| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  *    Copyright IBM Corp. 2006 | 
 |  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com> | 
 |  */ | 
 |  | 
 | #include <linux/bootmem.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/init.h> | 
 | #include <linux/list.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/memblock.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/set_memory.h> | 
 |  | 
 | static DEFINE_MUTEX(vmem_mutex); | 
 |  | 
 | struct memory_segment { | 
 | 	struct list_head list; | 
 | 	unsigned long start; | 
 | 	unsigned long size; | 
 | }; | 
 |  | 
 | static LIST_HEAD(mem_segs); | 
 |  | 
 | static void __ref *vmem_alloc_pages(unsigned int order) | 
 | { | 
 | 	unsigned long size = PAGE_SIZE << order; | 
 |  | 
 | 	if (slab_is_available()) | 
 | 		return (void *)__get_free_pages(GFP_KERNEL, order); | 
 | 	return (void *) memblock_alloc(size, size); | 
 | } | 
 |  | 
 | void *vmem_crst_alloc(unsigned long val) | 
 | { | 
 | 	unsigned long *table; | 
 |  | 
 | 	table = vmem_alloc_pages(CRST_ALLOC_ORDER); | 
 | 	if (table) | 
 | 		crst_table_init(table, val); | 
 | 	return table; | 
 | } | 
 |  | 
 | pte_t __ref *vmem_pte_alloc(void) | 
 | { | 
 | 	unsigned long size = PTRS_PER_PTE * sizeof(pte_t); | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (slab_is_available()) | 
 | 		pte = (pte_t *) page_table_alloc(&init_mm); | 
 | 	else | 
 | 		pte = (pte_t *) memblock_alloc(size, size); | 
 | 	if (!pte) | 
 | 		return NULL; | 
 | 	clear_table((unsigned long *) pte, _PAGE_INVALID, size); | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a physical memory range to the 1:1 mapping. | 
 |  */ | 
 | static int vmem_add_mem(unsigned long start, unsigned long size) | 
 | { | 
 | 	unsigned long pgt_prot, sgt_prot, r3_prot; | 
 | 	unsigned long pages4k, pages1m, pages2g; | 
 | 	unsigned long end = start + size; | 
 | 	unsigned long address = start; | 
 | 	pgd_t *pg_dir; | 
 | 	p4d_t *p4_dir; | 
 | 	pud_t *pu_dir; | 
 | 	pmd_t *pm_dir; | 
 | 	pte_t *pt_dir; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	pgt_prot = pgprot_val(PAGE_KERNEL); | 
 | 	sgt_prot = pgprot_val(SEGMENT_KERNEL); | 
 | 	r3_prot = pgprot_val(REGION3_KERNEL); | 
 | 	if (!MACHINE_HAS_NX) { | 
 | 		pgt_prot &= ~_PAGE_NOEXEC; | 
 | 		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC; | 
 | 		r3_prot &= ~_REGION_ENTRY_NOEXEC; | 
 | 	} | 
 | 	pages4k = pages1m = pages2g = 0; | 
 | 	while (address < end) { | 
 | 		pg_dir = pgd_offset_k(address); | 
 | 		if (pgd_none(*pg_dir)) { | 
 | 			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); | 
 | 			if (!p4_dir) | 
 | 				goto out; | 
 | 			pgd_populate(&init_mm, pg_dir, p4_dir); | 
 | 		} | 
 | 		p4_dir = p4d_offset(pg_dir, address); | 
 | 		if (p4d_none(*p4_dir)) { | 
 | 			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); | 
 | 			if (!pu_dir) | 
 | 				goto out; | 
 | 			p4d_populate(&init_mm, p4_dir, pu_dir); | 
 | 		} | 
 | 		pu_dir = pud_offset(p4_dir, address); | 
 | 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address && | 
 | 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) && | 
 | 		     !debug_pagealloc_enabled()) { | 
 | 			pud_val(*pu_dir) = address | r3_prot; | 
 | 			address += PUD_SIZE; | 
