| /* | 
 |  * mm/rmap.c - physical to virtual reverse mappings | 
 |  * | 
 |  * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | 
 |  * Released under the General Public License (GPL). | 
 |  * | 
 |  * Simple, low overhead reverse mapping scheme. | 
 |  * Please try to keep this thing as modular as possible. | 
 |  * | 
 |  * Provides methods for unmapping each kind of mapped page: | 
 |  * the anon methods track anonymous pages, and | 
 |  * the file methods track pages belonging to an inode. | 
 |  * | 
 |  * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | 
 |  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | 
 |  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | 
 |  * Contributions by Hugh Dickins 2003, 2004 | 
 |  */ | 
 |  | 
 | /* | 
 |  * Lock ordering in mm: | 
 |  * | 
 |  * inode->i_mutex	(while writing or truncating, not reading or faulting) | 
 |  *   mm->mmap_sem | 
 |  *     page->flags PG_locked (lock_page) | 
 |  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) | 
 |  *         mapping->i_mmap_rwsem | 
 |  *           anon_vma->rwsem | 
 |  *             mm->page_table_lock or pte_lock | 
 |  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page) | 
 |  *               swap_lock (in swap_duplicate, swap_info_get) | 
 |  *                 mmlist_lock (in mmput, drain_mmlist and others) | 
 |  *                 mapping->private_lock (in __set_page_dirty_buffers) | 
 |  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | 
 |  *                     mapping->tree_lock (widely used) | 
 |  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty) | 
 |  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | 
 |  *                   sb_lock (within inode_lock in fs/fs-writeback.c) | 
 |  *                   mapping->tree_lock (widely used, in set_page_dirty, | 
 |  *                             in arch-dependent flush_dcache_mmap_lock, | 
 |  *                             within bdi.wb->list_lock in __sync_single_inode) | 
 |  * | 
 |  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon) | 
 |  *   ->tasklist_lock | 
 |  *     pte map lock | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched/mm.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/ksm.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/export.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/mmu_notifier.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/page_idle.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/userfaultfd_k.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include <trace/events/tlb.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | static struct kmem_cache *anon_vma_cachep; | 
 | static struct kmem_cache *anon_vma_chain_cachep; | 
 |  | 
 | static inline struct anon_vma *anon_vma_alloc(void) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 |  | 
 | 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | 
 | 	if (anon_vma) { | 
 | 		atomic_set(&anon_vma->refcount, 1); | 
 | 		anon_vma->degree = 1;	/* Reference for first vma */ | 
 | 		anon_vma->parent = anon_vma; | 
 | 		/* | 
 | 		 * Initialise the anon_vma root to point to itself. If called | 
 | 		 * from fork, the root will be reset to the parents anon_vma. | 
 | 		 */ | 
 | 		anon_vma->root = anon_vma; | 
 | 	} | 
 |  | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | static inline void anon_vma_free(struct anon_vma *anon_vma) | 
 | { | 
 | 	VM_BUG_ON(atomic_read(&anon_vma->refcount)); | 
 |  | 
 | 	/* | 
 | 	 * Synchronize against page_lock_anon_vma_read() such that | 
 | 	 * we can safely hold the lock without the anon_vma getting | 
 | 	 * freed. | 
 | 	 * | 
 | 	 * Relies on the full mb implied by the atomic_dec_and_test() from | 
 | 	 * put_anon_vma() against the acquire barrier implied by | 
 | 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders: | 
 | 	 * | 
 | 	 * page_lock_anon_vma_read()	VS	put_anon_vma() | 
 | 	 *   down_read_trylock()		  atomic_dec_and_test() | 
 | 	 *   LOCK				  MB | 
 | 	 *   atomic_read()			  rwsem_is_locked() | 
 | 	 * | 
 | 	 * LOCK should suffice since the actual taking of the lock must | 
 | 	 * happen _before_ what follows. | 
 | 	 */ | 
 | 	might_sleep(); | 
 | 	if (rwsem_is_locked(&anon_vma->root->rwsem)) { | 
 | 		anon_vma_lock_write(anon_vma); | 
 | 		anon_vma_unlock_write(anon_vma); | 
 | 	} | 
 |  | 
 | 	kmem_cache_free(anon_vma_cachep, anon_vma); | 
 | } | 
 |  | 
 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) | 
 | { | 
 | 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp); | 
 | } | 
 |  | 
 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 
 | { | 
 | 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 
 | } | 
 |  | 
 | static void anon_vma_chain_link(struct vm_area_struct *vma, | 
 | 				struct anon_vma_chain *avc, | 
 | 				struct anon_vma *anon_vma) | 
 | { | 
 | 	avc->vma = vma; | 
 | 	avc->anon_vma = anon_vma; | 
 | 	list_add(&avc->same_vma, &vma->anon_vma_chain); | 
 | 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); | 
 | } | 
 |  | 
 | /** | 
 |  * __anon_vma_prepare - attach an anon_vma to a memory region | 
 |  * @vma: the memory region in question | 
 |  * | 
 |  * This makes sure the memory mapping described by 'vma' has | 
 |  * an 'anon_vma' attached to it, so that we can associate the | 
 |  * anonymous pages mapped into it with that anon_vma. | 
 |  * | 
 |  * The common case will be that we already have one, which | 
 |  * is handled inline by anon_vma_prepare(). But if | 
 |  * not we either need to find an adjacent mapping that we | 
 |  * can re-use the anon_vma from (very common when the only | 
 |  * reason for splitting a vma has been mprotect()), or we | 
 |  * allocate a new one. | 
 |  * | 
 |  * Anon-vma allocations are very subtle, because we may have | 
 |  * optimistically looked up an anon_vma in page_lock_anon_vma_read() | 
 |  * and that may actually touch the spinlock even in the newly | 
 |  * allocated vma (it depends on RCU to make sure that the | 
 |  * anon_vma isn't actually destroyed). | 
 |  * | 
 |  * As a result, we need to do proper anon_vma locking even | 
 |  * for the new allocation. At the same time, we do not want | 
 |  * to do any locking for the common case of already having | 
 |  * an anon_vma. | 
 |  * | 
 |  * This must be called with the mmap_sem held for reading. | 
 |  */ | 
 | int __anon_vma_prepare(struct vm_area_struct *vma) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct anon_vma *anon_vma, *allocated; | 
 | 	struct anon_vma_chain *avc; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	avc = anon_vma_chain_alloc(GFP_KERNEL); | 
 | 	if (!avc) | 
 | 		goto out_enomem; | 
 |  | 
 | 	anon_vma = find_mergeable_anon_vma(vma); | 
 | 	allocated = NULL; | 
 | 	if (!anon_vma) { | 
 | 		anon_vma = anon_vma_alloc(); | 
 | 		if (unlikely(!anon_vma)) | 
 | 			goto out_enomem_free_avc; | 
 | 		allocated = anon_vma; | 
 | 	} | 
 |  | 
 | 	anon_vma_lock_write(anon_vma); | 
 | 	/* page_table_lock to protect against threads */ | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	if (likely(!vma->anon_vma)) { | 
 | 		vma->anon_vma = anon_vma; | 
 | 		anon_vma_chain_link(vma, avc, anon_vma); | 
 | 		/* vma reference or self-parent link for new root */ | 
 | 		anon_vma->degree++; | 
 | 		allocated = NULL; | 
 | 		avc = NULL; | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	anon_vma_unlock_write(anon_vma); | 
 |  | 
 | 	if (unlikely(allocated)) | 
 | 		put_anon_vma(allocated); | 
 | 	if (unlikely(avc)) | 
 | 		anon_vma_chain_free(avc); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_enomem_free_avc: | 
 | 	anon_vma_chain_free(avc); | 
 |  out_enomem: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a useful helper function for locking the anon_vma root as | 
