[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/arch/arm64/crypto/sha512-armv8.pl b/src/kernel/linux/v4.14/arch/arm64/crypto/sha512-armv8.pl
new file mode 100644
index 0000000..c55efb3
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/arm64/crypto/sha512-armv8.pl
@@ -0,0 +1,778 @@
+#! /usr/bin/env perl
+# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License").  You may not use
+# this file except in compliance with the License.  You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+#
+# Permission to use under GPLv2 terms is granted.
+# ====================================================================
+#
+# SHA256/512 for ARMv8.
+#
+# Performance in cycles per processed byte and improvement coefficient
+# over code generated with "default" compiler:
+#
+#		SHA256-hw	SHA256(*)	SHA512
+# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
+# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
+# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
+# Denver	2.01		10.5 (+26%)	6.70 (+8%)
+# X-Gene			20.0 (+100%)	12.8 (+300%(***))
+# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
+#
+# (*)	Software SHA256 results are of lesser relevance, presented
+#	mostly for informational purposes.
+# (**)	The result is a trade-off: it's possible to improve it by
+#	10% (or by 1 cycle per round), but at the cost of 20% loss
+#	on Cortex-A53 (or by 4 cycles per round).
+# (***)	Super-impressive coefficients over gcc-generated code are
+#	indication of some compiler "pathology", most notably code
+#	generated with -mgeneral-regs-only is significanty faster
+#	and the gap is only 40-90%.
+#
+# October 2016.
+#
+# Originally it was reckoned that it makes no sense to implement NEON
+# version of SHA256 for 64-bit processors. This is because performance
+# improvement on most wide-spread Cortex-A5x processors was observed
+# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
+# observed that 32-bit NEON SHA256 performs significantly better than
+# 64-bit scalar version on *some* of the more recent processors. As
+# result 64-bit NEON version of SHA256 was added to provide best
+# all-round performance. For example it executes ~30% faster on X-Gene
+# and Mongoose. [For reference, NEON version of SHA512 is bound to
+# deliver much less improvement, likely *negative* on Cortex-A5x.
+# Which is why NEON support is limited to SHA256.]
+
+$output=pop;
+$flavour=pop;
+
+if ($flavour && $flavour ne "void") {
+    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
+    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
+    die "can't locate arm-xlate.pl";
+
+    open OUT,"| \"$^X\" $xlate $flavour $output";
+    *STDOUT=*OUT;
+} else {
+    open STDOUT,">$output";
+}
+
+if ($output =~ /512/) {
+	$BITS=512;
+	$SZ=8;
+	@Sigma0=(28,34,39);
+	@Sigma1=(14,18,41);
+	@sigma0=(1,  8, 7);
+	@sigma1=(19,61, 6);
+	$rounds=80;
+	$reg_t="x";
+} else {
+	$BITS=256;
+	$SZ=4;
+	@Sigma0=( 2,13,22);
+	@Sigma1=( 6,11,25);
+	@sigma0=( 7,18, 3);
+	@sigma1=(17,19,10);
+	$rounds=64;
+	$reg_t="w";
+}
+
+$func="sha${BITS}_block_data_order";
+
+($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
+
+@X=map("$reg_t$_",(3..15,0..2));
+@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
+($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
+
+sub BODY_00_xx {
+my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
+my $j=($i+1)&15;
+my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
+   $T0=@X[$i+3] if ($i<11);
+
+$code.=<<___	if ($i<16);
+#ifndef	__AARCH64EB__
+	rev	@X[$i],@X[$i]			// $i
+#endif
+___
+$code.=<<___	if ($i<13 && ($i&1));
+	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
+___
+$code.=<<___	if ($i==13);
+	ldp	@X[14],@X[15],[$inp]
+___
+$code.=<<___	if ($i>=14);
+	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
+___
+$code.=<<___	if ($i>0 && $i<16);
+	add	$a,$a,$t1			// h+=Sigma0(a)
+___
+$code.=<<___	if ($i>=11);
+	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
+___
+# While ARMv8 specifies merged rotate-n-logical operation such as
+# 'eor x,y,z,ror#n', it was found to negatively affect performance
+# on Apple A7. The reason seems to be that it requires even 'y' to
+# be available earlier. This means that such merged instruction is
+# not necessarily best choice on critical path... On the other hand
+# Cortex-A5x handles merged instructions much better than disjoint
+# rotate and logical... See (**) footnote above.
