; |
| 125 | newskb->ip_summed = CHECKSUM_UNNECESSARY; |
| 126 | WARN_ON(!skb_dst(newskb)); |
| 127 | skb_dst_force(newskb); |
| 128 | netif_rx_ni(newskb); |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) |
| 133 | { |
| 134 | int ttl = inet->uc_ttl; |
| 135 | |
| 136 | if (ttl < 0) |
| 137 | ttl = ip4_dst_hoplimit(dst); |
| 138 | return ttl; |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * Add an ip header to a skbuff and send it out. |
| 143 | * |
| 144 | */ |
| 145 | int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk, |
| 146 | __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) |
| 147 | { |
| 148 | struct inet_sock *inet = inet_sk(sk); |
| 149 | struct rtable *rt = skb_rtable(skb); |
| 150 | struct iphdr *iph; |
| 151 | |
| 152 | /* Build the IP header. */ |
| 153 | skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); |
| 154 | skb_reset_network_header(skb); |
| 155 | iph = ip_hdr(skb); |
| 156 | iph->version = 4; |
| 157 | iph->ihl = 5; |
| 158 | iph->tos = inet->tos; |
| 159 | if (ip_dont_fragment(sk, &rt->dst)) |
| 160 | iph->frag_off = htons(IP_DF); |
| 161 | else |
| 162 | iph->frag_off = 0; |
| 163 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
| 164 | iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); |
| 165 | iph->saddr = saddr; |
| 166 | iph->protocol = sk->sk_protocol; |
| 167 | ip_select_ident(skb, sk); |
| 168 | |
| 169 | if (opt && opt->opt.optlen) { |
| 170 | iph->ihl += opt->opt.optlen>>2; |
| 171 | ip_options_build(skb, &opt->opt, daddr, rt, 0); |
| 172 | } |
| 173 | |
| 174 | skb->priority = sk->sk_priority; |
| 175 | skb->mark = sk->sk_mark; |
| 176 | |
| 177 | /* Send it out. */ |
| 178 | return ip_local_out(skb); |
| 179 | } |
| 180 | EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); |
| 181 | |
| 182 | static inline int ip_finish_output2(struct sk_buff *skb) |
| 183 | { |
| 184 | struct dst_entry *dst = skb_dst(skb); |
| 185 | struct rtable *rt = (struct rtable *)dst; |
| 186 | struct net_device *dev = dst->dev; |
| 187 | unsigned int hh_len = LL_RESERVED_SPACE(dev); |
| 188 | struct neighbour *neigh; |
| 189 | |
| 190 | if (rt->rt_type == RTN_MULTICAST) { |
| 191 | IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len); |
| 192 | } else if (rt->rt_type == RTN_BROADCAST) |
| 193 | IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len); |
| 194 | |
| 195 | /* Be paranoid, rather than too clever. */ |
| 196 | if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { |
| 197 | struct sk_buff *skb2; |
| 198 | |
| 199 | skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); |
| 200 | if (skb2 == NULL) { |
| 201 | kfree_skb(skb); |
| 202 | return -ENOMEM; |
| 203 | } |
| 204 | if (skb->sk) |
| 205 | skb_set_owner_w(skb2, skb->sk); |
| 206 | kfree_skb(skb); |
| 207 | skb = skb2; |
| 208 | } |
| 209 | |
| 210 | rcu_read_lock(); |
| 211 | neigh = dst_get_neighbour_noref(dst); |
| 212 | if (neigh) { |
| 213 | int res = neigh_output(neigh, skb); |
| 214 | |
| 215 | rcu_read_unlock(); |
| 216 | return res; |
| 217 | } |
| 218 | rcu_read_unlock(); |
| 219 | |
| 220 | if (net_ratelimit()) |
| 221 | printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n"); |
| 222 | kfree_skb(skb); |
| 223 | return -EINVAL; |
| 224 | } |
| 225 | |
| 226 | static inline int ip_skb_dst_mtu(struct sk_buff *skb) |
| 227 | { |
| 228 | struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL; |
| 229 | |
| 230 | return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ? |
| 231 | skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb)); |
| 232 | } |
| 233 | |
| 234 | static int ip_finish_output(struct sk_buff *skb) |
| 235 | { |
| 236 | #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) |
| 237 | /* Policy lookup after SNAT yielded a new policy */ |
| 238 | if (skb_dst(skb)->xfrm != NULL) { |
| 239 | IPCB(skb)->flags |= IPSKB_REROUTED; |
| 240 | return dst_output(skb); |
| 241 | } |
| 242 | #endif |
| 243 | if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb)) |
| 244 | return ip_fragment(skb, ip_finish_output2); |
| 245 | else |
| 246 | return ip_finish_output2(skb); |
| 247 | } |
| 248 | |
| 249 | int ip_mc_output(struct sk_buff *skb) |
| 250 | { |
| 251 | struct sock *sk = skb->sk; |
| 252 | struct rtable *rt = skb_rtable(skb); |
| 253 | struct net_device *dev = rt->dst.dev; |
| 254 | |
| 255 | /* |
| 256 | * If the indicated interface is up and running, send the packet. |
| 257 | */ |
| 258 | IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); |
| 259 | |
| 260 | skb->dev = dev; |
| 261 | skb->protocol = htons(ETH_P_IP); |
| 262 | |
| 263 | /* |
| 264 | * Multicasts are looped back for other local users |
| 265 | */ |
| 266 | |
| 267 | if (rt->rt_flags&RTCF_MULTICAST) { |
| 268 | if (sk_mc_loop(sk) |
| 269 | #ifdef CONFIG_IP_MROUTE |
| 270 | /* Small optimization: do not loopback not local frames, |
| 271 | which returned after forwarding; they will be dropped |
| 272 | by ip_mr_input in any case. |
| 273 | Note, that local frames are looped back to be delivered |
| 274 | to local recipients. |
| 275 | |
| 276 | This check is duplicated in ip_mr_input at the moment. |
| 277 | */ |
| 278 | && |
| 279 | ((rt->rt_flags & RTCF_LOCAL) || |
| 280 | !(IPCB(skb)->flags & IPSKB_FORWARDED)) |
| 281 | #endif |
| 282 | ) { |
| 283 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
| 284 | if (newskb) |
| 285 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 286 | newskb, NULL, newskb->dev, |
| 287 | ip_dev_loopback_xmit); |
| 288 | } |
| 289 | |
| 290 | /* Multicasts with ttl 0 must not go beyond the host */ |
| 291 | |
| 292 | if (ip_hdr(skb)->ttl == 0) { |
| 293 | kfree_skb(skb); |
| 294 | return 0; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | if (rt->rt_flags&RTCF_BROADCAST) { |
| 299 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
| 300 | if (newskb) |
| 301 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb, |
| 302 | NULL, newskb->dev, ip_dev_loopback_xmit); |
| 303 | } |
| 304 | |
