blob: 320ab3535b5eaa2f643d92023665344cec941a76 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/binfmts.h>
24#include <linux/nsproxy.h>
25#include <linux/pid_namespace.h>
26#include <linux/ptrace.h>
27#include <linux/profile.h>
28#include <linux/mount.h>
29#include <linux/proc_fs.h>
30#include <linux/kthread.h>
31#include <linux/mempolicy.h>
32#include <linux/taskstats_kern.h>
33#include <linux/delayacct.h>
34#include <linux/freezer.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56
57#include <asm/uaccess.h>
58#include <asm/unistd.h>
59#include <asm/pgtable.h>
60#include <asm/mmu_context.h>
61
62static void exit_mm(struct task_struct * tsk);
63
64static void __unhash_process(struct task_struct *p, bool group_dead)
65{
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78}
79
80/*
81 * This function expects the tasklist_lock write-locked.
82 */
83static void __exit_signal(struct task_struct *tsk)
84{
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89
90 sighand = rcu_dereference_check(tsk->sighand,
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand->siglock);
93
94 posix_cpu_timers_exit(tsk);
95 if (group_dead) {
96 posix_cpu_timers_exit_group(tsk);
97 tty = sig->tty;
98 sig->tty = NULL;
99 } else {
100 /*
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
104 */
105 if (unlikely(has_group_leader_pid(tsk)))
106 posix_cpu_timers_exit_group(tsk);
107
108 /*
109 * If there is any task waiting for the group exit
110 * then notify it:
111 */
112 if (sig->notify_count > 0 && !--sig->notify_count)
113 wake_up_process(sig->group_exit_task);
114
115 if (tsk == sig->curr_target)
116 sig->curr_target = next_thread(tsk);
117 /*
118 * Accumulate here the counters for all threads but the
119 * group leader as they die, so they can be added into
120 * the process-wide totals when those are taken.
121 * The group leader stays around as a zombie as long
122 * as there are other threads. When it gets reaped,
123 * the exit.c code will add its counts into these totals.
124 * We won't ever get here for the group leader, since it
125 * will have been the last reference on the signal_struct.
126 */
127 sig->utime += tsk->utime;
128 sig->stime += tsk->stime;
129 sig->gtime += tsk->gtime;
130 sig->min_flt += tsk->min_flt;
131 sig->maj_flt += tsk->maj_flt;
132 sig->nvcsw += tsk->nvcsw;
133 sig->nivcsw += tsk->nivcsw;
134 sig->inblock += task_io_get_inblock(tsk);
135 sig->oublock += task_io_get_oublock(tsk);
136 task_io_accounting_add(&sig->ioac, &tsk->ioac);
137 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 }
139
140 sig->nr_threads--;
141 __unhash_process(tsk, group_dead);
142
143 /*
144 * Do this under ->siglock, we can race with another thread
145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
146 */
147 flush_task_sigqueue(tsk);
148 tsk->sighand = NULL;
149 spin_unlock(&sighand->siglock);
150
151 __cleanup_sighand(sighand);
152 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
153 if (group_dead) {
154 flush_sigqueue(&sig->shared_pending);
155 tty_kref_put(tty);
156 }
157}
158
159static void delayed_put_task_struct(struct rcu_head *rhp)
160{
161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162
163 perf_event_delayed_put(tsk);
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
166}
167
168
169void release_task(struct task_struct * p)
170{
171 struct task_struct *leader;
172 int zap_leader;
173repeat:
174 /* don't need to get the RCU readlock here - the process is dead and
175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
179
180 proc_flush_task(p);
181
182 write_lock_irq(&tasklist_lock);
183 ptrace_release_task(p);
184 __exit_signal(p);
185
186 /*
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
190 */
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
194 /*
195 * If we were the last child thread and the leader has
196 * exited already, and the leader's parent ignores SIGCHLD,
197 * then we are the one who should release the leader.
198 */
199 zap_leader = do_notify_parent(leader, leader->exit_signal);
200 if (zap_leader)
201 leader->exit_state = EXIT_DEAD;
202 }
203
204 write_unlock_irq(&tasklist_lock);
205 release_thread(p);
206 call_rcu(&p->rcu, delayed_put_task_struct);
207
208 p = leader;
209 if (unlikely(zap_leader))
210 goto repeat;
211}
212
213/*
214 * This checks not only the pgrp, but falls back on the pid if no
215 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
216 * without this...
217 *
218 * The caller must hold rcu lock or the tasklist lock.
219 */
220struct pid *session_of_pgrp(struct pid *pgrp)
221{
222 struct task_struct *p;
223 struct pid *sid = NULL;
224
225 p = pid_task(pgrp, PIDTYPE_PGID);
226 if (p == NULL)
227 p = pid_task(pgrp, PIDTYPE_PID);
228 if (p != NULL)
229 sid = task_session(p);
230
231 return sid;
232}
233
234/*
235 * Determine if a process group is "orphaned", according to the POSIX
236 * definition in 2.2.2.52. Orphaned process groups are not to be affected
237 * by terminal-generated stop signals. Newly orphaned process groups are
238 * to receive a SIGHUP and a SIGCONT.
239 *
240 * "I ask you, have you ever known what it is to be an orphan?"
241 */
242static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
243{
244 struct task_struct *p;
245
246 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
247 if ((p == ignored_task) ||
248 (p->exit_state && thread_group_empty(p)) ||
249 is_global_init(p->real_parent))
250 continue;
251
252 if (task_pgrp(p->real_parent) != pgrp &&
253 task_session(p->real_parent) == task_session(p))
254 return 0;
255 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
256
257 return 1;
258}
259
260int is_current_pgrp_orphaned(void)
261{
262 int retval;
263
264 read_lock(&tasklist_lock);
265 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
266 read_unlock(&tasklist_lock);
267
268 return retval;
269}
270
271static bool has_stopped_jobs(struct pid *pgrp)
272{
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if (p->signal->flags & SIGNAL_STOP_STOPPED)
277 return true;
278 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
279
280 return false;
281}
282
283/*
284 * Check to see if any process groups have become orphaned as
285 * a result of our exiting, and if they have any stopped jobs,
286 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
287 */
288static void
289kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
290{
291 struct pid *pgrp = task_pgrp(tsk);
292 struct task_struct *ignored_task = tsk;
293
294 if (!parent)
295 /* exit: our father is in a different pgrp than
296 * we are and we were the only connection outside.
297 */
298 parent = tsk->real_parent;
299 else
300 /* reparent: our child is in a different pgrp than
301 * we are, and it was the only connection outside.
302 */
303 ignored_task = NULL;
304
305 if (task_pgrp(parent) != pgrp &&
306 task_session(parent) == task_session(tsk) &&
307 will_become_orphaned_pgrp(pgrp, ignored_task) &&
308 has_stopped_jobs(pgrp)) {
309 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
310 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
311 }
312}
313
314/**
315 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
316 *
317 * If a kernel thread is launched as a result of a system call, or if
318 * it ever exits, it should generally reparent itself to kthreadd so it
319 * isn't in the way of other processes and is correctly cleaned up on exit.
