[Feature]add MT2731_MP2_MR2_SVN388 baseline version
Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/arch/arm/net/Makefile b/src/kernel/linux/v4.14/arch/arm/net/Makefile
new file mode 100644
index 0000000..c2c1084
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/arm/net/Makefile
@@ -0,0 +1,3 @@
+# ARM-specific networking code
+
+obj-$(CONFIG_BPF_JIT) += bpf_jit_32.o
diff --git a/src/kernel/linux/v4.14/arch/arm/net/bpf_jit_32.c b/src/kernel/linux/v4.14/arch/arm/net/bpf_jit_32.c
new file mode 100644
index 0000000..e13aca6
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/arm/net/bpf_jit_32.c
@@ -0,0 +1,1965 @@
+/*
+ * Just-In-Time compiler for eBPF filters on 32bit ARM
+ *
+ * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; version 2 of the License.
+ */
+
+#include <linux/bpf.h>
+#include <linux/bitops.h>
+#include <linux/compiler.h>
+#include <linux/errno.h>
+#include <linux/filter.h>
+#include <linux/netdevice.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/if_vlan.h>
+
+#include <asm/cacheflush.h>
+#include <asm/hwcap.h>
+#include <asm/opcodes.h>
+
+#include "bpf_jit_32.h"
+
+/*
+ * eBPF prog stack layout:
+ *
+ * high
+ * original ARM_SP => +-----+
+ * | | callee saved registers
+ * +-----+ <= (BPF_FP + SCRATCH_SIZE)
+ * | ... | eBPF JIT scratch space
+ * eBPF fp register => +-----+
+ * (BPF_FP) | ... | eBPF prog stack
+ * +-----+
+ * |RSVD | JIT scratchpad
+ * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
+ * | |
+ * | ... | Function call stack
+ * | |
+ * +-----+
+ * low
+ *
+ * The callee saved registers depends on whether frame pointers are enabled.
+ * With frame pointers (to be compliant with the ABI):
+ *
+ * high
+ * original ARM_SP => +------------------+ \
+ * | pc | |
+ * current ARM_FP => +------------------+ } callee saved registers
+ * |r4-r8,r10,fp,ip,lr| |
+ * +------------------+ /
+ * low
+ *
+ * Without frame pointers:
+ *
+ * high
+ * original ARM_SP => +------------------+
+ * | r4-r8,r10,fp,lr | callee saved registers
+ * current ARM_FP => +------------------+
+ * low
+ *
+ * When popping registers off the stack at the end of a BPF function, we
+ * reference them via the current ARM_FP register.
+ */
+#define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
+ 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R10 | \
+ 1 << ARM_FP)
+#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
+#define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
+
+#define STACK_OFFSET(k) (k)
+#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
+#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
+#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
+
+#define FLAG_IMM_OVERFLOW (1 << 0)
+
+/*
+ * Map eBPF registers to ARM 32bit registers or stack scratch space.
+ *
+ * 1. First argument is passed using the arm 32bit registers and rest of the
+ * arguments are passed on stack scratch space.
+ * 2. First callee-saved arugument is mapped to arm 32 bit registers and rest
+ * arguments are mapped to scratch space on stack.
+ * 3. We need two 64 bit temp registers to do complex operations on eBPF
+ * registers.
+ *
+ * As the eBPF registers are all 64 bit registers and arm has only 32 bit
+ * registers, we have to map each eBPF registers with two arm 32 bit regs or
+ * scratch memory space and we have to build eBPF 64 bit register from those.
+ *
+ */
+static const u8 bpf2a32[][2] = {
+ /* return value from in-kernel function, and exit value from eBPF */
+ [BPF_REG_0] = {ARM_R1, ARM_R0},
+ /* arguments from eBPF program to in-kernel function */
+ [BPF_REG_1] = {ARM_R3, ARM_R2},
+ /* Stored on stack scratch space */
+ [BPF_REG_2] = {STACK_OFFSET(0), STACK_OFFSET(4)},
+ [BPF_REG_3] = {STACK_OFFSET(8), STACK_OFFSET(12)},
+ [BPF_REG_4] = {STACK_OFFSET(16), STACK_OFFSET(20)},
+ [BPF_REG_5] = {STACK_OFFSET(24), STACK_OFFSET(28)},
+ /* callee saved registers that in-kernel function will preserve */
+ [BPF_REG_6] = {ARM_R5, ARM_R4},
+ /* Stored on stack scratch space */
+ [BPF_REG_7] = {STACK_OFFSET(32), STACK_OFFSET(36)},
+ [BPF_REG_8] = {STACK_OFFSET(40), STACK_OFFSET(44)},
+ [BPF_REG_9] = {STACK_OFFSET(48), STACK_OFFSET(52)},
+ /* Read only Frame Pointer to access Stack */
+ [BPF_REG_FP] = {STACK_OFFSET(56), STACK_OFFSET(60)},
+ /* Temporary Register for internal BPF JIT, can be used
+ * for constant blindings and others.
+ */
+ [TMP_REG_1] = {ARM_R7, ARM_R6},
+ [TMP_REG_2] = {ARM_R10, ARM_R8},
+ /* Tail call count. Stored on stack scratch space. */
+ [TCALL_CNT] = {STACK_OFFSET(64), STACK_OFFSET(68)},
+ /* temporary register for blinding constants.
+ * Stored on stack scratch space.
+ */
+ [BPF_REG_AX] = {STACK_OFFSET(72), STACK_OFFSET(76)},
+};
+
+#define dst_lo dst[1]
+#define dst_hi dst[0]
+#define src_lo src[1]
+#define src_hi src[0]
+
+/*
+ * JIT Context:
+ *
+ * prog : bpf_prog
+ * idx : index of current last JITed instruction.
+ * prologue_bytes : bytes used in prologue.
+ * epilogue_offset : offset of epilogue starting.
+ * offsets : array of eBPF instruction offsets in
+ * JITed code.
+ * target : final JITed code.
+ * epilogue_bytes : no of bytes used in epilogue.
+ * imm_count : no of immediate counts used for global
+ * variables.
+ * imms : array of global variable addresses.
+ */
+
+struct jit_ctx {
+ const struct bpf_prog *prog;
+ unsigned int idx;
+ unsigned int prologue_bytes;
+ unsigned int epilogue_offset;
+ u32 flags;
+ u32 *offsets;
+ u32 *target;
+ u32 stack_size;
+#if __LINUX_ARM_ARCH__ < 7
+ u16 epilogue_bytes;
+ u16 imm_count;
+ u32 *imms;
+#endif
+};
+
+/*
+ * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
+ * (where the assembly routines like __aeabi_uidiv could cause problems).
+ */
+static u32 jit_udiv32(u32 dividend, u32 divisor)
+{
+ return dividend / divisor;
+}
+
+static u32 jit_mod32(u32 dividend, u32 divisor)
+{
+ return dividend % divisor;
+}
+
+static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
+{
+ inst |= (cond << 28);
+ inst = __opcode_to_mem_arm(inst);
+
+ if (ctx->target != NULL)
+ ctx->target[ctx->idx] = inst;
+
+ ctx->idx++;
+}
+
+/*
+ * Emit an instruction that will be executed unconditionally.
+ */
+static inline void emit(u32 inst, struct jit_ctx *ctx)
+{
+ _emit(ARM_COND_AL, inst, ctx);
+}
+
+/*
+ * Checks if immediate value can be converted to imm12(12 bits) value.
+ */
+static int16_t imm8m(u32 x)
+{
+ u32 rot;
+
+ for (rot = 0; rot < 16; rot++)
+ if ((x & ~ror32(0xff, 2 * rot)) == 0)
+ return rol32(x, 2 * rot) | (rot << 8);
+ return -1;
+}
+
+/*
+ * Initializes the JIT space with undefined instructions.
+ */
+static void jit_fill_hole(void *area, unsigned int size)
+{
+ u32 *ptr;
+ /* We are guaranteed to have aligned memory. */
+ for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
+ *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
+}
+
+#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
+/* EABI requires the stack to be aligned to 64-bit boundaries */
+#define STACK_ALIGNMENT 8
+#else
+/* Stack must be aligned to 32-bit boundaries */
+#define STACK_ALIGNMENT 4
+#endif
+
+/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
+ * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
+ * BPF_REG_FP and Tail call counts.
+ */
+#define SCRATCH_SIZE 80
+
+/* total stack size used in JITed code */
+#define _STACK_SIZE \
+ (ctx->prog->aux->stack_depth + \
+ + SCRATCH_SIZE + \
+ + 4 /* extra for skb_copy_bits buffer */)
+
+#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
+
+/* Get the offset of eBPF REGISTERs stored on scratch space. */
+#define STACK_VAR(off) (STACK_SIZE-off-4)
+
+/* Offset of skb_copy_bits buffer */
+#define SKB_BUFFER STACK_VAR(SCRATCH_SIZE)
+
+#if __LINUX_ARM_ARCH__ < 7
+
+static u16 imm_offset(u32 k, struct jit_ctx *ctx)
+{
+ unsigned int i = 0, offset;
+ u16 imm;
+
+ /* on the "fake" run we just count them (duplicates included) */
+ if (ctx->target == NULL) {
+ ctx->imm_count++;
+ return 0;
+ }
+
+ while ((i < ctx->imm_count) && ctx->imms[i]) {
+ if (ctx->imms[i] == k)
+ break;
+ i++;
+ }
+
+ if (ctx->imms[i] == 0)
+ ctx->imms[i] = k;
+
+ /* constants go just after the epilogue */
+ offset = ctx->offsets[ctx->prog->len - 1] * 4;
+ offset += ctx->prologue_bytes;
+ offset += ctx->epilogue_bytes;
+ offset += i * 4;
+
+ ctx->target[offset / 4] = k;
+
+ /* PC in ARM mode == address of the instruction + 8 */
+ imm = offset - (8 + ctx->idx * 4);
+
+ if (imm & ~0xfff) {
+ /*
+ * literal pool is too far, signal it into flags. we
+ * can only detect it on the second pass unfortunately.
+ */
+ ctx->flags |= FLAG_IMM_OVERFLOW;
+ return 0;
+ }
+
+ return imm;
+}
+
+#endif /* __LINUX_ARM_ARCH__ */
+
+static inline int bpf2a32_offset(int bpf_to, int bpf_from,
+ const struct jit_ctx *ctx) {
+ int to, from;
+
+ if (ctx->target == NULL)
+ return 0;
+ to = ctx->offsets[bpf_to];
+ from = ctx->offsets[bpf_from];
+
+ return to - from - 1;
+}
+
+/*
+ * Move an immediate that's not an imm8m to a core register.
