[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/bsp/lk/lib/libm/math_private.h b/src/bsp/lk/lib/libm/math_private.h
new file mode 100644
index 0000000..86b1f85
--- /dev/null
+++ b/src/bsp/lk/lib/libm/math_private.h
@@ -0,0 +1,757 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * from: @(#)fdlibm.h 5.1 93/09/24
+ * $FreeBSD$
+ */
+
+#ifndef _MATH_PRIVATE_H_
+#define _MATH_PRIVATE_H_
+
+#include <sys/types.h>
+#include <endian.h>
+
+/*
+ * The original fdlibm code used statements like:
+ *  n0 = ((*(int*)&one)>>29)^1;     * index of high word *
+ *  ix0 = *(n0+(int*)&x);           * high word of x *
+ *  ix1 = *((1-n0)+(int*)&x);       * low word of x *
+ * to dig two 32 bit words out of the 64 bit IEEE floating point
+ * value.  That is non-ANSI, and, moreover, the gcc instruction
+ * scheduler gets it wrong.  We instead use the following macros.
+ * Unlike the original code, we determine the endianness at compile
+ * time, not at run time; I don't see much benefit to selecting
+ * endianness at run time.
+ */
+
+/*
+ * A union which permits us to convert between a double and two 32 bit
+ * ints.
+ */
+
+#ifdef __arm__
+#if defined(__VFP_FP__) || defined(__ARM_EABI__)
+#define IEEE_WORD_ORDER BYTE_ORDER
+#else
+#define IEEE_WORD_ORDER BIG_ENDIAN
+#endif
+#else /* __arm__ */
+#define IEEE_WORD_ORDER BYTE_ORDER
+#endif
+
+#if IEEE_WORD_ORDER == BIG_ENDIAN
+
+typedef union {
+    double value;
+    struct {
+        u_int32_t msw;
+        u_int32_t lsw;
+    } parts;
+    struct {
+        u_int64_t w;
+    } xparts;
+} ieee_double_shape_type;
+
+#endif
+
+#if IEEE_WORD_ORDER == LITTLE_ENDIAN
+
+typedef union {
+    double value;
+    struct {
+        u_int32_t lsw;
+        u_int32_t msw;
+    } parts;
+    struct {
+        u_int64_t w;
+    } xparts;
+} ieee_double_shape_type;
+
+#endif
+
+/* Get two 32 bit ints from a double.  */
+
+#define EXTRACT_WORDS(ix0,ix1,d)                \
+do {                                \
+  ieee_double_shape_type ew_u;                  \
+  ew_u.value = (d);                     \
+  (ix0) = ew_u.parts.msw;                   \
+  (ix1) = ew_u.parts.lsw;                   \
+} while (0)
+
+/* Get a 64-bit int from a double. */
+#define EXTRACT_WORD64(ix,d)                    \
+do {                                \
+  ieee_double_shape_type ew_u;                  \
+  ew_u.value = (d);                     \
+  (ix) = ew_u.xparts.w;                     \
+} while (0)
+
+/* Get the more significant 32 bit int from a double.  */
+
+#define GET_HIGH_WORD(i,d)                  \
+do {                                \
+  ieee_double_shape_type gh_u;                  \
+  gh_u.value = (d);                     \
+  (i) = gh_u.parts.msw;                     \
+} while (0)
+
+/* Get the less significant 32 bit int from a double.  */
+
+#define GET_LOW_WORD(i,d)                   \
+do {                                \
+  ieee_double_shape_type gl_u;                  \
+  gl_u.value = (d);                     \
+  (i) = gl_u.parts.lsw;                     \
+} while (0)
+
+/* Set a double from two 32 bit ints.  */
+
+#define INSERT_WORDS(d,ix0,ix1)                 \
+do {                                \
+  ieee_double_shape_type iw_u;                  \
+  iw_u.parts.msw = (ix0);                   \
+  iw_u.parts.lsw = (ix1);                   \
+  (d) = iw_u.value;                     \
+} while (0)
+
+/* Set a double from a 64-bit int. */
+#define INSERT_WORD64(d,ix)                 \
+do {                                \
+  ieee_double_shape_type iw_u;                  \
+  iw_u.xparts.w = (ix);                     \
+  (d) = iw_u.value;                     \
+} while (0)
+
+/* Set the more significant 32 bits of a double from an int.  */
+
+#define SET_HIGH_WORD(d,v)                  \
+do {                                \
+  ieee_double_shape_type sh_u;                  \
+  sh_u.value = (d);                     \
+  sh_u.parts.msw = (v);                     \
+  (d) = sh_u.value;                     \
+} while (0)
+
+/* Set the less significant 32 bits of a double from an int.  */
+
+#define SET_LOW_WORD(d,v)                   \
+do {                                \
+  ieee_double_shape_type sl_u;                  \
+  sl_u.value = (d);                     \
+  sl_u.parts.lsw = (v);                     \
+  (d) = sl_u.value;                     \
+} while (0)
+
+/*
+ * A union which permits us to convert between a float and a 32 bit
+ * int.