320 *
321 * The various task state such as scheduling policy and priority may have
322 * been inherited from a user process, so we reset them to sane values here.
323 *
324 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
325 */
326static void reparent_to_kthreadd(void)
327{
328 write_lock_irq(&tasklist_lock);
329
330 ptrace_unlink(current);
331 /* Reparent to init */
332 current->real_parent = current->parent = kthreadd_task;
333 list_move_tail(&current->sibling, &current->real_parent->children);
334
335 /* Set the exit signal to SIGCHLD so we signal init on exit */
336 current->exit_signal = SIGCHLD;
337
338 if (task_nice(current) < 0)
339 set_user_nice(current, 0);
340 /* cpus_allowed? */
341 /* rt_priority? */
342 /* signals? */
343 memcpy(current->signal->rlim, init_task.signal->rlim,
344 sizeof(current->signal->rlim));
345
346 atomic_inc(&init_cred.usage);
347 commit_creds(&init_cred);
348 write_unlock_irq(&tasklist_lock);
349}
350
351void __set_special_pids(struct pid *pid)
352{
353 struct task_struct *curr = current->group_leader;
354
355 if (task_session(curr) != pid)
356 change_pid(curr, PIDTYPE_SID, pid);
357
358 if (task_pgrp(curr) != pid)
359 change_pid(curr, PIDTYPE_PGID, pid);
360}
361
362static void set_special_pids(struct pid *pid)
363{
364 write_lock_irq(&tasklist_lock);
365 __set_special_pids(pid);
366 write_unlock_irq(&tasklist_lock);
367}
368
369/*
370 * Let kernel threads use this to say that they allow a certain signal.
371 * Must not be used if kthread was cloned with CLONE_SIGHAND.
372 */
373int allow_signal(int sig)
374{
375 if (!valid_signal(sig) || sig < 1)
376 return -EINVAL;
377
378 spin_lock_irq(&current->sighand->siglock);
379 /* This is only needed for daemonize()'ed kthreads */
380 sigdelset(&current->blocked, sig);
381 /*
382 * Kernel threads handle their own signals. Let the signal code
383 * know it'll be handled, so that they don't get converted to
384 * SIGKILL or just silently dropped.
385 */
386 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock);
389 return 0;
390}
391
392EXPORT_SYMBOL(allow_signal);
393
394int disallow_signal(int sig)
395{
396 if (!valid_signal(sig) || sig < 1)
397 return -EINVAL;
398
399 spin_lock_irq(&current->sighand->siglock);
400 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
401 recalc_sigpending();
402 spin_unlock_irq(&current->sighand->siglock);
403 return 0;
404}
405
406EXPORT_SYMBOL(disallow_signal);
407
408/*
409 * Put all the gunge required to become a kernel thread without
410 * attached user resources in one place where it belongs.
411 */
412
413void daemonize(const char *name, ...)
414{
415 va_list args;
416 sigset_t blocked;
417
418 va_start(args, name);
419 vsnprintf(current->comm, sizeof(current->comm), name, args);
420 va_end(args);
421
422 /*
423 * If we were started as result of loading a module, close all of the
424 * user space pages. We don't need them, and if we didn't close them
425 * they would be locked into memory.
426 */
427 exit_mm(current);
428 /*
429 * We don't want to get frozen, in case system-wide hibernation
430 * or suspend transition begins right now.
431 */
432 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
433
434 if (current->nsproxy != &init_nsproxy) {
435 get_nsproxy(&init_nsproxy);
436 switch_task_namespaces(current, &init_nsproxy);
437 }
438 set_special_pids(&init_struct_pid);
439 proc_clear_tty(current);
440
441 /* Block and flush all signals */
442 sigfillset(&blocked);
443 sigprocmask(SIG_BLOCK, &blocked, NULL);
444 flush_signals(current);
445
446 /* Become as one with the init task */
447
448 daemonize_fs_struct();
449 exit_files(current);
450 current->files = init_task.files;
451 atomic_inc(&current->files->count);
452
453 reparent_to_kthreadd();
454}
455
456EXPORT_SYMBOL(daemonize);
457
458static void close_files(struct files_struct * files)
459{
460 int i, j;
461 struct fdtable *fdt;
462
463 j = 0;
464
465 /*
466 * It is safe to dereference the fd table without RCU or
467 * ->file_lock because this is the last reference to the
468 * files structure. But use RCU to shut RCU-lockdep up.
469 */
470 rcu_read_lock();
471 fdt = files_fdtable(files);
472 rcu_read_unlock();
473 for (;;) {
474 unsigned long set;
475 i = j * BITS_PER_LONG;
476 if (i >= fdt->max_fds)
477 break;
478 set = fdt->open_fds[j++];
479 while (set) {
480 if (set & 1) {
481 struct file * file = xchg(&fdt->fd[i], NULL);
482 if (file) {
483 filp_close(file, files);
484 cond_resched();
485 }
486 }
487 i++;
488 set >>= 1;
489 }
490 }
491}
492
493struct files_struct *get_files_struct(struct task_struct *task)
494{
495 struct files_struct *files;
496
497 task_lock(task);
498 files = task->files;
499 if (files)
500 atomic_inc(&files->count);
501 task_unlock(task);
502
503 return files;
504}
505
506void put_files_struct(struct files_struct *files)
507{
508 struct fdtable *fdt;
509
510 if (atomic_dec_and_test(&files->count)) {
511 close_files(files);
512 /*
513 * Free the fd and fdset arrays if we expanded them.
514 * If the fdtable was embedded, pass files for freeing
515 * at the end of the RCU grace period. Otherwise,
516 * you can free files immediately.
517 */
518 rcu_read_lock();
519 fdt = files_fdtable(files);
520 if (fdt != &files->fdtab)
521 kmem_cache_free(files_cachep, files);
522 free_fdtable(fdt);
523 rcu_read_unlock();
524 }
525}
526
527void reset_files_struct(struct files_struct *files)
528{
529 struct task_struct *tsk = current;
530 struct files_struct *old;
531
532 old = tsk->files;
533 task_lock(tsk);
534 tsk->files = files;
535 task_unlock(tsk);
536 put_files_struct(old);
537}
538
539void exit_files(struct task_struct *tsk)
540{
541 struct files_struct * files = tsk->files;
542
543 if (files) {
544 task_lock(tsk);
545 tsk->files = NULL;
546 task_unlock(tsk);
547 put_files_struct(files);
548 }
549}
550
551#ifdef CONFIG_MM_OWNER
552/*
553 * A task is exiting. If it owned this mm, find a new owner for the mm.
554 */
555void mm_update_next_owner(struct mm_struct *mm)
556{
557 struct task_struct *c, *g, *p = current;
558
559retry:
560 /*
561 * If the exiting or execing task is not the owner, it's
562 * someone else's problem.