 | 			pages2g++; | 
 | 			continue; | 
 | 		} | 
 | 		if (pud_none(*pu_dir)) { | 
 | 			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); | 
 | 			if (!pm_dir) | 
 | 				goto out; | 
 | 			pud_populate(&init_mm, pu_dir, pm_dir); | 
 | 		} | 
 | 		pm_dir = pmd_offset(pu_dir, address); | 
 | 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address && | 
 | 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) && | 
 | 		    !debug_pagealloc_enabled()) { | 
 | 			pmd_val(*pm_dir) = address | sgt_prot; | 
 | 			address += PMD_SIZE; | 
 | 			pages1m++; | 
 | 			continue; | 
 | 		} | 
 | 		if (pmd_none(*pm_dir)) { | 
 | 			pt_dir = vmem_pte_alloc(); | 
 | 			if (!pt_dir) | 
 | 				goto out; | 
 | 			pmd_populate(&init_mm, pm_dir, pt_dir); | 
 | 		} | 
 |  | 
 | 		pt_dir = pte_offset_kernel(pm_dir, address); | 
 | 		pte_val(*pt_dir) = address | pgt_prot; | 
 | 		address += PAGE_SIZE; | 
 | 		pages4k++; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	update_page_count(PG_DIRECT_MAP_4K, pages4k); | 
 | 	update_page_count(PG_DIRECT_MAP_1M, pages1m); | 
 | 	update_page_count(PG_DIRECT_MAP_2G, pages2g); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a physical memory range from the 1:1 mapping. | 
 |  * Currently only invalidates page table entries. | 
 |  */ | 
 | static void vmem_remove_range(unsigned long start, unsigned long size) | 
 | { | 
 | 	unsigned long pages4k, pages1m, pages2g; | 
 | 	unsigned long end = start + size; | 
 | 	unsigned long address = start; | 
 | 	pgd_t *pg_dir; | 
 | 	p4d_t *p4_dir; | 
 | 	pud_t *pu_dir; | 
 | 	pmd_t *pm_dir; | 
 | 	pte_t *pt_dir; | 
 |  | 
 | 	pages4k = pages1m = pages2g = 0; | 
 | 	while (address < end) { | 
 | 		pg_dir = pgd_offset_k(address); | 
 | 		if (pgd_none(*pg_dir)) { | 
 | 			address += PGDIR_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		p4_dir = p4d_offset(pg_dir, address); | 
 | 		if (p4d_none(*p4_dir)) { | 
 | 			address += P4D_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		pu_dir = pud_offset(p4_dir, address); | 
 | 		if (pud_none(*pu_dir)) { | 
 | 			address += PUD_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		if (pud_large(*pu_dir)) { | 
 | 			pud_clear(pu_dir); | 
 | 			address += PUD_SIZE; | 
 | 			pages2g++; | 
 | 			continue; | 
 | 		} | 
 | 		pm_dir = pmd_offset(pu_dir, address); | 
 | 		if (pmd_none(*pm_dir)) { | 
 | 			address += PMD_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		if (pmd_large(*pm_dir)) { | 
 | 			pmd_clear(pm_dir); | 
 | 			address += PMD_SIZE; | 
 | 			pages1m++; | 
 | 			continue; | 
 | 		} | 
 | 		pt_dir = pte_offset_kernel(pm_dir, address); | 
 | 		pte_clear(&init_mm, address, pt_dir); | 
 | 		address += PAGE_SIZE; | 
 | 		pages4k++; | 
 | 	} | 
 | 	flush_tlb_kernel_range(start, end); | 
 | 	update_page_count(PG_DIRECT_MAP_4K, -pages4k); | 
 | 	update_page_count(PG_DIRECT_MAP_1M, -pages1m); | 
 | 	update_page_count(PG_DIRECT_MAP_2G, -pages2g); | 
 | } | 
 |  | 
 | /* | 
 |  * Add a backed mem_map array to the virtual mem_map array. | 
 |  */ | 
 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node) | 
 | { | 
 | 	unsigned long pgt_prot, sgt_prot; | 
 | 	unsigned long address = start; | 
 | 	pgd_t *pg_dir; | 
 | 	p4d_t *p4_dir; | 