 |  * we traverse the vma->anon_vma_chain, looping over anon_vma's that | 
 |  * have the same vma. | 
 |  * | 
 |  * Such anon_vma's should have the same root, so you'd expect to see | 
 |  * just a single mutex_lock for the whole traversal. | 
 |  */ | 
 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | 
 | { | 
 | 	struct anon_vma *new_root = anon_vma->root; | 
 | 	if (new_root != root) { | 
 | 		if (WARN_ON_ONCE(root)) | 
 | 			up_write(&root->rwsem); | 
 | 		root = new_root; | 
 | 		down_write(&root->rwsem); | 
 | 	} | 
 | 	return root; | 
 | } | 
 |  | 
 | static inline void unlock_anon_vma_root(struct anon_vma *root) | 
 | { | 
 | 	if (root) | 
 | 		up_write(&root->rwsem); | 
 | } | 
 |  | 
 | /* | 
 |  * Attach the anon_vmas from src to dst. | 
 |  * Returns 0 on success, -ENOMEM on failure. | 
 |  * | 
 |  * If dst->anon_vma is NULL this function tries to find and reuse existing | 
 |  * anon_vma which has no vmas and only one child anon_vma. This prevents | 
 |  * degradation of anon_vma hierarchy to endless linear chain in case of | 
 |  * constantly forking task. On the other hand, an anon_vma with more than one | 
 |  * child isn't reused even if there was no alive vma, thus rmap walker has a | 
 |  * good chance of avoiding scanning the whole hierarchy when it searches where | 
 |  * page is mapped. | 
 |  */ | 
 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | 
 | { | 
 | 	struct anon_vma_chain *avc, *pavc; | 
 | 	struct anon_vma *root = NULL; | 
 |  | 
 | 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { | 
 | 		struct anon_vma *anon_vma; | 
 |  | 
 | 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); | 
 | 		if (unlikely(!avc)) { | 
 | 			unlock_anon_vma_root(root); | 
 | 			root = NULL; | 
 | 			avc = anon_vma_chain_alloc(GFP_KERNEL); | 
 | 			if (!avc) | 
 | 				goto enomem_failure; | 
 | 		} | 
 | 		anon_vma = pavc->anon_vma; | 
 | 		root = lock_anon_vma_root(root, anon_vma); | 
 | 		anon_vma_chain_link(dst, avc, anon_vma); | 
 |  | 
 | 		/* | 
 | 		 * Reuse existing anon_vma if its degree lower than two, | 
 | 		 * that means it has no vma and only one anon_vma child. | 
 | 		 * | 
 | 		 * Do not chose parent anon_vma, otherwise first child | 
 | 		 * will always reuse it. Root anon_vma is never reused: | 
 | 		 * it has self-parent reference and at least one child. | 
 | 		 */ | 
 | 		if (!dst->anon_vma && anon_vma != src->anon_vma && | 
 | 				anon_vma->degree < 2) | 
 | 			dst->anon_vma = anon_vma; | 
 | 	} | 
 | 	if (dst->anon_vma) | 
 | 		dst->anon_vma->degree++; | 
 | 	unlock_anon_vma_root(root); | 
 | 	return 0; | 
 |  | 
 |  enomem_failure: | 
 | 	/* | 
 | 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly | 
 | 	 * decremented in unlink_anon_vmas(). | 
 | 	 * We can safely do this because callers of anon_vma_clone() don't care | 
 | 	 * about dst->anon_vma if anon_vma_clone() failed. | 
 | 	 */ | 
 | 	dst->anon_vma = NULL; | 
 | 	unlink_anon_vmas(dst); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Attach vma to its own anon_vma, as well as to the anon_vmas that | 
 |  * the corresponding VMA in the parent process is attached to. | 
 |  * Returns 0 on success, non-zero on failure. | 
 |  */ | 
 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | 
 | { | 
 | 	struct anon_vma_chain *avc; | 
 | 	struct anon_vma *anon_vma; | 
 | 	int error; | 
 |  | 
 | 	/* Don't bother if the parent process has no anon_vma here. */ | 
 | 	if (!pvma->anon_vma) | 
 | 		return 0; | 
 |  | 
 | 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */ | 
 | 	vma->anon_vma = NULL; | 
 |  | 
 | 	/* | 
 | 	 * First, attach the new VMA to the parent VMA's anon_vmas, | 
 | 	 * so rmap can find non-COWed pages in child processes. | 
 | 	 */ | 
 | 	error = anon_vma_clone(vma, pvma); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* An existing anon_vma has been reused, all done then. */ | 
 | 	if (vma->anon_vma) | 
 | 		return 0; | 
 |  | 
 | 	/* Then add our own anon_vma. */ | 
 | 	anon_vma = anon_vma_alloc(); | 
 | 	if (!anon_vma) | 
 | 		goto out_error; | 
 | 	avc = anon_vma_chain_alloc(GFP_KERNEL); | 
 | 	if (!avc) | 
 | 		goto out_error_free_anon_vma; | 
 |  | 
 | 	/* | 
 | 	 * The root anon_vma's spinlock is the lock actually used when we | 
 | 	 * lock any of the anon_vmas in this anon_vma tree. | 
 | 	 */ | 
 | 	anon_vma->root = pvma->anon_vma->root; | 
 | 	anon_vma->parent = pvma->anon_vma; | 
 | 	/* | 
 | 	 * With refcounts, an anon_vma can stay around longer than the | 
 | 	 * process it belongs to. The root anon_vma needs to be pinned until | 
 | 	 * this anon_vma is freed, because the lock lives in the root. | 
 | 	 */ | 
 | 	get_anon_vma(anon_vma->root); | 
 | 	/* Mark this anon_vma as the one where our new (COWed) pages go. */ | 
 | 	vma->anon_vma = anon_vma; | 
 | 	anon_vma_lock_write(anon_vma); | 
 | 	anon_vma_chain_link(vma, avc, anon_vma); | 
 | 	anon_vma->parent->degree++; | 
 | 	anon_vma_unlock_write(anon_vma); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_error_free_anon_vma: | 
 | 	put_anon_vma(anon_vma); | 
 |  out_error: | 
 | 	unlink_anon_vmas(vma); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void unlink_anon_vmas(struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma_chain *avc, *next; | 
 | 	struct anon_vma *root = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Unlink each anon_vma chained to the VMA.  This list is ordered | 
 | 	 * from newest to oldest, ensuring the root anon_vma gets freed last. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
 | 		struct anon_vma *anon_vma = avc->anon_vma; | 
 |  | 
 | 		root = lock_anon_vma_root(root, anon_vma); | 
 | 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); | 
 |  | 
 | 		/* | 
 | 		 * Leave empty anon_vmas on the list - we'll need | 
 | 		 * to free them outside the lock. | 
 | 		 */ | 
 | 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { | 
 | 			anon_vma->parent->degree--; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		list_del(&avc->same_vma); | 
 | 		anon_vma_chain_free(avc); | 
 | 	} | 
 | 	if (vma->anon_vma) | 
 | 		vma->anon_vma->degree--; | 
 | 	unlock_anon_vma_root(root); | 
 |  | 
 | 	/* | 
 | 	 * Iterate the list once more, it now only contains empty and unlinked | 
 | 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | 
 | 	 * needing to write-acquire the anon_vma->root->rwsem. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
 | 		struct anon_vma *anon_vma = avc->anon_vma; | 
 |  | 
 | 		VM_WARN_ON(anon_vma->degree); | 
 | 		put_anon_vma(anon_vma); | 
 |  | 
 | 		list_del(&avc->same_vma); | 
 | 		anon_vma_chain_free(avc); | 
 | 	} | 
 | } | 
 |  | 
 | static void anon_vma_ctor(void *data) | 
 | { | 
 | 	struct anon_vma *anon_vma = data; | 
 |  | 
 | 	init_rwsem(&anon_vma->rwsem); | 
 | 	atomic_set(&anon_vma->refcount, 0); | 
 | 	anon_vma->rb_root = RB_ROOT_CACHED; | 
 | } | 
 |  | 
 | void __init anon_vma_init(void) | 
 | { | 
 | 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 
 | 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, | 
 | 			anon_vma_ctor); | 
 | 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | 
 | 			SLAB_PANIC|SLAB_ACCOUNT); | 
 | } | 
 |  | 
 | /* | 
 |  * Getting a lock on a stable anon_vma from a page off the LRU is tricky! | 
 |  * | 
 |  * Since there is no serialization what so ever against page_remove_rmap() | 
 |  * the best this function can do is return a locked anon_vma that might | 
 |  * have been relevant to this page. | 
 |  * | 
 |  * The page might have been remapped to a different anon_vma or the anon_vma | 
 |  * returned may already be freed (and even reused). | 
 |  * | 