563 */
564 if (mm->owner != p)
565 return;
566 /*
567 * The current owner is exiting/execing and there are no other
568 * candidates. Do not leave the mm pointing to a possibly
569 * freed task structure.
570 */
571 if (atomic_read(&mm->mm_users) <= 1) {
572 mm->owner = NULL;
573 return;
574 }
575
576 read_lock(&tasklist_lock);
577 /*
578 * Search in the children
579 */
580 list_for_each_entry(c, &p->children, sibling) {
581 if (c->mm == mm)
582 goto assign_new_owner;
583 }
584
585 /*
586 * Search in the siblings
587 */
588 list_for_each_entry(c, &p->real_parent->children, sibling) {
589 if (c->mm == mm)
590 goto assign_new_owner;
591 }
592
593 /*
594 * Search through everything else. We should not get
595 * here often
596 */
597 do_each_thread(g, c) {
598 if (c->mm == mm)
599 goto assign_new_owner;
600 } while_each_thread(g, c);
601
602 read_unlock(&tasklist_lock);
603 /*
604 * We found no owner yet mm_users > 1: this implies that we are
605 * most likely racing with swapoff (try_to_unuse()) or /proc or
606 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
607 */
608 mm->owner = NULL;
609 return;
610
611assign_new_owner:
612 BUG_ON(c == p);
613 get_task_struct(c);
614 /*
615 * The task_lock protects c->mm from changing.
616 * We always want mm->owner->mm == mm
617 */
618 task_lock(c);
619 /*
620 * Delay read_unlock() till we have the task_lock()
621 * to ensure that c does not slip away underneath us
622 */
623 read_unlock(&tasklist_lock);
624 if (c->mm != mm) {
625 task_unlock(c);
626 put_task_struct(c);
627 goto retry;
628 }
629 mm->owner = c;
630 task_unlock(c);
631 put_task_struct(c);
632}
633#endif /* CONFIG_MM_OWNER */
634
635/*
636 * Turn us into a lazy TLB process if we
637 * aren't already..
638 */
639static void exit_mm(struct task_struct * tsk)
640{
641 struct mm_struct *mm = tsk->mm;
642 struct core_state *core_state;
643
644 mm_release(tsk, mm);
645 if (!mm)
646 return;
647 sync_mm_rss(mm);
648 /*
649 * Serialize with any possible pending coredump.
650 * We must hold mmap_sem around checking core_state
651 * and clearing tsk->mm. The core-inducing thread
652 * will increment ->nr_threads for each thread in the
653 * group with ->mm != NULL.
654 */
655 down_read(&mm->mmap_sem);
656 core_state = mm->core_state;
657 if (core_state) {
658 struct core_thread self;
659 up_read(&mm->mmap_sem);
660
661 self.task = tsk;
662 self.next = xchg(&core_state->dumper.next, &self);
663 /*
664 * Implies mb(), the result of xchg() must be visible
665 * to core_state->dumper.
666 */
667 if (atomic_dec_and_test(&core_state->nr_threads))
668 complete(&core_state->startup);
669
670 for (;;) {
671 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
672 if (!self.task) /* see coredump_finish() */
673 break;
674 schedule();
675 }
676 __set_task_state(tsk, TASK_RUNNING);
677 down_read(&mm->mmap_sem);
678 }
679 atomic_inc(&mm->mm_count);
680 BUG_ON(mm != tsk->active_mm);
681 /* more a memory barrier than a real lock */
682 task_lock(tsk);
683 tsk->mm = NULL;
684 up_read(&mm->mmap_sem);
685 enter_lazy_tlb(mm, current);
686 task_unlock(tsk);
687 mm_update_next_owner(mm);
688 mmput(mm);
689}
690
691/*
692 * When we die, we re-parent all our children, and try to:
693 * 1. give them to another thread in our thread group, if such a member exists
694 * 2. give it to the first ancestor process which prctl'd itself as a
695 * child_subreaper for its children (like a service manager)
696 * 3. give it to the init process (PID 1) in our pid namespace
697 */
698static struct task_struct *find_new_reaper(struct task_struct *father)
699 __releases(&tasklist_lock)
700 __acquires(&tasklist_lock)
701{
702 struct pid_namespace *pid_ns = task_active_pid_ns(father);
703 struct task_struct *thread;
704
705 thread = father;
706 while_each_thread(father, thread) {
707 if (thread->flags & PF_EXITING)
708 continue;
709 if (unlikely(pid_ns->child_reaper == father))
710 pid_ns->child_reaper = thread;
711 return thread;
712 }
713
714 if (unlikely(pid_ns->child_reaper == father)) {
715 write_unlock_irq(&tasklist_lock);
716 if (unlikely(pid_ns == &init_pid_ns)) {
717 panic("Attempted to kill init! exitcode=0x%08x\n",
718 father->signal->group_exit_code ?:
719 father->exit_code);
720 }
721
722 zap_pid_ns_processes(pid_ns);
723 write_lock_irq(&tasklist_lock);
724 /*
725 * We can not clear ->child_reaper or leave it alone.
726 * There may by stealth EXIT_DEAD tasks on ->children,
727 * forget_original_parent() must move them somewhere.
728 */
729 pid_ns->child_reaper = init_pid_ns.child_reaper;
730 } else if (father->signal->has_child_subreaper) {
731 struct task_struct *reaper;
732
733 /*
734 * Find the first ancestor marked as child_subreaper.
735 * Note that the code below checks same_thread_group(reaper,
736 * pid_ns->child_reaper). This is what we need to DTRT in a
737 * PID namespace. However we still need the check above, see
738 * http://marc.info/?l=linux-kernel&m=131385460420380
739 */
740 for (reaper = father->real_parent;
741 reaper != &init_task;
742 reaper = reaper->real_parent) {
743 if (same_thread_group(reaper, pid_ns->child_reaper))
744 break;
745 if (!reaper->signal->is_child_subreaper)
746 continue;
747 thread = reaper;
748 do {
749 if (!(thread->flags & PF_EXITING))
750 return reaper;
751 } while_each_thread(reaper, thread);
752 }
753 }
754
755 return pid_ns->child_reaper;
756}
757
758/*
759* Any that need to be release_task'd are put on the @dead list.
760 */
761static void reparent_leader(struct task_struct *father, struct task_struct *p,
762 struct list_head *dead)
763{
764 list_move_tail(&p->sibling, &p->real_parent->children);
765 /*
766 * If this is a threaded reparent there is no need to
767 * notify anyone anything has happened.
768 */
769 if (same_thread_group(p->real_parent, father))
770 return;
771
772 /*
773 * We don't want people slaying init.
774 *
775 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
776 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
777 * state, do_notify_parent() was already called and ->exit_signal
778 * doesn't matter.