 | 	pud_t *pu_dir; | 
 | 	pmd_t *pm_dir; | 
 | 	pte_t *pt_dir; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	pgt_prot = pgprot_val(PAGE_KERNEL); | 
 | 	sgt_prot = pgprot_val(SEGMENT_KERNEL); | 
 | 	if (!MACHINE_HAS_NX) { | 
 | 		pgt_prot &= ~_PAGE_NOEXEC; | 
 | 		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC; | 
 | 	} | 
 | 	for (address = start; address < end;) { | 
 | 		pg_dir = pgd_offset_k(address); | 
 | 		if (pgd_none(*pg_dir)) { | 
 | 			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY); | 
 | 			if (!p4_dir) | 
 | 				goto out; | 
 | 			pgd_populate(&init_mm, pg_dir, p4_dir); | 
 | 		} | 
 |  | 
 | 		p4_dir = p4d_offset(pg_dir, address); | 
 | 		if (p4d_none(*p4_dir)) { | 
 | 			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY); | 
 | 			if (!pu_dir) | 
 | 				goto out; | 
 | 			p4d_populate(&init_mm, p4_dir, pu_dir); | 
 | 		} | 
 |  | 
 | 		pu_dir = pud_offset(p4_dir, address); | 
 | 		if (pud_none(*pu_dir)) { | 
 | 			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY); | 
 | 			if (!pm_dir) | 
 | 				goto out; | 
 | 			pud_populate(&init_mm, pu_dir, pm_dir); | 
 | 		} | 
 |  | 
 | 		pm_dir = pmd_offset(pu_dir, address); | 
 | 		if (pmd_none(*pm_dir)) { | 
 | 			/* Use 1MB frames for vmemmap if available. We always | 
 | 			 * use large frames even if they are only partially | 
 | 			 * used. | 
 | 			 * Otherwise we would have also page tables since | 
 | 			 * vmemmap_populate gets called for each section | 
 | 			 * separately. */ | 
 | 			if (MACHINE_HAS_EDAT1) { | 
 | 				void *new_page; | 
 |  | 
 | 				new_page = vmemmap_alloc_block(PMD_SIZE, node); | 
 | 				if (!new_page) | 
 | 					goto out; | 
 | 				pmd_val(*pm_dir) = __pa(new_page) | sgt_prot; | 
 | 				address = (address + PMD_SIZE) & PMD_MASK; | 
 | 				continue; | 
 | 			} | 
 | 			pt_dir = vmem_pte_alloc(); | 
 | 			if (!pt_dir) | 
 | 				goto out; | 
 | 			pmd_populate(&init_mm, pm_dir, pt_dir); | 
 | 		} else if (pmd_large(*pm_dir)) { | 
 | 			address = (address + PMD_SIZE) & PMD_MASK; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pt_dir = pte_offset_kernel(pm_dir, address); | 
 | 		if (pte_none(*pt_dir)) { | 
 | 			void *new_page; | 
 |  | 
 | 			new_page = vmemmap_alloc_block(PAGE_SIZE, node); | 
 | 			if (!new_page) | 
 | 				goto out; | 
 | 			pte_val(*pt_dir) = __pa(new_page) | pgt_prot; | 
 | 		} | 
 | 		address += PAGE_SIZE; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void vmemmap_free(unsigned long start, unsigned long end) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Add memory segment to the segment list if it doesn't overlap with | 
 |  * an already present segment. | 
 |  */ | 
 | static int insert_memory_segment(struct memory_segment *seg) | 
 | { | 
 | 	struct memory_segment *tmp; | 
 |  | 
 | 	if (seg->start + seg->size > VMEM_MAX_PHYS || | 
 | 	    seg->start + seg->size < seg->start) | 
 | 		return -ERANGE; | 
 |  | 
 | 	list_for_each_entry(tmp, &mem_segs, list) { | 
 | 		if (seg->start >= tmp->start + tmp->size) | 
 | 			continue; | 
 | 		if (seg->start + seg->size <= tmp->start) | 
 | 			continue; | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	list_add(&seg->list, &mem_segs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Remove memory segment from the segment list. | 
