blob: 5a44c6e77cd894c9aa5c4a6dd6a7b5a2669f3750 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/rculist.h>
36#include <linux/llist.h>
37#include <linux/delay.h>
38
39#include "rds.h"
40#include "ib.h"
41
42static DEFINE_PER_CPU(unsigned long, clean_list_grace);
43#define CLEAN_LIST_BUSY_BIT 0
44
45/*
46 * This is stored as mr->r_trans_private.
47 */
48struct rds_ib_mr {
49 struct rds_ib_device *device;
50 struct rds_ib_mr_pool *pool;
51 struct ib_fmr *fmr;
52
53 struct llist_node llnode;
54
55 /* unmap_list is for freeing */
56 struct list_head unmap_list;
57 unsigned int remap_count;
58
59 struct scatterlist *sg;
60 unsigned int sg_len;
61 u64 *dma;
62 int sg_dma_len;
63};
64
65/*
66 * Our own little FMR pool
67 */
68struct rds_ib_mr_pool {
69 struct mutex flush_lock; /* serialize fmr invalidate */
70 struct delayed_work flush_worker; /* flush worker */
71
72 atomic_t item_count; /* total # of MRs */
73 atomic_t dirty_count; /* # dirty of MRs */
74
75 struct llist_head drop_list; /* MRs that have reached their max_maps limit */
76 struct llist_head free_list; /* unused MRs */
77 struct llist_head clean_list; /* global unused & unamapped MRs */
78 wait_queue_head_t flush_wait;
79
80 atomic_t free_pinned; /* memory pinned by free MRs */
81 unsigned long max_items;
82 unsigned long max_items_soft;
83 unsigned long max_free_pinned;
84 struct ib_fmr_attr fmr_attr;
85};
86
87static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
88static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
89static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
90
91static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
92{
93 struct rds_ib_device *rds_ibdev;
94 struct rds_ib_ipaddr *i_ipaddr;
95
96 rcu_read_lock();
97 list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
98 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
99 if (i_ipaddr->ipaddr == ipaddr) {
100 atomic_inc(&rds_ibdev->refcount);
101 rcu_read_unlock();
102 return rds_ibdev;
103 }
104 }
105 }
106 rcu_read_unlock();
107
108 return NULL;
109}
110
111static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
112{
113 struct rds_ib_ipaddr *i_ipaddr;
114
115 i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
116 if (!i_ipaddr)
117 return -ENOMEM;
118
119 i_ipaddr->ipaddr = ipaddr;
120
121 spin_lock_irq(&rds_ibdev->spinlock);
122 list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
123 spin_unlock_irq(&rds_ibdev->spinlock);
124
125 return 0;
126}
127
128static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
129{
130 struct rds_ib_ipaddr *i_ipaddr;
131 struct rds_ib_ipaddr *to_free = NULL;
132
133
134 spin_lock_irq(&rds_ibdev->spinlock);
135 list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
136 if (i_ipaddr->ipaddr == ipaddr) {
137 list_del_rcu(&i_ipaddr->list);
138 to_free = i_ipaddr;
139 break;
140 }
141 }
142 spin_unlock_irq(&rds_ibdev->spinlock);
143
144 if (to_free) {
145 synchronize_rcu();
146 kfree(to_free);
147 }
148}
149
150int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
151{
152 struct rds_ib_device *rds_ibdev_old;
153
154 rds_ibdev_old = rds_ib_get_device(ipaddr);
155 if (rds_ibdev_old) {
156 rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
157 rds_ib_dev_put(rds_ibdev_old);
158 }
159
160 return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
161}
162
163void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
164{
165 struct rds_ib_connection *ic = conn->c_transport_data;
166
167 /* conn was previously on the nodev_conns_list */
168 spin_lock_irq(&ib_nodev_conns_lock);
169 BUG_ON(list_empty(&ib_nodev_conns));
170 BUG_ON(list_empty(&ic->ib_node));
171 list_del(&ic->ib_node);
172
173 spin_lock(&rds_ibdev->spinlock);
174 list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
175 spin_unlock(&rds_ibdev->spinlock);
176 spin_unlock_irq(&ib_nodev_conns_lock);
177
178 ic->rds_ibdev = rds_ibdev;
179 atomic_inc(&rds_ibdev->refcount);