+ */
+
+typedef union {
+    float value;
+    /* FIXME: Assumes 32 bit int.  */
+    unsigned int word;
+} ieee_float_shape_type;
+
+/* Get a 32 bit int from a float.  */
+
+#define GET_FLOAT_WORD(i,d)                 \
+do {                                \
+  ieee_float_shape_type gf_u;                   \
+  gf_u.value = (d);                     \
+  (i) = gf_u.word;                      \
+} while (0)
+
+/* Set a float from a 32 bit int.  */
+
+#define SET_FLOAT_WORD(d,i)                 \
+do {                                \
+  ieee_float_shape_type sf_u;                   \
+  sf_u.word = (i);                      \
+  (d) = sf_u.value;                     \
+} while (0)
+
+/*
+ * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
+ * double.
+ */
+
+#define EXTRACT_LDBL80_WORDS(ix0,ix1,d)             \
+do {                                \
+  union IEEEl2bits ew_u;                    \
+  ew_u.e = (d);                         \
+  (ix0) = ew_u.xbits.expsign;                   \
+  (ix1) = ew_u.xbits.man;                   \
+} while (0)
+
+/*
+ * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
+ * long double.
+ */
+
+#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d)            \
+do {                                \
+  union IEEEl2bits ew_u;                    \
+  ew_u.e = (d);                         \
+  (ix0) = ew_u.xbits.expsign;                   \
+  (ix1) = ew_u.xbits.manh;                  \
+  (ix2) = ew_u.xbits.manl;                  \
+} while (0)
+
+/* Get expsign as a 16 bit int from a long double.  */
+
+#define GET_LDBL_EXPSIGN(i,d)                   \
+do {                                \
+  union IEEEl2bits ge_u;                    \
+  ge_u.e = (d);                         \
+  (i) = ge_u.xbits.expsign;                 \
+} while (0)
+
+/*
+ * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
+ * mantissa.
+ */
+
+#define INSERT_LDBL80_WORDS(d,ix0,ix1)              \
+do {                                \
+  union IEEEl2bits iw_u;                    \
+  iw_u.xbits.expsign = (ix0);                   \
+  iw_u.xbits.man = (ix1);                   \
+  (d) = iw_u.e;                         \
+} while (0)
+
+/*
+ * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
+ * comprising the mantissa.