+ */
+static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 7
+ emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
+#else
+ emit(ARM_MOVW(rd, val & 0xffff), ctx);
+ if (val > 0xffff)
+ emit(ARM_MOVT(rd, val >> 16), ctx);
+#endif
+}
+
+static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
+{
+ int imm12 = imm8m(val);
+
+ if (imm12 >= 0)
+ emit(ARM_MOV_I(rd, imm12), ctx);
+ else
+ emit_mov_i_no8m(rd, val, ctx);
+}
+
+static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
+{
+ if (elf_hwcap & HWCAP_THUMB)
+ emit(ARM_BX(tgt_reg), ctx);
+ else
+ emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
+}
+
+static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 5
+ emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
+ emit_bx_r(tgt_reg, ctx);
+#else
+ emit(ARM_BLX_R(tgt_reg), ctx);
+#endif
+}
+
+static inline int epilogue_offset(const struct jit_ctx *ctx)
+{
+ int to, from;
+ /* No need for 1st dummy run */
+ if (ctx->target == NULL)
+ return 0;
+ to = ctx->epilogue_offset;
+ from = ctx->idx;
+
+ return to - from - 2;
+}
+
+static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
+{
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ s32 jmp_offset;
+
+ /* checks if divisor is zero or not. If it is, then
+ * exit directly.
+ */
+ emit(ARM_CMP_I(rn, 0), ctx);
+ _emit(ARM_COND_EQ, ARM_MOV_I(ARM_R0, 0), ctx);
+ jmp_offset = epilogue_offset(ctx);
+ _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
+#if __LINUX_ARM_ARCH__ == 7
+ if (elf_hwcap & HWCAP_IDIVA) {
+ if (op == BPF_DIV)
+ emit(ARM_UDIV(rd, rm, rn), ctx);
+ else {
+ emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
+ emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
+ }
+ return;
+ }
+#endif
+
+ /*
+ * For BPF_ALU | BPF_DIV | BPF_K instructions
+ * As ARM_R1 and ARM_R0 contains 1st argument of bpf
+ * function, we need to save it on caller side to save
+ * it from getting destroyed within callee.
+ * After the return from the callee, we restore ARM_R0
+ * ARM_R1.
+ */
+ if (rn != ARM_R1) {
+ emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
+ emit(ARM_MOV_R(ARM_R1, rn), ctx);
+ }
+ if (rm != ARM_R0) {
+ emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
+ emit(ARM_MOV_R(ARM_R0, rm), ctx);
+ }
+
+ /* Call appropriate function */
+ emit_mov_i(ARM_IP, op == BPF_DIV ?
+ (u32)jit_udiv32 : (u32)jit_mod32, ctx);
+ emit_blx_r(ARM_IP, ctx);
+
+ /* Save return value */
+ if (rd != ARM_R0)
+ emit(ARM_MOV_R(rd, ARM_R0), ctx);
+
+ /* Restore ARM_R0 and ARM_R1 */
+ if (rn != ARM_R1)
+ emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
+ if (rm != ARM_R0)
+ emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
+}
+
+/* Checks whether BPF register is on scratch stack space or not. */
+static inline bool is_on_stack(u8 bpf_reg)
+{
+ static u8 stack_regs[] = {BPF_REG_AX, BPF_REG_3, BPF_REG_4, BPF_REG_5,
+ BPF_REG_7, BPF_REG_8, BPF_REG_9, TCALL_CNT,
+ BPF_REG_2, BPF_REG_FP};
+ int i, reg_len = sizeof(stack_regs);
+
+ for (i = 0 ; i < reg_len ; i++) {
+ if (bpf_reg == stack_regs[i])
+ return true;
+ }
+ return false;
+}
+
+static inline void emit_a32_mov_i(const u8 dst, const u32 val,
+ bool dstk, struct jit_ctx *ctx)
+{
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+
+ if (dstk) {
+ emit_mov_i(tmp[1], val, ctx);
+ emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(dst)), ctx);
+ } else {
+ emit_mov_i(dst, val, ctx);
+ }
+}
+
+/* Sign extended move */
+static inline void emit_a32_mov_i64(const bool is64, const u8 dst[],
+ const u32 val, bool dstk,
+ struct jit_ctx *ctx) {
+ u32 hi = 0;
+
+ if (is64 && (val & (1<<31)))
+ hi = (u32)~0;
+ emit_a32_mov_i(dst_lo, val, dstk, ctx);
+ emit_a32_mov_i(dst_hi, hi, dstk, ctx);
+}
+
+static inline void emit_a32_add_r(const u8 dst, const u8 src,
+ const bool is64, const bool hi,
+ struct jit_ctx *ctx) {
+ /* 64 bit :
+ * adds dst_lo, dst_lo, src_lo
+ * adc dst_hi, dst_hi, src_hi
+ * 32 bit :
+ * add dst_lo, dst_lo, src_lo
+ */
+ if (!hi && is64)
+ emit(ARM_ADDS_R(dst, dst, src), ctx);
+ else if (hi && is64)
+ emit(ARM_ADC_R(dst, dst, src), ctx);
+ else
+ emit(ARM_ADD_R(dst, dst, src), ctx);
+}
+
+static inline void emit_a32_sub_r(const u8 dst, const u8 src,
+ const bool is64, const bool hi,
+ struct jit_ctx *ctx) {
+ /* 64 bit :
+ * subs dst_lo, dst_lo, src_lo
+ * sbc dst_hi, dst_hi, src_hi
+ * 32 bit :
+ * sub dst_lo, dst_lo, src_lo
+ */
+ if (!hi && is64)
+ emit(ARM_SUBS_R(dst, dst, src), ctx);
+ else if (hi && is64)
+ emit(ARM_SBC_R(dst, dst, src), ctx);
+ else
+ emit(ARM_SUB_R(dst, dst, src), ctx);
+}
+
+static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
+ const bool hi, const u8 op, struct jit_ctx *ctx){
+ switch (BPF_OP(op)) {
+ /* dst = dst + src */
+ case BPF_ADD:
+ emit_a32_add_r(dst, src, is64, hi, ctx);
+ break;
+ /* dst = dst - src */
+ case BPF_SUB:
+ emit_a32_sub_r(dst, src, is64, hi, ctx);
+ break;
+ /* dst = dst | src */
+ case BPF_OR:
+ emit(ARM_ORR_R(dst, dst, src), ctx);
+ break;
+ /* dst = dst & src */
+ case BPF_AND:
+ emit(ARM_AND_R(dst, dst, src), ctx);
+ break;
+ /* dst = dst ^ src */
+ case BPF_XOR:
+ emit(ARM_EOR_R(dst, dst, src), ctx);
+ break;
+ /* dst = dst * src */
+ case BPF_MUL:
+ emit(ARM_MUL(dst, dst, src), ctx);
+ break;
+ /* dst = dst << src */
+ case BPF_LSH:
+ emit(ARM_LSL_R(dst, dst, src), ctx);
+ break;
+ /* dst = dst >> src */
+ case BPF_RSH:
+ emit(ARM_LSR_R(dst, dst, src), ctx);
+ break;
+ /* dst = dst >> src (signed)*/
+ case BPF_ARSH:
+ emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
+ break;
+ }
+}
+
+/* ALU operation (32 bit)
+ * dst = dst (op) src
+ */
+static inline void emit_a32_alu_r(const u8 dst, const u8 src,
+ bool dstk, bool sstk,
+ struct jit_ctx *ctx, const bool is64,
+ const bool hi, const u8 op) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ u8 rn = sstk ? tmp[1] : src;
+
+ if (sstk)
+ emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src)), ctx);
+
+ /* ALU operation */
+ if (dstk) {
+ emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
+ emit_alu_r(tmp[0], rn, is64, hi, op, ctx);
+ emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(dst)), ctx);
+ } else {
+ emit_alu_r(dst, rn, is64, hi, op, ctx);
+ }
+}
+
+/* ALU operation (64 bit) */
+static inline void emit_a32_alu_r64(const bool is64, const u8 dst[],
+ const u8 src[], bool dstk,
+ bool sstk, struct jit_ctx *ctx,
+ const u8 op) {
+ emit_a32_alu_r(dst_lo, src_lo, dstk, sstk, ctx, is64, false, op);
+ if (is64)
+ emit_a32_alu_r(dst_hi, src_hi, dstk, sstk, ctx, is64, true, op);
+ else
+ emit_a32_mov_i(dst_hi, 0, dstk, ctx);
+}
+
+/* dst = imm (4 bytes)*/
+static inline void emit_a32_mov_r(const u8 dst, const u8 src,
+ bool dstk, bool sstk,
+ struct jit_ctx *ctx) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ u8 rt = sstk ? tmp[0] : src;
+
+ if (sstk)
+ emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(src)), ctx);
+ if (dstk)
+ emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst)), ctx);
+ else
+ emit(ARM_MOV_R(dst, rt), ctx);
+}
+
+/* dst = src */
+static inline void emit_a32_mov_r64(const bool is64, const u8 dst[],
+ const u8 src[], bool dstk,
+ bool sstk, struct jit_ctx *ctx) {
+ emit_a32_mov_r(dst_lo, src_lo, dstk, sstk, ctx);
+ if (is64) {
+ /* complete 8 byte move */
+ emit_a32_mov_r(dst_hi, src_hi, dstk, sstk, ctx);
+ } else {
+ /* Zero out high 4 bytes */
+ emit_a32_mov_i(dst_hi, 0, dstk, ctx);
+ }
+}
+
+/* Shift operations */
+static inline void emit_a32_alu_i(const u8 dst, const u32 val, bool dstk,
+ struct jit_ctx *ctx, const u8 op) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ u8 rd = dstk ? tmp[0] : dst;
+
+ if (dstk)
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
+
+ /* Do shift operation */
+ switch (op) {
+ case BPF_LSH:
+ emit(ARM_LSL_I(rd, rd, val), ctx);
+ break;
+ case BPF_RSH:
+ emit(ARM_LSR_I(rd, rd, val), ctx);
+ break;
+ case BPF_NEG:
+ emit(ARM_RSB_I(rd, rd, val), ctx);
+ break;
+ }
+
+ if (dstk)
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
+}
+
+/* dst = ~dst (64 bit) */
+static inline void emit_a32_neg64(const u8 dst[], bool dstk,
+ struct jit_ctx *ctx){
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ u8 rd = dstk ? tmp[1] : dst[1];
+ u8 rm = dstk ? tmp[0] : dst[0];
+
+ /* Setup Operand */
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do Negate Operation */
+ emit(ARM_RSBS_I(rd, rd, 0), ctx);
+ emit(ARM_RSC_I(rm, rm, 0), ctx);
+
+ if (dstk) {
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+}
+
+/* dst = dst << src */
+static inline void emit_a32_lsh_r64(const u8 dst[], const u8 src[], bool dstk,
+ bool sstk, struct jit_ctx *ctx) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+
+ /* Setup Operands */
+ u8 rt = sstk ? tmp2[1] : src_lo;
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+
+ if (sstk)
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do LSH operation */
+ emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
+ emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
+ emit(ARM_MOV_SR(ARM_LR, rm, SRTYPE_ASL, rt), ctx);
+ emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd, SRTYPE_ASL, ARM_IP), ctx);
+ emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd, SRTYPE_LSR, tmp2[0]), ctx);
+ emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_ASL, rt), ctx);
+
+ if (dstk) {
+ emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ } else {
+ emit(ARM_MOV_R(rd, ARM_LR), ctx);
+ emit(ARM_MOV_R(rm, ARM_IP), ctx);
+ }
+}
+
+/* dst = dst >> src (signed)*/
+static inline void emit_a32_arsh_r64(const u8 dst[], const u8 src[], bool dstk,
+ bool sstk, struct jit_ctx *ctx) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ /* Setup Operands */
+ u8 rt = sstk ? tmp2[1] : src_lo;
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+
+ if (sstk)
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do the ARSH operation */
+ emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
+ emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
+ emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
+ emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
+ _emit(ARM_COND_MI, ARM_B(0), ctx);
+ emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASR, tmp2[0]), ctx);
+ emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_ASR, rt), ctx);
+ if (dstk) {
+ emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ } else {
+ emit(ARM_MOV_R(rd, ARM_LR), ctx);
+ emit(ARM_MOV_R(rm, ARM_IP), ctx);
+ }
+}
+
+/* dst = dst >> src */
+static inline void emit_a32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
+ bool sstk, struct jit_ctx *ctx) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ /* Setup Operands */
+ u8 rt = sstk ? tmp2[1] : src_lo;
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+
+ if (sstk)
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do RSH operation */
+ emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
+ emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
+ emit(ARM_MOV_SR(ARM_LR, rd, SRTYPE_LSR, rt), ctx);
+ emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_ASL, ARM_IP), ctx);
+ emit(ARM_ORR_SR(ARM_LR, ARM_LR, rm, SRTYPE_LSR, tmp2[0]), ctx);
+ emit(ARM_MOV_SR(ARM_IP, rm, SRTYPE_LSR, rt), ctx);
+ if (dstk) {
+ emit(ARM_STR_I(ARM_LR, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ } else {
+ emit(ARM_MOV_R(rd, ARM_LR), ctx);
+ emit(ARM_MOV_R(rm, ARM_IP), ctx);
+ }
+}
+
+/* dst = dst << val */
+static inline void emit_a32_lsh_i64(const u8 dst[], bool dstk,
+ const u32 val, struct jit_ctx *ctx){
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ /* Setup operands */
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do LSH operation */
+ if (val < 32) {
+ emit(ARM_MOV_SI(tmp2[0], rm, SRTYPE_ASL, val), ctx);
+ emit(ARM_ORR_SI(rm, tmp2[0], rd, SRTYPE_LSR, 32 - val), ctx);
+ emit(ARM_MOV_SI(rd, rd, SRTYPE_ASL, val), ctx);
+ } else {
+ if (val == 32)
+ emit(ARM_MOV_R(rm, rd), ctx);
+ else
+ emit(ARM_MOV_SI(rm, rd, SRTYPE_ASL, val - 32), ctx);
+ emit(ARM_EOR_R(rd, rd, rd), ctx);
+ }
+
+ if (dstk) {
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+}
+
+/* dst = dst >> val */
+static inline void emit_a32_rsh_i64(const u8 dst[], bool dstk,
+ const u32 val, struct jit_ctx *ctx) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ /* Setup operands */
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do LSR operation */
+ if (val == 0) {
+ /* An immediate value of 0 encodes a shift amount of 32
+ * for LSR. To shift by 0, don't do anything.
+ */
+ } else if (val < 32) {
+ emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
+ emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
+ emit(ARM_MOV_SI(rm, rm, SRTYPE_LSR, val), ctx);
+ } else if (val == 32) {
+ emit(ARM_MOV_R(rd, rm), ctx);
+ emit(ARM_MOV_I(rm, 0), ctx);
+ } else {
+ emit(ARM_MOV_SI(rd, rm, SRTYPE_LSR, val - 32), ctx);
+ emit(ARM_MOV_I(rm, 0), ctx);
+ }
+
+ if (dstk) {
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+}
+
+/* dst = dst >> val (signed) */
+static inline void emit_a32_arsh_i64(const u8 dst[], bool dstk,
+ const u32 val, struct jit_ctx *ctx){
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ /* Setup operands */
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Do ARSH operation */
+ if (val == 0) {
+ /* An immediate value of 0 encodes a shift amount of 32
+ * for ASR. To shift by 0, don't do anything.
+ */
+ } else if (val < 32) {
+ emit(ARM_MOV_SI(tmp2[1], rd, SRTYPE_LSR, val), ctx);
+ emit(ARM_ORR_SI(rd, tmp2[1], rm, SRTYPE_ASL, 32 - val), ctx);
+ emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, val), ctx);
+ } else if (val == 32) {
+ emit(ARM_MOV_R(rd, rm), ctx);
+ emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
+ } else {
+ emit(ARM_MOV_SI(rd, rm, SRTYPE_ASR, val - 32), ctx);
+ emit(ARM_MOV_SI(rm, rm, SRTYPE_ASR, 31), ctx);
+ }
+
+ if (dstk) {
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+}
+
+static inline void emit_a32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
+ bool sstk, struct jit_ctx *ctx) {
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ /* Setup operands for multiplication */
+ u8 rd = dstk ? tmp[1] : dst_lo;
+ u8 rm = dstk ? tmp[0] : dst_hi;
+ u8 rt = sstk ? tmp2[1] : src_lo;
+ u8 rn = sstk ? tmp2[0] : src_hi;
+
+ if (dstk) {
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+ if (sstk) {
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)), ctx);
+ emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_hi)), ctx);
+ }
+
+ /* Do Multiplication */
+ emit(ARM_MUL(ARM_IP, rd, rn), ctx);
+ emit(ARM_MUL(ARM_LR, rm, rt), ctx);
+ emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
+
+ emit(ARM_UMULL(ARM_IP, rm, rd, rt), ctx);
+ emit(ARM_ADD_R(rm, ARM_LR, rm), ctx);
+ if (dstk) {
+ emit(ARM_STR_I(ARM_IP, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(rm, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ } else {
+ emit(ARM_MOV_R(rd, ARM_IP), ctx);
+ }
+}
+
+/* *(size *)(dst + off) = src */
+static inline void emit_str_r(const u8 dst, const u8 src, bool dstk,
+ const s32 off, struct jit_ctx *ctx, const u8 sz){
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ u8 rd = dstk ? tmp[1] : dst;
+
+ if (dstk)
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst)), ctx);
+ if (off) {
+ emit_a32_mov_i(tmp[0], off, false, ctx);
+ emit(ARM_ADD_R(tmp[0], rd, tmp[0]), ctx);
+ rd = tmp[0];
+ }
+ switch (sz) {
+ case BPF_W:
+ /* Store a Word */
+ emit(ARM_STR_I(src, rd, 0), ctx);
+ break;
+ case BPF_H:
+ /* Store a HalfWord */
+ emit(ARM_STRH_I(src, rd, 0), ctx);
+ break;
+ case BPF_B:
+ /* Store a Byte */
+ emit(ARM_STRB_I(src, rd, 0), ctx);
+ break;
+ }
+}
+
+/* dst = *(size*)(src + off) */
+static inline void emit_ldx_r(const u8 dst[], const u8 src, bool dstk,
+ s32 off, struct jit_ctx *ctx, const u8 sz){
+ const u8 *tmp = bpf2a32[TMP_REG_2];
+ const u8 *rd = dstk ? tmp : dst;
+ u8 rm = src;
+ s32 off_max;
+
+ if (sz == BPF_H)
+ off_max = 0xff;
+ else
+ off_max = 0xfff;
+
+ if (off < 0 || off > off_max) {
+ emit_a32_mov_i(tmp[0], off, false, ctx);
+ emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
+ rm = tmp[0];
+ off = 0;
+ } else if (rd[1] == rm) {
+ emit(ARM_MOV_R(tmp[0], rm), ctx);
+ rm = tmp[0];
+ }
+ switch (sz) {
+ case BPF_B:
+ /* Load a Byte */
+ emit(ARM_LDRB_I(rd[1], rm, off), ctx);
+ emit_a32_mov_i(dst[0], 0, dstk, ctx);
+ break;
+ case BPF_H:
+ /* Load a HalfWord */
+ emit(ARM_LDRH_I(rd[1], rm, off), ctx);
+ emit_a32_mov_i(dst[0], 0, dstk, ctx);
+ break;
+ case BPF_W:
+ /* Load a Word */
+ emit(ARM_LDR_I(rd[1], rm, off), ctx);
+ emit_a32_mov_i(dst[0], 0, dstk, ctx);
+ break;
+ case BPF_DW:
+ /* Load a Double Word */
+ emit(ARM_LDR_I(rd[1], rm, off), ctx);
+ emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
+ break;
+ }
+ if (dstk)
+ emit(ARM_STR_I(rd[1], ARM_SP, STACK_VAR(dst[1])), ctx);
+ if (dstk && sz == BPF_DW)
+ emit(ARM_STR_I(rd[0], ARM_SP, STACK_VAR(dst[0])), ctx);
+}
+
+/* Arithmatic Operation */
+static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
+ const u8 rn, struct jit_ctx *ctx, u8 op) {
+ switch (op) {
+ case BPF_JSET:
+ emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
+ emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
+ emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
+ break;
+ case BPF_JEQ:
+ case BPF_JNE:
+ case BPF_JGT:
+ case BPF_JGE:
+ case BPF_JLE:
+ case BPF_JLT:
+ emit(ARM_CMP_R(rd, rm), ctx);
+ _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
+ break;
+ case BPF_JSLE:
+ case BPF_JSGT:
+ emit(ARM_CMP_R(rn, rt), ctx);
+ emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
+ break;
+ case BPF_JSLT:
+ case BPF_JSGE:
+ emit(ARM_CMP_R(rt, rn), ctx);
+ emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
+ break;
+ }
+}
+
+static int out_offset = -1; /* initialized on the first pass of build_body() */
+static int emit_bpf_tail_call(struct jit_ctx *ctx)
+{
+
+ /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
+ const u8 *r2 = bpf2a32[BPF_REG_2];
+ const u8 *r3 = bpf2a32[BPF_REG_3];
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ const u8 *tcc = bpf2a32[TCALL_CNT];
+ const int idx0 = ctx->idx;
