blob: 992acaac5de64301efa5a8a5f3b8813bf624a3fd [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * net/sched/sch_netem.c Network emulator
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
8 *
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
11 *
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14 */
15
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/skbuff.h>
23#include <linux/vmalloc.h>
24#include <linux/rtnetlink.h>
25#include <linux/reciprocal_div.h>
26
27#include <net/netlink.h>
28#include <net/pkt_sched.h>
29
30#define VERSION "1.3"
31
32/* Network Emulation Queuing algorithm.
33 ====================================
34
35 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
36 Network Emulation Tool
37 [2] Luigi Rizzo, DummyNet for FreeBSD
38
39 ----------------------------------------------------------------
40
41 This started out as a simple way to delay outgoing packets to
42 test TCP but has grown to include most of the functionality
43 of a full blown network emulator like NISTnet. It can delay
44 packets and add random jitter (and correlation). The random
45 distribution can be loaded from a table as well to provide
46 normal, Pareto, or experimental curves. Packet loss,
47 duplication, and reordering can also be emulated.
48
49 This qdisc does not do classification that can be handled in
50 layering other disciplines. It does not need to do bandwidth
51 control either since that can be handled by using token
52 bucket or other rate control.
53
54 Correlated Loss Generator models
55
56 Added generation of correlated loss according to the
57 "Gilbert-Elliot" model, a 4-state markov model.
58
59 References:
60 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
61 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
62 and intuitive loss model for packet networks and its implementation
63 in the Netem module in the Linux kernel", available in [1]
64
65 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
66 Fabio Ludovici <fabio.ludovici at yahoo.it>
67*/
68
69struct netem_sched_data {
70 /* internal t(ime)fifo qdisc uses sch->q and sch->limit */
71
72 /* optional qdisc for classful handling (NULL at netem init) */
73 struct Qdisc *qdisc;
74
75 struct qdisc_watchdog watchdog;
76
77 psched_tdiff_t latency;
78 psched_tdiff_t jitter;
79
80 u32 loss;
81 u32 limit;
82 u32 counter;
83 u32 gap;
84 u32 duplicate;
85 u32 reorder;
86 u32 corrupt;
87 u32 rate;
88 s32 packet_overhead;
89 u32 cell_size;
90 u32 cell_size_reciprocal;
91 s32 cell_overhead;
92
93 struct crndstate {
94 u32 last;
95 u32 rho;
96 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
97
98 struct disttable {
99 u32 size;
100 s16 table[0];
101 } *delay_dist;
102
103 enum {
104 CLG_RANDOM,
105 CLG_4_STATES,
106 CLG_GILB_ELL,
107 } loss_model;
108
109 /* Correlated Loss Generation models */
110 struct clgstate {
111 /* state of the Markov chain */
112 u8 state;
113
114 /* 4-states and Gilbert-Elliot models */
115 u32 a1; /* p13 for 4-states or p for GE */
116 u32 a2; /* p31 for 4-states or r for GE */
117 u32 a3; /* p32 for 4-states or h for GE */
118 u32 a4; /* p14 for 4-states or 1-k for GE */
119 u32 a5; /* p23 used only in 4-states */
120 } clg;
121
122};
123
124/* Time stamp put into socket buffer control block
125 * Only valid when skbs are in our internal t(ime)fifo queue.
126 */
127struct netem_skb_cb {
128 psched_time_t time_to_send;
129};
130
131static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
132{
133 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
134 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
135}
136
137/* init_crandom - initialize correlated random number generator
138 * Use entropy source for initial seed.
139 */
140static void init_crandom(struct crndstate *state, unsigned long rho)
141{
142 state->rho = rho;
143 state->last = net_random();
144}
145
146/* get_crandom - correlated random number generator
147 * Next number depends on last value.
148 * rho is scaled to avoid floating point.