 |  * In case it was remapped to a different anon_vma, the new anon_vma will be a | 
 |  * child of the old anon_vma, and the anon_vma lifetime rules will therefore | 
 |  * ensure that any anon_vma obtained from the page will still be valid for as | 
 |  * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | 
 |  * | 
 |  * All users of this function must be very careful when walking the anon_vma | 
 |  * chain and verify that the page in question is indeed mapped in it | 
 |  * [ something equivalent to page_mapped_in_vma() ]. | 
 |  * | 
 |  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | 
 |  * that the anon_vma pointer from page->mapping is valid if there is a | 
 |  * mapcount, we can dereference the anon_vma after observing those. | 
 |  */ | 
 | struct anon_vma *page_get_anon_vma(struct page *page) | 
 | { | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	unsigned long anon_mapping; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	anon_mapping = (unsigned long)READ_ONCE(page->mapping); | 
 | 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
 | 		goto out; | 
 | 	if (!page_mapped(page)) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
 | 	if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
 | 		anon_vma = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this page is still mapped, then its anon_vma cannot have been | 
 | 	 * freed.  But if it has been unmapped, we have no security against the | 
 | 	 * anon_vma structure being freed and reused (for another anon_vma: | 
 | 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() | 
 | 	 * above cannot corrupt). | 
 | 	 */ | 
 | 	if (!page_mapped(page)) { | 
 | 		rcu_read_unlock(); | 
 | 		put_anon_vma(anon_vma); | 
 | 		return NULL; | 
 | 	} | 
 | out: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | /* | 
 |  * Similar to page_get_anon_vma() except it locks the anon_vma. | 
 |  * | 
 |  * Its a little more complex as it tries to keep the fast path to a single | 
 |  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | 
 |  * reference like with page_get_anon_vma() and then block on the mutex. | 
 |  */ | 
 | struct anon_vma *page_lock_anon_vma_read(struct page *page) | 
 | { | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	struct anon_vma *root_anon_vma; | 
 | 	unsigned long anon_mapping; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	anon_mapping = (unsigned long)READ_ONCE(page->mapping); | 
 | 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
 | 		goto out; | 
 | 	if (!page_mapped(page)) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
 | 	root_anon_vma = READ_ONCE(anon_vma->root); | 
 | 	if (down_read_trylock(&root_anon_vma->rwsem)) { | 
 | 		/* | 
 | 		 * If the page is still mapped, then this anon_vma is still | 
 | 		 * its anon_vma, and holding the mutex ensures that it will | 
 | 		 * not go away, see anon_vma_free(). | 
 | 		 */ | 
 | 		if (!page_mapped(page)) { | 
 | 			up_read(&root_anon_vma->rwsem); | 
 | 			anon_vma = NULL; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* trylock failed, we got to sleep */ | 
 | 	if (!atomic_inc_not_zero(&anon_vma->refcount)) { | 
 | 		anon_vma = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!page_mapped(page)) { | 
 | 		rcu_read_unlock(); | 
 | 		put_anon_vma(anon_vma); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* we pinned the anon_vma, its safe to sleep */ | 
 | 	rcu_read_unlock(); | 
 | 	anon_vma_lock_read(anon_vma); | 
 |  | 
 | 	if (atomic_dec_and_test(&anon_vma->refcount)) { | 
 | 		/* | 
 | 		 * Oops, we held the last refcount, release the lock | 
 | 		 * and bail -- can't simply use put_anon_vma() because | 
 | 		 * we'll deadlock on the anon_vma_lock_write() recursion. | 
 | 		 */ | 
 | 		anon_vma_unlock_read(anon_vma); | 
 | 		__put_anon_vma(anon_vma); | 
 | 		anon_vma = NULL; | 
 | 	} | 
 |  | 
 | 	return anon_vma; | 
 |  | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) | 
 | { | 
 | 	anon_vma_unlock_read(anon_vma); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH | 
 | /* | 
 |  * Flush TLB entries for recently unmapped pages from remote CPUs. It is | 
 |  * important if a PTE was dirty when it was unmapped that it's flushed | 
 |  * before any IO is initiated on the page to prevent lost writes. Similarly, | 
 |  * it must be flushed before freeing to prevent data leakage. | 
 |  */ | 
 | void try_to_unmap_flush(void) | 
 | { | 
 | 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
 |  | 
 | 	if (!tlb_ubc->flush_required) | 
 | 		return; | 
 |  | 
 | 	arch_tlbbatch_flush(&tlb_ubc->arch); | 
 | 	tlb_ubc->flush_required = false; | 
 | 	tlb_ubc->writable = false; | 
 | } | 
 |  | 
 | /* Flush iff there are potentially writable TLB entries that can race with IO */ | 
 | void try_to_unmap_flush_dirty(void) | 
 | { | 
 | 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
 |  | 
 | 	if (tlb_ubc->writable) | 
 | 		try_to_unmap_flush(); | 
 | } | 
 |  | 
 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) | 
 | { | 
 | 	struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | 
 |  | 
 | 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); | 
 | 	tlb_ubc->flush_required = true; | 
 |  | 
 | 	/* | 
 | 	 * Ensure compiler does not re-order the setting of tlb_flush_batched | 
 | 	 * before the PTE is cleared. | 
 | 	 */ | 
 | 	barrier(); | 
 | 	mm->tlb_flush_batched = true; | 
 |  | 
 | 	/* | 
 | 	 * If the PTE was dirty then it's best to assume it's writable. The | 
 | 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | 
 | 	 * before the page is queued for IO. | 
 | 	 */ | 
 | 	if (writable) | 
 | 		tlb_ubc->writable = true; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the TLB flush should be deferred to the end of a batch of | 
 |  * unmap operations to reduce IPIs. | 
 |  */ | 
 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
 | { | 
 | 	bool should_defer = false; | 
 |  | 
 | 	if (!(flags & TTU_BATCH_FLUSH)) | 
 | 		return false; | 
 |  | 
 | 	/* If remote CPUs need to be flushed then defer batch the flush */ | 
 | 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | 
 | 		should_defer = true; | 
 | 	put_cpu(); | 
 |  | 
 | 	return should_defer; | 
 | } | 
 |  | 
 | /* | 
 |  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | 
 |  * releasing the PTL if TLB flushes are batched. It's possible for a parallel | 
 |  * operation such as mprotect or munmap to race between reclaim unmapping | 
 |  * the page and flushing the page. If this race occurs, it potentially allows | 
 |  * access to data via a stale TLB entry. Tracking all mm's that have TLB | 
 |  * batching in flight would be expensive during reclaim so instead track | 
 |  * whether TLB batching occurred in the past and if so then do a flush here | 
 |  * if required. This will cost one additional flush per reclaim cycle paid | 
 |  * by the first operation at risk such as mprotect and mumap. | 
 |  * | 
 |  * This must be called under the PTL so that an access to tlb_flush_batched | 
 |  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | 
 |  * via the PTL. | 
 |  */ | 
 | void flush_tlb_batched_pending(struct mm_struct *mm) | 
 | { | 
 | 	if (mm->tlb_flush_batched) { | 
 | 		flush_tlb_mm(mm); | 
 |  | 
 | 		/* | 
 | 		 * Do not allow the compiler to re-order the clearing of | 
 | 		 * tlb_flush_batched before the tlb is flushed. | 
 | 		 */ | 
 | 		barrier(); | 
 | 		mm->tlb_flush_batched = false; | 
 | 	} | 
 | } | 
 | #else | 
 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) | 
 | { | 
 | } | 
 |  | 
 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | 
 |  | 
 | /* | 
 |  * At what user virtual address is page expected in vma? | 
 |  * Caller should check the page is actually part of the vma. | 