779 */
780 p->exit_signal = SIGCHLD;
781
782 if (p->exit_state == EXIT_DEAD)
783 return;
784
785 /* If it has exited notify the new parent about this child's death. */
786 if (!p->ptrace &&
787 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
788 if (do_notify_parent(p, p->exit_signal)) {
789 p->exit_state = EXIT_DEAD;
790 list_move_tail(&p->sibling, dead);
791 }
792 }
793
794 kill_orphaned_pgrp(p, father);
795}
796
797static void forget_original_parent(struct task_struct *father)
798{
799 struct task_struct *p, *n, *reaper;
800 LIST_HEAD(dead_children);
801
802 write_lock_irq(&tasklist_lock);
803 /*
804 * Note that exit_ptrace() and find_new_reaper() might
805 * drop tasklist_lock and reacquire it.
806 */
807 exit_ptrace(father);
808 reaper = find_new_reaper(father);
809
810 list_for_each_entry_safe(p, n, &father->children, sibling) {
811 struct task_struct *t = p;
812 do {
813 t->real_parent = reaper;
814 if (t->parent == father) {
815 BUG_ON(t->ptrace);
816 t->parent = t->real_parent;
817 }
818 if (t->pdeath_signal)
819 group_send_sig_info(t->pdeath_signal,
820 SEND_SIG_NOINFO, t);
821 } while_each_thread(p, t);
822 reparent_leader(father, p, &dead_children);
823 }
824 write_unlock_irq(&tasklist_lock);
825
826 BUG_ON(!list_empty(&father->children));
827
828 list_for_each_entry_safe(p, n, &dead_children, sibling) {
829 list_del_init(&p->sibling);
830 release_task(p);
831 }
832}
833
834/*
835 * Send signals to all our closest relatives so that they know
836 * to properly mourn us..
837 */
838static void exit_notify(struct task_struct *tsk, int group_dead)
839{
840 bool autoreap;
841
842 /*
843 * This does two things:
844 *
845 * A. Make init inherit all the child processes
846 * B. Check to see if any process groups have become orphaned
847 * as a result of our exiting, and if they have any stopped
848 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
849 */
850 forget_original_parent(tsk);
851 exit_task_namespaces(tsk);
852
853 write_lock_irq(&tasklist_lock);
854 if (group_dead)
855 kill_orphaned_pgrp(tsk->group_leader, NULL);
856
857 if (unlikely(tsk->ptrace)) {
858 int sig = thread_group_leader(tsk) &&
859 thread_group_empty(tsk) &&
860 !ptrace_reparented(tsk) ?
861 tsk->exit_signal : SIGCHLD;
862 autoreap = do_notify_parent(tsk, sig);
863 } else if (thread_group_leader(tsk)) {
864 autoreap = thread_group_empty(tsk) &&
865 do_notify_parent(tsk, tsk->exit_signal);
866 } else {
867 autoreap = true;
868 }
869
870 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
871
872 /* mt-exec, de_thread() is waiting for group leader */
873 if (unlikely(tsk->signal->notify_count < 0))
874 wake_up_process(tsk->signal->group_exit_task);
875 write_unlock_irq(&tasklist_lock);
876
877 /* If the process is dead, release it - nobody will wait for it */
878 if (autoreap)
879 release_task(tsk);
880}
881
882#ifdef CONFIG_DEBUG_STACK_USAGE
883static void check_stack_usage(void)
884{
885 static DEFINE_SPINLOCK(low_water_lock);
886 static int lowest_to_date = THREAD_SIZE;
887 unsigned long free;
888
889 free = stack_not_used(current);
890
891 if (free >= lowest_to_date)
892 return;
893
894 spin_lock(&low_water_lock);
895 if (free < lowest_to_date) {
896 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
897 "left\n",
898 current->comm, free);
899 lowest_to_date = free;
900 }
901 spin_unlock(&low_water_lock);
902}
903#else
904static inline void check_stack_usage(void) {}
905#endif
906
907void do_exit(long code)
908{
909 struct task_struct *tsk = current;
910 int group_dead;
911
912 profile_task_exit(tsk);
913
914 WARN_ON(blk_needs_flush_plug(tsk));
915
916 if (unlikely(in_interrupt()))
917 panic("Aiee, killing interrupt handler!");
918 if (unlikely(!tsk->pid))
919 panic("Attempted to kill the idle task!");
920
921 /*
922 * If do_exit is called because this processes oopsed, it's possible
923 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
924 * continuing. Amongst other possible reasons, this is to prevent
925 * mm_release()->clear_child_tid() from writing to a user-controlled
926 * kernel address.
927 */
928 set_fs(USER_DS);
929
930 ptrace_event(PTRACE_EVENT_EXIT, code);
931
932 validate_creds_for_do_exit(tsk);
933
934 /*
935 * We're taking recursive faults here in do_exit. Safest is to just
936 * leave this task alone and wait for reboot.
937 */
938 if (unlikely(tsk->flags & PF_EXITING)) {
939 printk(KERN_ALERT
940 "Fixing recursive fault but reboot is needed!\n");
941 /*
942 * We can do this unlocked here. The futex code uses
943 * this flag just to verify whether the pi state
944 * cleanup has been done or not. In the worst case it
945 * loops once more. We pretend that the cleanup was
946 * done as there is no way to return. Either the
947 * OWNER_DIED bit is set by now or we push the blocked
948 * task into the wait for ever nirwana as well.
949 */
950 tsk->flags |= PF_EXITPIDONE;
951 set_current_state(TASK_UNINTERRUPTIBLE);
952 schedule();
953 }
954
955 exit_signals(tsk); /* sets PF_EXITING */
956 /*
957 * tsk->flags are checked in the futex code to protect against
958 * an exiting task cleaning up the robust pi futexes.
959 */
960 smp_mb();
961 raw_spin_unlock_wait(&tsk->pi_lock);
962
963 exit_irq_thread();
964
965 if (unlikely(in_atomic()))
966 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
967 current->comm, task_pid_nr(current),
968 preempt_count());
969
970 acct_update_integrals(tsk);
971 /* sync mm's RSS info before statistics gathering */
972 if (tsk->mm)
973 sync_mm_rss(tsk->mm);
974 group_dead = atomic_dec_and_test(&tsk->signal->live);
975 if (group_dead) {
976 hrtimer_cancel(&tsk->signal->real_timer);
977 exit_itimers(tsk->signal);
978 if (tsk->mm)
979 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
980 }
981 acct_collect(code, group_dead);
982 if (group_dead)
983 tty_audit_exit();
984 audit_free(tsk);
985
986 tsk->exit_code = code;
987 taskstats_exit(tsk, group_dead);
988
989 exit_mm(tsk);
990
991 if (group_dead)
992 acct_process();
993 trace_sched_process_exit(tsk);
994
995 exit_sem(tsk);
996 exit_shm(tsk);
997 exit_files(tsk);
998 exit_fs(tsk);
999 check_stack_usage();
1000 exit_thread();
1001
1002 /*
1003 * Flush inherited counters to the parent - before the parent
1004 * gets woken up by child-exit notifications.