149 */
150static u32 get_crandom(struct crndstate *state)
151{
152 u64 value, rho;
153 unsigned long answer;
154
155 if (state->rho == 0) /* no correlation */
156 return net_random();
157
158 value = net_random();
159 rho = (u64)state->rho + 1;
160 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
161 state->last = answer;
162 return answer;
163}
164
165/* loss_4state - 4-state model loss generator
166 * Generates losses according to the 4-state Markov chain adopted in
167 * the GI (General and Intuitive) loss model.
168 */
169static bool loss_4state(struct netem_sched_data *q)
170{
171 struct clgstate *clg = &q->clg;
172 u32 rnd = net_random();
173
174 /*
175 * Makes a comparison between rnd and the transition
176 * probabilities outgoing from the current state, then decides the
177 * next state and if the next packet has to be transmitted or lost.
178 * The four states correspond to:
179 * 1 => successfully transmitted packets within a gap period
180 * 4 => isolated losses within a gap period
181 * 3 => lost packets within a burst period
182 * 2 => successfully transmitted packets within a burst period
183 */
184 switch (clg->state) {
185 case 1:
186 if (rnd < clg->a4) {
187 clg->state = 4;
188 return true;
189 } else if (clg->a4 < rnd && rnd < clg->a1) {
190 clg->state = 3;
191 return true;
192 } else if (clg->a1 < rnd)
193 clg->state = 1;
194
195 break;
196 case 2:
197 if (rnd < clg->a5) {
198 clg->state = 3;
199 return true;
200 } else
201 clg->state = 2;
202
203 break;
204 case 3:
205 if (rnd < clg->a3)
206 clg->state = 2;
207 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
208 clg->state = 1;
209 return true;
210 } else if (clg->a2 + clg->a3 < rnd) {
211 clg->state = 3;
212 return true;
213 }
214 break;
215 case 4:
216 clg->state = 1;
217 break;
218 }
219
220 return false;
221}
222
223/* loss_gilb_ell - Gilbert-Elliot model loss generator
224 * Generates losses according to the Gilbert-Elliot loss model or
225 * its special cases (Gilbert or Simple Gilbert)
226 *
227 * Makes a comparison between random number and the transition
228 * probabilities outgoing from the current state, then decides the
229 * next state. A second random number is extracted and the comparison
230 * with the loss probability of the current state decides if the next
231 * packet will be transmitted or lost.
232 */
233static bool loss_gilb_ell(struct netem_sched_data *q)
234{
235 struct clgstate *clg = &q->clg;
236
237 switch (clg->state) {
238 case 1:
239 if (net_random() < clg->a1)
240 clg->state = 2;
241 if (net_random() < clg->a4)
242 return true;
243 case 2:
244 if (net_random() < clg->a2)
245 clg->state = 1;
246 if (clg->a3 > net_random())
247 return true;
248 }
249
250 return false;
251}
252
253static bool loss_event(struct netem_sched_data *q)
254{
255 switch (q->loss_model) {
256 case CLG_RANDOM:
257 /* Random packet drop 0 => none, ~0 => all */
258 return q->loss && q->loss >= get_crandom(&q->loss_cor);
259
260 case CLG_4_STATES:
261 /* 4state loss model algorithm (used also for GI model)
262 * Extracts a value from the markov 4 state loss generator,
263 * if it is 1 drops a packet and if needed writes the event in
264 * the kernel logs
265 */
266 return loss_4state(q);
267
268 case CLG_GILB_ELL:
269 /* Gilbert-Elliot loss model algorithm
270 * Extracts a value from the Gilbert-Elliot loss generator,
271 * if it is 1 drops a packet and if needed writes the event in
272 * the kernel logs
273 */
274 return loss_gilb_ell(q);
275 }
276
277 return false; /* not reached */
278}
279
280
281/* tabledist - return a pseudo-randomly distributed value with mean mu and
282 * std deviation sigma. Uses table lookup to approximate the desired
283 * distribution, and a uniformly-distributed pseudo-random source.