| 305 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, |
| 306 | skb->dev, ip_finish_output, |
| 307 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 308 | } |
| 309 | |
| 310 | int ip_output(struct sk_buff *skb) |
| 311 | { |
| 312 | struct net_device *dev = skb_dst(skb)->dev; |
| 313 | |
| 314 | IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len); |
| 315 | |
| 316 | skb->dev = dev; |
| 317 | skb->protocol = htons(ETH_P_IP); |
| 318 | |
| 319 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev, |
| 320 | ip_finish_output, |
| 321 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * copy saddr and daddr, possibly using 64bit load/stores |
| 326 | * Equivalent to : |
| 327 | * iph->saddr = fl4->saddr; |
| 328 | * iph->daddr = fl4->daddr; |
| 329 | */ |
| 330 | static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) |
| 331 | { |
| 332 | BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != |
| 333 | offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); |
| 334 | memcpy(&iph->saddr, &fl4->saddr, |
| 335 | sizeof(fl4->saddr) + sizeof(fl4->daddr)); |
| 336 | } |
| 337 | |
| 338 | extern int fast_local4_output_num; |
| 339 | |
| 340 | int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl) |
| 341 | { |
| 342 | struct sock *sk = skb->sk; |
| 343 | struct inet_sock *inet = inet_sk(sk); |
| 344 | struct ip_options_rcu *inet_opt; |
| 345 | struct flowi4 *fl4; |
| 346 | struct rtable *rt; |
| 347 | struct iphdr *iph; |
| 348 | int res; |
| 349 | int fast_flag = 0; |
| 350 | struct nf_conn *ct; |
| 351 | |
| 352 | /* Skip all of this if the packet is already routed, |
| 353 | * f.e. by something like SCTP. |
| 354 | */ |
| 355 | rcu_read_lock(); |
| 356 | inet_opt = rcu_dereference(inet->inet_opt); |
| 357 | fl4 = &fl->u.ip4; |
| 358 | rt = skb_rtable(skb); |
| 359 | if (rt != NULL) |
| 360 | goto packet_routed; |
| 361 | |
| 362 | /* Make sure we can route this packet. */ |
| 363 | rt = (struct rtable *)__sk_dst_check(sk, 0); |
| 364 | if (rt == NULL) { |
| 365 | __be32 daddr; |
| 366 | |
| 367 | /* Use correct destination address if we have options. */ |
| 368 | daddr = inet->inet_daddr; |
| 369 | if (inet_opt && inet_opt->opt.srr) |
| 370 | daddr = inet_opt->opt.faddr; |
| 371 | |
| 372 | /* If this fails, retransmit mechanism of transport layer will |
| 373 | * keep trying until route appears or the connection times |
| 374 | * itself out. |
| 375 | */ |
| 376 | rt = ip_route_output_ports(sock_net(sk), fl4, sk, |
| 377 | daddr, inet->inet_saddr, |
| 378 | inet->inet_dport, |
| 379 | inet->inet_sport, |
| 380 | sk->sk_protocol, |
| 381 | RT_CONN_FLAGS(sk), |
| 382 | sk->sk_bound_dev_if); |
| 383 | if (IS_ERR(rt)) |
| 384 | goto no_route; |
| 385 | sk_setup_caps(sk, &rt->dst); |
| 386 | } |
| 387 | skb_dst_set_noref(skb, &rt->dst); |
| 388 | |
| 389 | packet_routed: |
| 390 | if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway) |
| 391 | goto no_route; |
| 392 | |
| 393 | /* OK, we know where to send it, allocate and build IP header. */ |
| 394 | skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); |
| 395 | skb_reset_network_header(skb); |
| 396 | iph = ip_hdr(skb); |
| 397 | *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); |
| 398 | if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df) |
| 399 | iph->frag_off = htons(IP_DF); |
| 400 | else |
| 401 | iph->frag_off = 0; |
| 402 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
| 403 | iph->protocol = sk->sk_protocol; |
| 404 | ip_copy_addrs(iph, fl4); |
| 405 | |
| 406 | /* Transport layer set skb->h.foo itself. */ |
| 407 | |
| 408 | if (inet_opt && inet_opt->opt.optlen) { |
| 409 | iph->ihl += inet_opt->opt.optlen >> 2; |
| 410 | ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); |
| 411 | } |
| 412 | |
| 413 | ip_select_ident_segs(skb, sk, skb_shinfo(skb)->gso_segs ?: 1); |
| 414 | |
| 415 | skb->priority = sk->sk_priority; |
| 416 | skb->mark = sk->sk_mark; |
| 417 | |
| 418 | //Èç¹ûÒѾ·¢Ëͳ¬¹ýãÐÖµÁË£¬Ö±½Ó¿ìËÙÌí¼ÓMACÍ·£¬Ìø¹ýËùÓеÄIP²ãHOOK¹³×Óº¯Êý |
| 419 | if (fast_local4_output_proc && fast_local4_output_proc(skb)) |
| 420 | { |
| 421 | fast_local4_output_num++; |
| 422 | res = ip_finish_output(skb); |
| 423 | } |
| 424 | else |
| 425 | { |
| 426 | sk->sk_send_sum++; |
| 427 | res = ip_local_out(skb); |
| 428 | } |
| 429 | |
| 430 | rcu_read_unlock(); |
| 431 | return res; |
| 432 | |
| 433 | no_route: |
| 434 | rcu_read_unlock(); |
| 435 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); |
| 436 | kfree_skb(skb); |
| 437 | return -EHOSTUNREACH; |
| 438 | } |
| 439 | EXPORT_SYMBOL(ip_queue_xmit); |
| 440 | |
| 441 | |
| 442 | static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) |
| 443 | { |
| 444 | to->pkt_type = from->pkt_type; |
| 445 | to->priority = from->priority; |
| 446 | to->protocol = from->protocol; |
| 447 | skb_dst_drop(to); |
| 448 | skb_dst_copy(to, from); |
| 449 | to->dev = from->dev; |
| 450 | to->mark = from->mark; |
| 451 | |
| 452 | /* Copy the flags to each fragment. */ |
| 453 | IPCB(to)->flags = IPCB(from)->flags; |
| 454 | |
| 455 | #ifdef CONFIG_NET_SCHED |
| 456 | to->tc_index = from->tc_index; |
| 457 | #endif |
| 458 | nf_copy(to, from); |
| 459 | #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \ |
| 460 | defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE) |
| 461 | to->nf_trace = from->nf_trace; |
| 462 | #endif |
| 463 | #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) |
| 464 | to->ipvs_property = from->ipvs_property; |
| 465 | #endif |
| 466 | skb_copy_secmark(to, from); |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * This IP datagram is too large to be sent in one piece. Break it up into |
| 471 | * smaller pieces (each of size equal to IP header plus |
| 472 | * a block of the data of the original IP data part) that will yet fit in a |
| 473 | * single device frame, and queue such a frame for sending. |
| 474 | */ |
| 475 | |
| 476 | int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *)) |
| 477 | { |