1005 *
1006 * because of cgroup mode, must be called before cgroup_exit()
1007 */
1008 perf_event_exit_task(tsk);
1009
1010 cgroup_exit(tsk, 1);
1011
1012 if (group_dead)
1013 disassociate_ctty(1);
1014
1015 module_put(task_thread_info(tsk)->exec_domain->module);
1016
1017 proc_exit_connector(tsk);
1018
1019 /*
1020 * FIXME: do that only when needed, using sched_exit tracepoint
1021 */
1022 ptrace_put_breakpoints(tsk);
1023
1024 exit_notify(tsk, group_dead);
1025#ifdef CONFIG_NUMA
1026 task_lock(tsk);
1027 mpol_put(tsk->mempolicy);
1028 tsk->mempolicy = NULL;
1029 task_unlock(tsk);
1030#endif
1031#ifdef CONFIG_FUTEX
1032 if (unlikely(current->pi_state_cache))
1033 kfree(current->pi_state_cache);
1034#endif
1035 /*
1036 * Make sure we are holding no locks:
1037 */
1038 debug_check_no_locks_held(tsk);
1039 /*
1040 * We can do this unlocked here. The futex code uses this flag
1041 * just to verify whether the pi state cleanup has been done
1042 * or not. In the worst case it loops once more.
1043 */
1044 tsk->flags |= PF_EXITPIDONE;
1045
1046 if (tsk->io_context)
1047 exit_io_context(tsk);
1048
1049 if (tsk->splice_pipe)
1050 __free_pipe_info(tsk->splice_pipe);
1051
1052 validate_creds_for_do_exit(tsk);
1053
1054 preempt_disable();
1055 if (tsk->nr_dirtied)
1056 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1057 exit_rcu();
1058
1059 /*
1060 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1061 * when the following two conditions become true.
1062 * - There is race condition of mmap_sem (It is acquired by
1063 * exit_mm()), and
1064 * - SMI occurs before setting TASK_RUNINNG.
1065 * (or hypervisor of virtual machine switches to other guest)
1066 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1067 *
1068 * To avoid it, we have to wait for releasing tsk->pi_lock which
1069 * is held by try_to_wake_up()
1070 */
1071 smp_mb();
1072 raw_spin_unlock_wait(&tsk->pi_lock);
1073
1074 /* causes final put_task_struct in finish_task_switch(). */
1075 tsk->state = TASK_DEAD;
1076 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
1077 schedule();
1078 BUG();
1079 /* Avoid "noreturn function does return". */
1080 for (;;)
1081 cpu_relax(); /* For when BUG is null */
1082}
1083
1084EXPORT_SYMBOL(do_exit);
1085
1086void complete_and_exit(struct completion *comp, long code)
1087{
1088 if (comp)
1089 complete(comp);
1090
1091 do_exit(code);
1092}
1093
1094EXPORT_SYMBOL(complete_and_exit);
1095
1096SYSCALL_DEFINE1(exit, int, error_code)
1097{
1098 do_exit((error_code&0xff)<<8);
1099}
1100
1101/*
1102 * Take down every thread in the group. This is called by fatal signals
1103 * as well as by sys_exit_group (below).
1104 */
1105void
1106do_group_exit(int exit_code)
1107{
1108 struct signal_struct *sig = current->signal;
1109
1110 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1111
1112 if (signal_group_exit(sig))
1113 exit_code = sig->group_exit_code;
1114 else if (!thread_group_empty(current)) {
1115 struct sighand_struct *const sighand = current->sighand;
1116 spin_lock_irq(&sighand->siglock);
1117 if (signal_group_exit(sig))
1118 /* Another thread got here before we took the lock. */
1119 exit_code = sig->group_exit_code;
1120 else {
1121 sig->group_exit_code = exit_code;
1122 sig->flags = SIGNAL_GROUP_EXIT;
1123 zap_other_threads(current);
1124 }
1125 spin_unlock_irq(&sighand->siglock);
1126 }
1127
1128 do_exit(exit_code);
1129 /* NOTREACHED */
1130}
1131
1132/*
1133 * this kills every thread in the thread group. Note that any externally
1134 * wait4()-ing process will get the correct exit code - even if this
1135 * thread is not the thread group leader.
1136 */
1137SYSCALL_DEFINE1(exit_group, int, error_code)
1138{
1139 do_group_exit((error_code & 0xff) << 8);
1140 /* NOTREACHED */
1141 return 0;
1142}
1143
1144struct wait_opts {
1145 enum pid_type wo_type;
1146 int wo_flags;
1147 struct pid *wo_pid;
1148
1149 struct siginfo __user *wo_info;
1150 int __user *wo_stat;
1151 struct rusage __user *wo_rusage;
1152
1153 wait_queue_t child_wait;
1154 int notask_error;
1155};
1156
1157static inline
1158struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1159{
1160 if (type != PIDTYPE_PID)
1161 task = task->group_leader;
1162 return task->pids[type].pid;
1163}
1164
1165static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1166{
1167 return wo->wo_type == PIDTYPE_MAX ||
1168 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1169}
1170
1171static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1172{
1173 if (!eligible_pid(wo, p))
1174 return 0;
1175 /* Wait for all children (clone and not) if __WALL is set;
1176 * otherwise, wait for clone children *only* if __WCLONE is
1177 * set; otherwise, wait for non-clone children *only*. (Note:
1178 * A "clone" child here is one that reports to its parent
1179 * using a signal other than SIGCHLD.) */
1180 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1181 && !(wo->wo_flags & __WALL))
1182 return 0;
1183
1184 return 1;
1185}
1186
1187static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1188 pid_t pid, uid_t uid, int why, int status)
1189{
1190 struct siginfo __user *infop;
1191 int retval = wo->wo_rusage
1192 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1193
1194 put_task_struct(p);
1195 infop = wo->wo_info;
1196 if (infop) {
1197 if (!retval)
1198 retval = put_user(SIGCHLD, &infop->si_signo);
1199 if (!retval)
1200 retval = put_user(0, &infop->si_errno);
1201 if (!retval)
1202 retval = put_user((short)why, &infop->si_code);
1203 if (!retval)
1204 retval = put_user(pid, &infop->si_pid);
1205 if (!retval)
1206 retval = put_user(uid, &infop->si_uid);
1207 if (!retval)
1208 retval = put_user(status, &infop->si_status);
1209 }
1210 if (!retval)
1211 retval = pid;
1212 return retval;
1213}
1214
1215/*
1216 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1217 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1218 * the lock and this task is uninteresting. If we return nonzero, we have
1219 * released the lock and the system call should return.