 |  */ | 
 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned long address; | 
 | 	if (PageAnon(page)) { | 
 | 		struct anon_vma *page__anon_vma = page_anon_vma(page); | 
 | 		/* | 
 | 		 * Note: swapoff's unuse_vma() is more efficient with this | 
 | 		 * check, and needs it to match anon_vma when KSM is active. | 
 | 		 */ | 
 | 		if (!vma->anon_vma || !page__anon_vma || | 
 | 		    vma->anon_vma->root != page__anon_vma->root) | 
 | 			return -EFAULT; | 
 | 	} else if (page->mapping) { | 
 | 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | 
 | 			return -EFAULT; | 
 | 	} else | 
 | 		return -EFAULT; | 
 | 	address = __vma_address(page, vma); | 
 | 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | 
 | 		return -EFAULT; | 
 | 	return address; | 
 | } | 
 |  | 
 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd = NULL; | 
 | 	pmd_t pmde; | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		goto out; | 
 |  | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (!p4d_present(*p4d)) | 
 | 		goto out; | 
 |  | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		goto out; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	/* | 
 | 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() | 
 | 	 * without holding anon_vma lock for write.  So when looking for a | 
 | 	 * genuine pmde (in which to find pte), test present and !THP together. | 
 | 	 */ | 
 | 	pmde = *pmd; | 
 | 	barrier(); | 
 | 	if (!pmd_present(pmde) || pmd_trans_huge(pmde)) | 
 | 		pmd = NULL; | 
 | out: | 
 | 	return pmd; | 
 | } | 
 |  | 
 | struct page_referenced_arg { | 
 | 	int mapcount; | 
 | 	int referenced; | 
 | 	unsigned long vm_flags; | 
 | 	struct mem_cgroup *memcg; | 
 | }; | 
 | /* | 
 |  * arg: page_referenced_arg will be passed | 
 |  */ | 
 | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, | 
 | 			unsigned long address, void *arg) | 
 | { | 
 | 	struct page_referenced_arg *pra = arg; | 
 | 	struct page_vma_mapped_walk pvmw = { | 
 | 		.page = page, | 
 | 		.vma = vma, | 
 | 		.address = address, | 
 | 	}; | 
 | 	int referenced = 0; | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | 		address = pvmw.address; | 
 |  | 
 | 		if (vma->vm_flags & VM_LOCKED) { | 
 | 			page_vma_mapped_walk_done(&pvmw); | 
 | 			pra->vm_flags |= VM_LOCKED; | 
 | 			return false; /* To break the loop */ | 
 | 		} | 
 |  | 
 | 		if (pvmw.pte) { | 
 | 			if (ptep_clear_flush_young_notify(vma, address, | 
 | 						pvmw.pte)) { | 
 | 				/* | 
 | 				 * Don't treat a reference through | 
 | 				 * a sequentially read mapping as such. | 
 | 				 * If the page has been used in another mapping, | 
 | 				 * we will catch it; if this other mapping is | 
 | 				 * already gone, the unmap path will have set | 
 | 				 * PG_referenced or activated the page. | 
 | 				 */ | 
 | 				if (likely(!(vma->vm_flags & VM_SEQ_READ))) | 
 | 					referenced++; | 
 | 			} | 
 | 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
 | 			if (pmdp_clear_flush_young_notify(vma, address, | 
 | 						pvmw.pmd)) | 
 | 				referenced++; | 
 | 		} else { | 
 | 			/* unexpected pmd-mapped page? */ | 
 | 			WARN_ON_ONCE(1); | 
 | 		} | 
 |  | 
 | 		pra->mapcount--; | 
 | 	} | 
 |  | 
 | 	if (referenced) | 
 | 		clear_page_idle(page); | 
 | 	if (test_and_clear_page_young(page)) | 
 | 		referenced++; | 
 |  | 
 | 	if (referenced) { | 
 | 		pra->referenced++; | 
 | 		pra->vm_flags |= vma->vm_flags; | 
 | 	} | 
 |  | 
 | 	if (!pra->mapcount) | 
 | 		return false; /* To break the loop */ | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) | 
 | { | 
 | 	struct page_referenced_arg *pra = arg; | 
 | 	struct mem_cgroup *memcg = pra->memcg; | 
 |  | 
 | 	if (!mm_match_cgroup(vma->vm_mm, memcg)) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * page_referenced - test if the page was referenced | 
 |  * @page: the page to test | 
 |  * @is_locked: caller holds lock on the page | 
 |  * @memcg: target memory cgroup | 
 |  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page | 
 |  * | 
 |  * Quick test_and_clear_referenced for all mappings to a page, | 
 |  * returns the number of ptes which referenced the page. | 
 |  */ | 
 | int page_referenced(struct page *page, | 
 | 		    int is_locked, | 
 | 		    struct mem_cgroup *memcg, | 
 | 		    unsigned long *vm_flags) | 
 | { | 
 | 	int we_locked = 0; | 
 | 	struct page_referenced_arg pra = { | 
 | 		.mapcount = total_mapcount(page), | 
 | 		.memcg = memcg, | 
 | 	}; | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = page_referenced_one, | 
 | 		.arg = (void *)&pra, | 
 | 		.anon_lock = page_lock_anon_vma_read, | 
 | 	}; | 
 |  | 
 | 	*vm_flags = 0; | 
 | 	if (!page_mapped(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (!page_rmapping(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | 
 | 		we_locked = trylock_page(page); | 
 | 		if (!we_locked) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are reclaiming on behalf of a cgroup, skip | 
 | 	 * counting on behalf of references from different | 
 | 	 * cgroups | 
 | 	 */ | 
 | 	if (memcg) { | 
 | 		rwc.invalid_vma = invalid_page_referenced_vma; | 
 | 	} | 
 |  | 
 | 	rmap_walk(page, &rwc); | 
 | 	*vm_flags = pra.vm_flags; | 
 |  | 
 | 	if (we_locked) | 
 | 		unlock_page(page); | 
 |  | 
 | 	return pra.referenced; | 
 | } | 
 |  | 
 | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, | 
 | 			    unsigned long address, void *arg) | 
 | { | 
 | 	struct page_vma_mapped_walk pvmw = { | 
 | 		.page = page, | 
 | 		.vma = vma, | 
 | 		.address = address, | 
 | 		.flags = PVMW_SYNC, | 
 | 	}; | 
 | 	unsigned long start = address, end; | 
 | 	int *cleaned = arg; | 
 |  | 
 | 	/* | 
 | 	 * We have to assume the worse case ie pmd for invalidation. Note that | 
 | 	 * the page can not be free from this function. | 
 | 	 */ | 
 | 	end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); | 
 | 	mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | 		unsigned long cstart, cend; | 
 | 		int ret = 0; | 
 |  | 
 | 		cstart = address = pvmw.address; | 
 | 		if (pvmw.pte) { | 
 | 			pte_t entry; | 
 | 			pte_t *pte = pvmw.pte; | 
 |  | 
 | 			if (!pte_dirty(*pte) && !pte_write(*pte)) | 
 | 				continue; | 
 |  | 
 | 			flush_cache_page(vma, address, pte_pfn(*pte)); | 
 | 			entry = ptep_clear_flush(vma, address, pte); | 
 | 			entry = pte_wrprotect(entry); | 
 | 			entry = pte_mkclean(entry); | 
 | 			set_pte_at(vma->vm_mm, address, pte, entry); | 
 | 			cend = cstart + PAGE_SIZE; | 
 | 			ret = 1; | 
 | 		} else { | 
 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | 
 | 			pmd_t *pmd = pvmw.pmd; | 
 | 			pmd_t entry; | 
 |  | 
 | 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | 
 | 				continue; | 
 |  | 
 | 			flush_cache_page(vma, address, page_to_pfn(page)); | 
 | 			entry = pmdp_huge_clear_flush(vma, address, pmd); | 
 | 			entry = pmd_wrprotect(entry); | 
 | 			entry = pmd_mkclean(entry); | 
 | 			set_pmd_at(vma->vm_mm, address, pmd, entry); | 
 | 			cstart &= PMD_MASK; | 
 | 			cend = cstart + PMD_SIZE; | 
 | 			ret = 1; | 
 | #else | 
 | 			/* unexpected pmd-mapped page? */ | 
 | 			WARN_ON_ONCE(1); | 
 | #endif | 
 | 		} | 
 |  | 
 | 		if (ret) { | 
 | 			mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend); | 
 | 			(*cleaned)++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) | 
 | { | 
 | 	if (vma->vm_flags & VM_SHARED) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | int page_mkclean(struct page *page) | 
 | { | 
 | 	int cleaned = 0; | 
 | 	struct address_space *mapping; | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.arg = (void *)&cleaned, | 
 | 		.rmap_one = page_mkclean_one, | 
 | 		.invalid_vma = invalid_mkclean_vma, | 