 |  */ | 
 | static void remove_memory_segment(struct memory_segment *seg) | 
 | { | 
 | 	list_del(&seg->list); | 
 | } | 
 |  | 
 | static void __remove_shared_memory(struct memory_segment *seg) | 
 | { | 
 | 	remove_memory_segment(seg); | 
 | 	vmem_remove_range(seg->start, seg->size); | 
 | } | 
 |  | 
 | int vmem_remove_mapping(unsigned long start, unsigned long size) | 
 | { | 
 | 	struct memory_segment *seg; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&vmem_mutex); | 
 |  | 
 | 	ret = -ENOENT; | 
 | 	list_for_each_entry(seg, &mem_segs, list) { | 
 | 		if (seg->start == start && seg->size == size) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (seg->start != start || seg->size != size) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | 	__remove_shared_memory(seg); | 
 | 	kfree(seg); | 
 | out: | 
 | 	mutex_unlock(&vmem_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int vmem_add_mapping(unsigned long start, unsigned long size) | 
 | { | 
 | 	struct memory_segment *seg; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&vmem_mutex); | 
 | 	ret = -ENOMEM; | 
 | 	seg = kzalloc(sizeof(*seg), GFP_KERNEL); | 
 | 	if (!seg) | 
 | 		goto out; | 
 | 	seg->start = start; | 
 | 	seg->size = size; | 
 |  | 
 | 	ret = insert_memory_segment(seg); | 
 | 	if (ret) | 
 | 		goto out_free; | 
 |  | 
 | 	ret = vmem_add_mem(start, size); | 
 | 	if (ret) | 
 | 		goto out_remove; | 
 | 	goto out; | 
 |  | 
 | out_remove: | 
 | 	__remove_shared_memory(seg); | 
 | out_free: | 
 | 	kfree(seg); | 
 | out: | 
 | 	mutex_unlock(&vmem_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * map whole physical memory to virtual memory (identity mapping) | 
 |  * we reserve enough space in the vmalloc area for vmemmap to hotplug | 
 |  * additional memory segments. | 
 |  */ | 
 | void __init vmem_map_init(void) | 
 | { | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	for_each_memblock(memory, reg) | 
 | 		vmem_add_mem(reg->base, reg->size); | 
 | 	__set_memory((unsigned long) _stext, | 
 | 		     (_etext - _stext) >> PAGE_SHIFT, | 
 | 		     SET_MEMORY_RO | SET_MEMORY_X); | 
 | 	__set_memory((unsigned long) _etext, | 
 | 		     (_eshared - _etext) >> PAGE_SHIFT, | 
 | 		     SET_MEMORY_RO); | 
 | 	__set_memory((unsigned long) _sinittext, | 
 | 		     (_einittext - _sinittext) >> PAGE_SHIFT, | 
 | 		     SET_MEMORY_RO | SET_MEMORY_X); | 
 | 	pr_info("Write protected kernel read-only data: %luk\n", | 
 | 		(_eshared - _stext) >> 10); | 
 | } | 
 |  | 
 | /* | 
 |  * Convert memblock.memory  to a memory segment list so there is a single | 
 |  * list that contains all memory segments. | 
 |  */ | 
 | static int __init vmem_convert_memory_chunk(void) | 
 | { | 
 | 	struct memblock_region *reg; | 
 | 	struct memory_segment *seg; | 
 |  | 
 | 	mutex_lock(&vmem_mutex); | 
 | 	for_each_memblock(memory, reg) { | 
 | 		seg = kzalloc(sizeof(*seg), GFP_KERNEL); | 
 | 		if (!seg) | 
 | 			panic("Out of memory...\n"); | 
 | 		seg->start = reg->base; | 
 | 		seg->size = reg->size; | 
 | 		insert_memory_segment(seg); | 
 | 	} | 
 | 	mutex_unlock(&vmem_mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | core_initcall(vmem_convert_memory_chunk); |