180}
181
182void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
183{
184 struct rds_ib_connection *ic = conn->c_transport_data;
185
186 /* place conn on nodev_conns_list */
187 spin_lock(&ib_nodev_conns_lock);
188
189 spin_lock_irq(&rds_ibdev->spinlock);
190 BUG_ON(list_empty(&ic->ib_node));
191 list_del(&ic->ib_node);
192 spin_unlock_irq(&rds_ibdev->spinlock);
193
194 list_add_tail(&ic->ib_node, &ib_nodev_conns);
195
196 spin_unlock(&ib_nodev_conns_lock);
197
198 ic->rds_ibdev = NULL;
199 rds_ib_dev_put(rds_ibdev);
200}
201
202void rds_ib_destroy_nodev_conns(void)
203{
204 struct rds_ib_connection *ic, *_ic;
205 LIST_HEAD(tmp_list);
206
207 /* avoid calling conn_destroy with irqs off */
208 spin_lock_irq(&ib_nodev_conns_lock);
209 list_splice(&ib_nodev_conns, &tmp_list);
210 spin_unlock_irq(&ib_nodev_conns_lock);
211
212 list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
213 rds_conn_destroy(ic->conn);
214}
215
216struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
217{
218 struct rds_ib_mr_pool *pool;
219
220 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
221 if (!pool)
222 return ERR_PTR(-ENOMEM);
223
224 init_llist_head(&pool->free_list);
225 init_llist_head(&pool->drop_list);
226 init_llist_head(&pool->clean_list);
227 mutex_init(&pool->flush_lock);
228 init_waitqueue_head(&pool->flush_wait);
229 INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
230
231 pool->fmr_attr.max_pages = fmr_message_size;
232 pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
233 pool->fmr_attr.page_shift = PAGE_SHIFT;
234 pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
235
236 /* We never allow more than max_items MRs to be allocated.
237 * When we exceed more than max_items_soft, we start freeing
238 * items more aggressively.
239 * Make sure that max_items > max_items_soft > max_items / 2
240 */
241 pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
242 pool->max_items = rds_ibdev->max_fmrs;
243
244 return pool;
245}
246
247void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
248{
249 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
250
251 iinfo->rdma_mr_max = pool->max_items;
252 iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
253}
254
255void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
256{
257 cancel_delayed_work_sync(&pool->flush_worker);
258 rds_ib_flush_mr_pool(pool, 1, NULL);
259 WARN_ON(atomic_read(&pool->item_count));
260 WARN_ON(atomic_read(&pool->free_pinned));
261 kfree(pool);
262}
263
264static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
265{
266 struct rds_ib_mr *ibmr = NULL;
267 struct llist_node *ret;
268 unsigned long *flag;
269
270 preempt_disable();
271 flag = &__get_cpu_var(clean_list_grace);
272 set_bit(CLEAN_LIST_BUSY_BIT, flag);
273 ret = llist_del_first(&pool->clean_list);
274 if (ret)
275 ibmr = llist_entry(ret, struct rds_ib_mr, llnode);
276
277 clear_bit(CLEAN_LIST_BUSY_BIT, flag);
278 preempt_enable();
279 return ibmr;
280}
281
282static inline void wait_clean_list_grace(void)
283{
284 int cpu;
285 unsigned long *flag;
286
287 for_each_online_cpu(cpu) {
288 flag = &per_cpu(clean_list_grace, cpu);
289 while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
290 cpu_chill();
291 }
292}
293
294static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
295{
296 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
297 struct rds_ib_mr *ibmr = NULL;
298 int err = 0, iter = 0;
299
300 if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
301 schedule_delayed_work(&pool->flush_worker, 10);
302
303 while (1) {
304 ibmr = rds_ib_reuse_fmr(pool);
305 if (ibmr)
306 return ibmr;
307
308 /* No clean MRs - now we have the choice of either
309 * allocating a fresh MR up to the limit imposed by the
310 * driver, or flush any dirty unused MRs.
311 * We try to avoid stalling in the send path if possible,
312 * so we allocate as long as we're allowed to.