| 478 | struct iphdr *iph; |
| 479 | int ptr; |
| 480 | struct net_device *dev; |
| 481 | struct sk_buff *skb2; |
| 482 | unsigned int mtu, hlen, left, len, ll_rs; |
| 483 | int offset; |
| 484 | __be16 not_last_frag; |
| 485 | struct rtable *rt = skb_rtable(skb); |
| 486 | int err = 0; |
| 487 | |
| 488 | dev = rt->dst.dev; |
| 489 | |
| 490 | /* |
| 491 | * Point into the IP datagram header. |
| 492 | */ |
| 493 | |
| 494 | iph = ip_hdr(skb); |
| 495 | |
| 496 | if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) { |
| 497 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); |
| 498 | icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, |
| 499 | htonl(ip_skb_dst_mtu(skb))); |
| 500 | kfree_skb(skb); |
| 501 | return -EMSGSIZE; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Setup starting values. |
| 506 | */ |
| 507 | |
| 508 | hlen = iph->ihl * 4; |
| 509 | mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */ |
| 510 | #ifdef CONFIG_BRIDGE_NETFILTER |
| 511 | if (skb->nf_bridge) |
| 512 | mtu -= nf_bridge_mtu_reduction(skb); |
| 513 | #endif |
| 514 | IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; |
| 515 | |
| 516 | /* When frag_list is given, use it. First, check its validity: |
| 517 | * some transformers could create wrong frag_list or break existing |
| 518 | * one, it is not prohibited. In this case fall back to copying. |
| 519 | * |
| 520 | * LATER: this step can be merged to real generation of fragments, |
| 521 | * we can switch to copy when see the first bad fragment. |
| 522 | */ |
| 523 | if (skb_has_frag_list(skb)) { |
| 524 | struct sk_buff *frag, *frag2; |
| 525 | int first_len = skb_pagelen(skb); |
| 526 | |
| 527 | if (first_len - hlen > mtu || |
| 528 | ((first_len - hlen) & 7) || |
| 529 | ip_is_fragment(iph) || |
| 530 | skb_cloned(skb)) |
| 531 | goto slow_path; |
| 532 | |
| 533 | skb_walk_frags(skb, frag) { |
| 534 | /* Correct geometry. */ |
| 535 | if (frag->len > mtu || |
| 536 | ((frag->len & 7) && frag->next) || |
| 537 | skb_headroom(frag) < hlen) |
| 538 | goto slow_path_clean; |
| 539 | |
| 540 | /* Partially cloned skb? */ |
| 541 | if (skb_shared(frag)) |
| 542 | goto slow_path_clean; |
| 543 | |
| 544 | BUG_ON(frag->sk); |
| 545 | if (skb->sk) { |
| 546 | frag->sk = skb->sk; |
| 547 | frag->destructor = sock_wfree; |
| 548 | } |
| 549 | skb->truesize -= frag->truesize; |
| 550 | } |
| 551 | |
| 552 | /* Everything is OK. Generate! */ |
| 553 | |
| 554 | err = 0; |
| 555 | offset = 0; |
| 556 | frag = skb_shinfo(skb)->frag_list; |
| 557 | skb_frag_list_init(skb); |
| 558 | skb->data_len = first_len - skb_headlen(skb); |
| 559 | skb->len = first_len; |
| 560 | iph->tot_len = htons(first_len); |
| 561 | iph->frag_off = htons(IP_MF); |
| 562 | ip_send_check(iph); |
| 563 | |
| 564 | for (;;) { |
| 565 | /* Prepare header of the next frame, |
| 566 | * before previous one went down. */ |
| 567 | if (frag) { |
| 568 | frag->ip_summed = CHECKSUM_NONE; |
| 569 | skb_reset_transport_header(frag); |
| 570 | __skb_push(frag, hlen); |
| 571 | skb_reset_network_header(frag); |
| 572 | memcpy(skb_network_header(frag), iph, hlen); |
| 573 | iph = ip_hdr(frag); |
| 574 | iph->tot_len = htons(frag->len); |
| 575 | ip_copy_metadata(frag, skb); |
| 576 | if (offset == 0) |
| 577 | ip_options_fragment(frag); |
| 578 | offset += skb->len - hlen; |
| 579 | iph->frag_off = htons(offset>>3); |
| 580 | if (frag->next != NULL) |
| 581 | iph->frag_off |= htons(IP_MF); |
| 582 | /* Ready, complete checksum */ |
| 583 | ip_send_check(iph); |
| 584 | } |
| 585 | net_run_track(PRT_FRAGMENT, "ip_fragment!\n"); |
| 586 | err = output(skb); |
| 587 | |
| 588 | if (!err) |
| 589 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES); |
| 590 | if (err || !frag) |
| 591 | break; |
| 592 | |
| 593 | skb = frag; |
| 594 | frag = skb->next; |
| 595 | skb->next = NULL; |
| 596 | } |
| 597 | |
| 598 | if (err == 0) { |
| 599 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS); |
| 600 | return 0; |
| 601 | } |
| 602 | |
| 603 | while (frag) { |
| 604 | skb = frag->next; |
| 605 | kfree_skb(frag); |
| 606 | frag = skb; |
| 607 | } |
| 608 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); |
| 609 | return err; |
| 610 | |
| 611 | slow_path_clean: |
| 612 | skb_walk_frags(skb, frag2) { |
| 613 | if (frag2 == frag) |
| 614 | break; |
| 615 | frag2->sk = NULL; |
| 616 | frag2->destructor = NULL; |
| 617 | skb->truesize += frag2->truesize; |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | slow_path: |
| 622 | left = skb->len - hlen; /* Space per frame */ |
| 623 | ptr = hlen; /* Where to start from */ |
| 624 | |
| 625 | /* for bridged IP traffic encapsulated inside f.e. a vlan header, |
| 626 | * we need to make room for the encapsulating header |
| 627 | */ |
| 628 | ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb)); |
| 629 | |
| 630 | /* |
| 631 | * Fragment the datagram. |
| 632 | */ |
| 633 | |
| 634 | offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; |
| 635 | not_last_frag = iph->frag_off & htons(IP_MF); |
| 636 | |
| 637 | /* |
| 638 | * Keep copying data until we run out. |
| 639 | */ |
| 640 | |
| 641 | while (left > 0) { |
| 642 | len = left; |
| 643 | /* IF: it doesn't fit, use 'mtu' - the data space left */ |
| 644 | if (len > mtu) |
| 645 | len = mtu; |
| 646 | /* IF: we are not sending up to and including the packet end |
| 647 | then align the next start on an eight byte boundary */ |
| 648 | if (len < left) { |
| 649 | len &= ~7; |
| 650 | } |
| 651 | /* |
| 652 | * Allocate buffer. |
| 653 | */ |
| 654 | |
| 655 | if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) { |
| 656 | NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n"); |
| 657 | err = -ENOMEM; |
| 658 | goto fail; |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * Set up data on packet |
| 663 | */ |
| 664 | |
| 665 | ip_copy_metadata(skb2, skb); |
| 666 | skb_reserve(skb2, ll_rs); |
| 667 | skb_put(skb2, len + hlen); |