+#define cur_offset (ctx->idx - idx0)
+#define jmp_offset (out_offset - (cur_offset) - 2)
+ u32 off, lo, hi;
+
+ /* if (index >= array->map.max_entries)
+ * goto out;
+ */
+ off = offsetof(struct bpf_array, map.max_entries);
+ /* array->map.max_entries */
+ emit_a32_mov_i(tmp[1], off, false, ctx);
+ emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
+ emit(ARM_LDR_R(tmp[1], tmp2[1], tmp[1]), ctx);
+ /* index is 32-bit for arrays */
+ emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
+ /* index >= array->map.max_entries */
+ emit(ARM_CMP_R(tmp2[1], tmp[1]), ctx);
+ _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
+
+ /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
+ * goto out;
+ * tail_call_cnt++;
+ */
+ lo = (u32)MAX_TAIL_CALL_CNT;
+ hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
+ emit(ARM_LDR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
+ emit(ARM_LDR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
+ emit(ARM_CMP_I(tmp[0], hi), ctx);
+ _emit(ARM_COND_EQ, ARM_CMP_I(tmp[1], lo), ctx);
+ _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
+ emit(ARM_ADDS_I(tmp[1], tmp[1], 1), ctx);
+ emit(ARM_ADC_I(tmp[0], tmp[0], 0), ctx);
+ emit(ARM_STR_I(tmp[1], ARM_SP, STACK_VAR(tcc[1])), ctx);
+ emit(ARM_STR_I(tmp[0], ARM_SP, STACK_VAR(tcc[0])), ctx);
+
+ /* prog = array->ptrs[index]
+ * if (prog == NULL)
+ * goto out;
+ */
+ off = offsetof(struct bpf_array, ptrs);
+ emit_a32_mov_i(tmp[1], off, false, ctx);
+ emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r2[1])), ctx);
+ emit(ARM_ADD_R(tmp[1], tmp2[1], tmp[1]), ctx);
+ emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(r3[1])), ctx);
+ emit(ARM_MOV_SI(tmp[0], tmp2[1], SRTYPE_ASL, 2), ctx);
+ emit(ARM_LDR_R(tmp[1], tmp[1], tmp[0]), ctx);
+ emit(ARM_CMP_I(tmp[1], 0), ctx);
+ _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
+
+ /* goto *(prog->bpf_func + prologue_size); */
+ off = offsetof(struct bpf_prog, bpf_func);
+ emit_a32_mov_i(tmp2[1], off, false, ctx);
+ emit(ARM_LDR_R(tmp[1], tmp[1], tmp2[1]), ctx);
+ emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
+ emit_bx_r(tmp[1], ctx);
+
+ /* out: */
+ if (out_offset == -1)
+ out_offset = cur_offset;
+ if (cur_offset != out_offset) {
+ pr_err_once("tail_call out_offset = %d, expected %d!\n",
+ cur_offset, out_offset);
+ return -1;
+ }
+ return 0;
+#undef cur_offset
+#undef jmp_offset
+}
+
+/* 0xabcd => 0xcdab */
+static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 6
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+
+ emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
+ emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
+ emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
+ emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
+#else /* ARMv6+ */
+ emit(ARM_REV16(rd, rn), ctx);
+#endif
+}
+
+/* 0xabcdefgh => 0xghefcdab */
+static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
+{
+#if __LINUX_ARM_ARCH__ < 6
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+
+ emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
+ emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
+ emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
+
+ emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
+ emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
+ emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
+ emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
+ emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
+ emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
+ emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
+
+#else /* ARMv6+ */
+ emit(ARM_REV(rd, rn), ctx);
+#endif
+}
+
+// push the scratch stack register on top of the stack
+static inline void emit_push_r64(const u8 src[], const u8 shift,
+ struct jit_ctx *ctx)
+{
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ u16 reg_set = 0;
+
+ emit(ARM_LDR_I(tmp2[1], ARM_SP, STACK_VAR(src[1]+shift)), ctx);
+ emit(ARM_LDR_I(tmp2[0], ARM_SP, STACK_VAR(src[0]+shift)), ctx);
+
+ reg_set = (1 << tmp2[1]) | (1 << tmp2[0]);
+ emit(ARM_PUSH(reg_set), ctx);
+}
+
+static void build_prologue(struct jit_ctx *ctx)
+{
+ const u8 r0 = bpf2a32[BPF_REG_0][1];
+ const u8 r2 = bpf2a32[BPF_REG_1][1];
+ const u8 r3 = bpf2a32[BPF_REG_1][0];
+ const u8 r4 = bpf2a32[BPF_REG_6][1];
+ const u8 fplo = bpf2a32[BPF_REG_FP][1];
+ const u8 fphi = bpf2a32[BPF_REG_FP][0];
+ const u8 *tcc = bpf2a32[TCALL_CNT];
+
+ /* Save callee saved registers. */
+#ifdef CONFIG_FRAME_POINTER
+ u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
+ emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
+ emit(ARM_PUSH(reg_set), ctx);
+ emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
+#else
+ emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
+ emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
+#endif
+ /* Save frame pointer for later */
+ emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
+
+ ctx->stack_size = imm8m(STACK_SIZE);
+
+ /* Set up function call stack */
+ emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
+
+ /* Set up BPF prog stack base register */
+ emit_a32_mov_r(fplo, ARM_IP, true, false, ctx);
+ emit_a32_mov_i(fphi, 0, true, ctx);
+
+ /* mov r4, 0 */
+ emit(ARM_MOV_I(r4, 0), ctx);
+
+ /* Move BPF_CTX to BPF_R1 */
+ emit(ARM_MOV_R(r3, r4), ctx);
+ emit(ARM_MOV_R(r2, r0), ctx);
+ /* Initialize Tail Count */
+ emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[0])), ctx);
+ emit(ARM_STR_I(r4, ARM_SP, STACK_VAR(tcc[1])), ctx);
+ /* end of prologue */
+}
+
+/* restore callee saved registers. */
+static void build_epilogue(struct jit_ctx *ctx)
+{
+#ifdef CONFIG_FRAME_POINTER
+ /* When using frame pointers, some additional registers need to
+ * be loaded. */
+ u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
+ emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
+ emit(ARM_LDM(ARM_SP, reg_set), ctx);
+#else
+ /* Restore callee saved registers. */
+ emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
+ emit(ARM_POP(CALLEE_POP_MASK), ctx);
+#endif
+}
+
+/*
+ * Convert an eBPF instruction to native instruction, i.e
+ * JITs an eBPF instruction.
+ * Returns :
+ * 0 - Successfully JITed an 8-byte eBPF instruction
+ * >0 - Successfully JITed a 16-byte eBPF instruction
+ * <0 - Failed to JIT.
+ */
+static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
+{
+ const u8 code = insn->code;
+ const u8 *dst = bpf2a32[insn->dst_reg];
+ const u8 *src = bpf2a32[insn->src_reg];
+ const u8 *tmp = bpf2a32[TMP_REG_1];
+ const u8 *tmp2 = bpf2a32[TMP_REG_2];
+ const s16 off = insn->off;
+ const s32 imm = insn->imm;
+ const int i = insn - ctx->prog->insnsi;
+ const bool is64 = BPF_CLASS(code) == BPF_ALU64;
+ const bool dstk = is_on_stack(insn->dst_reg);
+ const bool sstk = is_on_stack(insn->src_reg);
+ u8 rd, rt, rm, rn;
+ s32 jmp_offset;
+
+#define check_imm(bits, imm) do { \
+ if ((((imm) > 0) && ((imm) >> (bits))) || \
+ (((imm) < 0) && (~(imm) >> (bits)))) { \
+ pr_info("[%2d] imm=%d(0x%x) out of range\n", \
+ i, imm, imm); \
+ return -EINVAL; \
+ } \
+} while (0)
+#define check_imm24(imm) check_imm(24, imm)
+
+ switch (code) {
+ /* ALU operations */
+
+ /* dst = src */
+ case BPF_ALU | BPF_MOV | BPF_K:
+ case BPF_ALU | BPF_MOV | BPF_X:
+ case BPF_ALU64 | BPF_MOV | BPF_K:
+ case BPF_ALU64 | BPF_MOV | BPF_X:
+ switch (BPF_SRC(code)) {
+ case BPF_X:
+ emit_a32_mov_r64(is64, dst, src, dstk, sstk, ctx);
+ break;
+ case BPF_K:
+ /* Sign-extend immediate value to destination reg */
+ emit_a32_mov_i64(is64, dst, imm, dstk, ctx);
+ break;
+ }
+ break;
+ /* dst = dst + src/imm */
+ /* dst = dst - src/imm */
+ /* dst = dst | src/imm */
+ /* dst = dst & src/imm */
+ /* dst = dst ^ src/imm */
+ /* dst = dst * src/imm */
+ /* dst = dst << src */
+ /* dst = dst >> src */
+ case BPF_ALU | BPF_ADD | BPF_K:
+ case BPF_ALU | BPF_ADD | BPF_X:
+ case BPF_ALU | BPF_SUB | BPF_K:
+ case BPF_ALU | BPF_SUB | BPF_X:
+ case BPF_ALU | BPF_OR | BPF_K:
+ case BPF_ALU | BPF_OR | BPF_X:
+ case BPF_ALU | BPF_AND | BPF_K:
+ case BPF_ALU | BPF_AND | BPF_X:
+ case BPF_ALU | BPF_XOR | BPF_K:
+ case BPF_ALU | BPF_XOR | BPF_X:
+ case BPF_ALU | BPF_MUL | BPF_K:
+ case BPF_ALU | BPF_MUL | BPF_X:
+ case BPF_ALU | BPF_LSH | BPF_X:
+ case BPF_ALU | BPF_RSH | BPF_X:
+ case BPF_ALU | BPF_ARSH | BPF_K:
+ case BPF_ALU | BPF_ARSH | BPF_X:
+ case BPF_ALU64 | BPF_ADD | BPF_K:
+ case BPF_ALU64 | BPF_ADD | BPF_X:
+ case BPF_ALU64 | BPF_SUB | BPF_K:
+ case BPF_ALU64 | BPF_SUB | BPF_X:
+ case BPF_ALU64 | BPF_OR | BPF_K:
+ case BPF_ALU64 | BPF_OR | BPF_X:
+ case BPF_ALU64 | BPF_AND | BPF_K:
+ case BPF_ALU64 | BPF_AND | BPF_X:
+ case BPF_ALU64 | BPF_XOR | BPF_K:
+ case BPF_ALU64 | BPF_XOR | BPF_X:
+ switch (BPF_SRC(code)) {
+ case BPF_X:
+ emit_a32_alu_r64(is64, dst, src, dstk, sstk,
+ ctx, BPF_OP(code));
+ break;
+ case BPF_K:
+ /* Move immediate value to the temporary register
+ * and then do the ALU operation on the temporary
+ * register as this will sign-extend the immediate
+ * value into temporary reg and then it would be
+ * safe to do the operation on it.
