w.deng | e87b500 | 2025-08-20 10:43:03 +0800 | [diff] [blame] | 1 | /* |
| 2 | * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $ |
| 3 | * |
| 4 | * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd. |
| 5 | * Michael Clark <michael@metaparadigm.com> |
| 6 | * Copyright (c) 2009 Hewlett-Packard Development Company, L.P. |
| 7 | * |
| 8 | * This library is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the MIT license. See COPYING for details. |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | #include "config.h" |
| 14 | |
| 15 | #include <assert.h> |
| 16 | #include <limits.h> |
| 17 | #include <stdarg.h> |
| 18 | #include <stddef.h> |
| 19 | #include <stdio.h> |
| 20 | #include <stdlib.h> |
| 21 | #include <string.h> |
| 22 | |
| 23 | #ifdef HAVE_ENDIAN_H |
| 24 | #include <endian.h> /* attempt to define endianness */ |
| 25 | #endif |
| 26 | |
| 27 | #if defined(_MSC_VER) || defined(__MINGW32__) |
| 28 | #define WIN32_LEAN_AND_MEAN |
| 29 | #include <windows.h> /* Get InterlockedCompareExchange */ |
| 30 | #endif |
| 31 | |
| 32 | #include "linkhash.h" |
| 33 | #include "random_seed.h" |
| 34 | |
| 35 | /* hash functions */ |
| 36 | static unsigned long lh_char_hash(const void *k); |
| 37 | static unsigned long lh_perllike_str_hash(const void *k); |
| 38 | static lh_hash_fn *char_hash_fn = lh_char_hash; |
| 39 | |
| 40 | /* comparison functions */ |
| 41 | int lh_char_equal(const void *k1, const void *k2); |
| 42 | int lh_ptr_equal(const void *k1, const void *k2); |
| 43 | |
| 44 | int json_global_set_string_hash(const int h) |
| 45 | { |
| 46 | switch (h) |
| 47 | { |
| 48 | case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break; |
| 49 | case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break; |
| 50 | default: return -1; |
| 51 | } |
| 52 | return 0; |
| 53 | } |
| 54 | |
| 55 | static unsigned long lh_ptr_hash(const void *k) |
| 56 | { |
| 57 | /* CAW: refactored to be 64bit nice */ |
| 58 | return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX); |
| 59 | } |
| 60 | |
| 61 | int lh_ptr_equal(const void *k1, const void *k2) |
| 62 | { |
| 63 | return (k1 == k2); |
| 64 | } |
| 65 | |
| 66 | /* |
| 67 | * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| 68 | * https://burtleburtle.net/bob/c/lookup3.c |
| 69 | * minor modifications to make functions static so no symbols are exported |
| 70 | * minor modifications to compile with -Werror |
| 71 | */ |
| 72 | |
| 73 | /* |
| 74 | ------------------------------------------------------------------------------- |
| 75 | lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| 76 | |
| 77 | These are functions for producing 32-bit hashes for hash table lookup. |
| 78 | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
| 79 | are externally useful functions. Routines to test the hash are included |
| 80 | if SELF_TEST is defined. You can use this free for any purpose. It's in |
| 81 | the public domain. It has no warranty. |
| 82 | |
| 83 | You probably want to use hashlittle(). hashlittle() and hashbig() |
| 84 | hash byte arrays. hashlittle() is faster than hashbig() on |
| 85 | little-endian machines. Intel and AMD are little-endian machines. |
| 86 | On second thought, you probably want hashlittle2(), which is identical to |
| 87 | hashlittle() except it returns two 32-bit hashes for the price of one. |
| 88 | You could implement hashbig2() if you wanted but I haven't bothered here. |
| 89 | |
| 90 | If you want to find a hash of, say, exactly 7 integers, do |
| 91 | a = i1; b = i2; c = i3; |
| 92 | mix(a,b,c); |
| 93 | a += i4; b += i5; c += i6; |
| 94 | mix(a,b,c); |
| 95 | a += i7; |
| 96 | final(a,b,c); |
| 97 | then use c as the hash value. If you have a variable length array of |
| 98 | 4-byte integers to hash, use hashword(). If you have a byte array (like |