+ */
+
+#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2)         \
+do {                                \
+  union IEEEl2bits iw_u;                    \
+  iw_u.xbits.expsign = (ix0);                   \
+  iw_u.xbits.manh = (ix1);                  \
+  iw_u.xbits.manl = (ix2);                  \
+  (d) = iw_u.e;                         \
+} while (0)
+
+/* Set expsign of a long double from a 16 bit int.  */
+
+#define SET_LDBL_EXPSIGN(d,v)                   \
+do {                                \
+  union IEEEl2bits se_u;                    \
+  se_u.e = (d);                         \
+  se_u.xbits.expsign = (v);                 \
+  (d) = se_u.e;                         \
+} while (0)
+
+#ifdef __i386__
+/* Long double constants are broken on i386. */
+#define LD80C(m, ex, v) {                       \
+    .xbits.man = __CONCAT(m, ULL),                  \
+    .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),  \
+}
+#else
+/* The above works on non-i386 too, but we use this to check v. */
+#define LD80C(m, ex, v) { .e = (v), }
+#endif
+
+#ifdef FLT_EVAL_METHOD
+/*
+ * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
+ */
+#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
+#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
+#else
+#define STRICT_ASSIGN(type, lval, rval) do {    \
+    volatile type __lval;           \
+                        \
+    if (sizeof(type) >= sizeof(long double))    \
+        (lval) = (rval);        \
+    else {                  \
+        __lval = (rval);        \
+        (lval) = __lval;        \
+    }                   \
+} while (0)
+#endif
+#endif /* FLT_EVAL_METHOD */
+
+/* Support switching the mode to FP_PE if necessary. */
+#if defined(__i386__) && !defined(NO_FPSETPREC)
+#define ENTERI()                \
+    long double __retval;           \
+    fp_prec_t __oprec;          \
+                        \
+    if ((__oprec = fpgetprec()) != FP_PE)   \
+        fpsetprec(FP_PE)
+#define RETURNI(x) do {             \
+    __retval = (x);             \
+    if (__oprec != FP_PE)           \
+        fpsetprec(__oprec);     \
+    RETURNF(__retval);          \
+} while (0)
+#else
+#define ENTERI(x)
+#define RETURNI(x)  RETURNF(x)
+#endif
+
+/* Default return statement if hack*_t() is not used. */
+#define      RETURNF(v)      return (v)
+
+/*
+ * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
+ * a == 0, but is slower.
+ */
+#define _2sum(a, b) do {    \
+    __typeof(a) __s, __w;   \
+                \
+    __w = (a) + (b);    \
+    __s = __w - (a);    \
+    (b) = ((a) - (__w - __s)) + ((b) - __s); \
+    (a) = __w;      \
+} while (0)
+
+/*
+ * 2sumF algorithm.
+ *
+ * "Normalize" the terms in the infinite-precision expression a + b for
+ * the sum of 2 floating point values so that b is as small as possible
+ * relative to 'a'.  (The resulting 'a' is the value of the expression in
+ * the same precision as 'a' and the resulting b is the rounding error.)
+ * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
+ * exponent overflow or underflow must not occur.  This uses a Theorem of
+ * Dekker (1971).  See Knuth (1981) 4.2.2 Theorem C.  The name "TwoSum"
+ * is apparently due to Skewchuk (1997).
+ *
+ * For this to always work, assignment of a + b to 'a' must not retain any
+ * extra precision in a + b.  This is required by C standards but broken
+ * in many compilers.  The brokenness cannot be worked around using
+ * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
+ * algorithm would be destroyed by non-null strict assignments.  (The
+ * compilers are correct to be broken -- the efficiency of all floating
+ * point code calculations would be destroyed similarly if they forced the
+ * conversions.)
+ *
+ * Fortunately, a case that works well can usually be arranged by building
+ * any extra precision into the type of 'a' -- 'a' should have type float_t,
+ * double_t or long double.  b's type should be no larger than 'a's type.
+ * Callers should use these types with scopes as large as possible, to
+ * reduce their own extra-precision and efficiciency problems.  In
+ * particular, they shouldn't convert back and forth just to call here.
+ */
+#ifdef DEBUG
+#define _2sumF(a, b) do {               \
+    __typeof(a) __w;                \
+    volatile __typeof(a) __ia, __ib, __r, __vw; \
+                            \
+    __ia = (a);                 \
+    __ib = (b);                 \
+    assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib));    \
+                            \
+    __w = (a) + (b);                \
+    (b) = ((a) - __w) + (b);            \
+    (a) = __w;                  \
+                            \
+    /* The next 2 assertions are weak if (a) is already long double. */ \
+    assert((long double)__ia + __ib == (long double)(a) + (b)); \
+    __vw = __ia + __ib;             \
+    __r = __ia - __vw;              \
+    __r += __ib;                    \
+    assert(__vw == (a) && __r == (b));      \
+} while (0)
+#else /* !DEBUG */
+#define _2sumF(a, b) do {   \
+    __typeof(a) __w;    \
+                \
+    __w = (a) + (b);    \
+    (b) = ((a) - __w) + (b); \
+    (a) = __w;      \
+} while (0)
+#endif /* DEBUG */
+
+/*
+ * Set x += c, where x is represented in extra precision as a + b.