| 668 | skb_reset_network_header(skb2); |
| 669 | skb2->transport_header = skb2->network_header + hlen; |
| 670 | |
| 671 | /* |
| 672 | * Charge the memory for the fragment to any owner |
| 673 | * it might possess |
| 674 | */ |
| 675 | |
| 676 | if (skb->sk) |
| 677 | skb_set_owner_w(skb2, skb->sk); |
| 678 | |
| 679 | /* |
| 680 | * Copy the packet header into the new buffer. |
| 681 | */ |
| 682 | |
| 683 | skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); |
| 684 | |
| 685 | /* |
| 686 | * Copy a block of the IP datagram. |
| 687 | */ |
| 688 | if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) |
| 689 | BUG(); |
| 690 | left -= len; |
| 691 | |
| 692 | /* |
| 693 | * Fill in the new header fields. |
| 694 | */ |
| 695 | iph = ip_hdr(skb2); |
| 696 | iph->frag_off = htons((offset >> 3)); |
| 697 | |
| 698 | /* ANK: dirty, but effective trick. Upgrade options only if |
| 699 | * the segment to be fragmented was THE FIRST (otherwise, |
| 700 | * options are already fixed) and make it ONCE |
| 701 | * on the initial skb, so that all the following fragments |
| 702 | * will inherit fixed options. |
| 703 | */ |
| 704 | if (offset == 0) |
| 705 | ip_options_fragment(skb); |
| 706 | |
| 707 | /* |
| 708 | * Added AC : If we are fragmenting a fragment that's not the |
| 709 | * last fragment then keep MF on each bit |
| 710 | */ |
| 711 | if (left > 0 || not_last_frag) |
| 712 | iph->frag_off |= htons(IP_MF); |
| 713 | ptr += len; |
| 714 | offset += len; |
| 715 | |
| 716 | /* |
| 717 | * Put this fragment into the sending queue. |
| 718 | */ |
| 719 | iph->tot_len = htons(len + hlen); |
| 720 | |
| 721 | ip_send_check(iph); |
| 722 | |
| 723 | net_run_track(PRT_FRAGMENT, "ip_fragment slow path!\n"); |
| 724 | err = output(skb2); |
| 725 | if (err) |
| 726 | goto fail; |
| 727 | |
| 728 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES); |
| 729 | } |
| 730 | kfree_skb(skb); |
| 731 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS); |
| 732 | return err; |
| 733 | |
| 734 | fail: |
| 735 | kfree_skb(skb); |
| 736 | IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS); |
| 737 | return err; |
| 738 | } |
| 739 | EXPORT_SYMBOL(ip_fragment); |
| 740 | |
| 741 | int |
| 742 | ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) |
| 743 | { |
| 744 | struct iovec *iov = from; |
| 745 | |
| 746 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 747 | if (memcpy_fromiovecend(to, iov, offset, len) < 0) |
| 748 | return -EFAULT; |
| 749 | } else { |
| 750 | __wsum csum = 0; |
| 751 | if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0) |
| 752 | return -EFAULT; |
| 753 | skb->csum = csum_block_add(skb->csum, csum, odd); |
| 754 | } |
| 755 | return 0; |
| 756 | } |
| 757 | EXPORT_SYMBOL(ip_generic_getfrag); |
| 758 | |
| 759 | static inline __wsum |
| 760 | csum_page(struct page *page, int offset, int copy) |
| 761 | { |
| 762 | char *kaddr; |
| 763 | __wsum csum; |
| 764 | kaddr = kmap(page); |
| 765 | csum = csum_partial(kaddr + offset, copy, 0); |
| 766 | kunmap(page); |
| 767 | return csum; |
| 768 | } |
| 769 | |
| 770 | static inline int ip_ufo_append_data(struct sock *sk, |
| 771 | struct sk_buff_head *queue, |
| 772 | int getfrag(void *from, char *to, int offset, int len, |
| 773 | int odd, struct sk_buff *skb), |
| 774 | void *from, int length, int hh_len, int fragheaderlen, |
| 775 | int transhdrlen, int maxfraglen, unsigned int flags) |
| 776 | { |
| 777 | struct sk_buff *skb; |
| 778 | int err; |
| 779 | |
| 780 | /* There is support for UDP fragmentation offload by network |
| 781 | * device, so create one single skb packet containing complete |
| 782 | * udp datagram |
| 783 | */ |
| 784 | if ((skb = skb_peek_tail(queue)) == NULL) { |
| 785 | skb = sock_alloc_send_skb(sk, |
| 786 | hh_len + fragheaderlen + transhdrlen + 20, |
| 787 | (flags & MSG_DONTWAIT), &err); |
| 788 | |
| 789 | if (skb == NULL) |
| 790 | return err; |
| 791 | |
| 792 | /* reserve space for Hardware header */ |
| 793 | skb_reserve(skb, hh_len); |
| 794 | |
| 795 | /* create space for UDP/IP header */ |
| 796 | skb_put(skb, fragheaderlen + transhdrlen); |
| 797 | |
| 798 | /* initialize network header pointer */ |
| 799 | skb_reset_network_header(skb); |
| 800 | |
| 801 | /* initialize protocol header pointer */ |
| 802 | skb->transport_header = skb->network_header + fragheaderlen; |
| 803 | |
| 804 | skb->ip_summed = CHECKSUM_PARTIAL; |
| 805 | skb->csum = 0; |
| 806 | |
| 807 | /* specify the length of each IP datagram fragment */ |
| 808 | skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; |
| 809 | skb_shinfo(skb)->gso_type = SKB_GSO_UDP; |
| 810 | __skb_queue_tail(queue, skb); |
| 811 | } |
| 812 | |
| 813 | return skb_append_datato_frags(sk, skb, getfrag, from, |
| 814 | (length - transhdrlen)); |
| 815 | } |
| 816 | |
| 817 | static int __ip_append_data(struct sock *sk, |
| 818 | struct flowi4 *fl4, |
| 819 | struct sk_buff_head *queue, |
| 820 | struct inet_cork *cork, |
| 821 | int getfrag(void *from, char *to, int offset, |
| 822 | int len, int odd, struct sk_buff *skb), |
| 823 | void *from, int length, int transhdrlen, |
| 824 | unsigned int flags) |
| 825 | { |
| 826 | struct inet_sock *inet = inet_sk(sk); |
| 827 | struct sk_buff *skb; |
| 828 | |
| 829 | struct ip_options *opt = cork->opt; |
| 830 | int hh_len; |
| 831 | int exthdrlen; |
| 832 | int mtu; |
| 833 | int copy; |
| 834 | int err; |
| 835 | int offset = 0; |
| 836 | unsigned int maxfraglen, fragheaderlen; |
| 837 | int csummode = CHECKSUM_NONE; |
| 838 | struct rtable *rt = (struct rtable *)cork->dst; |
| 839 | |
| 840 | skb = skb_peek_tail(queue); |
| 841 | |
| 842 | exthdrlen = !skb ? rt->dst.header_len : 0; |
| 843 | mtu = cork->fragsize; |
| 844 | |
| 845 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
| 846 | |
| 847 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
| 848 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
| 849 | |
| 850 | if (cork->length + length > 0xFFFF - fragheaderlen) { |