284 */
285static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
286 struct crndstate *state,
287 const struct disttable *dist)
288{
289 psched_tdiff_t x;
290 long t;
291 u32 rnd;
292
293 if (sigma == 0)
294 return mu;
295
296 rnd = get_crandom(state);
297
298 /* default uniform distribution */
299 if (dist == NULL)
300 return (rnd % (2*sigma)) - sigma + mu;
301
302 t = dist->table[rnd % dist->size];
303 x = (sigma % NETEM_DIST_SCALE) * t;
304 if (x >= 0)
305 x += NETEM_DIST_SCALE/2;
306 else
307 x -= NETEM_DIST_SCALE/2;
308
309 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
310}
311
312static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
313{
314 u64 ticks;
315
316 len += q->packet_overhead;
317
318 if (q->cell_size) {
319 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
320
321 if (len > cells * q->cell_size) /* extra cell needed for remainder */
322 cells++;
323 len = cells * (q->cell_size + q->cell_overhead);
324 }
325
326 ticks = (u64)len * NSEC_PER_SEC;
327
328 do_div(ticks, q->rate);
329 return PSCHED_NS2TICKS(ticks);
330}
331
332static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
333{
334 struct sk_buff_head *list = &sch->q;
335 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
336 struct sk_buff *skb = skb_peek_tail(list);
337
338 /* Optimize for add at tail */
339 if (likely(!skb || tnext >= netem_skb_cb(skb)->time_to_send))
340 return __skb_queue_tail(list, nskb);
341
342 skb_queue_reverse_walk(list, skb) {
343 if (tnext >= netem_skb_cb(skb)->time_to_send)
344 break;
345 }
346
347 __skb_queue_after(list, skb, nskb);
348}
349
350/*
351 * Insert one skb into qdisc.
352 * Note: parent depends on return value to account for queue length.
353 * NET_XMIT_DROP: queue length didn't change.
354 * NET_XMIT_SUCCESS: one skb was queued.
355 */
356static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
357{
358 struct netem_sched_data *q = qdisc_priv(sch);
359 /* We don't fill cb now as skb_unshare() may invalidate it */
360 struct netem_skb_cb *cb;
361 struct sk_buff *skb2;
362 int count = 1;
363
364 /* Random duplication */
365 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
366 ++count;
367
368 /* Drop packet? */
369 if (loss_event(q))
370 --count;
371
372 if (count == 0) {
373 sch->qstats.drops++;
374 kfree_skb(skb);
375 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
376 }
377
378 skb_orphan(skb);
379
380 /*
381 * If we need to duplicate packet, then re-insert at top of the
382 * qdisc tree, since parent queuer expects that only one
383 * skb will be queued.
384 */
385 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
386 struct Qdisc *rootq = qdisc_root(sch);
387 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
388 q->duplicate = 0;
389
390 qdisc_enqueue_root(skb2, rootq);
391 q->duplicate = dupsave;
392 }
393
394 /*
395 * Randomized packet corruption.
396 * Make copy if needed since we are modifying
397 * If packet is going to be hardware checksummed, then
398 * do it now in software before we mangle it.
399 */
400 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
401 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
402 (skb->ip_summed == CHECKSUM_PARTIAL &&
403 skb_checksum_help(skb)))
404 return qdisc_drop(skb, sch);
405
406 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
407 }
408
409 if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
410 return qdisc_reshape_fail(skb, sch);
411
412 sch->qstats.backlog += qdisc_pkt_len(skb);
413
414 cb = netem_skb_cb(skb);
415 if (q->gap == 0 || /* not doing reordering */
416 q->counter < q->gap - 1 || /* inside last reordering gap */
417 q->reorder < get_crandom(&q->reorder_cor)) {
418 psched_time_t now;
419 psched_tdiff_t delay;
420
421 delay = tabledist(q->latency, q->jitter,
422 &q->delay_cor, q->delay_dist);
423
424 now = psched_get_time();
425
426 if (q->rate) {
427 struct sk_buff_head *list = &sch->q;
428
429 delay += packet_len_2_sched_time(skb->len, q);
430
431 if (!skb_queue_empty(list)) {
432 /*
433 * Last packet in queue is reference point (now).