+ * x must be sufficiently normalized and sufficiently larger than c,
+ * and the result is then sufficiently normalized.
+ *
+ * The details of ordering are that |a| must be >= |c| (so that (a, c)
+ * can be normalized without extra work to swap 'a' with c).  The details of
+ * the normalization are that b must be small relative to the normalized 'a'.
+ * Normalization of (a, c) makes the normalized c tiny relative to the
+ * normalized a, so b remains small relative to 'a' in the result.  However,
+ * b need not ever be tiny relative to 'a'.  For example, b might be about
+ * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
+ * That is usually enough, and adding c (which by normalization is about
+ * 2**53 times smaller than a) cannot change b significantly.  However,
+ * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
+ * significantly relative to b.  The caller must ensure that significant
+ * cancellation doesn't occur, either by having c of the same sign as 'a',
+ * or by having |c| a few percent smaller than |a|.  Pre-normalization of
+ * (a, b) may help.
+ *
+ * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
+ * exercise 19).  We gain considerable efficiency by requiring the terms to
+ * be sufficiently normalized and sufficiently increasing.
+ */
+#define _3sumF(a, b, c) do {    \
+    __typeof(a) __tmp;  \
+                \
+    __tmp = (c);        \
+    _2sumF(__tmp, (a)); \
+    (b) += (a);     \
+    (a) = __tmp;        \
+} while (0)
+
+/*
+ * Common routine to process the arguments to nan(), nanf(), and nanl().
+ */
+void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
+
+#ifdef _COMPLEX_H
+
+/*
+ * C99 specifies that complex numbers have the same representation as
+ * an array of two elements, where the first element is the real part
+ * and the second element is the imaginary part.
+ */
+typedef union {
+    float complex f;
+    float a[2];
+} float_complex;
+typedef union {
+    double complex f;
+    double a[2];
+} double_complex;
+typedef union {
+    long double complex f;
+    long double a[2];
+} long_double_complex;
+#define REALPART(z) ((z).a[0])
+#define IMAGPART(z) ((z).a[1])
+
+/*
+ * Inline functions that can be used to construct complex values.
+ *
+ * The C99 standard intends x+I*y to be used for this, but x+I*y is
+ * currently unusable in general since gcc introduces many overflow,
+ * underflow, sign and efficiency bugs by rewriting I*y as
+ * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
+ * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
+ * to -0.0+I*0.0.
+ */
+static __inline float complex
+cpackf(float x, float y)
+{
+    float_complex z;
+
+    REALPART(z) = x;
+    IMAGPART(z) = y;
+    return (z.f);
+}
+
+static __inline double complex
+cpack(double x, double y)
+{
+    double_complex z;
+
+    REALPART(z) = x;
+    IMAGPART(z) = y;
+    return (z.f);
+}
+
+static __inline long double complex
+cpackl(long double x, long double y)
+{
+    long_double_complex z;
+
+    REALPART(z) = x;
+    IMAGPART(z) = y;
+    return (z.f);
+}
+#endif /* _COMPLEX_H */
+
+#ifdef __GNUCLIKE_ASM
+
+/* Asm versions of some functions. */
+
+#ifdef __amd64__
+static __inline int
+irint(double x)
+{
+    int n;
+
+    asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
+    return (n);
+}
+#define HAVE_EFFICIENT_IRINT
+#endif
+
+#ifdef __i386__
+static __inline int
+irint(double x)
+{
+    int n;
+
+    asm("fistl %0" : "=m" (n) : "t" (x));
+    return (n);
+}
+#define HAVE_EFFICIENT_IRINT
+#endif
+
+#if defined(__amd64__) || defined(__i386__)
+static __inline int
+irintl(long double x)
+{
+    int n;
+
+    asm("fistl %0" : "=m" (n) : "t" (x));
+    return (n);
+}
+#define HAVE_EFFICIENT_IRINTL
+#endif
+
+#endif /* __GNUCLIKE_ASM */
+
+#ifdef DEBUG
+#if defined(__amd64__) || defined(__i386__)
+#define breakpoint()    asm("int $3")
+#else
+#include <signal.h>
+
+#define breakpoint()    raise(SIGTRAP)
+#endif
+#endif
+
+/* Write a pari script to test things externally. */
+#ifdef DOPRINT
+#include <stdio.h>
+
+#ifndef DOPRINT_SWIZZLE
+#define DOPRINT_SWIZZLE     0
+#endif
+
+#ifdef DOPRINT_LD80
+
+#define DOPRINT_START(xp) do {                      \
+    uint64_t __lx;                          \