 | 	}; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	if (!page_mapped(page)) | 
 | 		return 0; | 
 |  | 
 | 	mapping = page_mapping(page); | 
 | 	if (!mapping) | 
 | 		return 0; | 
 |  | 
 | 	rmap_walk(page, &rwc); | 
 |  | 
 | 	return cleaned; | 
 | } | 
 | EXPORT_SYMBOL_GPL(page_mkclean); | 
 |  | 
 | /** | 
 |  * page_move_anon_rmap - move a page to our anon_vma | 
 |  * @page:	the page to move to our anon_vma | 
 |  * @vma:	the vma the page belongs to | 
 |  * | 
 |  * When a page belongs exclusively to one process after a COW event, | 
 |  * that page can be moved into the anon_vma that belongs to just that | 
 |  * process, so the rmap code will not search the parent or sibling | 
 |  * processes. | 
 |  */ | 
 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	page = compound_head(page); | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 	VM_BUG_ON_VMA(!anon_vma, vma); | 
 |  | 
 | 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
 | 	/* | 
 | 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | 
 | 	 * simultaneously, so a concurrent reader (eg page_referenced()'s | 
 | 	 * PageAnon()) will not see one without the other. | 
 | 	 */ | 
 | 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | 
 | } | 
 |  | 
 | /** | 
 |  * __page_set_anon_rmap - set up new anonymous rmap | 
 |  * @page:	Page to add to rmap	 | 
 |  * @vma:	VM area to add page to. | 
 |  * @address:	User virtual address of the mapping	 | 
 |  * @exclusive:	the page is exclusively owned by the current process | 
 |  */ | 
 | static void __page_set_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address, int exclusive) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	BUG_ON(!anon_vma); | 
 |  | 
 | 	if (PageAnon(page)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If the page isn't exclusively mapped into this vma, | 
 | 	 * we must use the _oldest_ possible anon_vma for the | 
 | 	 * page mapping! | 
 | 	 */ | 
 | 	if (!exclusive) | 
 | 		anon_vma = anon_vma->root; | 
 |  | 
 | 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
 | 	page->mapping = (struct address_space *) anon_vma; | 
 | 	page->index = linear_page_index(vma, address); | 
 | } | 
 |  | 
 | /** | 
 |  * __page_check_anon_rmap - sanity check anonymous rmap addition | 
 |  * @page:	the page to add the mapping to | 
 |  * @vma:	the vm area in which the mapping is added | 
 |  * @address:	the user virtual address mapped | 
 |  */ | 
 | static void __page_check_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	/* | 
 | 	 * The page's anon-rmap details (mapping and index) are guaranteed to | 
 | 	 * be set up correctly at this point. | 
 | 	 * | 
 | 	 * We have exclusion against page_add_anon_rmap because the caller | 
 | 	 * always holds the page locked, except if called from page_dup_rmap, | 
 | 	 * in which case the page is already known to be setup. | 
 | 	 * | 
 | 	 * We have exclusion against page_add_new_anon_rmap because those pages | 
 | 	 * are initially only visible via the pagetables, and the pte is locked | 
 | 	 * over the call to page_add_new_anon_rmap. | 
 | 	 */ | 
 | 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); | 
 | 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * page_add_anon_rmap - add pte mapping to an anonymous page | 
 |  * @page:	the page to add the mapping to | 
 |  * @vma:	the vm area in which the mapping is added | 
 |  * @address:	the user virtual address mapped | 
 |  * @compound:	charge the page as compound or small page | 
 |  * | 
 |  * The caller needs to hold the pte lock, and the page must be locked in | 
 |  * the anon_vma case: to serialize mapping,index checking after setting, | 
 |  * and to ensure that PageAnon is not being upgraded racily to PageKsm | 
 |  * (but PageKsm is never downgraded to PageAnon). | 
 |  */ | 
 | void page_add_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address, bool compound) | 
 | { | 
 | 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Special version of the above for do_swap_page, which often runs | 
 |  * into pages that are exclusively owned by the current process. | 
 |  * Everybody else should continue to use page_add_anon_rmap above. | 
 |  */ | 
 | void do_page_add_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address, int flags) | 
 | { | 
 | 	bool compound = flags & RMAP_COMPOUND; | 
 | 	bool first; | 
 |  | 
 | 	if (compound) { | 
 | 		atomic_t *mapcount; | 
 | 		VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 		VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
 | 		mapcount = compound_mapcount_ptr(page); | 
 | 		first = atomic_inc_and_test(mapcount); | 
 | 	} else { | 
 | 		first = atomic_inc_and_test(&page->_mapcount); | 
 | 	} | 
 |  | 
 | 	if (first) { | 
 | 		int nr = compound ? hpage_nr_pages(page) : 1; | 
 | 		/* | 
 | 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because | 
 | 		 * these counters are not modified in interrupt context, and | 
 | 		 * pte lock(a spinlock) is held, which implies preemption | 
 | 		 * disabled. | 
 | 		 */ | 
 | 		if (compound) | 
 | 			__inc_node_page_state(page, NR_ANON_THPS); | 
 | 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); | 
 | 	} | 
 | 	if (unlikely(PageKsm(page))) | 
 | 		return; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 |  | 
 | 	/* address might be in next vma when migration races vma_adjust */ | 
 | 	if (first) | 
 | 		__page_set_anon_rmap(page, vma, address, | 
 | 				flags & RMAP_EXCLUSIVE); | 
 | 	else | 
 | 		__page_check_anon_rmap(page, vma, address); | 
 | } | 
 |  | 
 | /** | 
 |  * page_add_new_anon_rmap - add pte mapping to a new anonymous page | 
 |  * @page:	the page to add the mapping to | 
 |  * @vma:	the vm area in which the mapping is added | 
 |  * @address:	the user virtual address mapped | 
 |  * @compound:	charge the page as compound or small page | 
 |  * | 
 |  * Same as page_add_anon_rmap but must only be called on *new* pages. | 
 |  * This means the inc-and-test can be bypassed. | 
 |  * Page does not have to be locked. | 
 |  */ | 
 | void page_add_new_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address, bool compound) | 
 | { | 
 | 	int nr = compound ? hpage_nr_pages(page) : 1; | 
 |  | 
 | 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | 
 | 	__SetPageSwapBacked(page); | 
 | 	if (compound) { | 
 | 		VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
 | 		/* increment count (starts at -1) */ | 
 | 		atomic_set(compound_mapcount_ptr(page), 0); | 
 | 		__inc_node_page_state(page, NR_ANON_THPS); | 
 | 	} else { | 
 | 		/* Anon THP always mapped first with PMD */ | 
 | 		VM_BUG_ON_PAGE(PageTransCompound(page), page); | 
 | 		/* increment count (starts at -1) */ | 
 | 		atomic_set(&page->_mapcount, 0); | 
 | 	} | 
 | 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); | 
 | 	__page_set_anon_rmap(page, vma, address, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * page_add_file_rmap - add pte mapping to a file page | 
 |  * @page: the page to add the mapping to | 
 |  * | 
 |  * The caller needs to hold the pte lock. | 
 |  */ | 
 | void page_add_file_rmap(struct page *page, bool compound) | 
 | { | 
 | 	int i, nr = 1; | 
 |  | 
 | 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | 
 | 	lock_page_memcg(page); | 
 | 	if (compound && PageTransHuge(page)) { | 
 | 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | 
 | 			if (atomic_inc_and_test(&page[i]._mapcount)) | 
 | 				nr++; | 
 | 		} | 
 | 		if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | 
 | 			goto out; | 
 | 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
 | 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED); | 
 | 	} else { | 