| 99 | a character string), use hashlittle(). If you have several byte arrays, or |
| 100 | a mix of things, see the comments above hashlittle(). |
| 101 | |
| 102 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| 103 | then mix those integers. This is fast (you can do a lot more thorough |
| 104 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| 105 | on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| 106 | ------------------------------------------------------------------------------- |
| 107 | */ |
| 108 | |
| 109 | /* |
| 110 | * My best guess at if you are big-endian or little-endian. This may |
| 111 | * need adjustment. |
| 112 | */ |
| 113 | #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
| 114 | (defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) || \ |
| 115 | defined(__i686__) || defined(vax) || defined(MIPSEL)) |
| 116 | #define HASH_LITTLE_ENDIAN 1 |
| 117 | #define HASH_BIG_ENDIAN 0 |
| 118 | #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \ |
| 119 | (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
| 120 | #define HASH_LITTLE_ENDIAN 0 |
| 121 | #define HASH_BIG_ENDIAN 1 |
| 122 | #else |
| 123 | #define HASH_LITTLE_ENDIAN 0 |
| 124 | #define HASH_BIG_ENDIAN 0 |
| 125 | #endif |
| 126 | |
| 127 | #define hashsize(n) ((uint32_t)1 << (n)) |
| 128 | #define hashmask(n) (hashsize(n) - 1) |
| 129 | #define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k)))) |
| 130 | |
| 131 | /* |
| 132 | ------------------------------------------------------------------------------- |
| 133 | mix -- mix 3 32-bit values reversibly. |
| 134 | |
| 135 | This is reversible, so any information in (a,b,c) before mix() is |
| 136 | still in (a,b,c) after mix(). |
| 137 | |
| 138 | If four pairs of (a,b,c) inputs are run through mix(), or through |
| 139 | mix() in reverse, there are at least 32 bits of the output that |
| 140 | are sometimes the same for one pair and different for another pair. |
| 141 | This was tested for: |
| 142 | * pairs that differed by one bit, by two bits, in any combination |
| 143 | of top bits of (a,b,c), or in any combination of bottom bits of |
| 144 | (a,b,c). |
| 145 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 146 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 147 | is commonly produced by subtraction) look like a single 1-bit |
| 148 | difference. |
| 149 | * the base values were pseudorandom, all zero but one bit set, or |
| 150 | all zero plus a counter that starts at zero. |
| 151 | |
| 152 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
| 153 | satisfy this are |
| 154 | 4 6 8 16 19 4 |
| 155 | 9 15 3 18 27 15 |
| 156 | 14 9 3 7 17 3 |
| 157 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| 158 | for "differ" defined as + with a one-bit base and a two-bit delta. I |
| 159 | used https://burtleburtle.net/bob/hash/avalanche.html to choose |
| 160 | the operations, constants, and arrangements of the variables. |
| 161 | |
| 162 | This does not achieve avalanche. There are input bits of (a,b,c) |
| 163 | that fail to affect some output bits of (a,b,c), especially of a. The |
| 164 | most thoroughly mixed value is c, but it doesn't really even achieve |
| 165 | avalanche in c. |
| 166 | |
| 167 | This allows some parallelism. Read-after-writes are good at doubling |
| 168 | the number of bits affected, so the goal of mixing pulls in the opposite |
| 169 | direction as the goal of parallelism. I did what I could. Rotates |
| 170 | seem to cost as much as shifts on every machine I could lay my hands |
| 171 | on, and rotates are much kinder to the top and bottom bits, so I used |
| 172 | rotates. |
| 173 | ------------------------------------------------------------------------------- |
| 174 | */ |
| 175 | /* clang-format off */ |
| 176 | #define mix(a,b,c) \ |