+    uint16_t __hx;                          \
+                                    \
+    /* Hack to give more-problematic args. */           \
+    EXTRACT_LDBL80_WORDS(__hx, __lx, *xp);              \
+    __lx ^= DOPRINT_SWIZZLE;                    \
+    INSERT_LDBL80_WORDS(*xp, __hx, __lx);               \
+    printf("x = %.21Lg; ", (long double)*xp);           \
+} while (0)
+#define DOPRINT_END1(v)                         \
+    printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo)                        \
+    printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",      \
+        (long double)(hi), (long double)(lo))
+
+#elif defined(DOPRINT_D64)
+
+#define DOPRINT_START(xp) do {                      \
+    uint32_t __hx, __lx;                        \
+                                    \
+    EXTRACT_WORDS(__hx, __lx, *xp);                 \
+    __lx ^= DOPRINT_SWIZZLE;                    \
+    INSERT_WORDS(*xp, __hx, __lx);                  \
+    printf("x = %.21Lg; ", (long double)*xp);           \
+} while (0)
+#define DOPRINT_END1(v)                         \
+    printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo)                        \
+    printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",      \
+        (long double)(hi), (long double)(lo))
+
+#elif defined(DOPRINT_F32)
+
+#define DOPRINT_START(xp) do {                      \
+    uint32_t __hx;                          \
+                                    \
+    GET_FLOAT_WORD(__hx, *xp);                  \
+    __hx ^= DOPRINT_SWIZZLE;                    \
+    SET_FLOAT_WORD(*xp, __hx);                  \
+    printf("x = %.21Lg; ", (long double)*xp);           \
+} while (0)
+#define DOPRINT_END1(v)                         \
+    printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo)                        \
+    printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",      \
+        (long double)(hi), (long double)(lo))
+
+#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
+
+#ifndef DOPRINT_SWIZZLE_HIGH
+#define DOPRINT_SWIZZLE_HIGH    0
+#endif
+
+#define DOPRINT_START(xp) do {                      \
+    uint64_t __lx, __llx;                       \
+    uint16_t __hx;                          \
+                                    \
+    EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp);          \
+    __llx ^= DOPRINT_SWIZZLE;                   \
+    __lx ^= DOPRINT_SWIZZLE_HIGH;                   \
+    INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx);           \
+    printf("x = %.36Lg; ", (long double)*xp);                   \
+} while (0)
+#define DOPRINT_END1(v)                         \
+    printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
+#define DOPRINT_END2(hi, lo)                        \
+    printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n",      \
+        (long double)(hi), (long double)(lo))
+
+#endif /* DOPRINT_LD80 */
+
+#else /* !DOPRINT */
+#define DOPRINT_START(xp)
+#define DOPRINT_END1(v)
+#define DOPRINT_END2(hi, lo)
+#endif /* DOPRINT */
+
+#define RETURNP(x) do {         \
+    DOPRINT_END1(x);        \
+    RETURNF(x);         \
+} while (0)
+#define RETURNPI(x) do {        \
+    DOPRINT_END1(x);        \
+    RETURNI(x);         \
+} while (0)
+#define RETURN2P(x, y) do {     \
+    DOPRINT_END2((x), (y));     \
+    RETURNF((x) + (y));     \
+} while (0)
+#define RETURN2PI(x, y) do {        \
+    DOPRINT_END2((x), (y));     \
+    RETURNI((x) + (y));     \
+} while (0)
+#ifdef STRUCT_RETURN
+#define RETURNSP(rp) do {       \
+    if (!(rp)->lo_set)      \
+        RETURNP((rp)->hi);  \
+    RETURN2P((rp)->hi, (rp)->lo);   \
+} while (0)
+#define RETURNSPI(rp) do {      \
+    if (!(rp)->lo_set)      \
+        RETURNPI((rp)->hi); \
+    RETURN2PI((rp)->hi, (rp)->lo);  \
+} while (0)
+#endif
+#define SUM2P(x, y) ({          \
+    const __typeof (x) __x = (x);   \
+    const __typeof (y) __y = (y);   \
+                    \
+    DOPRINT_END2(__x, __y);     \
+    __x + __y;          \
+})
+
+/*
+ * ieee style elementary functions
+ *
+ * We rename functions here to improve other sources' diffability
+ * against fdlibm.