+ */
+ emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
+ emit_a32_alu_r64(is64, dst, tmp2, dstk, false,
+ ctx, BPF_OP(code));
+ break;
+ }
+ break;
+ /* dst = dst / src(imm) */
+ /* dst = dst % src(imm) */
+ case BPF_ALU | BPF_DIV | BPF_K:
+ case BPF_ALU | BPF_DIV | BPF_X:
+ case BPF_ALU | BPF_MOD | BPF_K:
+ case BPF_ALU | BPF_MOD | BPF_X:
+ rt = src_lo;
+ rd = dstk ? tmp2[1] : dst_lo;
+ if (dstk)
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ switch (BPF_SRC(code)) {
+ case BPF_X:
+ rt = sstk ? tmp2[0] : rt;
+ if (sstk)
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(src_lo)),
+ ctx);
+ break;
+ case BPF_K:
+ rt = tmp2[0];
+ emit_a32_mov_i(rt, imm, false, ctx);
+ break;
+ }
+ emit_udivmod(rd, rd, rt, ctx, BPF_OP(code));
+ if (dstk)
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit_a32_mov_i(dst_hi, 0, dstk, ctx);
+ break;
+ case BPF_ALU64 | BPF_DIV | BPF_K:
+ case BPF_ALU64 | BPF_DIV | BPF_X:
+ case BPF_ALU64 | BPF_MOD | BPF_K:
+ case BPF_ALU64 | BPF_MOD | BPF_X:
+ goto notyet;
+ /* dst = dst >> imm */
+ /* dst = dst << imm */
+ case BPF_ALU | BPF_RSH | BPF_K:
+ case BPF_ALU | BPF_LSH | BPF_K:
+ if (unlikely(imm > 31))
+ return -EINVAL;
+ if (imm)
+ emit_a32_alu_i(dst_lo, imm, dstk, ctx, BPF_OP(code));
+ emit_a32_mov_i(dst_hi, 0, dstk, ctx);
+ break;
+ /* dst = dst << imm */
+ case BPF_ALU64 | BPF_LSH | BPF_K:
+ if (unlikely(imm > 63))
+ return -EINVAL;
+ emit_a32_lsh_i64(dst, dstk, imm, ctx);
+ break;
+ /* dst = dst >> imm */
+ case BPF_ALU64 | BPF_RSH | BPF_K:
+ if (unlikely(imm > 63))
+ return -EINVAL;
+ emit_a32_rsh_i64(dst, dstk, imm, ctx);
+ break;
+ /* dst = dst << src */
+ case BPF_ALU64 | BPF_LSH | BPF_X:
+ emit_a32_lsh_r64(dst, src, dstk, sstk, ctx);
+ break;
+ /* dst = dst >> src */
+ case BPF_ALU64 | BPF_RSH | BPF_X:
+ emit_a32_rsh_r64(dst, src, dstk, sstk, ctx);
+ break;
+ /* dst = dst >> src (signed) */
+ case BPF_ALU64 | BPF_ARSH | BPF_X:
+ emit_a32_arsh_r64(dst, src, dstk, sstk, ctx);
+ break;
+ /* dst = dst >> imm (signed) */
+ case BPF_ALU64 | BPF_ARSH | BPF_K:
+ if (unlikely(imm > 63))
+ return -EINVAL;
+ emit_a32_arsh_i64(dst, dstk, imm, ctx);
+ break;
+ /* dst = ~dst */
+ case BPF_ALU | BPF_NEG:
+ emit_a32_alu_i(dst_lo, 0, dstk, ctx, BPF_OP(code));
+ emit_a32_mov_i(dst_hi, 0, dstk, ctx);
+ break;
+ /* dst = ~dst (64 bit) */
+ case BPF_ALU64 | BPF_NEG:
+ emit_a32_neg64(dst, dstk, ctx);
+ break;
+ /* dst = dst * src/imm */
+ case BPF_ALU64 | BPF_MUL | BPF_X:
+ case BPF_ALU64 | BPF_MUL | BPF_K:
+ switch (BPF_SRC(code)) {
+ case BPF_X:
+ emit_a32_mul_r64(dst, src, dstk, sstk, ctx);
+ break;
+ case BPF_K:
+ /* Move immediate value to the temporary register
+ * and then do the multiplication on it as this
+ * will sign-extend the immediate value into temp
+ * reg then it would be safe to do the operation
+ * on it.
+ */
+ emit_a32_mov_i64(is64, tmp2, imm, false, ctx);
+ emit_a32_mul_r64(dst, tmp2, dstk, false, ctx);
+ break;
+ }
+ break;
+ /* dst = htole(dst) */
+ /* dst = htobe(dst) */
+ case BPF_ALU | BPF_END | BPF_FROM_LE:
+ case BPF_ALU | BPF_END | BPF_FROM_BE:
+ rd = dstk ? tmp[0] : dst_hi;
+ rt = dstk ? tmp[1] : dst_lo;
+ if (dstk) {
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+ if (BPF_SRC(code) == BPF_FROM_LE)
+ goto emit_bswap_uxt;
+ switch (imm) {
+ case 16:
+ emit_rev16(rt, rt, ctx);
+ goto emit_bswap_uxt;
+ case 32:
+ emit_rev32(rt, rt, ctx);
+ goto emit_bswap_uxt;
+ case 64:
+ emit_rev32(ARM_LR, rt, ctx);
+ emit_rev32(rt, rd, ctx);
+ emit(ARM_MOV_R(rd, ARM_LR), ctx);
+ break;
+ }
+ goto exit;
+emit_bswap_uxt:
+ switch (imm) {
+ case 16:
+ /* zero-extend 16 bits into 64 bits */
+#if __LINUX_ARM_ARCH__ < 6
+ emit_a32_mov_i(tmp2[1], 0xffff, false, ctx);
+ emit(ARM_AND_R(rt, rt, tmp2[1]), ctx);
+#else /* ARMv6+ */
+ emit(ARM_UXTH(rt, rt), ctx);
+#endif
+ emit(ARM_EOR_R(rd, rd, rd), ctx);
+ break;
+ case 32:
+ /* zero-extend 32 bits into 64 bits */
+ emit(ARM_EOR_R(rd, rd, rd), ctx);
+ break;
+ case 64:
+ /* nop */
+ break;
+ }
+exit:
+ if (dstk) {
+ emit(ARM_STR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_STR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+ break;
+ /* dst = imm64 */
+ case BPF_LD | BPF_IMM | BPF_DW:
+ {
+ const struct bpf_insn insn1 = insn[1];
+ u32 hi, lo = imm;
+
+ hi = insn1.imm;
+ emit_a32_mov_i(dst_lo, lo, dstk, ctx);
+ emit_a32_mov_i(dst_hi, hi, dstk, ctx);
+
+ return 1;
+ }
+ /* LDX: dst = *(size *)(src + off) */
+ case BPF_LDX | BPF_MEM | BPF_W:
+ case BPF_LDX | BPF_MEM | BPF_H:
+ case BPF_LDX | BPF_MEM | BPF_B:
+ case BPF_LDX | BPF_MEM | BPF_DW:
+ rn = sstk ? tmp2[1] : src_lo;
+ if (sstk)
+ emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
+ emit_ldx_r(dst, rn, dstk, off, ctx, BPF_SIZE(code));
+ break;
+ /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
+ case BPF_LD | BPF_ABS | BPF_W:
+ case BPF_LD | BPF_ABS | BPF_H:
+ case BPF_LD | BPF_ABS | BPF_B:
+ /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
+ case BPF_LD | BPF_IND | BPF_W:
+ case BPF_LD | BPF_IND | BPF_H:
+ case BPF_LD | BPF_IND | BPF_B:
+ {
+ const u8 r4 = bpf2a32[BPF_REG_6][1]; /* r4 = ptr to sk_buff */
+ const u8 r0 = bpf2a32[BPF_REG_0][1]; /*r0: struct sk_buff *skb*/
+ /* rtn value */
+ const u8 r1 = bpf2a32[BPF_REG_0][0]; /* r1: int k */
+ const u8 r2 = bpf2a32[BPF_REG_1][1]; /* r2: unsigned int size */
+ const u8 r3 = bpf2a32[BPF_REG_1][0]; /* r3: void *buffer */
+ const u8 r6 = bpf2a32[TMP_REG_1][1]; /* r6: void *(*func)(..) */
+ int size;
+
+ /* Setting up first argument */
+ emit(ARM_MOV_R(r0, r4), ctx);
+
+ /* Setting up second argument */
+ emit_a32_mov_i(r1, imm, false, ctx);
+ if (BPF_MODE(code) == BPF_IND)
+ emit_a32_alu_r(r1, src_lo, false, sstk, ctx,
+ false, false, BPF_ADD);
+
+ /* Setting up third argument */
+ switch (BPF_SIZE(code)) {
+ case BPF_W:
+ size = 4;
+ break;
+ case BPF_H:
+ size = 2;
+ break;
+ case BPF_B:
+ size = 1;
+ break;
+ default:
+ return -EINVAL;
+ }
+ emit_a32_mov_i(r2, size, false, ctx);
+
+ /* Setting up fourth argument */
+ emit(ARM_ADD_I(r3, ARM_SP, imm8m(SKB_BUFFER)), ctx);
+
+ /* Setting up function pointer to call */
+ emit_a32_mov_i(r6, (unsigned int)bpf_load_pointer, false, ctx);
+ emit_blx_r(r6, ctx);
+
+ emit(ARM_EOR_R(r1, r1, r1), ctx);
+ /* Check if return address is NULL or not.