+$code.=<<___	if ($i<15);
+	ror	$t0,$e,#$Sigma1[0]
+	add	$h,$h,$t2			// h+=K[i]
+	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
+	and	$t1,$f,$e
+	bic	$t2,$g,$e
+	add	$h,$h,@X[$i&15]			// h+=X[i]
+	orr	$t1,$t1,$t2			// Ch(e,f,g)
+	eor	$t2,$a,$b			// a^b, b^c in next round
+	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
+	ror	$T0,$a,#$Sigma0[0]
+	add	$h,$h,$t1			// h+=Ch(e,f,g)
+	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
+	add	$h,$h,$t0			// h+=Sigma1(e)
+	and	$t3,$t3,$t2			// (b^c)&=(a^b)
+	add	$d,$d,$h			// d+=h
+	eor	$t3,$t3,$b			// Maj(a,b,c)
+	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
+	add	$h,$h,$t3			// h+=Maj(a,b,c)
+	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
+	//add	$h,$h,$t1			// h+=Sigma0(a)
+___
+$code.=<<___	if ($i>=15);
+	ror	$t0,$e,#$Sigma1[0]
+	add	$h,$h,$t2			// h+=K[i]
+	ror	$T1,@X[($j+1)&15],#$sigma0[0]
+	and	$t1,$f,$e
+	ror	$T2,@X[($j+14)&15],#$sigma1[0]
+	bic	$t2,$g,$e
+	ror	$T0,$a,#$Sigma0[0]
+	add	$h,$h,@X[$i&15]			// h+=X[i]
+	eor	$t0,$t0,$e,ror#$Sigma1[1]
+	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
+	orr	$t1,$t1,$t2			// Ch(e,f,g)
+	eor	$t2,$a,$b			// a^b, b^c in next round
+	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
+	eor	$T0,$T0,$a,ror#$Sigma0[1]
+	add	$h,$h,$t1			// h+=Ch(e,f,g)
+	and	$t3,$t3,$t2			// (b^c)&=(a^b)
+	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
+	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
+	add	$h,$h,$t0			// h+=Sigma1(e)
+	eor	$t3,$t3,$b			// Maj(a,b,c)
+	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
+	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
+	add	@X[$j],@X[$j],@X[($j+9)&15]
+	add	$d,$d,$h			// d+=h
+	add	$h,$h,$t3			// h+=Maj(a,b,c)
+	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
+	add	@X[$j],@X[$j],$T1
+	add	$h,$h,$t1			// h+=Sigma0(a)
+	add	@X[$j],@X[$j],$T2
+___
+	($t2,$t3)=($t3,$t2);
+}
+
+$code.=<<___;
+#ifndef	__KERNEL__
+# include "arm_arch.h"
+#endif
+
+.text
+
+.extern	OPENSSL_armcap_P
+.globl	$func
+.type	$func,%function
+.align	6
+$func:
+___
+$code.=<<___	if ($SZ==4);
+#ifndef	__KERNEL__
+# ifdef	__ILP32__
+	ldrsw	x16,.LOPENSSL_armcap_P
+# else
+	ldr	x16,.LOPENSSL_armcap_P
+# endif
+	adr	x17,.LOPENSSL_armcap_P
+	add	x16,x16,x17
+	ldr	w16,[x16]
+	tst	w16,#ARMV8_SHA256
+	b.ne	.Lv8_entry
+	tst	w16,#ARMV7_NEON
+	b.ne	.Lneon_entry
+#endif
+___
+$code.=<<___;
+	stp	x29,x30,[sp,#-128]!