 | 		if (PageTransCompound(page) && page_mapping(page)) { | 
 | 			VM_WARN_ON_ONCE(!PageLocked(page)); | 
 |  | 
 | 			SetPageDoubleMap(compound_head(page)); | 
 | 			if (PageMlocked(page)) | 
 | 				clear_page_mlock(compound_head(page)); | 
 | 		} | 
 | 		if (!atomic_inc_and_test(&page->_mapcount)) | 
 | 			goto out; | 
 | 	} | 
 | 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); | 
 | out: | 
 | 	unlock_page_memcg(page); | 
 | } | 
 |  | 
 | static void page_remove_file_rmap(struct page *page, bool compound) | 
 | { | 
 | 	int i, nr = 1; | 
 |  | 
 | 	VM_BUG_ON_PAGE(compound && !PageHead(page), page); | 
 | 	lock_page_memcg(page); | 
 |  | 
 | 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */ | 
 | 	if (unlikely(PageHuge(page))) { | 
 | 		/* hugetlb pages are always mapped with pmds */ | 
 | 		atomic_dec(compound_mapcount_ptr(page)); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* page still mapped by someone else? */ | 
 | 	if (compound && PageTransHuge(page)) { | 
 | 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | 
 | 			if (atomic_add_negative(-1, &page[i]._mapcount)) | 
 | 				nr++; | 
 | 		} | 
 | 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | 
 | 			goto out; | 
 | 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
 | 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED); | 
 | 	} else { | 
 | 		if (!atomic_add_negative(-1, &page->_mapcount)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because | 
 | 	 * these counters are not modified in interrupt context, and | 
 | 	 * pte lock(a spinlock) is held, which implies preemption disabled. | 
 | 	 */ | 
 | 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); | 
 |  | 
 | 	if (unlikely(PageMlocked(page))) | 
 | 		clear_page_mlock(page); | 
 | out: | 
 | 	unlock_page_memcg(page); | 
 | } | 
 |  | 
 | static void page_remove_anon_compound_rmap(struct page *page) | 
 | { | 
 | 	int i, nr; | 
 |  | 
 | 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | 
 | 		return; | 
 |  | 
 | 	/* Hugepages are not counted in NR_ANON_PAGES for now. */ | 
 | 	if (unlikely(PageHuge(page))) | 
 | 		return; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | 
 | 		return; | 
 |  | 
 | 	__dec_node_page_state(page, NR_ANON_THPS); | 
 |  | 
 | 	if (TestClearPageDoubleMap(page)) { | 
 | 		/* | 
 | 		 * Subpages can be mapped with PTEs too. Check how many of | 
 | 		 * themi are still mapped. | 
 | 		 */ | 
 | 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | 
 | 			if (atomic_add_negative(-1, &page[i]._mapcount)) | 
 | 				nr++; | 
 | 		} | 
 | 	} else { | 
 | 		nr = HPAGE_PMD_NR; | 
 | 	} | 
 |  | 
 | 	if (unlikely(PageMlocked(page))) | 
 | 		clear_page_mlock(page); | 
 |  | 
 | 	if (nr) { | 
 | 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); | 
 | 		deferred_split_huge_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * page_remove_rmap - take down pte mapping from a page | 
 |  * @page:	page to remove mapping from | 
 |  * @compound:	uncharge the page as compound or small page | 
 |  * | 
 |  * The caller needs to hold the pte lock. | 
 |  */ | 
 | void page_remove_rmap(struct page *page, bool compound) | 
 | { | 
 | 	if (!PageAnon(page)) | 
 | 		return page_remove_file_rmap(page, compound); | 
 |  | 
 | 	if (compound) | 
 | 		return page_remove_anon_compound_rmap(page); | 
 |  | 
 | 	/* page still mapped by someone else? */ | 
 | 	if (!atomic_add_negative(-1, &page->_mapcount)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because | 
 | 	 * these counters are not modified in interrupt context, and | 
 | 	 * pte lock(a spinlock) is held, which implies preemption disabled. | 
 | 	 */ | 
 | 	__dec_node_page_state(page, NR_ANON_MAPPED); | 
 |  | 
 | 	if (unlikely(PageMlocked(page))) | 
 | 		clear_page_mlock(page); | 
 |  | 
 | 	if (PageTransCompound(page)) | 
 | 		deferred_split_huge_page(compound_head(page)); | 
 |  | 
 | 	/* | 
 | 	 * It would be tidy to reset the PageAnon mapping here, | 
 | 	 * but that might overwrite a racing page_add_anon_rmap | 
 | 	 * which increments mapcount after us but sets mapping | 
 | 	 * before us: so leave the reset to free_hot_cold_page, | 
 | 	 * and remember that it's only reliable while mapped. | 
 | 	 * Leaving it set also helps swapoff to reinstate ptes | 
 | 	 * faster for those pages still in swapcache. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* | 
 |  * @arg: enum ttu_flags will be passed to this argument | 
 |  */ | 
 | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | 
 | 		     unsigned long address, void *arg) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct page_vma_mapped_walk pvmw = { | 
 | 		.page = page, | 
 | 		.vma = vma, | 
 | 		.address = address, | 
 | 	}; | 
 | 	pte_t pteval; | 
 | 	struct page *subpage; | 
 | 	bool ret = true; | 
 | 	unsigned long start = address, end; | 
 | 	enum ttu_flags flags = (enum ttu_flags)arg; | 
 |  | 
 | 	/* munlock has nothing to gain from examining un-locked vmas */ | 
 | 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | 
 | 		return true; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && | 
 | 	    is_zone_device_page(page) && !is_device_private_page(page)) | 
 | 		return true; | 
 |  | 
 | 	if (flags & TTU_SPLIT_HUGE_PMD) { | 
 | 		split_huge_pmd_address(vma, address, | 
 | 				flags & TTU_SPLIT_FREEZE, page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For THP, we have to assume the worse case ie pmd for invalidation. | 
 | 	 * For hugetlb, it could be much worse if we need to do pud | 
 | 	 * invalidation in the case of pmd sharing. | 
 | 	 * | 
 | 	 * Note that the page can not be free in this function as call of | 
 | 	 * try_to_unmap() must hold a reference on the page. | 
 | 	 */ | 
 | 	end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); | 
 | 	if (PageHuge(page)) { | 
 | 		/* | 
 | 		 * If sharing is possible, start and end will be adjusted | 
 | 		 * accordingly. | 
 | 		 */ | 
 | 		adjust_range_if_pmd_sharing_possible(vma, &start, &end); | 
 | 	} | 
 | 	mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); | 
 |  | 
 | 	while (page_vma_mapped_walk(&pvmw)) { | 
 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
 | 		/* PMD-mapped THP migration entry */ | 
 | 		if (!pvmw.pte && (flags & TTU_MIGRATION)) { | 
 | 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | 
 |  | 
 | 			if (!PageAnon(page)) | 
 | 				continue; | 
 |  | 
 | 			set_pmd_migration_entry(&pvmw, page); | 
 | 			continue; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * If the page is mlock()d, we cannot swap it out. | 
 | 		 * If it's recently referenced (perhaps page_referenced | 
 | 		 * skipped over this mm) then we should reactivate it. | 
 | 		 */ | 
 | 		if (!(flags & TTU_IGNORE_MLOCK)) { | 
 | 			if (vma->vm_flags & VM_LOCKED) { | 
 | 				/* PTE-mapped THP are never mlocked */ | 
 | 				if (!PageTransCompound(page)) { | 
 | 					/* | 
 | 					 * Holding pte lock, we do *not* need | 
 | 					 * mmap_sem here | 
 | 					 */ | 
 | 					mlock_vma_page(page); | 
 | 				} | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 | 			if (flags & TTU_MUNLOCK) | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		/* Unexpected PMD-mapped THP? */ | 
 | 		VM_BUG_ON_PAGE(!pvmw.pte, page); | 
 |  | 
 | 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | 
 | 		address = pvmw.address; | 
 |  | 
 | 		if (PageHuge(page)) { | 
 | 			if (huge_pmd_unshare(mm, &address, pvmw.pte)) { | 
 | 				/* | 
 | 				 * huge_pmd_unshare unmapped an entire PMD | 
 | 				 * page.  There is no way of knowing exactly | 
 | 				 * which PMDs may be cached for this mm, so | 
 | 				 * we must flush them all.  start/end were | 
 | 				 * already adjusted above to cover this range. | 
 | 				 */ | 
