[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/Makefile b/src/kernel/linux/v4.14/arch/powerpc/oprofile/Makefile
new file mode 100644
index 0000000..7a7834c
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/Makefile
@@ -0,0 +1,20 @@
+# SPDX-License-Identifier: GPL-2.0
+subdir-ccflags-$(CONFIG_PPC_WERROR) := -Werror
+
+ccflags-$(CONFIG_PPC64)	:= $(NO_MINIMAL_TOC)
+
+obj-$(CONFIG_OPROFILE) += oprofile.o
+
+DRIVER_OBJS := $(addprefix ../../../drivers/oprofile/, \
+		oprof.o cpu_buffer.o buffer_sync.o \
+		event_buffer.o oprofile_files.o \
+		oprofilefs.o oprofile_stats.o \
+		timer_int.o )
+
+oprofile-y := $(DRIVER_OBJS) common.o backtrace.o
+oprofile-$(CONFIG_OPROFILE_CELL) += op_model_cell.o \
+		cell/spu_profiler.o cell/vma_map.o \
+		cell/spu_task_sync.o
+oprofile-$(CONFIG_PPC_BOOK3S_64) += op_model_power4.o op_model_pa6t.o
+oprofile-$(CONFIG_FSL_EMB_PERFMON) += op_model_fsl_emb.o
+oprofile-$(CONFIG_6xx) += op_model_7450.o
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/backtrace.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/backtrace.c
new file mode 100644
index 0000000..ecc66d5
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/backtrace.c
@@ -0,0 +1,130 @@
+/**
+ * Copyright (C) 2005 Brian Rogan <bcr6@cornell.edu>, IBM
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+**/
+
+#include <linux/oprofile.h>
+#include <linux/sched.h>
+#include <asm/processor.h>
+#include <linux/uaccess.h>
+#include <asm/compat.h>
+#include <asm/oprofile_impl.h>
+
+#define STACK_SP(STACK)		*(STACK)
+
+#define STACK_LR64(STACK)	*((unsigned long *)(STACK) + 2)
+#define STACK_LR32(STACK)	*((unsigned int *)(STACK) + 1)
+
+#ifdef CONFIG_PPC64
+#define STACK_LR(STACK)		STACK_LR64(STACK)
+#else
+#define STACK_LR(STACK)		STACK_LR32(STACK)
+#endif
+
+static unsigned int user_getsp32(unsigned int sp, int is_first)
+{
+	unsigned int stack_frame[2];
+	void __user *p = compat_ptr(sp);
+
+	if (!access_ok(VERIFY_READ, p, sizeof(stack_frame)))
+		return 0;
+
+	/*
+	 * The most likely reason for this is that we returned -EFAULT,
+	 * which means that we've done all that we can do from
+	 * interrupt context.
+	 */
+	if (__copy_from_user_inatomic(stack_frame, p, sizeof(stack_frame)))
+		return 0;
+
+	if (!is_first)
+		oprofile_add_trace(STACK_LR32(stack_frame));
+
+	/*
+	 * We do not enforce increasing stack addresses here because
+	 * we may transition to a different stack, eg a signal handler.
+	 */
+	return STACK_SP(stack_frame);
+}
+
+#ifdef CONFIG_PPC64
+static unsigned long user_getsp64(unsigned long sp, int is_first)
+{
+	unsigned long stack_frame[3];
+
+	if (!access_ok(VERIFY_READ, (void __user *)sp, sizeof(stack_frame)))
+		return 0;
+
+	if (__copy_from_user_inatomic(stack_frame, (void __user *)sp,
+					sizeof(stack_frame)))
+		return 0;
+
+	if (!is_first)
+		oprofile_add_trace(STACK_LR64(stack_frame));
+
+	return STACK_SP(stack_frame);
+}
+#endif
+
+static unsigned long kernel_getsp(unsigned long sp, int is_first)
+{
+	unsigned long *stack_frame = (unsigned long *)sp;
+
+	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
+		return 0;
+
+	if (!is_first)
+		oprofile_add_trace(STACK_LR(stack_frame));
+
+	/*
+	 * We do not enforce increasing stack addresses here because
+	 * we might be transitioning from an interrupt stack to a kernel
+	 * stack. validate_sp() is designed to understand this, so just
+	 * use it.