| 851 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, |
| 852 | mtu-exthdrlen); |
| 853 | return -EMSGSIZE; |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * transhdrlen > 0 means that this is the first fragment and we wish |
| 858 | * it won't be fragmented in the future. |
| 859 | */ |
| 860 | if (transhdrlen && |
| 861 | length + fragheaderlen <= mtu && |
| 862 | rt->dst.dev->features & NETIF_F_V4_CSUM && |
| 863 | !exthdrlen) |
| 864 | csummode = CHECKSUM_PARTIAL; |
| 865 | |
| 866 | cork->length += length; |
| 867 | /* |
| 868 | if (((length > mtu) || (skb && skb_has_frags(skb))) && |
| 869 | (sk->sk_protocol == IPPROTO_UDP) && |
| 870 | (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) { |
| 871 | */ |
| 872 | if ((skb && skb_is_gso(skb)) ||//CVE-2017-1000112 |
| 873 | (((length > mtu) || (skb && skb_has_frags(skb))) && |
| 874 | (sk->sk_protocol == IPPROTO_UDP) && |
| 875 | (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len)) { |
| 876 | err = ip_ufo_append_data(sk, queue, getfrag, from, length, |
| 877 | hh_len, fragheaderlen, transhdrlen, |
| 878 | maxfraglen, flags); |
| 879 | if (err) |
| 880 | goto error; |
| 881 | return 0; |
| 882 | } |
| 883 | |
| 884 | /* So, what's going on in the loop below? |
| 885 | * |
| 886 | * We use calculated fragment length to generate chained skb, |
| 887 | * each of segments is IP fragment ready for sending to network after |
| 888 | * adding appropriate IP header. |
| 889 | */ |
| 890 | |
| 891 | if (!skb) |
| 892 | goto alloc_new_skb; |
| 893 | |
| 894 | while (length > 0) { |
| 895 | /* Check if the remaining data fits into current packet. */ |
| 896 | copy = mtu - skb->len; |
| 897 | if (copy < length) |
| 898 | copy = maxfraglen - skb->len; |
| 899 | if (copy <= 0) { |
| 900 | char *data; |
| 901 | unsigned int datalen; |
| 902 | unsigned int fraglen; |
| 903 | unsigned int fraggap; |
| 904 | unsigned int alloclen; |
| 905 | struct sk_buff *skb_prev; |
| 906 | alloc_new_skb: |
| 907 | skb_prev = skb; |
| 908 | if (skb_prev) |
| 909 | fraggap = skb_prev->len - maxfraglen; |
| 910 | else |
| 911 | fraggap = 0; |
| 912 | |
| 913 | /* |
| 914 | * If remaining data exceeds the mtu, |
| 915 | * we know we need more fragment(s). |
| 916 | */ |
| 917 | datalen = length + fraggap; |
| 918 | if (datalen > mtu - fragheaderlen) |
| 919 | datalen = maxfraglen - fragheaderlen; |
| 920 | fraglen = datalen + fragheaderlen; |
| 921 | |
| 922 | if ((flags & MSG_MORE) && |
| 923 | !(rt->dst.dev->features&NETIF_F_SG)) |
| 924 | alloclen = mtu; |
| 925 | else |
| 926 | alloclen = fraglen; |
| 927 | |
| 928 | alloclen += exthdrlen; |
| 929 | |
| 930 | /* The last fragment gets additional space at tail. |
| 931 | * Note, with MSG_MORE we overallocate on fragments, |
| 932 | * because we have no idea what fragment will be |
| 933 | * the last. |
| 934 | */ |
| 935 | if (datalen == length + fraggap) |
| 936 | alloclen += rt->dst.trailer_len; |
| 937 | |
| 938 | if (transhdrlen) { |
| 939 | skb = sock_alloc_send_skb(sk, |
| 940 | alloclen + hh_len + 15, |
| 941 | (flags & MSG_DONTWAIT), &err); |
| 942 | } else { |
| 943 | skb = NULL; |
| 944 | if (atomic_read(&sk->sk_wmem_alloc) <= |
| 945 | 2 * sk->sk_sndbuf) |
| 946 | skb = sock_wmalloc(sk, |
| 947 | alloclen + hh_len + 15, 1, |
| 948 | sk->sk_allocation); |
| 949 | if (unlikely(skb == NULL)) |
| 950 | err = -ENOBUFS; |
| 951 | else |
| 952 | /* only the initial fragment is |
| 953 | time stamped */ |
| 954 | cork->tx_flags = 0; |
| 955 | } |
| 956 | if (skb == NULL) |
| 957 | goto error; |
| 958 | |
| 959 | /* |
| 960 | * Fill in the control structures |
| 961 | */ |
| 962 | skb->ip_summed = csummode; |
| 963 | skb->csum = 0; |
| 964 | skb_reserve(skb, hh_len); |
| 965 | skb_shinfo(skb)->tx_flags = cork->tx_flags; |
| 966 | |
| 967 | /* |
| 968 | * Find where to start putting bytes. |
| 969 | */ |
| 970 | data = skb_put(skb, fraglen + exthdrlen); |
| 971 | skb_set_network_header(skb, exthdrlen); |
| 972 | skb->transport_header = (skb->network_header + |
| 973 | fragheaderlen); |
| 974 | data += fragheaderlen + exthdrlen; |
| 975 | |
| 976 | if (fraggap) { |
| 977 | skb->csum = skb_copy_and_csum_bits( |
| 978 | skb_prev, maxfraglen, |
| 979 | data + transhdrlen, fraggap, 0); |
| 980 | skb_prev->csum = csum_sub(skb_prev->csum, |
| 981 | skb->csum); |
| 982 | data += fraggap; |
| 983 | pskb_trim_unique(skb_prev, maxfraglen); |
| 984 | } |
| 985 | |
| 986 | copy = datalen - transhdrlen - fraggap; |
| 987 | if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { |
| 988 | err = -EFAULT; |
| 989 | kfree_skb(skb); |
| 990 | goto error; |
| 991 | } |
| 992 | |
| 993 | offset += copy; |
| 994 | length -= datalen - fraggap; |
| 995 | transhdrlen = 0; |
| 996 | exthdrlen = 0; |
| 997 | csummode = CHECKSUM_NONE; |
| 998 | |
| 999 | /* |
| 1000 | * Put the packet on the pending queue. |
| 1001 | */ |
| 1002 | __skb_queue_tail(queue, skb); |
| 1003 | continue; |
| 1004 | } |
| 1005 | |
| 1006 | if (copy > length) |
| 1007 | copy = length; |
| 1008 | |
| 1009 | if (!(rt->dst.dev->features&NETIF_F_SG)) { |
| 1010 | unsigned int off; |
| 1011 | |
| 1012 | off = skb->len; |
| 1013 | if (getfrag(from, skb_put(skb, copy), |
| 1014 | offset, copy, off, skb) < 0) { |
| 1015 | __skb_trim(skb, off); |
| 1016 | err = -EFAULT; |
| 1017 | goto error; |
| 1018 | } |
| 1019 | } else { |
| 1020 | int i = skb_shinfo(skb)->nr_frags; |
| 1021 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1]; |
| 1022 | struct page *page = cork->page; |
| 1023 | int off = cork->off; |
| 1024 | unsigned int left; |
| 1025 | |
| 1026 | if (page && (left = PAGE_SIZE - off) > 0) { |
| 1027 | if (copy >= left) |
| 1028 | copy = left; |
| 1029 | if (page != skb_frag_page(frag)) { |
| 1030 | if (i == MAX_SKB_FRAGS) { |
| 1031 | err = -EMSGSIZE; |
| 1032 | goto error; |
| 1033 | } |
| 1034 | skb_fill_page_desc(skb, i, page, off, 0); |
| 1035 | skb_frag_ref(skb, i); |
| 1036 | frag = &skb_shinfo(skb)->frags[i]; |
| 1037 | } |