313 *
314 * We're fussy with enforcing the FMR limit, though. If the driver
315 * tells us we can't use more than N fmrs, we shouldn't start
316 * arguing with it */
317 if (atomic_inc_return(&pool->item_count) <= pool->max_items)
318 break;
319
320 atomic_dec(&pool->item_count);
321
322 if (++iter > 2) {
323 rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
324 return ERR_PTR(-EAGAIN);
325 }
326
327 /* We do have some empty MRs. Flush them out. */
328 rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
329 rds_ib_flush_mr_pool(pool, 0, &ibmr);
330 if (ibmr)
331 return ibmr;
332 }
333
334 ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
335 if (!ibmr) {
336 err = -ENOMEM;
337 goto out_no_cigar;
338 }
339
340 memset(ibmr, 0, sizeof(*ibmr));
341
342 ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
343 (IB_ACCESS_LOCAL_WRITE |
344 IB_ACCESS_REMOTE_READ |
345 IB_ACCESS_REMOTE_WRITE|
346 IB_ACCESS_REMOTE_ATOMIC),
347 &pool->fmr_attr);
348 if (IS_ERR(ibmr->fmr)) {
349 err = PTR_ERR(ibmr->fmr);
350 ibmr->fmr = NULL;
351 printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
352 goto out_no_cigar;
353 }
354
355 rds_ib_stats_inc(s_ib_rdma_mr_alloc);
356 return ibmr;
357
358out_no_cigar:
359 if (ibmr) {
360 if (ibmr->fmr)
361 ib_dealloc_fmr(ibmr->fmr);
362 kfree(ibmr);
363 }
364 atomic_dec(&pool->item_count);
365 return ERR_PTR(err);
366}
367
368static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
369 struct scatterlist *sg, unsigned int nents)
370{
371 struct ib_device *dev = rds_ibdev->dev;
372 struct scatterlist *scat = sg;
373 u64 io_addr = 0;
374 u64 *dma_pages;
375 u32 len;
376 int page_cnt, sg_dma_len;
377 int i, j;
378 int ret;
379
380 sg_dma_len = ib_dma_map_sg(dev, sg, nents,
381 DMA_BIDIRECTIONAL);
382 if (unlikely(!sg_dma_len)) {
383 printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
384 return -EBUSY;
385 }
386
387 len = 0;
388 page_cnt = 0;
389
390 for (i = 0; i < sg_dma_len; ++i) {
391 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
392 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
393
394 if (dma_addr & ~PAGE_MASK) {
395 if (i > 0)
396 return -EINVAL;
397 else
398 ++page_cnt;
399 }
400 if ((dma_addr + dma_len) & ~PAGE_MASK) {
401 if (i < sg_dma_len - 1)
402 return -EINVAL;
403 else
404 ++page_cnt;
405 }
406
407 len += dma_len;
408 }
409
410 page_cnt += len >> PAGE_SHIFT;
411 if (page_cnt > fmr_message_size)
412 return -EINVAL;
413
414 dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
415 rdsibdev_to_node(rds_ibdev));
416 if (!dma_pages)
417 return -ENOMEM;
418
419 page_cnt = 0;
420 for (i = 0; i < sg_dma_len; ++i) {
421 unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
422 u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
423
424 for (j = 0; j < dma_len; j += PAGE_SIZE)
425 dma_pages[page_cnt++] =
426 (dma_addr & PAGE_MASK) + j;
427 }
428
429 ret = ib_map_phys_fmr(ibmr->fmr,
430 dma_pages, page_cnt, io_addr);
431 if (ret)
432 goto out;
433
434 /* Success - we successfully remapped the MR, so we can
435 * safely tear down the old mapping. */
436 rds_ib_teardown_mr(ibmr);
437
438 ibmr->sg = scat;
439 ibmr->sg_len = nents;
440 ibmr->sg_dma_len = sg_dma_len;
441 ibmr->remap_count++;
442
443 rds_ib_stats_inc(s_ib_rdma_mr_used);
444 ret = 0;
445
446out:
447 kfree(dma_pages);
448
449 return ret;
450}
451
452void rds_ib_sync_mr(void *trans_private, int direction)
453{
454 struct rds_ib_mr *ibmr = trans_private;
455 struct rds_ib_device *rds_ibdev = ibmr->device;
456
457 switch (direction) {
458 case DMA_FROM_DEVICE:
459 ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
460 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
461 break;
462 case DMA_TO_DEVICE:
463 ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
464 ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
465 break;
466 }
467}
468