+ * if NULL then jump to epilogue
+ * else continue to load the value from retn address
+ */
+ emit(ARM_CMP_I(r0, 0), ctx);
+ jmp_offset = epilogue_offset(ctx);
+ check_imm24(jmp_offset);
+ _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
+
+ /* Load value from the address */
+ switch (BPF_SIZE(code)) {
+ case BPF_W:
+ emit(ARM_LDR_I(r0, r0, 0), ctx);
+ emit_rev32(r0, r0, ctx);
+ break;
+ case BPF_H:
+ emit(ARM_LDRH_I(r0, r0, 0), ctx);
+ emit_rev16(r0, r0, ctx);
+ break;
+ case BPF_B:
+ emit(ARM_LDRB_I(r0, r0, 0), ctx);
+ /* No need to reverse */
+ break;
+ }
+ break;
+ }
+ /* ST: *(size *)(dst + off) = imm */
+ case BPF_ST | BPF_MEM | BPF_W:
+ case BPF_ST | BPF_MEM | BPF_H:
+ case BPF_ST | BPF_MEM | BPF_B:
+ case BPF_ST | BPF_MEM | BPF_DW:
+ switch (BPF_SIZE(code)) {
+ case BPF_DW:
+ /* Sign-extend immediate value into temp reg */
+ emit_a32_mov_i64(true, tmp2, imm, false, ctx);
+ emit_str_r(dst_lo, tmp2[1], dstk, off, ctx, BPF_W);
+ emit_str_r(dst_lo, tmp2[0], dstk, off+4, ctx, BPF_W);
+ break;
+ case BPF_W:
+ case BPF_H:
+ case BPF_B:
+ emit_a32_mov_i(tmp2[1], imm, false, ctx);
+ emit_str_r(dst_lo, tmp2[1], dstk, off, ctx,
+ BPF_SIZE(code));
+ break;
+ }
+ break;
+ /* STX XADD: lock *(u32 *)(dst + off) += src */
+ case BPF_STX | BPF_XADD | BPF_W:
+ /* STX XADD: lock *(u64 *)(dst + off) += src */
+ case BPF_STX | BPF_XADD | BPF_DW:
+ goto notyet;
+ /* STX: *(size *)(dst + off) = src */
+ case BPF_STX | BPF_MEM | BPF_W:
+ case BPF_STX | BPF_MEM | BPF_H:
+ case BPF_STX | BPF_MEM | BPF_B:
+ case BPF_STX | BPF_MEM | BPF_DW:
+ {
+ u8 sz = BPF_SIZE(code);
+
+ rn = sstk ? tmp2[1] : src_lo;
+ rm = sstk ? tmp2[0] : src_hi;
+ if (sstk) {
+ emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
+ }
+
+ /* Store the value */
+ if (BPF_SIZE(code) == BPF_DW) {
+ emit_str_r(dst_lo, rn, dstk, off, ctx, BPF_W);
+ emit_str_r(dst_lo, rm, dstk, off+4, ctx, BPF_W);
+ } else {
+ emit_str_r(dst_lo, rn, dstk, off, ctx, sz);
+ }
+ break;
+ }
+ /* PC += off if dst == src */
+ /* PC += off if dst > src */
+ /* PC += off if dst >= src */
+ /* PC += off if dst < src */
+ /* PC += off if dst <= src */
+ /* PC += off if dst != src */
+ /* PC += off if dst > src (signed) */
+ /* PC += off if dst >= src (signed) */
+ /* PC += off if dst < src (signed) */
+ /* PC += off if dst <= src (signed) */
+ /* PC += off if dst & src */
+ case BPF_JMP | BPF_JEQ | BPF_X:
+ case BPF_JMP | BPF_JGT | BPF_X:
+ case BPF_JMP | BPF_JGE | BPF_X:
+ case BPF_JMP | BPF_JNE | BPF_X:
+ case BPF_JMP | BPF_JSGT | BPF_X:
+ case BPF_JMP | BPF_JSGE | BPF_X:
+ case BPF_JMP | BPF_JSET | BPF_X:
+ case BPF_JMP | BPF_JLE | BPF_X:
+ case BPF_JMP | BPF_JLT | BPF_X:
+ case BPF_JMP | BPF_JSLT | BPF_X:
+ case BPF_JMP | BPF_JSLE | BPF_X:
+ /* Setup source registers */
+ rm = sstk ? tmp2[0] : src_hi;
+ rn = sstk ? tmp2[1] : src_lo;
+ if (sstk) {
+ emit(ARM_LDR_I(rn, ARM_SP, STACK_VAR(src_lo)), ctx);
+ emit(ARM_LDR_I(rm, ARM_SP, STACK_VAR(src_hi)), ctx);
+ }
+ goto go_jmp;
+ /* PC += off if dst == imm */
+ /* PC += off if dst > imm */
+ /* PC += off if dst >= imm */
+ /* PC += off if dst < imm */
+ /* PC += off if dst <= imm */
+ /* PC += off if dst != imm */
+ /* PC += off if dst > imm (signed) */
+ /* PC += off if dst >= imm (signed) */
+ /* PC += off if dst < imm (signed) */
+ /* PC += off if dst <= imm (signed) */
+ /* PC += off if dst & imm */
+ case BPF_JMP | BPF_JEQ | BPF_K:
+ case BPF_JMP | BPF_JGT | BPF_K:
+ case BPF_JMP | BPF_JGE | BPF_K:
+ case BPF_JMP | BPF_JNE | BPF_K:
+ case BPF_JMP | BPF_JSGT | BPF_K:
+ case BPF_JMP | BPF_JSGE | BPF_K:
+ case BPF_JMP | BPF_JSET | BPF_K:
+ case BPF_JMP | BPF_JLT | BPF_K:
+ case BPF_JMP | BPF_JLE | BPF_K:
+ case BPF_JMP | BPF_JSLT | BPF_K:
+ case BPF_JMP | BPF_JSLE | BPF_K:
+ if (off == 0)
+ break;
+ rm = tmp2[0];
+ rn = tmp2[1];
+ /* Sign-extend immediate value */
+ emit_a32_mov_i64(true, tmp2, imm, false, ctx);
+go_jmp:
+ /* Setup destination register */
+ rd = dstk ? tmp[0] : dst_hi;
+ rt = dstk ? tmp[1] : dst_lo;
+ if (dstk) {
+ emit(ARM_LDR_I(rt, ARM_SP, STACK_VAR(dst_lo)), ctx);
+ emit(ARM_LDR_I(rd, ARM_SP, STACK_VAR(dst_hi)), ctx);
+ }
+
+ /* Check for the condition */
+ emit_ar_r(rd, rt, rm, rn, ctx, BPF_OP(code));
+
+ /* Setup JUMP instruction */
+ jmp_offset = bpf2a32_offset(i+off, i, ctx);
+ switch (BPF_OP(code)) {
+ case BPF_JNE:
+ case BPF_JSET:
+ _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JEQ:
+ _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JGT:
+ _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JGE:
+ _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JSGT:
+ _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JSGE:
+ _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JLE:
+ _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JLT:
+ _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JSLT:
+ _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
+ break;
+ case BPF_JSLE:
+ _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
+ break;
+ }
+ break;
+ /* JMP OFF */
+ case BPF_JMP | BPF_JA:
+ {
+ if (off == 0)
+ break;
+ jmp_offset = bpf2a32_offset(i+off, i, ctx);
+ check_imm24(jmp_offset);
+ emit(ARM_B(jmp_offset), ctx);
+ break;
+ }
+ /* tail call */
+ case BPF_JMP | BPF_TAIL_CALL:
+ if (emit_bpf_tail_call(ctx))
+ return -EFAULT;
+ break;
+ /* function call */
+ case BPF_JMP | BPF_CALL:
+ {
+ const u8 *r0 = bpf2a32[BPF_REG_0];
+ const u8 *r1 = bpf2a32[BPF_REG_1];
+ const u8 *r2 = bpf2a32[BPF_REG_2];
+ const u8 *r3 = bpf2a32[BPF_REG_3];
+ const u8 *r4 = bpf2a32[BPF_REG_4];
+ const u8 *r5 = bpf2a32[BPF_REG_5];
+ const u32 func = (u32)__bpf_call_base + (u32)imm;
+
+ emit_a32_mov_r64(true, r0, r1, false, false, ctx);
+ emit_a32_mov_r64(true, r1, r2, false, true, ctx);
+ emit_push_r64(r5, 0, ctx);
+ emit_push_r64(r4, 8, ctx);
+ emit_push_r64(r3, 16, ctx);
+
+ emit_a32_mov_i(tmp[1], func, false, ctx);
+ emit_blx_r(tmp[1], ctx);
+
+ emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
+ break;
+ }
+ /* function return */
+ case BPF_JMP | BPF_EXIT:
+ /* Optimization: when last instruction is EXIT
+ * simply fallthrough to epilogue.
+ */
+ if (i == ctx->prog->len - 1)
+ break;
+ jmp_offset = epilogue_offset(ctx);
+ check_imm24(jmp_offset);
+ emit(ARM_B(jmp_offset), ctx);
+ break;
+notyet:
+ pr_info_once("*** NOT YET: opcode %02x ***\n", code);
+ return -EFAULT;
+ default:
+ pr_err_once("unknown opcode %02x\n", code);
+ return -EINVAL;
+ }
+
+ if (ctx->flags & FLAG_IMM_OVERFLOW)
+ /*
+ * this instruction generated an overflow when
+ * trying to access the literal pool, so
+ * delegate this filter to the kernel interpreter.
+ */
+ return -1;
+ return 0;
+}
+
+static int build_body(struct jit_ctx *ctx)
+{
+ const struct bpf_prog *prog = ctx->prog;
+ unsigned int i;
+
+ for (i = 0; i < prog->len; i++) {
+ const struct bpf_insn *insn = &(prog->insnsi[i]);
+ int ret;
+
+ ret = build_insn(insn, ctx);
+
+ /* It's used with loading the 64 bit immediate value. */
+ if (ret > 0) {
+ i++;
+ if (ctx->target == NULL)
+ ctx->offsets[i] = ctx->idx;
+ continue;
+ }
+
+ if (ctx->target == NULL)
+ ctx->offsets[i] = ctx->idx;
+
+ /* If unsuccesfull, return with error code */
+ if (ret)
+ return ret;
+ }
+ return 0;
+}
+
+static int validate_code(struct jit_ctx *ctx)
+{
+ int i;
+
+ for (i = 0; i < ctx->idx; i++) {
+ if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
+ return -1;
+ }
+
+ return 0;
+}
+
+void bpf_jit_compile(struct bpf_prog *prog)
+{
+ /* Nothing to do here. We support Internal BPF. */
+}
+
+struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
+{
+ struct bpf_prog *tmp, *orig_prog = prog;
+ struct bpf_binary_header *header;
+ bool tmp_blinded = false;
+ struct jit_ctx ctx;
+ unsigned int tmp_idx;
+ unsigned int image_size;
+ u8 *image_ptr;
+
+ /* If BPF JIT was not enabled then we must fall back to
+ * the interpreter.