 | 				flush_cache_range(vma, start, end); | 
 | 				flush_tlb_range(vma, start, end); | 
 | 				mmu_notifier_invalidate_range(mm, start, end); | 
 |  | 
 | 				/* | 
 | 				 * The ref count of the PMD page was dropped | 
 | 				 * which is part of the way map counting | 
 | 				 * is done for shared PMDs.  Return 'true' | 
 | 				 * here.  When there is no other sharing, | 
 | 				 * huge_pmd_unshare returns false and we will | 
 | 				 * unmap the actual page and drop map count | 
 | 				 * to zero. | 
 | 				 */ | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (IS_ENABLED(CONFIG_MIGRATION) && | 
 | 		    (flags & TTU_MIGRATION) && | 
 | 		    is_zone_device_page(page)) { | 
 | 			swp_entry_t entry; | 
 | 			pte_t swp_pte; | 
 |  | 
 | 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); | 
 |  | 
 | 			/* | 
 | 			 * Store the pfn of the page in a special migration | 
 | 			 * pte. do_swap_page() will wait until the migration | 
 | 			 * pte is removed and then restart fault handling. | 
 | 			 */ | 
 | 			entry = make_migration_entry(page, 0); | 
 | 			swp_pte = swp_entry_to_pte(entry); | 
 | 			if (pte_soft_dirty(pteval)) | 
 | 				swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | 
 | 			goto discard; | 
 | 		} | 
 |  | 
 | 		if (!(flags & TTU_IGNORE_ACCESS)) { | 
 | 			if (ptep_clear_flush_young_notify(vma, address, | 
 | 						pvmw.pte)) { | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Nuke the page table entry. */ | 
 | 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | 
 | 		if (should_defer_flush(mm, flags)) { | 
 | 			/* | 
 | 			 * We clear the PTE but do not flush so potentially | 
 | 			 * a remote CPU could still be writing to the page. | 
 | 			 * If the entry was previously clean then the | 
 | 			 * architecture must guarantee that a clear->dirty | 
 | 			 * transition on a cached TLB entry is written through | 
 | 			 * and traps if the PTE is unmapped. | 
 | 			 */ | 
 | 			pteval = ptep_get_and_clear(mm, address, pvmw.pte); | 
 |  | 
 | 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | 
 | 		} else { | 
 | 			pteval = ptep_clear_flush(vma, address, pvmw.pte); | 
 | 		} | 
 |  | 
 | 		/* Move the dirty bit to the page. Now the pte is gone. */ | 
 | 		if (pte_dirty(pteval)) | 
 | 			set_page_dirty(page); | 
 |  | 
 | 		/* Update high watermark before we lower rss */ | 
 | 		update_hiwater_rss(mm); | 
 |  | 
 | 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { | 
 | 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | 
 | 			if (PageHuge(page)) { | 
 | 				int nr = 1 << compound_order(page); | 
 | 				hugetlb_count_sub(nr, mm); | 
 | 				set_huge_swap_pte_at(mm, address, | 
 | 						     pvmw.pte, pteval, | 
 | 						     vma_mmu_pagesize(vma)); | 
 | 			} else { | 
 | 				dec_mm_counter(mm, mm_counter(page)); | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 			} | 
 |  | 
 | 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | 
 | 			/* | 
 | 			 * The guest indicated that the page content is of no | 
 | 			 * interest anymore. Simply discard the pte, vmscan | 
 | 			 * will take care of the rest. | 
 | 			 * A future reference will then fault in a new zero | 
 | 			 * page. When userfaultfd is active, we must not drop | 
 | 			 * this page though, as its main user (postcopy | 
 | 			 * migration) will not expect userfaults on already | 
 | 			 * copied pages. | 
 | 			 */ | 
 | 			dec_mm_counter(mm, mm_counter(page)); | 
 | 		} else if (IS_ENABLED(CONFIG_MIGRATION) && | 
 | 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { | 
 | 			swp_entry_t entry; | 
 | 			pte_t swp_pte; | 
 | 			/* | 
 | 			 * Store the pfn of the page in a special migration | 
 | 			 * pte. do_swap_page() will wait until the migration | 
 | 			 * pte is removed and then restart fault handling. | 
 | 			 */ | 
 | 			entry = make_migration_entry(subpage, | 
 | 					pte_write(pteval)); | 
 | 			swp_pte = swp_entry_to_pte(entry); | 
 | 			if (pte_soft_dirty(pteval)) | 
 | 				swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 			set_pte_at(mm, address, pvmw.pte, swp_pte); | 
 | 		} else if (PageAnon(page)) { | 
 | 			swp_entry_t entry = { .val = page_private(subpage) }; | 
 | 			pte_t swp_pte; | 
 | 			/* | 
 | 			 * Store the swap location in the pte. | 
 | 			 * See handle_pte_fault() ... | 
 | 			 */ | 
 | 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { | 
 | 				WARN_ON_ONCE(1); | 
 | 				ret = false; | 
 | 				/* We have to invalidate as we cleared the pte */ | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* MADV_FREE page check */ | 
 | 			if (!PageSwapBacked(page)) { | 
 | 				if (!PageDirty(page)) { | 
 | 					dec_mm_counter(mm, MM_ANONPAGES); | 
 | 					goto discard; | 
 | 				} | 
 |  | 
 | 				/* | 
 | 				 * If the page was redirtied, it cannot be | 
 | 				 * discarded. Remap the page to page table. | 
 | 				 */ | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				SetPageSwapBacked(page); | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (swap_duplicate(entry) < 0) { | 
 | 				set_pte_at(mm, address, pvmw.pte, pteval); | 
 | 				ret = false; | 
 | 				page_vma_mapped_walk_done(&pvmw); | 
 | 				break; | 
 | 			} | 
 | 			if (list_empty(&mm->mmlist)) { | 
 | 				spin_lock(&mmlist_lock); | 
 | 				if (list_empty(&mm->mmlist)) | 
 | 					list_add(&mm->mmlist, &init_mm.mmlist); | 
 | 				spin_unlock(&mmlist_lock); | 
 | 			} | 
 | 			dec_mm_counter(mm, MM_ANONPAGES); | 
 | 			inc_mm_counter(mm, MM_SWAPENTS); | 
 | 			swp_pte = swp_entry_to_pte(entry); | 
 | 			if (pte_soft_dirty(pteval)) | 
 | 				swp_pte = pte_swp_mksoft_dirty(swp_pte); | 
 | 			set_pte_at(mm, address, pvmw.pte, swp_pte); | 
 | 		} else | 
 | 			dec_mm_counter(mm, mm_counter_file(page)); | 
 | discard: | 
 | 		page_remove_rmap(subpage, PageHuge(page)); | 
 | 		put_page(page); | 
 | 		mmu_notifier_invalidate_range(mm, address, | 
 | 					      address + PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | bool is_vma_temporary_stack(struct vm_area_struct *vma) | 
 | { | 
 | 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | 
 |  | 
 | 	if (!maybe_stack) | 
 | 		return false; | 
 |  | 
 | 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | 
 | 						VM_STACK_INCOMPLETE_SETUP) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) | 
 | { | 
 | 	return is_vma_temporary_stack(vma); | 
 | } | 
 |  | 
 | static int page_mapcount_is_zero(struct page *page) | 
 | { | 
 | 	return !total_mapcount(page); | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_unmap - try to remove all page table mappings to a page | 
 |  * @page: the page to get unmapped | 
 |  * @flags: action and flags | 
 |  * | 
 |  * Tries to remove all the page table entries which are mapping this | 
 |  * page, used in the pageout path.  Caller must hold the page lock. | 
 |  * | 
 |  * If unmap is successful, return true. Otherwise, false. | 
 |  */ | 
 | bool try_to_unmap(struct page *page, enum ttu_flags flags) | 
 | { | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = try_to_unmap_one, | 
 | 		.arg = (void *)flags, | 
 | 		.done = page_mapcount_is_zero, | 
 | 		.anon_lock = page_lock_anon_vma_read, | 
 | 	}; | 
 |  | 
 | 	/* | 
 | 	 * During exec, a temporary VMA is setup and later moved. | 
 | 	 * The VMA is moved under the anon_vma lock but not the | 
 | 	 * page tables leading to a race where migration cannot | 
 | 	 * find the migration ptes. Rather than increasing the | 
 | 	 * locking requirements of exec(), migration skips | 
 | 	 * temporary VMAs until after exec() completes. | 
 | 	 */ | 
 | 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) | 
 | 	    && !PageKsm(page) && PageAnon(page)) | 
 | 		rwc.invalid_vma = invalid_migration_vma; | 