1220 */
1221static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1222{
1223 unsigned long state;
1224 int retval, status, traced;
1225 pid_t pid = task_pid_vnr(p);
1226 uid_t uid = __task_cred(p)->uid;
1227 struct siginfo __user *infop;
1228
1229 if (!likely(wo->wo_flags & WEXITED))
1230 return 0;
1231
1232 if (unlikely(wo->wo_flags & WNOWAIT)) {
1233 int exit_code = p->exit_code;
1234 int why;
1235
1236 get_task_struct(p);
1237 read_unlock(&tasklist_lock);
1238 if ((exit_code & 0x7f) == 0) {
1239 why = CLD_EXITED;
1240 status = exit_code >> 8;
1241 } else {
1242 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1243 status = exit_code & 0x7f;
1244 }
1245 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1246 }
1247
1248 /*
1249 * Try to move the task's state to DEAD
1250 * only one thread is allowed to do this:
1251 */
1252 state = xchg(&p->exit_state, EXIT_DEAD);
1253 if (state != EXIT_ZOMBIE) {
1254 BUG_ON(state != EXIT_DEAD);
1255 return 0;
1256 }
1257
1258 traced = ptrace_reparented(p);
1259 /*
1260 * It can be ptraced but not reparented, check
1261 * thread_group_leader() to filter out sub-threads.
1262 */
1263 if (likely(!traced) && thread_group_leader(p)) {
1264 struct signal_struct *psig;
1265 struct signal_struct *sig;
1266 unsigned long maxrss;
1267 cputime_t tgutime, tgstime;
1268
1269 /*
1270 * The resource counters for the group leader are in its
1271 * own task_struct. Those for dead threads in the group
1272 * are in its signal_struct, as are those for the child
1273 * processes it has previously reaped. All these
1274 * accumulate in the parent's signal_struct c* fields.
1275 *
1276 * We don't bother to take a lock here to protect these
1277 * p->signal fields, because they are only touched by
1278 * __exit_signal, which runs with tasklist_lock
1279 * write-locked anyway, and so is excluded here. We do
1280 * need to protect the access to parent->signal fields,
1281 * as other threads in the parent group can be right
1282 * here reaping other children at the same time.
1283 *
1284 * We use thread_group_times() to get times for the thread
1285 * group, which consolidates times for all threads in the
1286 * group including the group leader.
1287 */
1288 thread_group_times(p, &tgutime, &tgstime);
1289 spin_lock_irq(&p->real_parent->sighand->siglock);
1290 psig = p->real_parent->signal;
1291 sig = p->signal;
1292 psig->cutime += tgutime + sig->cutime;
1293 psig->cstime += tgstime + sig->cstime;
1294 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1295 psig->cmin_flt +=
1296 p->min_flt + sig->min_flt + sig->cmin_flt;
1297 psig->cmaj_flt +=
1298 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1299 psig->cnvcsw +=
1300 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1301 psig->cnivcsw +=
1302 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1303 psig->cinblock +=
1304 task_io_get_inblock(p) +
1305 sig->inblock + sig->cinblock;
1306 psig->coublock +=
1307 task_io_get_oublock(p) +
1308 sig->oublock + sig->coublock;
1309 maxrss = max(sig->maxrss, sig->cmaxrss);
1310 if (psig->cmaxrss < maxrss)
1311 psig->cmaxrss = maxrss;
1312 task_io_accounting_add(&psig->ioac, &p->ioac);
1313 task_io_accounting_add(&psig->ioac, &sig->ioac);
1314 spin_unlock_irq(&p->real_parent->sighand->siglock);
1315 }
1316
1317 /*
1318 * Now we are sure this task is interesting, and no other
1319 * thread can reap it because we set its state to EXIT_DEAD.
1320 */
1321 read_unlock(&tasklist_lock);
1322
1323 retval = wo->wo_rusage
1324 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1325 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1326 ? p->signal->group_exit_code : p->exit_code;
1327 if (!retval && wo->wo_stat)
1328 retval = put_user(status, wo->wo_stat);
1329
1330 infop = wo->wo_info;
1331 if (!retval && infop)
1332 retval = put_user(SIGCHLD, &infop->si_signo);
1333 if (!retval && infop)
1334 retval = put_user(0, &infop->si_errno);
1335 if (!retval && infop) {
1336 int why;
1337
1338 if ((status & 0x7f) == 0) {
1339 why = CLD_EXITED;
1340 status >>= 8;
1341 } else {
1342 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1343 status &= 0x7f;
1344 }
1345 retval = put_user((short)why, &infop->si_code);
1346 if (!retval)
1347 retval = put_user(status, &infop->si_status);
1348 }
1349 if (!retval && infop)
1350 retval = put_user(pid, &infop->si_pid);
1351 if (!retval && infop)
1352 retval = put_user(uid, &infop->si_uid);
1353 if (!retval)
1354 retval = pid;
1355
1356 if (traced) {
1357 write_lock_irq(&tasklist_lock);
1358 /* We dropped tasklist, ptracer could die and untrace */
1359 ptrace_unlink(p);
1360 /*
1361 * If this is not a sub-thread, notify the parent.
1362 * If parent wants a zombie, don't release it now.
1363 */
1364 if (thread_group_leader(p) &&
1365 !do_notify_parent(p, p->exit_signal)) {
1366 p->exit_state = EXIT_ZOMBIE;
1367 p = NULL;
1368 }
1369 write_unlock_irq(&tasklist_lock);
1370 }
1371 if (p != NULL)
1372 release_task(p);
1373
1374 return retval;
1375}
1376
1377static int *task_stopped_code(struct task_struct *p, bool ptrace)
1378{
1379 if (ptrace) {
1380 if (task_is_stopped_or_traced(p) &&
1381 !(p->jobctl & JOBCTL_LISTENING))
1382 return &p->exit_code;
1383 } else {
1384 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1385 return &p->signal->group_exit_code;
1386 }
1387 return NULL;
1388}
1389
1390/**
1391 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1392 * @wo: wait options
1393 * @ptrace: is the wait for ptrace
1394 * @p: task to wait for
1395 *
1396 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1397 *
1398 * CONTEXT:
1399 * read_lock(&tasklist_lock), which is released if return value is
1400 * non-zero. Also, grabs and releases @p->sighand->siglock.
1401 *
1402 * RETURNS:
1403 * 0 if wait condition didn't exist and search for other wait conditions
1404 * should continue. Non-zero return, -errno on failure and @p's pid on
1405 * success, implies that tasklist_lock is released and wait condition
1406 * search should terminate.
1407 */
1408static int wait_task_stopped(struct wait_opts *wo,
1409 int ptrace, struct task_struct *p)
1410{
1411 struct siginfo __user *infop;
1412 int retval, exit_code, *p_code, why;
1413 uid_t uid = 0; /* unneeded, required by compiler */
1414 pid_t pid;
1415
1416 /*
1417 * Traditionally we see ptrace'd stopped tasks regardless of options.