+ */
+ if (!bpf_jit_enable)
+ return orig_prog;
+
+ /* If constant blinding was enabled and we failed during blinding
+ * then we must fall back to the interpreter. Otherwise, we save
+ * the new JITed code.
+ */
+ tmp = bpf_jit_blind_constants(prog);
+
+ if (IS_ERR(tmp))
+ return orig_prog;
+ if (tmp != prog) {
+ tmp_blinded = true;
+ prog = tmp;
+ }
+
+ memset(&ctx, 0, sizeof(ctx));
+ ctx.prog = prog;
+
+ /* Not able to allocate memory for offsets[] , then
+ * we must fall back to the interpreter
+ */
+ ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
+ if (ctx.offsets == NULL) {
+ prog = orig_prog;
+ goto out;
+ }
+
+ /* 1) fake pass to find in the length of the JITed code,
+ * to compute ctx->offsets and other context variables
+ * needed to compute final JITed code.
+ * Also, calculate random starting pointer/start of JITed code
+ * which is prefixed by random number of fault instructions.
+ *
+ * If the first pass fails then there is no chance of it
+ * being successful in the second pass, so just fall back
+ * to the interpreter.
+ */
+ if (build_body(&ctx)) {
+ prog = orig_prog;
+ goto out_off;
+ }
+
+ tmp_idx = ctx.idx;
+ build_prologue(&ctx);
+ ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
+
+ ctx.epilogue_offset = ctx.idx;
+
+#if __LINUX_ARM_ARCH__ < 7
+ tmp_idx = ctx.idx;
+ build_epilogue(&ctx);
+ ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
+
+ ctx.idx += ctx.imm_count;
+ if (ctx.imm_count) {
+ ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
+ if (ctx.imms == NULL) {
+ prog = orig_prog;
+ goto out_off;
+ }
+ }
+#else
+ /* there's nothing about the epilogue on ARMv7 */
+ build_epilogue(&ctx);
+#endif
+ /* Now we can get the actual image size of the JITed arm code.
+ * Currently, we are not considering the THUMB-2 instructions
+ * for jit, although it can decrease the size of the image.
+ *
+ * As each arm instruction is of length 32bit, we are translating
+ * number of JITed intructions into the size required to store these
+ * JITed code.
+ */
+ image_size = sizeof(u32) * ctx.idx;
+
+ /* Now we know the size of the structure to make */
+ header = bpf_jit_binary_alloc(image_size, &image_ptr,
+ sizeof(u32), jit_fill_hole);
+ /* Not able to allocate memory for the structure then
+ * we must fall back to the interpretation
+ */
+ if (header == NULL) {
+ prog = orig_prog;
+ goto out_imms;
+ }
+
+ /* 2.) Actual pass to generate final JIT code */
+ ctx.target = (u32 *) image_ptr;
+ ctx.idx = 0;
+
+ build_prologue(&ctx);
+
+ /* If building the body of the JITed code fails somehow,
+ * we fall back to the interpretation.
+ */
+ if (build_body(&ctx) < 0) {
+ image_ptr = NULL;
+ bpf_jit_binary_free(header);
+ prog = orig_prog;
+ goto out_imms;
+ }
+ build_epilogue(&ctx);
+
+ /* 3.) Extra pass to validate JITed Code */
+ if (validate_code(&ctx)) {
+ image_ptr = NULL;
+ bpf_jit_binary_free(header);
+ prog = orig_prog;
+ goto out_imms;
+ }
+ flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
+
+ if (bpf_jit_enable > 1)
+ /* there are 2 passes here */
+ bpf_jit_dump(prog->len, image_size, 2, ctx.target);
+
+ set_memory_ro((unsigned long)header, header->pages);
+ prog->bpf_func = (void *)ctx.target;
+ prog->jited = 1;
+ prog->jited_len = image_size;
+
+out_imms:
+#if __LINUX_ARM_ARCH__ < 7
+ if (ctx.imm_count)
+ kfree(ctx.imms);
+#endif
+out_off:
+ kfree(ctx.offsets);
+out:
+ if (tmp_blinded)
+ bpf_jit_prog_release_other(prog, prog == orig_prog ?
+ tmp : orig_prog);
+ return prog;
+}
+
diff --git a/src/kernel/linux/v4.14/arch/arm/net/bpf_jit_32.h b/src/kernel/linux/v4.14/arch/arm/net/bpf_jit_32.h
new file mode 100644
index 0000000..d5cf5f6
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/arm/net/bpf_jit_32.h
@@ -0,0 +1,276 @@
+/*
+ * Just-In-Time compiler for BPF filters on 32bit ARM
+ *
+ * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; version 2 of the License.
+ */
+
+#ifndef PFILTER_OPCODES_ARM_H
+#define PFILTER_OPCODES_ARM_H
+
+/* ARM 32bit Registers */
+#define ARM_R0 0
+#define ARM_R1 1
+#define ARM_R2 2
+#define ARM_R3 3
+#define ARM_R4 4
+#define ARM_R5 5
+#define ARM_R6 6
+#define ARM_R7 7
+#define ARM_R8 8
+#define ARM_R9 9
+#define ARM_R10 10
+#define ARM_FP 11 /* Frame Pointer */
+#define ARM_IP 12 /* Intra-procedure scratch register */
+#define ARM_SP 13 /* Stack pointer: as load/store base reg */
+#define ARM_LR 14 /* Link Register */
+#define ARM_PC 15 /* Program counter */
+
+#define ARM_COND_EQ 0x0 /* == */
+#define ARM_COND_NE 0x1 /* != */
+#define ARM_COND_CS 0x2 /* unsigned >= */
+#define ARM_COND_HS ARM_COND_CS
+#define ARM_COND_CC 0x3 /* unsigned < */
+#define ARM_COND_LO ARM_COND_CC
+#define ARM_COND_MI 0x4 /* < 0 */
+#define ARM_COND_PL 0x5 /* >= 0 */
+#define ARM_COND_VS 0x6 /* Signed Overflow */
+#define ARM_COND_VC 0x7 /* No Signed Overflow */
+#define ARM_COND_HI 0x8 /* unsigned > */
+#define ARM_COND_LS 0x9 /* unsigned <= */
+#define ARM_COND_GE 0xa /* Signed >= */
+#define ARM_COND_LT 0xb /* Signed < */
+#define ARM_COND_GT 0xc /* Signed > */
+#define ARM_COND_LE 0xd /* Signed <= */
+#define ARM_COND_AL 0xe /* None */
+
+/* register shift types */
+#define SRTYPE_LSL 0
+#define SRTYPE_LSR 1
+#define SRTYPE_ASR 2
+#define SRTYPE_ROR 3
+#define SRTYPE_ASL (SRTYPE_LSL)
+
+#define ARM_INST_ADD_R 0x00800000
+#define ARM_INST_ADDS_R 0x00900000
+#define ARM_INST_ADC_R 0x00a00000
+#define ARM_INST_ADC_I 0x02a00000
+#define ARM_INST_ADD_I 0x02800000
+#define ARM_INST_ADDS_I 0x02900000
+
+#define ARM_INST_AND_R 0x00000000
+#define ARM_INST_AND_I 0x02000000
+
+#define ARM_INST_BIC_R 0x01c00000
+#define ARM_INST_BIC_I 0x03c00000
+
+#define ARM_INST_B 0x0a000000
+#define ARM_INST_BX 0x012FFF10
+#define ARM_INST_BLX_R 0x012fff30
+
+#define ARM_INST_CMP_R 0x01500000
+#define ARM_INST_CMP_I 0x03500000
+
+#define ARM_INST_EOR_R 0x00200000
+#define ARM_INST_EOR_I 0x02200000
+
+#define ARM_INST_LDRB_I 0x05d00000
+#define ARM_INST_LDRB_R 0x07d00000
+#define ARM_INST_LDRH_I 0x01d000b0
+#define ARM_INST_LDRH_R 0x019000b0
+#define ARM_INST_LDR_I 0x05900000
+#define ARM_INST_LDR_R 0x07900000
+
+#define ARM_INST_LDM 0x08900000
+#define ARM_INST_LDM_IA 0x08b00000
+
+#define ARM_INST_LSL_I 0x01a00000
+#define ARM_INST_LSL_R 0x01a00010
+
+#define ARM_INST_LSR_I 0x01a00020
+#define ARM_INST_LSR_R 0x01a00030
+
+#define ARM_INST_MOV_R 0x01a00000
+#define ARM_INST_MOVS_R 0x01b00000
+#define ARM_INST_MOV_I 0x03a00000
+#define ARM_INST_MOVW 0x03000000
+#define ARM_INST_MOVT 0x03400000
+
+#define ARM_INST_MUL 0x00000090
+
+#define ARM_INST_POP 0x08bd0000
+#define ARM_INST_PUSH 0x092d0000
+
+#define ARM_INST_ORR_R 0x01800000
+#define ARM_INST_ORRS_R 0x01900000
+#define ARM_INST_ORR_I 0x03800000
+
+#define ARM_INST_REV 0x06bf0f30
+#define ARM_INST_REV16 0x06bf0fb0
+
+#define ARM_INST_RSB_I 0x02600000
+#define ARM_INST_RSBS_I 0x02700000
+#define ARM_INST_RSC_I 0x02e00000
+
+#define ARM_INST_SUB_R 0x00400000
+#define ARM_INST_SUBS_R 0x00500000
+#define ARM_INST_RSB_R 0x00600000
+#define ARM_INST_SUB_I 0x02400000
+#define ARM_INST_SUBS_I 0x02500000
+#define ARM_INST_SBC_I 0x02c00000
+#define ARM_INST_SBC_R 0x00c00000
+#define ARM_INST_SBCS_R 0x00d00000
+
+#define ARM_INST_STR_I 0x05800000
+#define ARM_INST_STRB_I 0x05c00000
+#define ARM_INST_STRH_I 0x01c000b0
+
+#define ARM_INST_TST_R 0x01100000
+#define ARM_INST_TST_I 0x03100000
+
+#define ARM_INST_UDIV 0x0730f010
+
+#define ARM_INST_UMULL 0x00800090
+
+#define ARM_INST_MLS 0x00600090
+
+#define ARM_INST_UXTH 0x06ff0070
+
+/*
+ * Use a suitable undefined instruction to use for ARM/Thumb2 faulting.
+ * We need to be careful not to conflict with those used by other modules
+ * (BUG, kprobes, etc) and the register_undef_hook() system.