434 * First packet in queue is already in flight,
435 * calculate this time bonus and substract
436 * from delay.
437 */
438 delay -= now - netem_skb_cb(skb_peek(list))->time_to_send;
439 now = netem_skb_cb(skb_peek_tail(list))->time_to_send;
440 }
441 }
442
443 cb->time_to_send = now + delay;
444 ++q->counter;
445 tfifo_enqueue(skb, sch);
446 } else {
447 /*
448 * Do re-ordering by putting one out of N packets at the front
449 * of the queue.
450 */
451 cb->time_to_send = psched_get_time();
452 q->counter = 0;
453
454 __skb_queue_head(&sch->q, skb);
455 sch->qstats.requeues++;
456 }
457
458 return NET_XMIT_SUCCESS;
459}
460
461static unsigned int netem_drop(struct Qdisc *sch)
462{
463 struct netem_sched_data *q = qdisc_priv(sch);
464 unsigned int len;
465
466 len = qdisc_queue_drop(sch);
467 if (!len && q->qdisc && q->qdisc->ops->drop)
468 len = q->qdisc->ops->drop(q->qdisc);
469 if (len)
470 sch->qstats.drops++;
471
472 return len;
473}
474
475static struct sk_buff *netem_dequeue(struct Qdisc *sch)
476{
477 struct netem_sched_data *q = qdisc_priv(sch);
478 struct sk_buff *skb;
479
480 if (qdisc_is_throttled(sch))
481 return NULL;
482
483tfifo_dequeue:
484 skb = qdisc_peek_head(sch);
485 if (skb) {
486 const struct netem_skb_cb *cb = netem_skb_cb(skb);
487
488 /* if more time remaining? */
489 if (cb->time_to_send <= psched_get_time()) {
490 __skb_unlink(skb, &sch->q);
491 sch->qstats.backlog -= qdisc_pkt_len(skb);
492
493#ifdef CONFIG_NET_CLS_ACT
494 /*
495 * If it's at ingress let's pretend the delay is
496 * from the network (tstamp will be updated).
497 */
498 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
499 skb->tstamp.tv64 = 0;
500#endif
501
502 if (q->qdisc) {
503 int err = qdisc_enqueue(skb, q->qdisc);
504
505 if (unlikely(err != NET_XMIT_SUCCESS)) {
506 if (net_xmit_drop_count(err)) {
507 sch->qstats.drops++;
508 qdisc_tree_decrease_qlen(sch, 1);
509 }
510 }
511 goto tfifo_dequeue;
512 }
513deliver:
514 qdisc_unthrottled(sch);
515 qdisc_bstats_update(sch, skb);
516 return skb;
517 }
518
519 if (q->qdisc) {
520 skb = q->qdisc->ops->dequeue(q->qdisc);
521 if (skb)
522 goto deliver;
523 }
524 qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
525 }
526
527 if (q->qdisc) {
528 skb = q->qdisc->ops->dequeue(q->qdisc);
529 if (skb)
530 goto deliver;
531 }
532 return NULL;
533}
534
535static void netem_reset(struct Qdisc *sch)
536{
537 struct netem_sched_data *q = qdisc_priv(sch);
538
539 qdisc_reset_queue(sch);
540 if (q->qdisc)
541 qdisc_reset(q->qdisc);
542 qdisc_watchdog_cancel(&q->watchdog);
543}
544
545static void dist_free(struct disttable *d)
546{
547 if (d) {
548 if (is_vmalloc_addr(d))
549 vfree(d);
550 else
551 kfree(d);
552 }
553}
554
555/*
556 * Distribution data is a variable size payload containing
557 * signed 16 bit values.
