[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/arch/mips/sni/time.c b/src/kernel/linux/v4.14/arch/mips/sni/time.c
new file mode 100644
index 0000000..0eb7d1e
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/mips/sni/time.c
@@ -0,0 +1,179 @@
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/types.h>
+#include <linux/i8253.h>
+#include <linux/interrupt.h>
+#include <linux/irq.h>
+#include <linux/smp.h>
+#include <linux/time.h>
+#include <linux/clockchips.h>
+
+#include <asm/sni.h>
+#include <asm/time.h>
+
+#define SNI_CLOCK_TICK_RATE	3686400
+#define SNI_COUNTER2_DIV	64
+#define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
+
+static int a20r_set_periodic(struct clock_event_device *evt)
+{
+	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
+	wmb();
+	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
+	wmb();
+	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
+	wmb();
+
+	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
+	wmb();
+	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
+	wmb();
+	*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
+	wmb();
+	return 0;
+}
+
+static struct clock_event_device a20r_clockevent_device = {
+	.name			= "a20r-timer",
+	.features		= CLOCK_EVT_FEAT_PERIODIC,
+
+	/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
+
+	.rating			= 300,
+	.irq			= SNI_A20R_IRQ_TIMER,
+	.set_state_periodic	= a20r_set_periodic,
+};
+
+static irqreturn_t a20r_interrupt(int irq, void *dev_id)
+{
+	struct clock_event_device *cd = dev_id;
+
+	*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
+	wmb();
+
+	cd->event_handler(cd);
+
+	return IRQ_HANDLED;
+}
+
+static struct irqaction a20r_irqaction = {
+	.handler	= a20r_interrupt,
+	.flags		= IRQF_PERCPU | IRQF_TIMER,
+	.name		= "a20r-timer",
+};
+
+/*
+ * a20r platform uses 2 counters to divide the input frequency.
+ * Counter 2 output is connected to Counter 0 & 1 input.
+ */
+static void __init sni_a20r_timer_setup(void)
+{
+	struct clock_event_device *cd = &a20r_clockevent_device;
+	struct irqaction *action = &a20r_irqaction;
+	unsigned int cpu = smp_processor_id();
+
+	cd->cpumask		= cpumask_of(cpu);
+	clockevents_register_device(cd);
+	action->dev_id = cd;
+	setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
+}
+
+#define SNI_8254_TICK_RATE	  1193182UL
+
+#define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255)
+
+static __init unsigned long dosample(void)
+{
+	u32 ct0, ct1;
+	volatile u8 msb;
+
+	/* Start the counter. */
+	outb_p(0x34, 0x43);
+	outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
+	outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
+
+	/* Get initial counter invariant */
+	ct0 = read_c0_count();
+
+	/* Latch and spin until top byte of counter0 is zero */
+	do {
+		outb(0x00, 0x43);
+		(void) inb(0x40);
+		msb = inb(0x40);
+		ct1 = read_c0_count();
+	} while (msb);
+
+	/* Stop the counter. */
+	outb(0x38, 0x43);
+	/*
+	 * Return the difference, this is how far the r4k counter increments
+	 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
+	 * clock (= 1000000 / HZ / 2).
+	 */
+	/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
+	return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
+}
+
+/*
+ * Here we need to calibrate the cycle counter to at least be close.
+ */
+void __init plat_time_init(void)
+{
+	unsigned long r4k_ticks[3];
+	unsigned long r4k_tick;
+
+	/*
+	 * Figure out the r4k offset, the algorithm is very simple and works in
+	 * _all_ cases as long as the 8254 counter register itself works ok (as
+	 * an interrupt driving timer it does not because of bug, this is why
+	 * we are using the onchip r4k counter/compare register to serve this
+	 * purpose, but for r4k_offset calculation it will work ok for us).
+	 * There are other very complicated ways of performing this calculation
+	 * but this one works just fine so I am not going to futz around. ;-)
+	 */
+	printk(KERN_INFO "Calibrating system timer... ");
+	dosample();	/* Prime cache. */
+	dosample();	/* Prime cache. */
+	/* Zero is NOT an option. */
+	do {
+		r4k_ticks[0] = dosample();
+	} while (!r4k_ticks[0]);
+	do {
+		r4k_ticks[1] = dosample();
+	} while (!r4k_ticks[1]);
+
+	if (r4k_ticks[0] != r4k_ticks[1]) {
+		printk("warning: timer counts differ, retrying... ");
+		r4k_ticks[2] = dosample();
+		if (r4k_ticks[2] == r4k_ticks[0]
+		    || r4k_ticks[2] == r4k_ticks[1])
+			r4k_tick = r4k_ticks[2];
+		else {
+			printk("disagreement, using average... ");
+			r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
+				   + r4k_ticks[2]) / 3;
+		}
+	} else
+		r4k_tick = r4k_ticks[0];
+
+	printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
+		(int) (r4k_tick / (500000 / HZ)),
+		(int) (r4k_tick % (500000 / HZ)));
+
+	mips_hpt_frequency = r4k_tick * HZ;
+
+	switch (sni_brd_type) {
+	case SNI_BRD_10:
+	case SNI_BRD_10NEW:
+	case SNI_BRD_TOWER_OASIC:
+	case SNI_BRD_MINITOWER:
+		sni_a20r_timer_setup();
+		break;
+	}
+	setup_pit_timer();
+}
+
+void read_persistent_clock(struct timespec *ts)
+{
+	ts->tv_sec = -1;
+	ts->tv_nsec = 0;
+}