+ *
+ * The ARM architecture reference manual guarantees that the following
+ * instruction space will produce an undefined instruction exception on
+ * all CPUs:
+ *
+ * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx ARMv7-AR, section A5.4
+ * Thumb: 1101 1110 xxxx xxxx ARMv7-M, section A5.2.6
+ */
+#define ARM_INST_UDF 0xe7fddef1
+
+/* register */
+#define _AL3_R(op, rd, rn, rm) ((op ## _R) | (rd) << 12 | (rn) << 16 | (rm))
+/* immediate */
+#define _AL3_I(op, rd, rn, imm) ((op ## _I) | (rd) << 12 | (rn) << 16 | (imm))
+/* register with register-shift */
+#define _AL3_SR(inst) (inst | (1 << 4))
+
+#define ARM_ADD_R(rd, rn, rm) _AL3_R(ARM_INST_ADD, rd, rn, rm)
+#define ARM_ADDS_R(rd, rn, rm) _AL3_R(ARM_INST_ADDS, rd, rn, rm)
+#define ARM_ADD_I(rd, rn, imm) _AL3_I(ARM_INST_ADD, rd, rn, imm)
+#define ARM_ADDS_I(rd, rn, imm) _AL3_I(ARM_INST_ADDS, rd, rn, imm)
+#define ARM_ADC_R(rd, rn, rm) _AL3_R(ARM_INST_ADC, rd, rn, rm)
+#define ARM_ADC_I(rd, rn, imm) _AL3_I(ARM_INST_ADC, rd, rn, imm)
+
+#define ARM_AND_R(rd, rn, rm) _AL3_R(ARM_INST_AND, rd, rn, rm)
+#define ARM_AND_I(rd, rn, imm) _AL3_I(ARM_INST_AND, rd, rn, imm)
+
+#define ARM_BIC_R(rd, rn, rm) _AL3_R(ARM_INST_BIC, rd, rn, rm)
+#define ARM_BIC_I(rd, rn, imm) _AL3_I(ARM_INST_BIC, rd, rn, imm)
+
+#define ARM_B(imm24) (ARM_INST_B | ((imm24) & 0xffffff))
+#define ARM_BX(rm) (ARM_INST_BX | (rm))
+#define ARM_BLX_R(rm) (ARM_INST_BLX_R | (rm))
+
+#define ARM_CMP_R(rn, rm) _AL3_R(ARM_INST_CMP, 0, rn, rm)
+#define ARM_CMP_I(rn, imm) _AL3_I(ARM_INST_CMP, 0, rn, imm)
+
+#define ARM_EOR_R(rd, rn, rm) _AL3_R(ARM_INST_EOR, rd, rn, rm)
+#define ARM_EOR_I(rd, rn, imm) _AL3_I(ARM_INST_EOR, rd, rn, imm)
+
+#define ARM_LDR_I(rt, rn, off) (ARM_INST_LDR_I | (rt) << 12 | (rn) << 16 \
+ | ((off) & 0xfff))
+#define ARM_LDR_R(rt, rn, rm) (ARM_INST_LDR_R | (rt) << 12 | (rn) << 16 \
+ | (rm))
+#define ARM_LDRB_I(rt, rn, off) (ARM_INST_LDRB_I | (rt) << 12 | (rn) << 16 \
+ | (off))
+#define ARM_LDRB_R(rt, rn, rm) (ARM_INST_LDRB_R | (rt) << 12 | (rn) << 16 \
+ | (rm))
+#define ARM_LDRH_I(rt, rn, off) (ARM_INST_LDRH_I | (rt) << 12 | (rn) << 16 \
+ | (((off) & 0xf0) << 4) | ((off) & 0xf))
+#define ARM_LDRH_R(rt, rn, rm) (ARM_INST_LDRH_R | (rt) << 12 | (rn) << 16 \
+ | (rm))
+
+#define ARM_LDM(rn, regs) (ARM_INST_LDM | (rn) << 16 | (regs))
+#define ARM_LDM_IA(rn, regs) (ARM_INST_LDM_IA | (rn) << 16 | (regs))
+
+#define ARM_LSL_R(rd, rn, rm) (_AL3_R(ARM_INST_LSL, rd, 0, rn) | (rm) << 8)
+#define ARM_LSL_I(rd, rn, imm) (_AL3_I(ARM_INST_LSL, rd, 0, rn) | (imm) << 7)
+
+#define ARM_LSR_R(rd, rn, rm) (_AL3_R(ARM_INST_LSR, rd, 0, rn) | (rm) << 8)
+#define ARM_LSR_I(rd, rn, imm) (_AL3_I(ARM_INST_LSR, rd, 0, rn) | (imm) << 7)
+#define ARM_ASR_R(rd, rn, rm) (_AL3_R(ARM_INST_ASR, rd, 0, rn) | (rm) << 8)
+#define ARM_ASR_I(rd, rn, imm) (_AL3_I(ARM_INST_ASR, rd, 0, rn) | (imm) << 7)
+
+#define ARM_MOV_R(rd, rm) _AL3_R(ARM_INST_MOV, rd, 0, rm)
+#define ARM_MOVS_R(rd, rm) _AL3_R(ARM_INST_MOVS, rd, 0, rm)
+#define ARM_MOV_I(rd, imm) _AL3_I(ARM_INST_MOV, rd, 0, imm)
+#define ARM_MOV_SR(rd, rm, type, rs) \
+ (_AL3_SR(ARM_MOV_R(rd, rm)) | (type) << 5 | (rs) << 8)
+#define ARM_MOV_SI(rd, rm, type, imm6) \
+ (ARM_MOV_R(rd, rm) | (type) << 5 | (imm6) << 7)
+
+#define ARM_MOVW(rd, imm) \
+ (ARM_INST_MOVW | ((imm) >> 12) << 16 | (rd) << 12 | ((imm) & 0x0fff))
+
+#define ARM_MOVT(rd, imm) \
+ (ARM_INST_MOVT | ((imm) >> 12) << 16 | (rd) << 12 | ((imm) & 0x0fff))
+
+#define ARM_MUL(rd, rm, rn) (ARM_INST_MUL | (rd) << 16 | (rm) << 8 | (rn))
+
+#define ARM_POP(regs) (ARM_INST_POP | (regs))
+#define ARM_PUSH(regs) (ARM_INST_PUSH | (regs))
+
+#define ARM_ORR_R(rd, rn, rm) _AL3_R(ARM_INST_ORR, rd, rn, rm)
+#define ARM_ORR_I(rd, rn, imm) _AL3_I(ARM_INST_ORR, rd, rn, imm)
+#define ARM_ORR_SR(rd, rn, rm, type, rs) \
+ (_AL3_SR(ARM_ORR_R(rd, rn, rm)) | (type) << 5 | (rs) << 8)
+#define ARM_ORRS_R(rd, rn, rm) _AL3_R(ARM_INST_ORRS, rd, rn, rm)
+#define ARM_ORRS_SR(rd, rn, rm, type, rs) \
+ (_AL3_SR(ARM_ORRS_R(rd, rn, rm)) | (type) << 5 | (rs) << 8)
+#define ARM_ORR_SI(rd, rn, rm, type, imm6) \
+ (ARM_ORR_R(rd, rn, rm) | (type) << 5 | (imm6) << 7)
+#define ARM_ORRS_SI(rd, rn, rm, type, imm6) \
+ (ARM_ORRS_R(rd, rn, rm) | (type) << 5 | (imm6) << 7)
+
+#define ARM_REV(rd, rm) (ARM_INST_REV | (rd) << 12 | (rm))
+#define ARM_REV16(rd, rm) (ARM_INST_REV16 | (rd) << 12 | (rm))
+
+#define ARM_RSB_I(rd, rn, imm) _AL3_I(ARM_INST_RSB, rd, rn, imm)
+#define ARM_RSBS_I(rd, rn, imm) _AL3_I(ARM_INST_RSBS, rd, rn, imm)
+#define ARM_RSC_I(rd, rn, imm) _AL3_I(ARM_INST_RSC, rd, rn, imm)
+
+#define ARM_SUB_R(rd, rn, rm) _AL3_R(ARM_INST_SUB, rd, rn, rm)
+#define ARM_SUBS_R(rd, rn, rm) _AL3_R(ARM_INST_SUBS, rd, rn, rm)
+#define ARM_RSB_R(rd, rn, rm) _AL3_R(ARM_INST_RSB, rd, rn, rm)
+#define ARM_SBC_R(rd, rn, rm) _AL3_R(ARM_INST_SBC, rd, rn, rm)
+#define ARM_SBCS_R(rd, rn, rm) _AL3_R(ARM_INST_SBCS, rd, rn, rm)
+#define ARM_SUB_I(rd, rn, imm) _AL3_I(ARM_INST_SUB, rd, rn, imm)
+#define ARM_SUBS_I(rd, rn, imm) _AL3_I(ARM_INST_SUBS, rd, rn, imm)
+#define ARM_SBC_I(rd, rn, imm) _AL3_I(ARM_INST_SBC, rd, rn, imm)
+
+#define ARM_STR_I(rt, rn, off) (ARM_INST_STR_I | (rt) << 12 | (rn) << 16 \
+ | ((off) & 0xfff))
+#define ARM_STRH_I(rt, rn, off) (ARM_INST_STRH_I | (rt) << 12 | (rn) << 16 \
+ | (((off) & 0xf0) << 4) | ((off) & 0xf))
+#define ARM_STRB_I(rt, rn, off) (ARM_INST_STRB_I | (rt) << 12 | (rn) << 16 \
+ | (((off) & 0xf0) << 4) | ((off) & 0xf))
+
+#define ARM_TST_R(rn, rm) _AL3_R(ARM_INST_TST, 0, rn, rm)
+#define ARM_TST_I(rn, imm) _AL3_I(ARM_INST_TST, 0, rn, imm)
+
+#define ARM_UDIV(rd, rn, rm) (ARM_INST_UDIV | (rd) << 16 | (rn) | (rm) << 8)
+
+#define ARM_UMULL(rd_lo, rd_hi, rn, rm) (ARM_INST_UMULL | (rd_hi) << 16 \
+ | (rd_lo) << 12 | (rm) << 8 | rn)
+
+#define ARM_MLS(rd, rn, rm, ra) (ARM_INST_MLS | (rd) << 16 | (rn) | (rm) << 8 \
+ | (ra) << 12)
+#define ARM_UXTH(rd, rm) (ARM_INST_UXTH | (rd) << 12 | (rm))
+
+#endif /* PFILTER_OPCODES_ARM_H */