| 177 | { \ |
| 178 | a -= c; a ^= rot(c, 4); c += b; \ |
| 179 | b -= a; b ^= rot(a, 6); a += c; \ |
| 180 | c -= b; c ^= rot(b, 8); b += a; \ |
| 181 | a -= c; a ^= rot(c,16); c += b; \ |
| 182 | b -= a; b ^= rot(a,19); a += c; \ |
| 183 | c -= b; c ^= rot(b, 4); b += a; \ |
| 184 | } |
| 185 | /* clang-format on */ |
| 186 | |
| 187 | /* |
| 188 | ------------------------------------------------------------------------------- |
| 189 | final -- final mixing of 3 32-bit values (a,b,c) into c |
| 190 | |
| 191 | Pairs of (a,b,c) values differing in only a few bits will usually |
| 192 | produce values of c that look totally different. This was tested for |
| 193 | * pairs that differed by one bit, by two bits, in any combination |
| 194 | of top bits of (a,b,c), or in any combination of bottom bits of |
| 195 | (a,b,c). |
| 196 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 197 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 198 | is commonly produced by subtraction) look like a single 1-bit |
| 199 | difference. |
| 200 | * the base values were pseudorandom, all zero but one bit set, or |
| 201 | all zero plus a counter that starts at zero. |
| 202 | |
| 203 | These constants passed: |
| 204 | 14 11 25 16 4 14 24 |
| 205 | 12 14 25 16 4 14 24 |
| 206 | and these came close: |
| 207 | 4 8 15 26 3 22 24 |
| 208 | 10 8 15 26 3 22 24 |
| 209 | 11 8 15 26 3 22 24 |
| 210 | ------------------------------------------------------------------------------- |
| 211 | */ |
| 212 | /* clang-format off */ |
| 213 | #define final(a,b,c) \ |
| 214 | { \ |
| 215 | c ^= b; c -= rot(b,14); \ |
| 216 | a ^= c; a -= rot(c,11); \ |
| 217 | b ^= a; b -= rot(a,25); \ |
| 218 | c ^= b; c -= rot(b,16); \ |
| 219 | a ^= c; a -= rot(c,4); \ |
| 220 | b ^= a; b -= rot(a,14); \ |
| 221 | c ^= b; c -= rot(b,24); \ |
| 222 | } |
| 223 | /* clang-format on */ |
| 224 | |
| 225 | /* |
| 226 | ------------------------------------------------------------------------------- |
| 227 | hashlittle() -- hash a variable-length key into a 32-bit value |
| 228 | k : the key (the unaligned variable-length array of bytes) |
| 229 | length : the length of the key, counting by bytes |
| 230 | initval : can be any 4-byte value |
| 231 | Returns a 32-bit value. Every bit of the key affects every bit of |
| 232 | the return value. Two keys differing by one or two bits will have |
| 233 | totally different hash values. |
| 234 | |
| 235 | The best hash table sizes are powers of 2. There is no need to do |
| 236 | mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| 237 | use a bitmask. For example, if you need only 10 bits, do |
| 238 | h = (h & hashmask(10)); |
| 239 | In which case, the hash table should have hashsize(10) elements. |
| 240 | |
| 241 | If you are hashing n strings (uint8_t **)k, do it like this: |
| 242 | for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
| 243 | |
| 244 | By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
| 245 | code any way you wish, private, educational, or commercial. It's free. |
| 246 | |
| 247 | Use for hash table lookup, or anything where one collision in 2^^32 is |
| 248 | acceptable. Do NOT use for cryptographic purposes. |
| 249 | ------------------------------------------------------------------------------- |
| 250 | */ |
| 251 | |
| 252 | /* clang-format off */ |
| 253 | static uint32_t hashlittle(const void *key, size_t length, uint32_t initval) |
| 254 | { |
| 255 | uint32_t a,b,c; /* internal state */ |
| 256 | union |
| 257 | { |
| 258 | const void *ptr; |
| 259 | size_t i; |
| 260 | } u; /* needed for Mac Powerbook G4 */ |
| 261 | |
| 262 | /* Set up the internal state */ |
| 263 | a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| 264 | |
| 265 | u.ptr = key; |