1418 */
1419 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1420 return 0;
1421
1422 if (!task_stopped_code(p, ptrace))
1423 return 0;
1424
1425 exit_code = 0;
1426 spin_lock_irq(&p->sighand->siglock);
1427
1428 p_code = task_stopped_code(p, ptrace);
1429 if (unlikely(!p_code))
1430 goto unlock_sig;
1431
1432 exit_code = *p_code;
1433 if (!exit_code)
1434 goto unlock_sig;
1435
1436 if (!unlikely(wo->wo_flags & WNOWAIT))
1437 *p_code = 0;
1438
1439 uid = task_uid(p);
1440unlock_sig:
1441 spin_unlock_irq(&p->sighand->siglock);
1442 if (!exit_code)
1443 return 0;
1444
1445 /*
1446 * Now we are pretty sure this task is interesting.
1447 * Make sure it doesn't get reaped out from under us while we
1448 * give up the lock and then examine it below. We don't want to
1449 * keep holding onto the tasklist_lock while we call getrusage and
1450 * possibly take page faults for user memory.
1451 */
1452 get_task_struct(p);
1453 pid = task_pid_vnr(p);
1454 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1455 read_unlock(&tasklist_lock);
1456
1457 if (unlikely(wo->wo_flags & WNOWAIT))
1458 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1459
1460 retval = wo->wo_rusage
1461 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1462 if (!retval && wo->wo_stat)
1463 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1464
1465 infop = wo->wo_info;
1466 if (!retval && infop)
1467 retval = put_user(SIGCHLD, &infop->si_signo);
1468 if (!retval && infop)
1469 retval = put_user(0, &infop->si_errno);
1470 if (!retval && infop)
1471 retval = put_user((short)why, &infop->si_code);
1472 if (!retval && infop)
1473 retval = put_user(exit_code, &infop->si_status);
1474 if (!retval && infop)
1475 retval = put_user(pid, &infop->si_pid);
1476 if (!retval && infop)
1477 retval = put_user(uid, &infop->si_uid);
1478 if (!retval)
1479 retval = pid;
1480 put_task_struct(p);
1481
1482 BUG_ON(!retval);
1483 return retval;
1484}
1485
1486/*
1487 * Handle do_wait work for one task in a live, non-stopped state.
1488 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1489 * the lock and this task is uninteresting. If we return nonzero, we have
1490 * released the lock and the system call should return.
1491 */
1492static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1493{
1494 int retval;
1495 pid_t pid;
1496 uid_t uid;
1497
1498 if (!unlikely(wo->wo_flags & WCONTINUED))
1499 return 0;
1500
1501 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1502 return 0;
1503
1504 spin_lock_irq(&p->sighand->siglock);
1505 /* Re-check with the lock held. */
1506 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1507 spin_unlock_irq(&p->sighand->siglock);
1508 return 0;
1509 }
1510 if (!unlikely(wo->wo_flags & WNOWAIT))
1511 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1512 uid = task_uid(p);
1513 spin_unlock_irq(&p->sighand->siglock);
1514
1515 pid = task_pid_vnr(p);
1516 get_task_struct(p);
1517 read_unlock(&tasklist_lock);
1518
1519 if (!wo->wo_info) {
1520 retval = wo->wo_rusage
1521 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1522 put_task_struct(p);
1523 if (!retval && wo->wo_stat)
1524 retval = put_user(0xffff, wo->wo_stat);
1525 if (!retval)
1526 retval = pid;
1527 } else {
1528 retval = wait_noreap_copyout(wo, p, pid, uid,
1529 CLD_CONTINUED, SIGCONT);
1530 BUG_ON(retval == 0);
1531 }
1532
1533 return retval;
1534}
1535
1536/*
1537 * Consider @p for a wait by @parent.
1538 *
1539 * -ECHILD should be in ->notask_error before the first call.
1540 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1541 * Returns zero if the search for a child should continue;
1542 * then ->notask_error is 0 if @p is an eligible child,
1543 * or another error from security_task_wait(), or still -ECHILD.
1544 */
1545static int wait_consider_task(struct wait_opts *wo, int ptrace,
1546 struct task_struct *p)
1547{
1548 int ret = eligible_child(wo, p);
1549 if (!ret)
1550 return ret;
1551
1552 ret = security_task_wait(p);
1553 if (unlikely(ret < 0)) {
1554 /*
1555 * If we have not yet seen any eligible child,
1556 * then let this error code replace -ECHILD.
1557 * A permission error will give the user a clue
1558 * to look for security policy problems, rather
1559 * than for mysterious wait bugs.
1560 */
1561 if (wo->notask_error)
1562 wo->notask_error = ret;
1563 return 0;
1564 }
1565
1566 /* dead body doesn't have much to contribute */
1567 if (unlikely(p->exit_state == EXIT_DEAD)) {
1568 /*
1569 * But do not ignore this task until the tracer does
1570 * wait_task_zombie()->do_notify_parent().
1571 */
1572 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1573 wo->notask_error = 0;
1574 return 0;
1575 }
1576
1577 /* slay zombie? */
1578 if (p->exit_state == EXIT_ZOMBIE) {
1579 /*
1580 * A zombie ptracee is only visible to its ptracer.
1581 * Notification and reaping will be cascaded to the real
1582 * parent when the ptracer detaches.
1583 */
1584 if (likely(!ptrace) && unlikely(p->ptrace)) {
1585 /* it will become visible, clear notask_error */
1586 wo->notask_error = 0;
1587 return 0;
1588 }
1589
1590 /* we don't reap group leaders with subthreads */
1591 if (!delay_group_leader(p))
1592 return wait_task_zombie(wo, p);
1593
1594 /*
1595 * Allow access to stopped/continued state via zombie by
1596 * falling through. Clearing of notask_error is complex.
1597 *
1598 * When !@ptrace:
1599 *
1600 * If WEXITED is set, notask_error should naturally be
1601 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1602 * so, if there are live subthreads, there are events to
1603 * wait for. If all subthreads are dead, it's still safe
1604 * to clear - this function will be called again in finite
1605 * amount time once all the subthreads are released and
1606 * will then return without clearing.
1607 *
1608 * When @ptrace:
1609 *
1610 * Stopped state is per-task and thus can't change once the
1611 * target task dies. Only continued and exited can happen.
1612 * Clear notask_error if WCONTINUED | WEXITED.
1613 */
1614 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1615 wo->notask_error = 0;
1616 } else {
1617 /*
1618 * If @p is ptraced by a task in its real parent's group,
1619 * hide group stop/continued state when looking at @p as
1620 * the real parent; otherwise, a single stop can be
1621 * reported twice as group and ptrace stops.
1622 *
1623 * If a ptracer wants to distinguish the two events for its
1624 * own children, it should create a separate process which
1625 * takes the role of real parent.
1626 */
1627 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1628 return 0;
1629
1630 /*
1631 * @p is alive and it's gonna stop, continue or exit, so
1632 * there always is something to wait for.
1633 */
1634 wo->notask_error = 0;
1635 }
1636
1637 /*
1638 * Wait for stopped. Depending on @ptrace, different stopped state
1639 * is used and the two don't interact with each other.