+	add	x29,sp,#0
+
+	stp	x19,x20,[sp,#16]
+	stp	x21,x22,[sp,#32]
+	stp	x23,x24,[sp,#48]
+	stp	x25,x26,[sp,#64]
+	stp	x27,x28,[sp,#80]
+	sub	sp,sp,#4*$SZ
+
+	ldp	$A,$B,[$ctx]				// load context
+	ldp	$C,$D,[$ctx,#2*$SZ]
+	ldp	$E,$F,[$ctx,#4*$SZ]
+	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
+	ldp	$G,$H,[$ctx,#6*$SZ]
+	adr	$Ktbl,.LK$BITS
+	stp	$ctx,$num,[x29,#96]
+
+.Loop:
+	ldp	@X[0],@X[1],[$inp],#2*$SZ
+	ldr	$t2,[$Ktbl],#$SZ			// *K++
+	eor	$t3,$B,$C				// magic seed
+	str	$inp,[x29,#112]
+___
+for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
+$code.=".Loop_16_xx:\n";
+for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
+$code.=<<___;
+	cbnz	$t2,.Loop_16_xx
+
+	ldp	$ctx,$num,[x29,#96]
+	ldr	$inp,[x29,#112]
+	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
+
+	ldp	@X[0],@X[1],[$ctx]
+	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
+	add	$inp,$inp,#14*$SZ			// advance input pointer
+	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
+	add	$A,$A,@X[0]
+	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
+	add	$B,$B,@X[1]
+	add	$C,$C,@X[2]
+	add	$D,$D,@X[3]
+	stp	$A,$B,[$ctx]
+	add	$E,$E,@X[4]
+	add	$F,$F,@X[5]
+	stp	$C,$D,[$ctx,#2*$SZ]
+	add	$G,$G,@X[6]
+	add	$H,$H,@X[7]
+	cmp	$inp,$num
+	stp	$E,$F,[$ctx,#4*$SZ]
+	stp	$G,$H,[$ctx,#6*$SZ]
+	b.ne	.Loop
+
+	ldp	x19,x20,[x29,#16]
+	add	sp,sp,#4*$SZ
+	ldp	x21,x22,[x29,#32]
+	ldp	x23,x24,[x29,#48]
+	ldp	x25,x26,[x29,#64]
+	ldp	x27,x28,[x29,#80]
+	ldp	x29,x30,[sp],#128
+	ret
+.size	$func,.-$func
+
+.align	6
+.type	.LK$BITS,%object
+.LK$BITS:
+___
+$code.=<<___ if ($SZ==8);
+	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
+	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
+	.quad	0x3956c25bf348b538,0x59f111f1b605d019
+	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
+	.quad	0xd807aa98a3030242,0x12835b0145706fbe
+	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
+	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
+	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
+	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
+	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
+	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
+	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
+	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
+	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
+	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
+	.quad	0x06ca6351e003826f,0x142929670a0e6e70
+	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
+	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
+	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
+	.quad	0x81c2c92e47edaee6,0x92722c851482353b
+	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
+	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
+	.quad	0xd192e819d6ef5218,0xd69906245565a910
+	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
+	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
+	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
+	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
+	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
+	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
+	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
+	.quad	0x90befffa23631e28,0xa4506cebde82bde9
+	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
+	.quad	0xca273eceea26619c,0xd186b8c721c0c207
+	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
+	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
+	.quad	0x113f9804bef90dae,0x1b710b35131c471b
+	.quad	0x28db77f523047d84,0x32caab7b40c72493
+	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
+	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
+	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
+	.quad	0	// terminator
+___
+$code.=<<___ if ($SZ==4);
+	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
+	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
+	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
+	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
+	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
+	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
+	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
+	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
+	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
+	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
+	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
+	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
+	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
+	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
+	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
+	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
+	.long	0	//terminator
+___
+$code.=<<___;
+.size	.LK$BITS,.-.LK$BITS
+#ifndef	__KERNEL__
+.align	3
+.LOPENSSL_armcap_P:
+# ifdef	__ILP32__
+	.long	OPENSSL_armcap_P-.
+# else
+	.quad	OPENSSL_armcap_P-.