| 266 | if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| 267 | const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 268 | |
| 269 | /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 270 | while (length > 12) |
| 271 | { |
| 272 | a += k[0]; |
| 273 | b += k[1]; |
| 274 | c += k[2]; |
| 275 | mix(a,b,c); |
| 276 | length -= 12; |
| 277 | k += 3; |
| 278 | } |
| 279 | |
| 280 | /*----------------------------- handle the last (probably partial) block */ |
| 281 | /* |
| 282 | * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| 283 | * then masks off the part it's not allowed to read. Because the |
| 284 | * string is aligned, the masked-off tail is in the same word as the |
| 285 | * rest of the string. Every machine with memory protection I've seen |
| 286 | * does it on word boundaries, so is OK with this. But VALGRIND will |
| 287 | * still catch it and complain. The masking trick does make the hash |
| 288 | * noticeably faster for short strings (like English words). |
| 289 | * AddressSanitizer is similarly picky about overrunning |
| 290 | * the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html) |
| 291 | */ |
| 292 | #ifdef VALGRIND |
| 293 | #define PRECISE_MEMORY_ACCESS 1 |
| 294 | #elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */ |
| 295 | #define PRECISE_MEMORY_ACCESS 1 |
| 296 | #elif defined(__has_feature) |
| 297 | #if __has_feature(address_sanitizer) /* Clang's ASAN */ |
| 298 | #define PRECISE_MEMORY_ACCESS 1 |
| 299 | #endif |
| 300 | #endif |
| 301 | #ifndef PRECISE_MEMORY_ACCESS |
| 302 | |
| 303 | switch(length) |
| 304 | { |
| 305 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 306 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| 307 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| 308 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| 309 | case 8 : b+=k[1]; a+=k[0]; break; |
| 310 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| 311 | case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| 312 | case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| 313 | case 4 : a+=k[0]; break; |
| 314 | case 3 : a+=k[0]&0xffffff; break; |
| 315 | case 2 : a+=k[0]&0xffff; break; |
| 316 | case 1 : a+=k[0]&0xff; break; |
| 317 | case 0 : return c; /* zero length strings require no mixing */ |
| 318 | } |
| 319 | |
| 320 | #else /* make valgrind happy */ |
| 321 | |
| 322 | const uint8_t *k8 = (const uint8_t *)k; |
| 323 | switch(length) |
| 324 | { |
| 325 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 326 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 327 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| 328 | case 9 : c+=k8[8]; /* fall through */ |
| 329 | case 8 : b+=k[1]; a+=k[0]; break; |
| 330 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 331 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| 332 | case 5 : b+=k8[4]; /* fall through */ |
| 333 | case 4 : a+=k[0]; break; |
| 334 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 335 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| 336 | case 1 : a+=k8[0]; break; |
| 337 | case 0 : return c; |
| 338 | } |
| 339 | |
| 340 | #endif /* !valgrind */ |
| 341 | |
| 342 | } |
| 343 | else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) |
| 344 | { |
| 345 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| 346 | const uint8_t *k8; |
| 347 | |
| 348 | /*--------------- all but last block: aligned reads and different mixing */ |
| 349 | while (length > 12) |
| 350 | { |
| 351 | a += k[0] + (((uint32_t)k[1])<<16); |
| 352 | b += k[2] + (((uint32_t)k[3])<<16); |
| 353 | c += k[4] + (((uint32_t)k[5])<<16); |
| 354 | mix(a,b,c); |
| 355 | length -= 12; |
| 356 | k += 6; |
| 357 | } |
| 358 | |
| 359 | /*----------------------------- handle the last (probably partial) block */ |
| 360 | k8 = (const uint8_t *)k; |
| 361 | switch(length) |