| 1038 | } else if (i < MAX_SKB_FRAGS) { |
| 1039 | if (copy > PAGE_SIZE) |
| 1040 | copy = PAGE_SIZE; |
| 1041 | page = alloc_pages(sk->sk_allocation, 0); |
| 1042 | if (page == NULL) { |
| 1043 | err = -ENOMEM; |
| 1044 | goto error; |
| 1045 | } |
| 1046 | netslab_inc(IP_OUTPUT_ALLOC_PAGES); |
| 1047 | cork->page = page; |
| 1048 | cork->off = 0; |
| 1049 | |
| 1050 | skb_fill_page_desc(skb, i, page, 0, 0); |
| 1051 | frag = &skb_shinfo(skb)->frags[i]; |
| 1052 | } else { |
| 1053 | err = -EMSGSIZE; |
| 1054 | goto error; |
| 1055 | } |
| 1056 | if (getfrag(from, skb_frag_address(frag)+skb_frag_size(frag), |
| 1057 | offset, copy, skb->len, skb) < 0) { |
| 1058 | err = -EFAULT; |
| 1059 | goto error; |
| 1060 | } |
| 1061 | cork->off += copy; |
| 1062 | skb_frag_size_add(frag, copy); |
| 1063 | skb->len += copy; |
| 1064 | skb->data_len += copy; |
| 1065 | skb->truesize += copy; |
| 1066 | atomic_add(copy, &sk->sk_wmem_alloc); |
| 1067 | } |
| 1068 | offset += copy; |
| 1069 | length -= copy; |
| 1070 | } |
| 1071 | |
| 1072 | return 0; |
| 1073 | |
| 1074 | error: |
| 1075 | cork->length -= length; |
| 1076 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
| 1077 | return err; |
| 1078 | } |
| 1079 | |
| 1080 | static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, |
| 1081 | struct ipcm_cookie *ipc, struct rtable **rtp) |
| 1082 | { |
| 1083 | struct inet_sock *inet = inet_sk(sk); |
| 1084 | struct ip_options_rcu *opt; |
| 1085 | struct rtable *rt; |
| 1086 | |
| 1087 | /* |
| 1088 | * setup for corking. |
| 1089 | */ |
| 1090 | opt = ipc->opt; |
| 1091 | if (opt) { |
| 1092 | if (cork->opt == NULL) { |
| 1093 | cork->opt = kmalloc(sizeof(struct ip_options) + 40, |
| 1094 | sk->sk_allocation); |
| 1095 | if (unlikely(cork->opt == NULL)) |
| 1096 | return -ENOBUFS; |
| 1097 | } |
| 1098 | memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); |
| 1099 | cork->flags |= IPCORK_OPT; |
| 1100 | cork->addr = ipc->addr; |
| 1101 | } |
| 1102 | rt = *rtp; |
| 1103 | if (unlikely(!rt)) |
| 1104 | return -EFAULT; |
| 1105 | /* |
| 1106 | * We steal reference to this route, caller should not release it |
| 1107 | */ |
| 1108 | *rtp = NULL; |
| 1109 | cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ? |
| 1110 | rt->dst.dev->mtu : dst_mtu(&rt->dst); |
| 1111 | cork->dst = &rt->dst; |
| 1112 | cork->length = 0; |
| 1113 | cork->tx_flags = ipc->tx_flags; |
| 1114 | cork->page = NULL; |
| 1115 | cork->off = 0; |
| 1116 | |
| 1117 | return 0; |
| 1118 | } |
| 1119 | |
| 1120 | /* |
| 1121 | * ip_append_data() and ip_append_page() can make one large IP datagram |
| 1122 | * from many pieces of data. Each pieces will be holded on the socket |
| 1123 | * until ip_push_pending_frames() is called. Each piece can be a page |
| 1124 | * or non-page data. |
| 1125 | * |
| 1126 | * Not only UDP, other transport protocols - e.g. raw sockets - can use |
| 1127 | * this interface potentially. |
| 1128 | * |
| 1129 | * LATER: length must be adjusted by pad at tail, when it is required. |
| 1130 | */ |
| 1131 | int ip_append_data(struct sock *sk, struct flowi4 *fl4, |
| 1132 | int getfrag(void *from, char *to, int offset, int len, |
| 1133 | int odd, struct sk_buff *skb), |
| 1134 | void *from, int length, int transhdrlen, |
| 1135 | struct ipcm_cookie *ipc, struct rtable **rtp, |
| 1136 | unsigned int flags) |
| 1137 | { |
| 1138 | struct inet_sock *inet = inet_sk(sk); |
| 1139 | int err; |
| 1140 | |
| 1141 | if (flags&MSG_PROBE) |
| 1142 | return 0; |
| 1143 | |
| 1144 | if (skb_queue_empty(&sk->sk_write_queue)) { |
| 1145 | err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); |
| 1146 | if (err) |
| 1147 | return err; |
| 1148 | } else { |
| 1149 | transhdrlen = 0; |
| 1150 | } |
| 1151 | |
| 1152 | return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag, |
| 1153 | from, length, transhdrlen, flags); |
| 1154 | } |
| 1155 | |
| 1156 | ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, |
| 1157 | int offset, size_t size, int flags) |
| 1158 | { |
| 1159 | struct inet_sock *inet = inet_sk(sk); |
| 1160 | struct sk_buff *skb; |
| 1161 | struct rtable *rt; |
| 1162 | struct ip_options *opt = NULL; |
| 1163 | struct inet_cork *cork; |
| 1164 | int hh_len; |
| 1165 | int mtu; |
| 1166 | int len; |
| 1167 | int err; |
| 1168 | unsigned int maxfraglen, fragheaderlen, fraggap; |
| 1169 | |
| 1170 | if (inet->hdrincl) |
| 1171 | return -EPERM; |
| 1172 | |
| 1173 | if (flags&MSG_PROBE) |
| 1174 | return 0; |
| 1175 | |
| 1176 | if (skb_queue_empty(&sk->sk_write_queue)) |
| 1177 | return -EINVAL; |
| 1178 | |
| 1179 | cork = &inet->cork.base; |
| 1180 | rt = (struct rtable *)cork->dst; |
| 1181 | if (cork->flags & IPCORK_OPT) |
| 1182 | opt = cork->opt; |
| 1183 | |
| 1184 | if (!(rt->dst.dev->features&NETIF_F_SG)) |
| 1185 | return -EOPNOTSUPP; |
| 1186 | |
| 1187 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
| 1188 | mtu = cork->fragsize; |
| 1189 | |
| 1190 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
| 1191 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
| 1192 | |
| 1193 | if (cork->length + size > 0xFFFF - fragheaderlen) { |
| 1194 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu); |
| 1195 | return -EMSGSIZE; |
| 1196 | } |
| 1197 | |
| 1198 | if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) |
| 1199 | return -EINVAL; |
| 1200 | |
| 1201 | cork->length += size; |
| 1202 | if ((size + skb->len > mtu) && |
| 1203 | (skb_queue_len(&sk->sk_write_queue) == 1) &&//CVE-2017-1000112 |
| 1204 | (sk->sk_protocol == IPPROTO_UDP) && |
| 1205 | (rt->dst.dev->features & NETIF_F_UFO)) { |
| 1206 | skb_shinfo(skb)->gso_size = mtu - fragheaderlen; |
| 1207 | skb_shinfo(skb)->gso_type = SKB_GSO_UDP; |
| 1208 | } |
| 1209 | |
| 1210 | |
| 1211 | while (size > 0) { |
| 1212 | int i; |
| 1213 | |
| 1214 | if (skb_is_gso(skb)) |
| 1215 | len = size; |
| 1216 | else { |
| 1217 | |
| 1218 | /* Check if the remaining data fits into current packet. */ |
| 1219 | len = mtu - skb->len; |
