[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/arch/blackfin/lib/divsi3.S b/src/kernel/linux/v4.14/arch/blackfin/lib/divsi3.S
new file mode 100644
index 0000000..ef2cd99
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/blackfin/lib/divsi3.S
@@ -0,0 +1,199 @@
+/*
+ * Copyright 2004-2009 Analog Devices Inc.
+ *
+ * Licensed under the Clear BSD license or the GPL-2 (or later)
+ *
+ * 16 / 32 bit signed division.
+ *                 Special cases :
+ *                      1)  If(numerator == 0)
+ *                             return 0
+ *                      2)  If(denominator ==0)
+ *                             return positive max = 0x7fffffff
+ *                      3)  If(numerator == denominator)
+ *                             return 1
+ *                      4)  If(denominator ==1)
+ *                             return numerator
+ *                      5)  If(denominator == -1)
+ *                             return -numerator
+ *
+ *                 Operand         : R0 - Numerator   (i)
+ *                                   R1 - Denominator (i)
+ *                                   R0 - Quotient    (o)
+ *                 Registers Used : R2-R7,P0-P2
+ *
+ */
+
+.global   ___divsi3;
+.type ___divsi3, STT_FUNC;
+
+#ifdef CONFIG_ARITHMETIC_OPS_L1
+.section .l1.text
+#else
+.text
+#endif
+
+.align 2;
+___divsi3 :
+
+
+  R3 = R0 ^ R1;
+  R0 = ABS R0;
+
+  CC = V;
+
+  r3 = rot r3 by -1;
+  r1 = abs r1;      /* now both positive, r3.30 means "negate result",
+                    ** r3.31 means overflow, add one to result
+                    */
+  cc = r0 < r1;
+  if cc jump .Lret_zero;
+  r2 = r1 >> 15;
+  cc = r2;
+  if cc jump .Lidents;
+  r2 = r1 << 16;
+  cc = r2 <= r0;
+  if cc jump .Lidents;
+
+  DIVS(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+  DIVQ(R0, R1);
+
+  R0 = R0.L (Z);
+  r1 = r3 >> 31;    /* add overflow issue back in */
+  r0 = r0 + r1;
+  r1 = -r0;
+  cc = bittst(r3, 30);
+  if cc r0 = r1;
+  RTS;
+
+/* Can't use the primitives. Test common identities.
+** If the identity is true, return the value in R2.
+*/
+
+.Lidents:
+  CC = R1 == 0;                   /* check for divide by zero */
+  IF CC JUMP .Lident_return;
+
+  CC = R0 == 0;                   /* check for division of zero */
+  IF CC JUMP .Lzero_return;
+
+  CC = R0 == R1;                  /* check for identical operands */
+  IF CC JUMP .Lident_return;
+
+  CC = R1 == 1;                   /* check for divide by 1 */
+  IF CC JUMP .Lident_return;
+
+  R2.L = ONES R1;
+  R2 = R2.L (Z);
+  CC = R2 == 1;
+  IF CC JUMP .Lpower_of_two;
+
+  /* Identities haven't helped either.
+  ** Perform the full division process.
+  */
+
+  P1 = 31;                        /* Set loop counter   */
+
+  [--SP] = (R7:5);                /* Push registers R5-R7 */
+  R2 = -R1;
+  [--SP] = R2;
+  R2 = R0 << 1;                   /* R2 lsw of dividend  */
+  R6 = R0 ^ R1;                   /* Get sign */
+  R5 = R6 >> 31;                  /* Shift sign to LSB */
+
+  R0 = 0 ;                        /* Clear msw partial remainder */
+  R2 = R2 | R5;                   /* Shift quotient bit */
+  R6 = R0 ^ R1;                   /* Get new quotient bit */
+
+  LSETUP(.Llst,.Llend)  LC0 = P1;   /* Setup loop */
+.Llst:   R7 = R2 >> 31;            /* record copy of carry from R2 */
+        R2 = R2 << 1;             /* Shift 64 bit dividend up by 1 bit */
+        R0 = R0 << 1 || R5 = [SP];
+        R0 = R0 | R7;             /* and add carry */
+        CC = R6 < 0;              /* Check quotient(AQ) */
+                                  /* we might be subtracting divisor (AQ==0) */
+        IF CC R5 = R1;            /* or we might be adding divisor  (AQ==1)*/
+        R0 = R0 + R5;             /* do add or subtract, as indicated by AQ */
+        R6 = R0 ^ R1;             /* Generate next quotient bit */
+        R5 = R6 >> 31;
+                                  /* Assume AQ==1, shift in zero */
+        BITTGL(R5,0);             /* tweak AQ to be what we want to shift in */
+.Llend:  R2 = R2 + R5;             /* and then set shifted-in value to
+                                  ** tweaked AQ.
+                                  */
+  r1 = r3 >> 31;
+  r2 = r2 + r1;
+  cc = bittst(r3,30);
+  r0 = -r2;
+  if !cc r0 = r2;
+  SP += 4;
+  (R7:5)= [SP++];                 /* Pop registers R6-R7 */
+  RTS;
+
+.Lident_return:
+  CC = R1 == 0;                   /* check for divide by zero  => 0x7fffffff */
+  R2 = -1 (X);
+  R2 >>= 1;
+  IF CC JUMP .Ltrue_ident_return;
+
+  CC = R0 == R1;                  /* check for identical operands => 1 */
+  R2 = 1 (Z);
+  IF CC JUMP .Ltrue_ident_return;
+
+  R2 = R0;                        /* assume divide by 1 => numerator */
+  /*FALLTHRU*/
+
+.Ltrue_ident_return:
+  R0 = R2;                        /* Return an identity value */
+  R2 = -R2;
+  CC = bittst(R3,30);
+  IF CC R0 = R2;
+.Lzero_return:
+  RTS;                            /* ...including zero */
+
+.Lpower_of_two:
+  /* Y has a single bit set, which means it's a power of two.
+  ** That means we can perform the division just by shifting
+  ** X to the right the appropriate number of bits
+  */
+
+  /* signbits returns the number of sign bits, minus one.
+  ** 1=>30, 2=>29, ..., 0x40000000=>0. Which means we need
+  ** to shift right n-signbits spaces. It also means 0x80000000
+  ** is a special case, because that *also* gives a signbits of 0
+  */
+
+  R2 = R0 >> 31;
+  CC = R1 < 0;
+  IF CC JUMP .Ltrue_ident_return;
+
+  R1.l = SIGNBITS R1;
+  R1 = R1.L (Z);
+  R1 += -30;
+  R0 = LSHIFT R0 by R1.L;
+  r1 = r3 >> 31;
+  r0 = r0 + r1;
+  R2 = -R0;                       // negate result if necessary
+  CC = bittst(R3,30);
+  IF CC R0 = R2;
+  RTS;
+
+.Lret_zero:
+  R0 = 0;
+  RTS;
+
+.size ___divsi3, .-___divsi3