558 */
559static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
560{
561 struct netem_sched_data *q = qdisc_priv(sch);
562 size_t n = nla_len(attr)/sizeof(__s16);
563 const __s16 *data = nla_data(attr);
564 spinlock_t *root_lock;
565 struct disttable *d;
566 int i;
567 size_t s;
568
569 if (n > NETEM_DIST_MAX)
570 return -EINVAL;
571
572 s = sizeof(struct disttable) + n * sizeof(s16);
573 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
574 if (!d)
575 d = vmalloc(s);
576 if (!d)
577 return -ENOMEM;
578
579 d->size = n;
580 for (i = 0; i < n; i++)
581 d->table[i] = data[i];
582
583 root_lock = qdisc_root_sleeping_lock(sch);
584
585 spin_lock_bh(root_lock);
586 swap(q->delay_dist, d);
587 spin_unlock_bh(root_lock);
588
589 dist_free(d);
590 return 0;
591}
592
593static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
594{
595 struct netem_sched_data *q = qdisc_priv(sch);
596 const struct tc_netem_corr *c = nla_data(attr);
597
598 init_crandom(&q->delay_cor, c->delay_corr);
599 init_crandom(&q->loss_cor, c->loss_corr);
600 init_crandom(&q->dup_cor, c->dup_corr);
601}
602
603static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
604{
605 struct netem_sched_data *q = qdisc_priv(sch);
606 const struct tc_netem_reorder *r = nla_data(attr);
607
608 q->reorder = r->probability;
609 init_crandom(&q->reorder_cor, r->correlation);
610}
611
612static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
613{
614 struct netem_sched_data *q = qdisc_priv(sch);
615 const struct tc_netem_corrupt *r = nla_data(attr);
616
617 q->corrupt = r->probability;
618 init_crandom(&q->corrupt_cor, r->correlation);
619}
620
621static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
622{
623 struct netem_sched_data *q = qdisc_priv(sch);
624 const struct tc_netem_rate *r = nla_data(attr);
625
626 q->rate = r->rate;
627 q->packet_overhead = r->packet_overhead;
628 q->cell_size = r->cell_size;
629 if (q->cell_size)
630 q->cell_size_reciprocal = reciprocal_value(q->cell_size);
631 q->cell_overhead = r->cell_overhead;
632}
633
634static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
635{
636 struct netem_sched_data *q = qdisc_priv(sch);
637 const struct nlattr *la;
638 int rem;
639
640 nla_for_each_nested(la, attr, rem) {
641 u16 type = nla_type(la);
642
643 switch(type) {
644 case NETEM_LOSS_GI: {
645 const struct tc_netem_gimodel *gi = nla_data(la);
646
647 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
648 pr_info("netem: incorrect gi model size\n");
649 return -EINVAL;
650 }
651
652 q->loss_model = CLG_4_STATES;
653
654 q->clg.state = 1;
655 q->clg.a1 = gi->p13;
656 q->clg.a2 = gi->p31;
657 q->clg.a3 = gi->p32;
658 q->clg.a4 = gi->p14;
659 q->clg.a5 = gi->p23;
660 break;
661 }
662
663 case NETEM_LOSS_GE: {
664 const struct tc_netem_gemodel *ge = nla_data(la);
665
666 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
667 pr_info("netem: incorrect ge model size\n");
668 return -EINVAL;
669 }
670
671 q->loss_model = CLG_GILB_ELL;
672 q->clg.state = 1;
673 q->clg.a1 = ge->p;
674 q->clg.a2 = ge->r;
675 q->clg.a3 = ge->h;
676 q->clg.a4 = ge->k1;
677 break;
678 }
679
680 default:
681 pr_info("netem: unknown loss type %u\n", type);
682 return -EINVAL;
683 }
684 }
685
686 return 0;
687}
688
689static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
690 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
691 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
692 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
693 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) },
694 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
695};
696
697static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
698 const struct nla_policy *policy, int len)
699{
700 int nested_len = nla_len(nla) - NLA_ALIGN(len);
701
702 if (nested_len < 0) {
703 pr_info("netem: invalid attributes len %d\n", nested_len);
704 return -EINVAL;
705 }
706
707 if (nested_len >= nla_attr_size(0))
708 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
709 nested_len, policy);
710
711 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
712 return 0;
713}
714
715/* Parse netlink message to set options */
716static int netem_change(struct Qdisc *sch, struct nlattr *opt)
717{
718 struct netem_sched_data *q = qdisc_priv(sch);
719 struct nlattr *tb[TCA_NETEM_MAX + 1];
720 struct tc_netem_qopt *qopt;
721 int ret;
722
723 if (opt == NULL)
724 return -EINVAL;
725
726 qopt = nla_data(opt);
727 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
728 if (ret < 0)
729 return ret;
730
731 sch->limit = qopt->limit;
732
733 q->latency = qopt->latency;
734 q->jitter = qopt->jitter;
735 q->limit = qopt->limit;
736 q->gap = qopt->gap;
737 q->counter = 0;
738 q->loss = qopt->loss;
739 q->duplicate = qopt->duplicate;
740
741 /* for compatibility with earlier versions.