| 362 | { |
| 363 | case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
| 364 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 365 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 366 | break; |
| 367 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 368 | case 10: c+=k[4]; |
| 369 | b+=k[2]+(((uint32_t)k[3])<<16); |
| 370 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 371 | break; |
| 372 | case 9 : c+=k8[8]; /* fall through */ |
| 373 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
| 374 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 375 | break; |
| 376 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 377 | case 6 : b+=k[2]; |
| 378 | a+=k[0]+(((uint32_t)k[1])<<16); |
| 379 | break; |
| 380 | case 5 : b+=k8[4]; /* fall through */ |
| 381 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
| 382 | break; |
| 383 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 384 | case 2 : a+=k[0]; |
| 385 | break; |
| 386 | case 1 : a+=k8[0]; |
| 387 | break; |
| 388 | case 0 : return c; /* zero length requires no mixing */ |
| 389 | } |
| 390 | |
| 391 | } |
| 392 | else |
| 393 | { |
| 394 | /* need to read the key one byte at a time */ |
| 395 | const uint8_t *k = (const uint8_t *)key; |
| 396 | |
| 397 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| 398 | while (length > 12) |
| 399 | { |
| 400 | a += k[0]; |
| 401 | a += ((uint32_t)k[1])<<8; |
| 402 | a += ((uint32_t)k[2])<<16; |
| 403 | a += ((uint32_t)k[3])<<24; |
| 404 | b += k[4]; |
| 405 | b += ((uint32_t)k[5])<<8; |
| 406 | b += ((uint32_t)k[6])<<16; |
| 407 | b += ((uint32_t)k[7])<<24; |
| 408 | c += k[8]; |
| 409 | c += ((uint32_t)k[9])<<8; |
| 410 | c += ((uint32_t)k[10])<<16; |
| 411 | c += ((uint32_t)k[11])<<24; |
| 412 | mix(a,b,c); |
| 413 | length -= 12; |
| 414 | k += 12; |
| 415 | } |
| 416 | |
| 417 | /*-------------------------------- last block: affect all 32 bits of (c) */ |
| 418 | switch(length) /* all the case statements fall through */ |
| 419 | { |
| 420 | case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */ |
| 421 | case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */ |
| 422 | case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */ |
| 423 | case 9 : c+=k[8]; /* FALLTHRU */ |
| 424 | case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */ |
| 425 | case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */ |
| 426 | case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */ |
| 427 | case 5 : b+=k[4]; /* FALLTHRU */ |
| 428 | case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */ |
| 429 | case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */ |
| 430 | case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */ |
| 431 | case 1 : a+=k[0]; |
| 432 | break; |
| 433 | case 0 : return c; |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | final(a,b,c); |
| 438 | return c; |
| 439 | } |
| 440 | /* clang-format on */ |
| 441 | |
| 442 | /* a simple hash function similar to what perl does for strings. |
| 443 | * for good results, the string should not be excessively large. |
| 444 | */ |
| 445 | static unsigned long lh_perllike_str_hash(const void *k) |
| 446 | { |
| 447 | const char *rkey = (const char *)k; |
| 448 | unsigned hashval = 1; |
| 449 | |
| 450 | while (*rkey) |
| 451 | hashval = hashval * 33 + *rkey++; |
| 452 | |
| 453 | return hashval; |
| 454 | } |
| 455 | |
| 456 | static unsigned long lh_char_hash(const void *k) |
| 457 | { |
| 458 | #if defined _MSC_VER || defined __MINGW32__ |
| 459 | #define RANDOM_SEED_TYPE LONG |
| 460 | #else |
| 461 | #define RANDOM_SEED_TYPE int |
| 462 | #endif |
| 463 | static volatile RANDOM_SEED_TYPE random_seed = -1; |
| 464 | |
| 465 | if (random_seed == -1) |
| 466 | { |
| 467 | RANDOM_SEED_TYPE seed; |