469static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
470{
471 struct rds_ib_device *rds_ibdev = ibmr->device;
472
473 if (ibmr->sg_dma_len) {
474 ib_dma_unmap_sg(rds_ibdev->dev,
475 ibmr->sg, ibmr->sg_len,
476 DMA_BIDIRECTIONAL);
477 ibmr->sg_dma_len = 0;
478 }
479
480 /* Release the s/g list */
481 if (ibmr->sg_len) {
482 unsigned int i;
483
484 for (i = 0; i < ibmr->sg_len; ++i) {
485 struct page *page = sg_page(&ibmr->sg[i]);
486
487 /* FIXME we need a way to tell a r/w MR
488 * from a r/o MR */
489 BUG_ON(irqs_disabled());
490 set_page_dirty(page);
491 put_page(page);
492 }
493 kfree(ibmr->sg);
494
495 ibmr->sg = NULL;
496 ibmr->sg_len = 0;
497 }
498}
499
500static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
501{
502 unsigned int pinned = ibmr->sg_len;
503
504 __rds_ib_teardown_mr(ibmr);
505 if (pinned) {
506 struct rds_ib_device *rds_ibdev = ibmr->device;
507 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
508
509 atomic_sub(pinned, &pool->free_pinned);
510 }
511}
512
513static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
514{
515 unsigned int item_count;
516
517 item_count = atomic_read(&pool->item_count);
518 if (free_all)
519 return item_count;
520
521 return 0;
522}
523
524/*
525 * given an llist of mrs, put them all into the list_head for more processing
526 */
527static void llist_append_to_list(struct llist_head *llist, struct list_head *list)
528{
529 struct rds_ib_mr *ibmr;
530 struct llist_node *node;
531 struct llist_node *next;
532
533 node = llist_del_all(llist);
534 while (node) {
535 next = node->next;
536 ibmr = llist_entry(node, struct rds_ib_mr, llnode);
537 list_add_tail(&ibmr->unmap_list, list);
538 node = next;
539 }
540}
541
542/*
543 * this takes a list head of mrs and turns it into linked llist nodes
544 * of clusters. Each cluster has linked llist nodes of
545 * MR_CLUSTER_SIZE mrs that are ready for reuse.
546 */
547static void list_to_llist_nodes(struct rds_ib_mr_pool *pool,
548 struct list_head *list,
549 struct llist_node **nodes_head,
550 struct llist_node **nodes_tail)
551{
552 struct rds_ib_mr *ibmr;
553 struct llist_node *cur = NULL;
554 struct llist_node **next = nodes_head;
555
556 list_for_each_entry(ibmr, list, unmap_list) {
557 cur = &ibmr->llnode;
558 *next = cur;
559 next = &cur->next;
560 }
561 *next = NULL;
562 *nodes_tail = cur;
563}
564
565/*
566 * Flush our pool of MRs.
567 * At a minimum, all currently unused MRs are unmapped.
568 * If the number of MRs allocated exceeds the limit, we also try
569 * to free as many MRs as needed to get back to this limit.
570 */
571static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
572 int free_all, struct rds_ib_mr **ibmr_ret)
573{
574 struct rds_ib_mr *ibmr, *next;
575 struct llist_node *clean_nodes;
576 struct llist_node *clean_tail;
577 LIST_HEAD(unmap_list);
578 LIST_HEAD(fmr_list);
579 unsigned long unpinned = 0;
580 unsigned int nfreed = 0, ncleaned = 0, free_goal;
581 int ret = 0;
582
583 rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
584
585 if (ibmr_ret) {
586 DEFINE_WAIT(wait);
587 while(!mutex_trylock(&pool->flush_lock)) {
588 ibmr = rds_ib_reuse_fmr(pool);
589 if (ibmr) {
590 *ibmr_ret = ibmr;
591 finish_wait(&pool->flush_wait, &wait);
592 goto out_nolock;
593 }
594
595 prepare_to_wait(&pool->flush_wait, &wait,
596 TASK_UNINTERRUPTIBLE);
597 if (llist_empty(&pool->clean_list))
598 schedule();
599
600 ibmr = rds_ib_reuse_fmr(pool);
601 if (ibmr) {
602 *ibmr_ret = ibmr;
603 finish_wait(&pool->flush_wait, &wait);
604 goto out_nolock;
605 }
606 }
607 finish_wait(&pool->flush_wait, &wait);
608 } else
609 mutex_lock(&pool->flush_lock);
610
611 if (ibmr_ret) {
612 ibmr = rds_ib_reuse_fmr(pool);
613 if (ibmr) {
614 *ibmr_ret = ibmr;
615 goto out;
616 }
617 }
618
619 /* Get the list of all MRs to be dropped. Ordering matters -
620 * we want to put drop_list ahead of free_list.