742 * if gap is set, need to assume 100% probability
743 */
744 if (q->gap)
745 q->reorder = ~0;
746
747 if (tb[TCA_NETEM_CORR])
748 get_correlation(sch, tb[TCA_NETEM_CORR]);
749
750 if (tb[TCA_NETEM_DELAY_DIST]) {
751 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
752 if (ret)
753 return ret;
754 }
755
756 if (tb[TCA_NETEM_REORDER])
757 get_reorder(sch, tb[TCA_NETEM_REORDER]);
758
759 if (tb[TCA_NETEM_CORRUPT])
760 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
761
762 if (tb[TCA_NETEM_RATE])
763 get_rate(sch, tb[TCA_NETEM_RATE]);
764
765 q->loss_model = CLG_RANDOM;
766 if (tb[TCA_NETEM_LOSS])
767 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
768
769 return ret;
770}
771
772static int netem_init(struct Qdisc *sch, struct nlattr *opt)
773{
774 struct netem_sched_data *q = qdisc_priv(sch);
775 int ret;
776
777 if (!opt)
778 return -EINVAL;
779
780 qdisc_watchdog_init(&q->watchdog, sch);
781
782 q->loss_model = CLG_RANDOM;
783 ret = netem_change(sch, opt);
784 if (ret)
785 pr_info("netem: change failed\n");
786 return ret;
787}
788
789static void netem_destroy(struct Qdisc *sch)
790{
791 struct netem_sched_data *q = qdisc_priv(sch);
792
793 qdisc_watchdog_cancel(&q->watchdog);
794 if (q->qdisc)
795 qdisc_destroy(q->qdisc);
796 dist_free(q->delay_dist);
797}
798
799static int dump_loss_model(const struct netem_sched_data *q,
800 struct sk_buff *skb)
801{
802 struct nlattr *nest;
803
804 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
805 if (nest == NULL)
806 goto nla_put_failure;
807
808 switch (q->loss_model) {
809 case CLG_RANDOM:
810 /* legacy loss model */
811 nla_nest_cancel(skb, nest);
812 return 0; /* no data */
813
814 case CLG_4_STATES: {
815 struct tc_netem_gimodel gi = {
816 .p13 = q->clg.a1,
817 .p31 = q->clg.a2,
818 .p32 = q->clg.a3,
819 .p14 = q->clg.a4,
820 .p23 = q->clg.a5,
821 };
822
823 NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
824 break;
825 }
826 case CLG_GILB_ELL: {
827 struct tc_netem_gemodel ge = {
828 .p = q->clg.a1,
829 .r = q->clg.a2,
830 .h = q->clg.a3,
831 .k1 = q->clg.a4,
832 };
833
834 NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
835 break;
836 }
837 }
838
839 nla_nest_end(skb, nest);
840 return 0;
841
842nla_put_failure:
843 nla_nest_cancel(skb, nest);
844 return -1;
845}
846
847static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
848{
849 const struct netem_sched_data *q = qdisc_priv(sch);
850 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
851 struct tc_netem_qopt qopt;
852 struct tc_netem_corr cor;
853 struct tc_netem_reorder reorder;
854 struct tc_netem_corrupt corrupt;
855 struct tc_netem_rate rate;
856
857 qopt.latency = q->latency;
858 qopt.jitter = q->jitter;
859 qopt.limit = q->limit;
860 qopt.loss = q->loss;
861 qopt.gap = q->gap;
862 qopt.duplicate = q->duplicate;
863 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
864
865 cor.delay_corr = q->delay_cor.rho;
866 cor.loss_corr = q->loss_cor.rho;
867 cor.dup_corr = q->dup_cor.rho;