| 468 | /* we can't use -1 as it is the uninitialized sentinel */ |
| 469 | while ((seed = json_c_get_random_seed()) == -1) {} |
| 470 | #if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8 |
| 471 | #define USE_SYNC_COMPARE_AND_SWAP 1 |
| 472 | #endif |
| 473 | #if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 |
| 474 | #define USE_SYNC_COMPARE_AND_SWAP 1 |
| 475 | #endif |
| 476 | #if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 |
| 477 | #define USE_SYNC_COMPARE_AND_SWAP 1 |
| 478 | #endif |
| 479 | #if defined USE_SYNC_COMPARE_AND_SWAP |
| 480 | (void)__sync_val_compare_and_swap(&random_seed, -1, seed); |
| 481 | #elif defined _MSC_VER || defined __MINGW32__ |
| 482 | InterlockedCompareExchange(&random_seed, seed, -1); |
| 483 | #else |
| 484 | //#warning "racy random seed initialization if used by multiple threads" |
| 485 | random_seed = seed; /* potentially racy */ |
| 486 | #endif |
| 487 | } |
| 488 | |
| 489 | return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed); |
| 490 | } |
| 491 | |
| 492 | int lh_char_equal(const void *k1, const void *k2) |
| 493 | { |
| 494 | return (strcmp((const char *)k1, (const char *)k2) == 0); |
| 495 | } |
| 496 | |
| 497 | struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn, |
| 498 | lh_equal_fn *equal_fn) |
| 499 | { |
| 500 | int i; |
| 501 | struct lh_table *t; |
| 502 | |
| 503 | /* Allocate space for elements to avoid divisions by zero. */ |
| 504 | assert(size > 0); |
| 505 | t = (struct lh_table *)calloc(1, sizeof(struct lh_table)); |
| 506 | if (!t) |
| 507 | return NULL; |
| 508 | |
| 509 | t->count = 0; |
| 510 | t->size = size; |
| 511 | t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry)); |
| 512 | if (!t->table) |
| 513 | { |
| 514 | free(t); |
| 515 | return NULL; |
| 516 | } |
| 517 | t->free_fn = free_fn; |
| 518 | t->hash_fn = hash_fn; |
| 519 | t->equal_fn = equal_fn; |
| 520 | for (i = 0; i < size; i++) |
| 521 | t->table[i].k = LH_EMPTY; |
| 522 | return t; |
| 523 | } |
| 524 | |
| 525 | struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn) |
| 526 | { |
| 527 | return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal); |
| 528 | } |
| 529 | |
| 530 | struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn) |
| 531 | { |
| 532 | return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal); |
| 533 | } |
| 534 | |
| 535 | int lh_table_resize(struct lh_table *t, int new_size) |
| 536 | { |
| 537 | struct lh_table *new_t; |
| 538 | struct lh_entry *ent; |
| 539 | |
| 540 | new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn); |
| 541 | if (new_t == NULL) |
| 542 | return -1; |
| 543 | |
| 544 | for (ent = t->head; ent != NULL; ent = ent->next) |
| 545 | { |
| 546 | unsigned long h = lh_get_hash(new_t, ent->k); |
| 547 | unsigned int opts = 0; |
| 548 | if (ent->k_is_constant) |
| 549 | opts = JSON_C_OBJECT_ADD_CONSTANT_KEY; |
| 550 | if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0) |
| 551 | { |
| 552 | lh_table_free(new_t); |
| 553 | return -1; |
| 554 | } |
| 555 | } |
| 556 | free(t->table); |
| 557 | t->table = new_t->table; |
| 558 | t->size = new_size; |
| 559 | t->head = new_t->head; |
| 560 | t->tail = new_t->tail; |
| 561 | free(new_t); |
| 562 | |
| 563 | return 0; |
| 564 | } |
| 565 | |
| 566 | void lh_table_free(struct lh_table *t) |
| 567 | { |
| 568 | struct lh_entry *c; |
| 569 | if (t->free_fn) |
| 570 | { |
| 571 | for (c = t->head; c != NULL; c = c->next) |
| 572 | t->free_fn(c); |
| 573 | } |
| 574 | free(t->table); |
| 575 | free(t); |
| 576 | } |
| 577 | |
| 578 | int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h, |
| 579 | const unsigned opts) |
| 580 | { |
| 581 | unsigned long n; |
| 582 | |
| 583 | if (t->count >= t->size * LH_LOAD_FACTOR) |
| 584 | { |
| 585 | /* Avoid signed integer overflow with large tables. */ |