| 1220 | if (len < size) |
| 1221 | len = maxfraglen - skb->len; |
| 1222 | } |
| 1223 | if (len <= 0) { |
| 1224 | struct sk_buff *skb_prev; |
| 1225 | int alloclen; |
| 1226 | |
| 1227 | skb_prev = skb; |
| 1228 | fraggap = skb_prev->len - maxfraglen; |
| 1229 | |
| 1230 | alloclen = fragheaderlen + hh_len + fraggap + 15; |
| 1231 | skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); |
| 1232 | if (unlikely(!skb)) { |
| 1233 | err = -ENOBUFS; |
| 1234 | goto error; |
| 1235 | } |
| 1236 | |
| 1237 | /* |
| 1238 | * Fill in the control structures |
| 1239 | */ |
| 1240 | skb->ip_summed = CHECKSUM_NONE; |
| 1241 | skb->csum = 0; |
| 1242 | skb_reserve(skb, hh_len); |
| 1243 | |
| 1244 | /* |
| 1245 | * Find where to start putting bytes. |
| 1246 | */ |
| 1247 | skb_put(skb, fragheaderlen + fraggap); |
| 1248 | skb_reset_network_header(skb); |
| 1249 | skb->transport_header = (skb->network_header + |
| 1250 | fragheaderlen); |
| 1251 | if (fraggap) { |
| 1252 | skb->csum = skb_copy_and_csum_bits(skb_prev, |
| 1253 | maxfraglen, |
| 1254 | skb_transport_header(skb), |
| 1255 | fraggap, 0); |
| 1256 | skb_prev->csum = csum_sub(skb_prev->csum, |
| 1257 | skb->csum); |
| 1258 | pskb_trim_unique(skb_prev, maxfraglen); |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * Put the packet on the pending queue. |
| 1263 | */ |
| 1264 | __skb_queue_tail(&sk->sk_write_queue, skb); |
| 1265 | continue; |
| 1266 | } |
| 1267 | |
| 1268 | i = skb_shinfo(skb)->nr_frags; |
| 1269 | if (len > size) |
| 1270 | len = size; |
| 1271 | if (skb_can_coalesce(skb, i, page, offset)) { |
| 1272 | skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len); |
| 1273 | } else if (i < MAX_SKB_FRAGS) { |
| 1274 | get_page(page); |
| 1275 | skb_fill_page_desc(skb, i, page, offset, len); |
| 1276 | } else { |
| 1277 | err = -EMSGSIZE; |
| 1278 | goto error; |
| 1279 | } |
| 1280 | |
| 1281 | if (skb->ip_summed == CHECKSUM_NONE) { |
| 1282 | __wsum csum; |
| 1283 | csum = csum_page(page, offset, len); |
| 1284 | skb->csum = csum_block_add(skb->csum, csum, skb->len); |
| 1285 | } |
| 1286 | |
| 1287 | skb->len += len; |
| 1288 | skb->data_len += len; |
| 1289 | skb->truesize += len; |
| 1290 | atomic_add(len, &sk->sk_wmem_alloc); |
| 1291 | offset += len; |
| 1292 | size -= len; |
| 1293 | } |
| 1294 | return 0; |
| 1295 | |
| 1296 | error: |
| 1297 | cork->length -= size; |
| 1298 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
| 1299 | return err; |
| 1300 | } |
| 1301 | |
| 1302 | static void ip_cork_release(struct inet_cork *cork) |
| 1303 | { |
| 1304 | cork->flags &= ~IPCORK_OPT; |
| 1305 | kfree(cork->opt); |
| 1306 | cork->opt = NULL; |
| 1307 | dst_release(cork->dst); |
| 1308 | cork->dst = NULL; |
| 1309 | } |
| 1310 | |
| 1311 | /* |
| 1312 | * Combined all pending IP fragments on the socket as one IP datagram |
| 1313 | * and push them out. |
| 1314 | */ |
| 1315 | struct sk_buff *__ip_make_skb(struct sock *sk, |
| 1316 | struct flowi4 *fl4, |
| 1317 | struct sk_buff_head *queue, |
| 1318 | struct inet_cork *cork) |
| 1319 | { |
| 1320 | struct sk_buff *skb, *tmp_skb; |
| 1321 | struct sk_buff **tail_skb; |
| 1322 | struct inet_sock *inet = inet_sk(sk); |
| 1323 | struct net *net = sock_net(sk); |
| 1324 | struct ip_options *opt = NULL; |
| 1325 | struct rtable *rt = (struct rtable *)cork->dst; |
| 1326 | struct iphdr *iph; |
| 1327 | __be16 df = 0; |
| 1328 | __u8 ttl; |
| 1329 | |
| 1330 | if ((skb = __skb_dequeue(queue)) == NULL) |
| 1331 | goto out; |
| 1332 | tail_skb = &(skb_shinfo(skb)->frag_list); |
| 1333 | |
| 1334 | /* move skb->data to ip header from ext header */ |
| 1335 | if (skb->data < skb_network_header(skb)) |
| 1336 | __skb_pull(skb, skb_network_offset(skb)); |
| 1337 | while ((tmp_skb = __skb_dequeue(queue)) != NULL) { |
| 1338 | __skb_pull(tmp_skb, skb_network_header_len(skb)); |
| 1339 | *tail_skb = tmp_skb; |
| 1340 | tail_skb = &(tmp_skb->next); |
| 1341 | skb->len += tmp_skb->len; |
| 1342 | skb->data_len += tmp_skb->len; |
| 1343 | skb->truesize += tmp_skb->truesize; |
| 1344 | tmp_skb->destructor = NULL; |
| 1345 | tmp_skb->sk = NULL; |
| 1346 | } |
| 1347 | |
| 1348 | /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow |
| 1349 | * to fragment the frame generated here. No matter, what transforms |
| 1350 | * how transforms change size of the packet, it will come out. |
| 1351 | */ |
| 1352 | if (inet->pmtudisc < IP_PMTUDISC_DO) |
| 1353 | skb->local_df = 1; |
| 1354 | |
| 1355 | /* DF bit is set when we want to see DF on outgoing frames. |
| 1356 | * If local_df is set too, we still allow to fragment this frame |
| 1357 | * locally. */ |
| 1358 | if (inet->pmtudisc >= IP_PMTUDISC_DO || |
| 1359 | (skb->len <= dst_mtu(&rt->dst) && |
| 1360 | ip_dont_fragment(sk, &rt->dst))) |
| 1361 | df = htons(IP_DF); |
| 1362 | |
| 1363 | if (cork->flags & IPCORK_OPT) |
| 1364 | opt = cork->opt; |
| 1365 | |
| 1366 | if (rt->rt_type == RTN_MULTICAST) |
| 1367 | ttl = inet->mc_ttl; |
| 1368 | else |
| 1369 | ttl = ip_select_ttl(inet, &rt->dst); |
| 1370 | |
| 1371 | iph = ip_hdr(skb); |
| 1372 | iph->version = 4; |
| 1373 | iph->ihl = 5; |
| 1374 | iph->tos = inet->tos; |
| 1375 | iph->frag_off = df; |
| 1376 | iph->ttl = ttl; |
| 1377 | iph->protocol = sk->sk_protocol; |
| 1378 | ip_copy_addrs(iph, fl4); |
| 1379 | ip_select_ident(skb, sk); |
| 1380 | |
| 1381 | if (opt) { |
| 1382 | iph->ihl += opt->optlen>>2; |
| 1383 | ip_options_build(skb, opt, cork->addr, rt, 0); |
| 1384 | } |
| 1385 | |
| 1386 | skb->priority = sk->sk_priority; |
| 1387 | skb->mark = sk->sk_mark; |
| 1388 | /* |
| 1389 | * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec |
| 1390 | * on dst refcount |
| 1391 | */ |
| 1392 | cork->dst = NULL; |
| 1393 | skb_dst_set(skb, &rt->dst); |
| 1394 | |
| 1395 | if (iph->protocol == IPPROTO_ICMP) |
| 1396 | icmp_out_count(net, ((struct icmphdr *) |
| 1397 | skb_transport_header(skb))->type); |
| 1398 | |
| 1399 | ip_cork_release(cork); |
| 1400 | out: |