868 NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
869
870 reorder.probability = q->reorder;
871 reorder.correlation = q->reorder_cor.rho;
872 NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
873
874 corrupt.probability = q->corrupt;
875 corrupt.correlation = q->corrupt_cor.rho;
876 NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
877
878 rate.rate = q->rate;
879 rate.packet_overhead = q->packet_overhead;
880 rate.cell_size = q->cell_size;
881 rate.cell_overhead = q->cell_overhead;
882 NLA_PUT(skb, TCA_NETEM_RATE, sizeof(rate), &rate);
883
884 if (dump_loss_model(q, skb) != 0)
885 goto nla_put_failure;
886
887 return nla_nest_end(skb, nla);
888
889nla_put_failure:
890 nlmsg_trim(skb, nla);
891 return -1;
892}
893
894static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
895 struct sk_buff *skb, struct tcmsg *tcm)
896{
897 struct netem_sched_data *q = qdisc_priv(sch);
898
899 if (cl != 1 || !q->qdisc) /* only one class */
900 return -ENOENT;
901
902 tcm->tcm_handle |= TC_H_MIN(1);
903 tcm->tcm_info = q->qdisc->handle;
904
905 return 0;
906}
907
908static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
909 struct Qdisc **old)
910{
911 struct netem_sched_data *q = qdisc_priv(sch);
912
913 sch_tree_lock(sch);
914 *old = q->qdisc;
915 q->qdisc = new;
916 if (*old) {
917 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
918 qdisc_reset(*old);
919 }
920 sch_tree_unlock(sch);
921
922 return 0;
923}
924
925static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
926{
927 struct netem_sched_data *q = qdisc_priv(sch);
928 return q->qdisc;
929}
930
931static unsigned long netem_get(struct Qdisc *sch, u32 classid)
932{
933 return 1;
934}
935
936static void netem_put(struct Qdisc *sch, unsigned long arg)
937{
938}
939
940static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
941{
942 if (!walker->stop) {
943 if (walker->count >= walker->skip)
944 if (walker->fn(sch, 1, walker) < 0) {
945 walker->stop = 1;
946 return;
947 }
948 walker->count++;
949 }
950}
951
952static const struct Qdisc_class_ops netem_class_ops = {
953 .graft = netem_graft,
954 .leaf = netem_leaf,
955 .get = netem_get,
956 .put = netem_put,
957 .walk = netem_walk,
958 .dump = netem_dump_class,
959};
960
961static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
962 .id = "netem",
963 .cl_ops = &netem_class_ops,
964 .priv_size = sizeof(struct netem_sched_data),
965 .enqueue = netem_enqueue,
966 .dequeue = netem_dequeue,
967 .peek = qdisc_peek_dequeued,
968 .drop = netem_drop,
969 .init = netem_init,
970 .reset = netem_reset,
971 .destroy = netem_destroy,
972 .change = netem_change,
973 .dump = netem_dump,
974 .owner = THIS_MODULE,
975};
976
977
978static int __init netem_module_init(void)
979{
980 pr_info("netem: version " VERSION "\n");
981 return register_qdisc(&netem_qdisc_ops);
982}
983static void __exit netem_module_exit(void)
984{
985 unregister_qdisc(&netem_qdisc_ops);
986}
987module_init(netem_module_init)
988module_exit(netem_module_exit)
989MODULE_LICENSE("GPL");