621 */
622 llist_append_to_list(&pool->drop_list, &unmap_list);
623 llist_append_to_list(&pool->free_list, &unmap_list);
624 if (free_all)
625 llist_append_to_list(&pool->clean_list, &unmap_list);
626
627 free_goal = rds_ib_flush_goal(pool, free_all);
628
629 if (list_empty(&unmap_list))
630 goto out;
631
632 /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
633 list_for_each_entry(ibmr, &unmap_list, unmap_list)
634 list_add(&ibmr->fmr->list, &fmr_list);
635
636 ret = ib_unmap_fmr(&fmr_list);
637 if (ret)
638 printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
639
640 /* Now we can destroy the DMA mapping and unpin any pages */
641 list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
642 unpinned += ibmr->sg_len;
643 __rds_ib_teardown_mr(ibmr);
644 if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
645 rds_ib_stats_inc(s_ib_rdma_mr_free);
646 list_del(&ibmr->unmap_list);
647 ib_dealloc_fmr(ibmr->fmr);
648 kfree(ibmr);
649 nfreed++;
650 }
651 ncleaned++;
652 }
653
654 if (!list_empty(&unmap_list)) {
655 /* we have to make sure that none of the things we're about
656 * to put on the clean list would race with other cpus trying
657 * to pull items off. The llist would explode if we managed to
658 * remove something from the clean list and then add it back again
659 * while another CPU was spinning on that same item in llist_del_first.
660 *
661 * This is pretty unlikely, but just in case wait for an llist grace period
662 * here before adding anything back into the clean list.
663 */
664 wait_clean_list_grace();
665
666 list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
667 if (ibmr_ret)
668 *ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
669
670 /* more than one entry in llist nodes */
671 if (clean_nodes->next)
672 llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
673
674 }
675
676 atomic_sub(unpinned, &pool->free_pinned);
677 atomic_sub(ncleaned, &pool->dirty_count);
678 atomic_sub(nfreed, &pool->item_count);
679
680out:
681 mutex_unlock(&pool->flush_lock);
682 if (waitqueue_active(&pool->flush_wait))
683 wake_up(&pool->flush_wait);
684out_nolock:
685 return ret;
686}
687
688static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
689{
690 struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
691
692 rds_ib_flush_mr_pool(pool, 0, NULL);
693}
694
695void rds_ib_free_mr(void *trans_private, int invalidate)
696{
697 struct rds_ib_mr *ibmr = trans_private;
698 struct rds_ib_device *rds_ibdev = ibmr->device;
699 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
700
701 rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
702
703 /* Return it to the pool's free list */
704 if (ibmr->remap_count >= pool->fmr_attr.max_maps)
705 llist_add(&ibmr->llnode, &pool->drop_list);
706 else
707 llist_add(&ibmr->llnode, &pool->free_list);
708
709 atomic_add(ibmr->sg_len, &pool->free_pinned);
710 atomic_inc(&pool->dirty_count);
711
712 /* If we've pinned too many pages, request a flush */
713 if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
714 atomic_read(&pool->dirty_count) >= pool->max_items / 10)
715 schedule_delayed_work(&pool->flush_worker, 10);
716
717 if (invalidate) {
718 if (likely(!in_interrupt())) {
719 rds_ib_flush_mr_pool(pool, 0, NULL);
720 } else {
721 /* We get here if the user created a MR marked
722 * as use_once and invalidate at the same time. */
723 schedule_delayed_work(&pool->flush_worker, 10);
724 }
725 }
726
727 rds_ib_dev_put(rds_ibdev);
728}
729
730void rds_ib_flush_mrs(void)
731{
732 struct rds_ib_device *rds_ibdev;
733
734 down_read(&rds_ib_devices_lock);
735 list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
736 struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
737
738 if (pool)
739 rds_ib_flush_mr_pool(pool, 0, NULL);
740 }
741 up_read(&rds_ib_devices_lock);
742}
743
744void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
745 struct rds_sock *rs, u32 *key_ret)
746{
747 struct rds_ib_device *rds_ibdev;
748 struct rds_ib_mr *ibmr = NULL;
749 int ret;
750
751 rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
752 if (!rds_ibdev) {
753 ret = -ENODEV;
754 goto out;
755 }
756
757 if (!rds_ibdev->mr_pool) {
758 ret = -ENODEV;
759 goto out;
760 }
761
762 ibmr = rds_ib_alloc_fmr(rds_ibdev);
763 if (IS_ERR(ibmr))
764 return ibmr;
765
766 ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
767 if (ret == 0)
768 *key_ret = ibmr->fmr->rkey;
769 else
770 printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
771
772 ibmr->device = rds_ibdev;
773 rds_ibdev = NULL;
774
775 out:
776 if (ret) {
777 if (ibmr)
778 rds_ib_free_mr(ibmr, 0);
779 ibmr = ERR_PTR(ret);
780 }
781 if (rds_ibdev)
782 rds_ib_dev_put(rds_ibdev);
783 return ibmr;
784}
785