1640 */
1641 ret = wait_task_stopped(wo, ptrace, p);
1642 if (ret)
1643 return ret;
1644
1645 /*
1646 * Wait for continued. There's only one continued state and the
1647 * ptracer can consume it which can confuse the real parent. Don't
1648 * use WCONTINUED from ptracer. You don't need or want it.
1649 */
1650 return wait_task_continued(wo, p);
1651}
1652
1653/*
1654 * Do the work of do_wait() for one thread in the group, @tsk.
1655 *
1656 * -ECHILD should be in ->notask_error before the first call.
1657 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1658 * Returns zero if the search for a child should continue; then
1659 * ->notask_error is 0 if there were any eligible children,
1660 * or another error from security_task_wait(), or still -ECHILD.
1661 */
1662static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1663{
1664 struct task_struct *p;
1665
1666 list_for_each_entry(p, &tsk->children, sibling) {
1667 int ret = wait_consider_task(wo, 0, p);
1668 if (ret)
1669 return ret;
1670 }
1671
1672 return 0;
1673}
1674
1675static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1676{
1677 struct task_struct *p;
1678
1679 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1680 int ret = wait_consider_task(wo, 1, p);
1681 if (ret)
1682 return ret;
1683 }
1684
1685 return 0;
1686}
1687
1688static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1689 int sync, void *key)
1690{
1691 struct wait_opts *wo = container_of(wait, struct wait_opts,
1692 child_wait);
1693 struct task_struct *p = key;
1694
1695 if (!eligible_pid(wo, p))
1696 return 0;
1697
1698 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1699 return 0;
1700
1701 return default_wake_function(wait, mode, sync, key);
1702}
1703
1704void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1705{
1706 __wake_up_sync_key(&parent->signal->wait_chldexit,
1707 TASK_INTERRUPTIBLE, 1, p);
1708}
1709
1710static long do_wait(struct wait_opts *wo)
1711{
1712 struct task_struct *tsk;
1713 int retval;
1714
1715 trace_sched_process_wait(wo->wo_pid);
1716
1717 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1718 wo->child_wait.private = current;
1719 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1720repeat:
1721 /*
1722 * If there is nothing that can match our critiera just get out.
1723 * We will clear ->notask_error to zero if we see any child that
1724 * might later match our criteria, even if we are not able to reap
1725 * it yet.
1726 */
1727 wo->notask_error = -ECHILD;
1728 if ((wo->wo_type < PIDTYPE_MAX) &&
1729 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1730 goto notask;
1731
1732 set_current_state(TASK_INTERRUPTIBLE);
1733 read_lock(&tasklist_lock);
1734 tsk = current;
1735 do {
1736 retval = do_wait_thread(wo, tsk);
1737 if (retval)
1738 goto end;
1739
1740 retval = ptrace_do_wait(wo, tsk);
1741 if (retval)
1742 goto end;
1743
1744 if (wo->wo_flags & __WNOTHREAD)
1745 break;
1746 } while_each_thread(current, tsk);
1747 read_unlock(&tasklist_lock);
1748
1749notask:
1750 retval = wo->notask_error;
1751 if (!retval && !(wo->wo_flags & WNOHANG)) {
1752 retval = -ERESTARTSYS;
1753 if (!signal_pending(current)) {
1754 schedule();
1755 goto repeat;
1756 }
1757 }
1758end:
1759 __set_current_state(TASK_RUNNING);
1760 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1761 return retval;
1762}
1763
1764SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1765 infop, int, options, struct rusage __user *, ru)
1766{
1767 struct wait_opts wo;
1768 struct pid *pid = NULL;
1769 enum pid_type type;
1770 long ret;
1771
1772 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1773 return -EINVAL;
1774 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1775 return -EINVAL;
1776
1777 switch (which) {
1778 case P_ALL:
1779 type = PIDTYPE_MAX;
1780 break;
1781 case P_PID:
1782 type = PIDTYPE_PID;
1783 if (upid <= 0)
1784 return -EINVAL;
1785 break;
1786 case P_PGID:
1787 type = PIDTYPE_PGID;
1788 if (upid <= 0)
1789 return -EINVAL;
1790 break;
1791 default:
1792 return -EINVAL;
1793 }
1794
1795 if (type < PIDTYPE_MAX)
1796 pid = find_get_pid(upid);
1797
1798 wo.wo_type = type;
1799 wo.wo_pid = pid;
1800 wo.wo_flags = options;
1801 wo.wo_info = infop;
1802 wo.wo_stat = NULL;
1803 wo.wo_rusage = ru;
1804 ret = do_wait(&wo);
1805
1806 if (ret > 0) {
1807 ret = 0;
1808 } else if (infop) {
1809 /*
1810 * For a WNOHANG return, clear out all the fields
1811 * we would set so the user can easily tell the
1812 * difference.
1813 */
1814 if (!ret)
1815 ret = put_user(0, &infop->si_signo);
1816 if (!ret)
1817 ret = put_user(0, &infop->si_errno);
1818 if (!ret)
1819 ret = put_user(0, &infop->si_code);
1820 if (!ret)
1821 ret = put_user(0, &infop->si_pid);
1822 if (!ret)
1823 ret = put_user(0, &infop->si_uid);
1824 if (!ret)
1825 ret = put_user(0, &infop->si_status);
1826 }
1827
1828 put_pid(pid);
1829
1830 /* avoid REGPARM breakage on x86: */
1831 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1832 return ret;
1833}
1834
1835SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1836 int, options, struct rusage __user *, ru)
1837{
1838 struct wait_opts wo;
1839 struct pid *pid = NULL;
1840 enum pid_type type;
1841 long ret;
1842
1843 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1844 __WNOTHREAD|__WCLONE|__WALL))
1845 return -EINVAL;
1846
1847 if (upid == -1)
1848 type = PIDTYPE_MAX;
1849 else if (upid < 0) {
1850 type = PIDTYPE_PGID;
1851 pid = find_get_pid(-upid);
1852 } else if (upid == 0) {
1853 type = PIDTYPE_PGID;
1854 pid = get_task_pid(current, PIDTYPE_PGID);
1855 } else /* upid > 0 */ {
1856 type = PIDTYPE_PID;
1857 pid = find_get_pid(upid);
1858 }
1859
1860 wo.wo_type = type;
1861 wo.wo_pid = pid;
1862 wo.wo_flags = options | WEXITED;
1863 wo.wo_info = NULL;
1864 wo.wo_stat = stat_addr;
1865 wo.wo_rusage = ru;
1866 ret = do_wait(&wo);
1867 put_pid(pid);
1868
1869 /* avoid REGPARM breakage on x86: */
1870 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1871 return ret;
1872}
1873
1874#ifdef __ARCH_WANT_SYS_WAITPID
1875
1876/*
1877 * sys_waitpid() remains for compatibility. waitpid() should be
1878 * implemented by calling sys_wait4() from libc.a.
1879 */
1880SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1881{
1882 return sys_wait4(pid, stat_addr, options, NULL);
1883}
1884
1885#endif