 |  | 
 | 	if (flags & TTU_RMAP_LOCKED) | 
 | 		rmap_walk_locked(page, &rwc); | 
 | 	else | 
 | 		rmap_walk(page, &rwc); | 
 |  | 
 | 	return !page_mapcount(page) ? true : false; | 
 | } | 
 |  | 
 | static int page_not_mapped(struct page *page) | 
 | { | 
 | 	return !page_mapped(page); | 
 | }; | 
 |  | 
 | /** | 
 |  * try_to_munlock - try to munlock a page | 
 |  * @page: the page to be munlocked | 
 |  * | 
 |  * Called from munlock code.  Checks all of the VMAs mapping the page | 
 |  * to make sure nobody else has this page mlocked. The page will be | 
 |  * returned with PG_mlocked cleared if no other vmas have it mlocked. | 
 |  */ | 
 |  | 
 | void try_to_munlock(struct page *page) | 
 | { | 
 | 	struct rmap_walk_control rwc = { | 
 | 		.rmap_one = try_to_unmap_one, | 
 | 		.arg = (void *)TTU_MUNLOCK, | 
 | 		.done = page_not_mapped, | 
 | 		.anon_lock = page_lock_anon_vma_read, | 
 |  | 
 | 	}; | 
 |  | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); | 
 | 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); | 
 |  | 
 | 	rmap_walk(page, &rwc); | 
 | } | 
 |  | 
 | void __put_anon_vma(struct anon_vma *anon_vma) | 
 | { | 
 | 	struct anon_vma *root = anon_vma->root; | 
 |  | 
 | 	anon_vma_free(anon_vma); | 
 | 	if (root != anon_vma && atomic_dec_and_test(&root->refcount)) | 
 | 		anon_vma_free(root); | 
 | } | 
 |  | 
 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, | 
 | 					struct rmap_walk_control *rwc) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 |  | 
 | 	if (rwc->anon_lock) | 
 | 		return rwc->anon_lock(page); | 
 |  | 
 | 	/* | 
 | 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | 
 | 	 * because that depends on page_mapped(); but not all its usages | 
 | 	 * are holding mmap_sem. Users without mmap_sem are required to | 
 | 	 * take a reference count to prevent the anon_vma disappearing | 
 | 	 */ | 
 | 	anon_vma = page_anon_vma(page); | 
 | 	if (!anon_vma) | 
 | 		return NULL; | 
 |  | 
 | 	anon_vma_lock_read(anon_vma); | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | /* | 
 |  * rmap_walk_anon - do something to anonymous page using the object-based | 
 |  * rmap method | 
 |  * @page: the page to be handled | 
 |  * @rwc: control variable according to each walk type | 
 |  * | 
 |  * Find all the mappings of a page using the mapping pointer and the vma chains | 
 |  * contained in the anon_vma struct it points to. | 
 |  * | 
 |  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 
 |  * where the page was found will be held for write.  So, we won't recheck | 
 |  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be | 
 |  * LOCKED. | 
 |  */ | 
 | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, | 
 | 		bool locked) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 | 	pgoff_t pgoff_start, pgoff_end; | 
 | 	struct anon_vma_chain *avc; | 
 |  | 
 | 	if (locked) { | 
 | 		anon_vma = page_anon_vma(page); | 
 | 		/* anon_vma disappear under us? */ | 
 | 		VM_BUG_ON_PAGE(!anon_vma, page); | 
 | 	} else { | 
 | 		anon_vma = rmap_walk_anon_lock(page, rwc); | 
 | 	} | 
 | 	if (!anon_vma) | 
 | 		return; | 
 |  | 
 | 	pgoff_start = page_to_pgoff(page); | 
 | 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | 
 | 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | 
 | 			pgoff_start, pgoff_end) { | 
 | 		struct vm_area_struct *vma = avc->vma; | 
 | 		unsigned long address = vma_address(page, vma); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
 | 			continue; | 
 |  | 
 | 		if (!rwc->rmap_one(page, vma, address, rwc->arg)) | 
 | 			break; | 
 | 		if (rwc->done && rwc->done(page)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!locked) | 
 | 		anon_vma_unlock_read(anon_vma); | 
 | } | 
 |  | 
 | /* | 
 |  * rmap_walk_file - do something to file page using the object-based rmap method | 
 |  * @page: the page to be handled | 
 |  * @rwc: control variable according to each walk type | 
 |  * | 
 |  * Find all the mappings of a page using the mapping pointer and the vma chains | 
 |  * contained in the address_space struct it points to. | 
 |  * | 
 |  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 
 |  * where the page was found will be held for write.  So, we won't recheck | 
 |  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be | 
 |  * LOCKED. | 
 |  */ | 
 | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, | 
 | 		bool locked) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	pgoff_t pgoff_start, pgoff_end; | 
 | 	struct vm_area_struct *vma; | 
 |  | 
 | 	/* | 
 | 	 * The page lock not only makes sure that page->mapping cannot | 
 | 	 * suddenly be NULLified by truncation, it makes sure that the | 
 | 	 * structure at mapping cannot be freed and reused yet, | 
 | 	 * so we can safely take mapping->i_mmap_rwsem. | 
 | 	 */ | 
 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 |  | 
 | 	if (!mapping) | 
 | 		return; | 
 |  | 
 | 	pgoff_start = page_to_pgoff(page); | 
 | 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | 
 | 	if (!locked) | 
 | 		i_mmap_lock_read(mapping); | 
 | 	vma_interval_tree_foreach(vma, &mapping->i_mmap, | 
 | 			pgoff_start, pgoff_end) { | 
 | 		unsigned long address = vma_address(page, vma); | 
 |  | 
 | 		cond_resched(); | 
 |  | 
 | 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
 | 			continue; | 
 |  | 
 | 		if (!rwc->rmap_one(page, vma, address, rwc->arg)) | 
 | 			goto done; | 
 | 		if (rwc->done && rwc->done(page)) | 
 | 			goto done; | 
 | 	} | 
 |  | 
 | done: | 
 | 	if (!locked) | 
 | 		i_mmap_unlock_read(mapping); | 
 | } | 
 |  | 
 | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) | 
 | { | 
 | 	if (unlikely(PageKsm(page))) | 
 | 		rmap_walk_ksm(page, rwc); | 
 | 	else if (PageAnon(page)) | 
 | 		rmap_walk_anon(page, rwc, false); | 
 | 	else | 
 | 		rmap_walk_file(page, rwc, false); | 
 | } | 
 |  | 
 | /* Like rmap_walk, but caller holds relevant rmap lock */ | 
 | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) | 
 | { | 
 | 	/* no ksm support for now */ | 
 | 	VM_BUG_ON_PAGE(PageKsm(page), page); | 
 | 	if (PageAnon(page)) | 
 | 		rmap_walk_anon(page, rwc, true); | 
 | 	else | 
 | 		rmap_walk_file(page, rwc, true); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | /* | 
 |  * The following three functions are for anonymous (private mapped) hugepages. | 
 |  * Unlike common anonymous pages, anonymous hugepages have no accounting code | 
 |  * and no lru code, because we handle hugepages differently from common pages. | 
 |  */ | 
 | static void __hugepage_set_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address, int exclusive) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	BUG_ON(!anon_vma); | 
 |  | 
 | 	if (PageAnon(page)) | 
 | 		return; | 
 | 	if (!exclusive) | 
 | 		anon_vma = anon_vma->root; | 
 |  | 
 | 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
 | 	page->mapping = (struct address_space *) anon_vma; | 
 | 	page->index = linear_page_index(vma, address); | 
 | } | 
 |  | 
 | void hugepage_add_anon_rmap(struct page *page, | 
 | 			    struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 | 	int first; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	BUG_ON(!anon_vma); | 
 | 	/* address might be in next vma when migration races vma_adjust */ | 
 | 	first = atomic_inc_and_test(compound_mapcount_ptr(page)); | 
 | 	if (first) | 
 | 		__hugepage_set_anon_rmap(page, vma, address, 0); | 
 | } | 
 |  | 
 | void hugepage_add_new_anon_rmap(struct page *page, | 
 | 			struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 
 | 	atomic_set(compound_mapcount_ptr(page), 0); | 
 | 	__hugepage_set_anon_rmap(page, vma, address, 1); | 
 | } | 
 | #endif /* CONFIG_HUGETLB_PAGE */ |