| 586 | int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2); |
| 587 | if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0) |
| 588 | return -1; |
| 589 | } |
| 590 | |
| 591 | n = h % t->size; |
| 592 | |
| 593 | while (1) |
| 594 | { |
| 595 | if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) |
| 596 | break; |
| 597 | if ((int)++n == t->size) |
| 598 | n = 0; |
| 599 | } |
| 600 | |
| 601 | t->table[n].k = k; |
| 602 | t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY); |
| 603 | t->table[n].v = v; |
| 604 | t->count++; |
| 605 | |
| 606 | if (t->head == NULL) |
| 607 | { |
| 608 | t->head = t->tail = &t->table[n]; |
| 609 | t->table[n].next = t->table[n].prev = NULL; |
| 610 | } |
| 611 | else |
| 612 | { |
| 613 | t->tail->next = &t->table[n]; |
| 614 | t->table[n].prev = t->tail; |
| 615 | t->table[n].next = NULL; |
| 616 | t->tail = &t->table[n]; |
| 617 | } |
| 618 | |
| 619 | return 0; |
| 620 | } |
| 621 | int lh_table_insert(struct lh_table *t, const void *k, const void *v) |
| 622 | { |
| 623 | return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0); |
| 624 | } |
| 625 | |
| 626 | struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k, |
| 627 | const unsigned long h) |
| 628 | { |
| 629 | unsigned long n = h % t->size; |
| 630 | int count = 0; |
| 631 | |
| 632 | while (count < t->size) |
| 633 | { |
| 634 | if (t->table[n].k == LH_EMPTY) |
| 635 | return NULL; |
| 636 | if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k)) |
| 637 | return &t->table[n]; |
| 638 | if ((int)++n == t->size) |
| 639 | n = 0; |
| 640 | count++; |
| 641 | } |
| 642 | return NULL; |
| 643 | } |
| 644 | |
| 645 | struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k) |
| 646 | { |
| 647 | return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k)); |
| 648 | } |
| 649 | |
| 650 | json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v) |
| 651 | { |
| 652 | struct lh_entry *e = lh_table_lookup_entry(t, k); |
| 653 | if (e != NULL) |
| 654 | { |
| 655 | if (v != NULL) |
| 656 | *v = lh_entry_v(e); |
| 657 | return 1; /* key found */ |
| 658 | } |
| 659 | if (v != NULL) |
| 660 | *v = NULL; |
| 661 | return 0; /* key not found */ |
| 662 | } |
| 663 | |
| 664 | int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e) |
| 665 | { |
| 666 | /* CAW: fixed to be 64bit nice, still need the crazy negative case... */ |
| 667 | ptrdiff_t n = (ptrdiff_t)(e - t->table); |
| 668 | |
| 669 | /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */ |
| 670 | if (n < 0) |
| 671 | { |
| 672 | return -2; |
| 673 | } |
| 674 | |
| 675 | if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) |
| 676 | return -1; |
| 677 | t->count--; |
| 678 | if (t->free_fn) |
| 679 | t->free_fn(e); |
| 680 | t->table[n].v = NULL; |
| 681 | t->table[n].k = LH_FREED; |
| 682 | if (t->tail == &t->table[n] && t->head == &t->table[n]) |
| 683 | { |
| 684 | t->head = t->tail = NULL; |
| 685 | } |
| 686 | else if (t->head == &t->table[n]) |
| 687 | { |
| 688 | t->head->next->prev = NULL; |
| 689 | t->head = t->head->next; |
| 690 | } |
| 691 | else if (t->tail == &t->table[n]) |
| 692 | { |
| 693 | t->tail->prev->next = NULL; |
| 694 | t->tail = t->tail->prev; |
| 695 | } |
| 696 | else |
| 697 | { |
| 698 | t->table[n].prev->next = t->table[n].next; |
| 699 | t->table[n].next->prev = t->table[n].prev; |
| 700 | } |
| 701 | t->table[n].next = t->table[n].prev = NULL; |
| 702 | return 0; |
| 703 | } |
| 704 | |
| 705 | int lh_table_delete(struct lh_table *t, const void *k) |
| 706 | { |
| 707 | struct lh_entry *e = lh_table_lookup_entry(t, k); |
| 708 | if (!e) |
| 709 | return -1; |
| 710 | return lh_table_delete_entry(t, e); |
| 711 | } |
| 712 | |
| 713 | int lh_table_length(struct lh_table *t) |
| 714 | { |
| 715 | return t->count; |
| 716 | } |