+# endif
+#endif
+.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
+.align	2
+___
+
+if ($SZ==4) {
+my $Ktbl="x3";
+
+my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
+my @MSG=map("v$_.16b",(4..7));
+my ($W0,$W1)=("v16.4s","v17.4s");
+my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
+
+$code.=<<___;
+#ifndef	__KERNEL__
+.type	sha256_block_armv8,%function
+.align	6
+sha256_block_armv8:
+.Lv8_entry:
+	stp		x29,x30,[sp,#-16]!
+	add		x29,sp,#0
+
+	ld1.32		{$ABCD,$EFGH},[$ctx]
+	adr		$Ktbl,.LK256
+
+.Loop_hw:
+	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
+	sub		$num,$num,#1
+	ld1.32		{$W0},[$Ktbl],#16
+	rev32		@MSG[0],@MSG[0]
+	rev32		@MSG[1],@MSG[1]
+	rev32		@MSG[2],@MSG[2]
+	rev32		@MSG[3],@MSG[3]
+	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
+	orr		$EFGH_SAVE,$EFGH,$EFGH
+___
+for($i=0;$i<12;$i++) {
+$code.=<<___;
+	ld1.32		{$W1},[$Ktbl],#16
+	add.i32		$W0,$W0,@MSG[0]
+	sha256su0	@MSG[0],@MSG[1]
+	orr		$abcd,$ABCD,$ABCD
+	sha256h		$ABCD,$EFGH,$W0
+	sha256h2	$EFGH,$abcd,$W0
+	sha256su1	@MSG[0],@MSG[2],@MSG[3]
+___
+	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
+}
+$code.=<<___;
+	ld1.32		{$W1},[$Ktbl],#16
+	add.i32		$W0,$W0,@MSG[0]
+	orr		$abcd,$ABCD,$ABCD
+	sha256h		$ABCD,$EFGH,$W0
+	sha256h2	$EFGH,$abcd,$W0
+
+	ld1.32		{$W0},[$Ktbl],#16
+	add.i32		$W1,$W1,@MSG[1]
+	orr		$abcd,$ABCD,$ABCD
+	sha256h		$ABCD,$EFGH,$W1
+	sha256h2	$EFGH,$abcd,$W1
+
+	ld1.32		{$W1},[$Ktbl]
+	add.i32		$W0,$W0,@MSG[2]
+	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
+	orr		$abcd,$ABCD,$ABCD
+	sha256h		$ABCD,$EFGH,$W0
+	sha256h2	$EFGH,$abcd,$W0
+
+	add.i32		$W1,$W1,@MSG[3]
+	orr		$abcd,$ABCD,$ABCD
+	sha256h		$ABCD,$EFGH,$W1
+	sha256h2	$EFGH,$abcd,$W1
+
+	add.i32		$ABCD,$ABCD,$ABCD_SAVE
+	add.i32		$EFGH,$EFGH,$EFGH_SAVE
+
+	cbnz		$num,.Loop_hw
+
+	st1.32		{$ABCD,$EFGH},[$ctx]
+
+	ldr		x29,[sp],#16
+	ret
+.size	sha256_block_armv8,.-sha256_block_armv8
+#endif
+___
+}
+
+if ($SZ==4) {	######################################### NEON stuff #
+# You'll surely note a lot of similarities with sha256-armv4 module,
+# and of course it's not a coincidence. sha256-armv4 was used as
+# initial template, but was adapted for ARMv8 instruction set and
+# extensively re-tuned for all-round performance.