+ */
+#define __ieee754_sqrt  sqrt
+#define __ieee754_acos  acos
+#define __ieee754_acosh acosh
+#define __ieee754_log   log
+#define __ieee754_log2  log2
+#define __ieee754_atanh atanh
+#define __ieee754_asin  asin
+#define __ieee754_atan2 atan2
+#define __ieee754_exp   exp
+#define __ieee754_cosh  cosh
+#define __ieee754_fmod  fmod
+#define __ieee754_pow   pow
+#define __ieee754_lgamma lgamma
+#define __ieee754_gamma gamma
+#define __ieee754_lgamma_r lgamma_r
+#define __ieee754_gamma_r gamma_r
+#define __ieee754_log10 log10
+#define __ieee754_sinh  sinh
+#define __ieee754_hypot hypot
+#define __ieee754_j0    j0
+#define __ieee754_j1    j1
+#define __ieee754_y0    y0
+#define __ieee754_y1    y1
+#define __ieee754_jn    jn
+#define __ieee754_yn    yn
+#define __ieee754_remainder remainder
+#define __ieee754_scalb scalb
+#define __ieee754_sqrtf sqrtf
+#define __ieee754_acosf acosf
+#define __ieee754_acoshf acoshf
+#define __ieee754_logf  logf
+#define __ieee754_atanhf atanhf
+#define __ieee754_asinf asinf
+#define __ieee754_atan2f atan2f
+#define __ieee754_expf  expf
+#define __ieee754_coshf coshf
+#define __ieee754_fmodf fmodf
+#define __ieee754_powf  powf
+#define __ieee754_lgammaf lgammaf
+#define __ieee754_gammaf gammaf
+#define __ieee754_lgammaf_r lgammaf_r
+#define __ieee754_gammaf_r gammaf_r
+#define __ieee754_log10f log10f
+#define __ieee754_log2f log2f
+#define __ieee754_sinhf sinhf
+#define __ieee754_hypotf hypotf
+#define __ieee754_j0f   j0f
+#define __ieee754_j1f   j1f
+#define __ieee754_y0f   y0f
+#define __ieee754_y1f   y1f
+#define __ieee754_jnf   jnf
+#define __ieee754_ynf   ynf
+#define __ieee754_remainderf remainderf
+#define __ieee754_scalbf scalbf
+
+/* fdlibm kernel function */
+int __kernel_rem_pio2(double*,double*,int,int,int);
+
+/* double precision kernel functions */
+#ifndef INLINE_REM_PIO2
+int __ieee754_rem_pio2(double,double*);
+#endif
+double  __kernel_sin(double,double,int);
+double  __kernel_cos(double,double);
+double  __kernel_tan(double,double,int);
+double  __ldexp_exp(double,int);
+#ifdef _COMPLEX_H
+double complex __ldexp_cexp(double complex,int);
+#endif
+
+/* float precision kernel functions */
+#ifndef INLINE_REM_PIO2F
+int __ieee754_rem_pio2f(float,double*);
+#endif
+#ifndef INLINE_KERNEL_SINDF
+float   __kernel_sindf(double);
+#endif
+#ifndef INLINE_KERNEL_COSDF
+float   __kernel_cosdf(double);
+#endif
+#ifndef INLINE_KERNEL_TANDF
+float   __kernel_tandf(double,int);
+#endif
+float   __ldexp_expf(float,int);
+#ifdef _COMPLEX_H
+float complex __ldexp_cexpf(float complex,int);
+#endif
+
+/* long double precision kernel functions */
+long double __kernel_sinl(long double, long double, int);
+long double __kernel_cosl(long double, long double);
+long double __kernel_tanl(long double, long double, int);
+
+#endif /* !_MATH_PRIVATE_H_ */