| 1401 | return skb; |
| 1402 | } |
| 1403 | |
| 1404 | int ip_send_skb(struct sk_buff *skb) |
| 1405 | { |
| 1406 | struct net *net = sock_net(skb->sk); |
| 1407 | int err; |
| 1408 | |
| 1409 | if (fast_local4_output_proc && fast_local4_output_proc(skb)) |
| 1410 | { |
| 1411 | fast_local4_output_num++; |
| 1412 | err = ip_finish_output(skb); |
| 1413 | } |
| 1414 | else |
| 1415 | { |
| 1416 | skb->sk->sk_send_sum++; |
| 1417 | err = ip_local_out(skb); |
| 1418 | } |
| 1419 | if (err) { |
| 1420 | if (err > 0) |
| 1421 | err = net_xmit_errno(err); |
| 1422 | if (err) |
| 1423 | IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); |
| 1424 | } |
| 1425 | |
| 1426 | return err; |
| 1427 | } |
| 1428 | |
| 1429 | int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) |
| 1430 | { |
| 1431 | struct sk_buff *skb; |
| 1432 | |
| 1433 | skb = ip_finish_skb(sk, fl4); |
| 1434 | if (!skb) |
| 1435 | return 0; |
| 1436 | |
| 1437 | /* Netfilter gets whole the not fragmented skb. */ |
| 1438 | return ip_send_skb(skb); |
| 1439 | } |
| 1440 | |
| 1441 | /* |
| 1442 | * Throw away all pending data on the socket. |
| 1443 | */ |
| 1444 | static void __ip_flush_pending_frames(struct sock *sk, |
| 1445 | struct sk_buff_head *queue, |
| 1446 | struct inet_cork *cork) |
| 1447 | { |
| 1448 | struct sk_buff *skb; |
| 1449 | |
| 1450 | while ((skb = __skb_dequeue_tail(queue)) != NULL) |
| 1451 | kfree_skb(skb); |
| 1452 | |
| 1453 | ip_cork_release(cork); |
| 1454 | } |
| 1455 | |
| 1456 | void ip_flush_pending_frames(struct sock *sk) |
| 1457 | { |
| 1458 | __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); |
| 1459 | } |
| 1460 | |
| 1461 | struct sk_buff *ip_make_skb(struct sock *sk, |
| 1462 | struct flowi4 *fl4, |
| 1463 | int getfrag(void *from, char *to, int offset, |
| 1464 | int len, int odd, struct sk_buff *skb), |
| 1465 | void *from, int length, int transhdrlen, |
| 1466 | struct ipcm_cookie *ipc, struct rtable **rtp, |
| 1467 | unsigned int flags) |
| 1468 | { |
| 1469 | struct inet_cork cork; |
| 1470 | struct sk_buff_head queue; |
| 1471 | int err; |
| 1472 | |
| 1473 | if (flags & MSG_PROBE) |
| 1474 | return NULL; |
| 1475 | |
| 1476 | __skb_queue_head_init(&queue); |
| 1477 | |
| 1478 | cork.flags = 0; |
| 1479 | cork.addr = 0; |
| 1480 | cork.opt = NULL; |
| 1481 | err = ip_setup_cork(sk, &cork, ipc, rtp); |
| 1482 | if (err) |
| 1483 | return ERR_PTR(err); |
| 1484 | |
| 1485 | err = __ip_append_data(sk, fl4, &queue, &cork, getfrag, |
| 1486 | from, length, transhdrlen, flags); |
| 1487 | if (err) { |
| 1488 | __ip_flush_pending_frames(sk, &queue, &cork); |
| 1489 | return ERR_PTR(err); |
| 1490 | } |
| 1491 | |
| 1492 | return __ip_make_skb(sk, fl4, &queue, &cork); |
| 1493 | } |
| 1494 | |
| 1495 | /* |
| 1496 | * Fetch data from kernel space and fill in checksum if needed. |
| 1497 | */ |
| 1498 | static int ip_reply_glue_bits(void *dptr, char *to, int offset, |
| 1499 | int len, int odd, struct sk_buff *skb) |
| 1500 | { |
| 1501 | __wsum csum; |
| 1502 | |
| 1503 | csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); |
| 1504 | skb->csum = csum_block_add(skb->csum, csum, odd); |
| 1505 | return 0; |
| 1506 | } |
| 1507 | |
| 1508 | /* |
| 1509 | * Generic function to send a packet as reply to another packet. |
| 1510 | * Used to send TCP resets so far. ICMP should use this function too. |
| 1511 | * |
| 1512 | * Should run single threaded per socket because it uses the sock |
| 1513 | * structure to pass arguments. |
| 1514 | */ |
| 1515 | void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr, |
| 1516 | const struct ip_reply_arg *arg, unsigned int len) |
| 1517 | { |
| 1518 | struct inet_sock *inet = inet_sk(sk); |
| 1519 | struct ip_options_data replyopts; |
| 1520 | struct ipcm_cookie ipc; |
| 1521 | struct flowi4 fl4; |
| 1522 | struct rtable *rt = skb_rtable(skb); |
| 1523 | |
| 1524 | if (ip_options_echo(&replyopts.opt.opt, skb)) |
| 1525 | return; |
| 1526 | |
| 1527 | ipc.addr = daddr; |
| 1528 | ipc.opt = NULL; |
| 1529 | ipc.tx_flags = 0; |
| 1530 | |
| 1531 | if (replyopts.opt.opt.optlen) { |
| 1532 | ipc.opt = &replyopts.opt; |
| 1533 | |
| 1534 | if (replyopts.opt.opt.srr) |
| 1535 | daddr = replyopts.opt.opt.faddr; |
| 1536 | } |
| 1537 | |
| 1538 | flowi4_init_output(&fl4, arg->bound_dev_if, 0, |
| 1539 | RT_TOS(arg->tos), |
| 1540 | RT_SCOPE_UNIVERSE, sk->sk_protocol, |
| 1541 | ip_reply_arg_flowi_flags(arg), |
| 1542 | daddr, rt->rt_spec_dst, |
| 1543 | tcp_hdr(skb)->source, tcp_hdr(skb)->dest); |
| 1544 | security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); |
| 1545 | rt = ip_route_output_key(sock_net(sk), &fl4); |
| 1546 | if (IS_ERR(rt)) |
| 1547 | return; |
| 1548 | |
| 1549 | /* And let IP do all the hard work. |
| 1550 | |
| 1551 | This chunk is not reenterable, hence spinlock. |
| 1552 | Note that it uses the fact, that this function is called |
| 1553 | with locally disabled BH and that sk cannot be already spinlocked. |
| 1554 | */ |
| 1555 | bh_lock_sock(sk); |
| 1556 | inet->tos = arg->tos; |
| 1557 | sk->sk_priority = skb->priority; |
| 1558 | sk->sk_protocol = ip_hdr(skb)->protocol; |
| 1559 | sk->sk_bound_dev_if = arg->bound_dev_if; |
| 1560 | ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0, |
| 1561 | &ipc, &rt, MSG_DONTWAIT); |
| 1562 | if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) { |
| 1563 | if (arg->csumoffset >= 0) |
| 1564 | *((__sum16 *)skb_transport_header(skb) + |
| 1565 | arg->csumoffset) = csum_fold(csum_add(skb->csum, |
| 1566 | arg->csum)); |
| 1567 | skb->ip_summed = CHECKSUM_NONE; |
| 1568 | ip_push_pending_frames(sk, &fl4); |
| 1569 | } |
| 1570 | |
| 1571 | bh_unlock_sock(sk); |
| 1572 | |
| 1573 | ip_rt_put(rt); |
| 1574 | } |
| 1575 | |
| 1576 | void __init ip_init(void) |
| 1577 | { |
| 1578 | ip_rt_init(); |
| 1579 | inet_initpeers(); |
| 1580 | |
| 1581 | #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS) |
| 1582 | igmp_mc_proc_init(); |
| 1583 | #endif |
| 1584 | } |