+
+my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
+my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
+my $Ktbl="x16";
+my $Xfer="x17";
+my @X = map("q$_",(0..3));
+my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
+my $j=0;
+
+sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
+{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
+  my $arg = pop;
+    $arg = "#$arg" if ($arg*1 eq $arg);
+    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
+}
+
+sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
+sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
+sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
+
+sub Xupdate()
+{ use integer;
+  my $body = shift;
+  my @insns = (&$body,&$body,&$body,&$body);
+  my ($a,$b,$c,$d,$e,$f,$g,$h);
+
+	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&ushr_32	($T2,$T0,$sigma0[0]);
+	 eval(shift(@insns));
+	&ushr_32	($T1,$T0,$sigma0[2]);
+	 eval(shift(@insns));
+	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
+	 eval(shift(@insns));
+	&sli_32		($T2,$T0,32-$sigma0[0]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&ushr_32	($T3,$T0,$sigma0[1]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&eor_8		($T1,$T1,$T2);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&sli_32		($T3,$T0,32-$sigma0[1]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &ushr_32	($T4,$T7,$sigma1[0]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &sli_32	($T4,$T7,32-$sigma1[0]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &ushr_32	($T5,$T7,$sigma1[2]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &ushr_32	($T3,$T7,$sigma1[1]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &sli_u32	($T3,$T7,32-$sigma1[1]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &eor_8	($T5,$T5,$T4);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &ushr_32	($T6,@X[0],$sigma1[0]);
+	 eval(shift(@insns));
+	  &ushr_32	($T7,@X[0],$sigma1[2]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &sli_32	($T6,@X[0],32-$sigma1[0]);
+	 eval(shift(@insns));
+	  &ushr_32	($T5,@X[0],$sigma1[1]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &eor_8	($T7,$T7,$T6);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	  &sli_32	($T5,@X[0],32-$sigma1[1]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&ld1_32		("{$T0}","[$Ktbl], #16");
+	 eval(shift(@insns));
+	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&eor_8		($T5,$T5,$T5);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&mov		(&Dhi($T5), &Dlo($T7));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&add_32		($T0,$T0,@X[0]);
+	 while($#insns>=1) { eval(shift(@insns)); }
+	&st1_32		("{$T0}","[$Xfer], #16");
+	 eval(shift(@insns));
+
+	push(@X,shift(@X));		# "rotate" X[]
+}
+
+sub Xpreload()
+{ use integer;
+  my $body = shift;
+  my @insns = (&$body,&$body,&$body,&$body);
+  my ($a,$b,$c,$d,$e,$f,$g,$h);
+
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&ld1_8		("{@X[0]}","[$inp],#16");
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&ld1_32		("{$T0}","[$Ktbl],#16");
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&rev32		(@X[0],@X[0]);
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	 eval(shift(@insns));
+	&add_32		($T0,$T0,@X[0]);
+	 foreach (@insns) { eval; }	# remaining instructions
+	&st1_32		("{$T0}","[$Xfer], #16");
+
+	push(@X,shift(@X));		# "rotate" X[]
+}
+
+sub body_00_15 () {
+	(
+	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
+	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
+	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
+	'&and	($t1,$f,$e)',
+	'&bic	($t4,$g,$e)',
+	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
+	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
+	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
+	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
+	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
+	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
+	'&ror	($t0,$t0,"#$Sigma1[0]")',
+	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
+	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
+	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
+	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
+	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
+	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
+	'&ror	($t4,$t4,"#$Sigma0[0]")',
+	'&add	($d,$d,$h)',			# d+=h
+	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
+	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
+	)
+}
+
+$code.=<<___;
+#ifdef	__KERNEL__
+.globl	sha256_block_neon
+#endif
+.type	sha256_block_neon,%function
+.align	4
+sha256_block_neon:
+.Lneon_entry:
+	stp	x29, x30, [sp, #-16]!
+	mov	x29, sp
+	sub	sp,sp,#16*4
+
+	adr	$Ktbl,.LK256
+	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
+
+	ld1.8	{@X[0]},[$inp], #16
+	ld1.8	{@X[1]},[$inp], #16
+	ld1.8	{@X[2]},[$inp], #16
+	ld1.8	{@X[3]},[$inp], #16
+	ld1.32	{$T0},[$Ktbl], #16
+	ld1.32	{$T1},[$Ktbl], #16
+	ld1.32	{$T2},[$Ktbl], #16
+	ld1.32	{$T3},[$Ktbl], #16
+	rev32	@X[0],@X[0]		// yes, even on
+	rev32	@X[1],@X[1]		// big-endian
+	rev32	@X[2],@X[2]
+	rev32	@X[3],@X[3]
+	mov	$Xfer,sp
+	add.32	$T0,$T0,@X[0]
+	add.32	$T1,$T1,@X[1]
+	add.32	$T2,$T2,@X[2]
+	st1.32	{$T0-$T1},[$Xfer], #32
+	add.32	$T3,$T3,@X[3]
+	st1.32	{$T2-$T3},[$Xfer]
+	sub	$Xfer,$Xfer,#32
+
+	ldp	$A,$B,[$ctx]
+	ldp	$C,$D,[$ctx,#8]
+	ldp	$E,$F,[$ctx,#16]
+	ldp	$G,$H,[$ctx,#24]
+	ldr	$t1,[sp,#0]
+	mov	$t2,wzr
+	eor	$t3,$B,$C
+	mov	$t4,wzr
+	b	.L_00_48
+
+.align	4
+.L_00_48:
+___
+	&Xupdate(\&body_00_15);
+	&Xupdate(\&body_00_15);
+	&Xupdate(\&body_00_15);
+	&Xupdate(\&body_00_15);
+$code.=<<___;
+	cmp	$t1,#0				// check for K256 terminator
+	ldr	$t1,[sp,#0]
+	sub	$Xfer,$Xfer,#64
+	bne	.L_00_48
+
+	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
+	cmp	$inp,$num
+	mov	$Xfer, #64
+	csel	$Xfer, $Xfer, xzr, eq
+	sub	$inp,$inp,$Xfer			// avoid SEGV
+	mov	$Xfer,sp
+___
+	&Xpreload(\&body_00_15);
+	&Xpreload(\&body_00_15);
+	&Xpreload(\&body_00_15);
+	&Xpreload(\&body_00_15);
+$code.=<<___;
+	add	$A,$A,$t4			// h+=Sigma0(a) from the past
+	ldp	$t0,$t1,[$ctx,#0]
+	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
+	ldp	$t2,$t3,[$ctx,#8]
+	add	$A,$A,$t0			// accumulate
+	add	$B,$B,$t1
+	ldp	$t0,$t1,[$ctx,#16]
+	add	$C,$C,$t2
+	add	$D,$D,$t3
+	ldp	$t2,$t3,[$ctx,#24]
+	add	$E,$E,$t0
+	add	$F,$F,$t1
+	 ldr	$t1,[sp,#0]
+	stp	$A,$B,[$ctx,#0]
+	add	$G,$G,$t2
+	 mov	$t2,wzr
+	stp	$C,$D,[$ctx,#8]
+	add	$H,$H,$t3
+	stp	$E,$F,[$ctx,#16]
+	 eor	$t3,$B,$C
+	stp	$G,$H,[$ctx,#24]
+	 mov	$t4,wzr
+	 mov	$Xfer,sp
+	b.ne	.L_00_48
+
+	ldr	x29,[x29]
+	add	sp,sp,#16*4+16
+	ret
+.size	sha256_block_neon,.-sha256_block_neon
+___
+}
+
+$code.=<<___;
+#ifndef	__KERNEL__
+.comm	OPENSSL_armcap_P,4,4
+#endif
+___
+
+{   my  %opcode = (
+	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
+	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
+
+    sub unsha256 {
+	my ($mnemonic,$arg)=@_;
+
+	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
+	&&
+	sprintf ".inst\t0x%08x\t//%s %s",
+			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
+			$mnemonic,$arg;
+    }
+}
+
+open SELF,$0;
+while(<SELF>) {
+        next if (/^#!/);
+        last if (!s/^#/\/\// and !/^$/);
+        print;
+}
+close SELF;
+
+foreach(split("\n",$code)) {
+
+	s/\`([^\`]*)\`/eval($1)/ge;
+
+	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
+
+	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
+
+	s/\.[ui]?8(\s)/$1/;
+	s/\.\w?32\b//		and s/\.16b/\.4s/g;
+	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
+
+	print $_,"\n";
+}
+
+close STDOUT;