+	 */
+	return STACK_SP(stack_frame);
+}
+
+void op_powerpc_backtrace(struct pt_regs * const regs, unsigned int depth)
+{
+	unsigned long sp = regs->gpr[1];
+	int first_frame = 1;
+
+	/* We ditch the top stackframe so need to loop through an extra time */
+	depth += 1;
+
+	if (!user_mode(regs)) {
+		while (depth--) {
+			sp = kernel_getsp(sp, first_frame);
+			if (!sp)
+				break;
+			first_frame = 0;
+		}
+	} else {
+		pagefault_disable();
+#ifdef CONFIG_PPC64
+		if (!is_32bit_task()) {
+			while (depth--) {
+				sp = user_getsp64(sp, first_frame);
+				if (!sp)
+					break;
+				first_frame = 0;
+			}
+			pagefault_enable();
+			return;
+		}
+#endif
+
+		while (depth--) {
+			sp = user_getsp32(sp, first_frame);
+			if (!sp)
+				break;
+			first_frame = 0;
+		}
+		pagefault_enable();
+	}
+}
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/pr_util.h b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/pr_util.h
new file mode 100644
index 0000000..964b939
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/pr_util.h
@@ -0,0 +1,114 @@
+ /*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: Maynard Johnson <maynardj@us.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#ifndef PR_UTIL_H
+#define PR_UTIL_H
+
+#include <linux/cpumask.h>
+#include <linux/oprofile.h>
+#include <asm/cell-pmu.h>
+#include <asm/cell-regs.h>
+#include <asm/spu.h>
+
+/* Defines used for sync_start */
+#define SKIP_GENERIC_SYNC 0
+#define SYNC_START_ERROR -1
+#define DO_GENERIC_SYNC 1
+#define SPUS_PER_NODE   8
+#define DEFAULT_TIMER_EXPIRE  (HZ / 10)
+
+extern struct delayed_work spu_work;
+extern int spu_prof_running;
+
+#define TRACE_ARRAY_SIZE 1024
+
+extern spinlock_t oprof_spu_smpl_arry_lck;
+
+struct spu_overlay_info {	/* map of sections within an SPU overlay */
+	unsigned int vma;	/* SPU virtual memory address from elf */
+	unsigned int size;	/* size of section from elf */
+	unsigned int offset;	/* offset of section into elf file */
+	unsigned int buf;
+};
+
+struct vma_to_fileoffset_map {	/* map of sections within an SPU program */
+	struct vma_to_fileoffset_map *next;	/* list pointer */
+	unsigned int vma;	/* SPU virtual memory address from elf */
+	unsigned int size;	/* size of section from elf */
+	unsigned int offset;	/* offset of section into elf file */
+	unsigned int guard_ptr;
+	unsigned int guard_val;
+        /*
+	 * The guard pointer is an entry in the _ovly_buf_table,
+	 * computed using ovly.buf as the index into the table.  Since
+	 * ovly.buf values begin at '1' to reference the first (or 0th)
+	 * entry in the _ovly_buf_table, the computation subtracts 1
+	 * from ovly.buf.
+	 * The guard value is stored in the _ovly_buf_table entry and
+	 * is an index (starting at 1) back to the _ovly_table entry
+	 * that is pointing at this _ovly_buf_table entry.  So, for
+	 * example, for an overlay scenario with one overlay segment
+	 * and two overlay sections:
+	 *      - Section 1 points to the first entry of the
+	 *        _ovly_buf_table, which contains a guard value
+	 *        of '1', referencing the first (index=0) entry of
+	 *        _ovly_table.
+	 *      - Section 2 points to the second entry of the
+	 *        _ovly_buf_table, which contains a guard value
+	 *        of '2', referencing the second (index=1) entry of
+	 *        _ovly_table.
+	 */
+
+};
+
+struct spu_buffer {
+	int last_guard_val;
+	int ctx_sw_seen;
+	unsigned long *buff;
+	unsigned int head, tail;
+};
+
+
+/* The three functions below are for maintaining and accessing
+ * the vma-to-fileoffset map.
+ */
+struct vma_to_fileoffset_map *create_vma_map(const struct spu *spu,
+					     unsigned long objectid);
+unsigned int vma_map_lookup(struct vma_to_fileoffset_map *map,
+			    unsigned int vma, const struct spu *aSpu,
+			    int *grd_val);
+void vma_map_free(struct vma_to_fileoffset_map *map);
+
+/*
+ * Entry point for SPU profiling.
+ * cycles_reset is the SPU_CYCLES count value specified by the user.
+ */
+int start_spu_profiling_cycles(unsigned int cycles_reset);
+void start_spu_profiling_events(void);
+
+void stop_spu_profiling_cycles(void);
+void stop_spu_profiling_events(void);
+
+/* add the necessary profiling hooks */
+int spu_sync_start(void);
+
+/* remove the hooks */
+int spu_sync_stop(void);
+
+/* Record SPU program counter samples to the oprofile event buffer. */
+void spu_sync_buffer(int spu_num, unsigned int *samples,
+		     int num_samples);
+
+void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset);
+
+#endif	  /* PR_UTIL_H */
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/spu_profiler.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/spu_profiler.c
new file mode 100644
index 0000000..5182f29
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/spu_profiler.c
@@ -0,0 +1,252 @@
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Authors: Maynard Johnson <maynardj@us.ibm.com>
+ *	    Carl Love <carll@us.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/hrtimer.h>
+#include <linux/smp.h>
+#include <linux/slab.h>
+#include <asm/cell-pmu.h>
+#include <asm/time.h>
+#include "pr_util.h"
+
+#define SCALE_SHIFT 14
+
+static u32 *samples;
+
+/* spu_prof_running is a flag used to indicate if spu profiling is enabled
+ * or not.  It is set by the routines start_spu_profiling_cycles() and
+ * start_spu_profiling_events().  The flag is cleared by the routines
+ * stop_spu_profiling_cycles() and stop_spu_profiling_events().  These
+ * routines are called via global_start() and global_stop() which are called in
+ * op_powerpc_start() and op_powerpc_stop().  These routines are called once
+ * per system as a result of the user starting/stopping oprofile.  Hence, only
+ * one CPU per user at a time will be changing  the value of spu_prof_running.
+ * In general, OProfile does not protect against multiple users trying to run
+ * OProfile at a time.
+ */
+int spu_prof_running;
+static unsigned int profiling_interval;
+
+#define NUM_SPU_BITS_TRBUF 16
+#define SPUS_PER_TB_ENTRY   4
+
+#define SPU_PC_MASK	     0xFFFF
+
+DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
+static unsigned long oprof_spu_smpl_arry_lck_flags;
+
+void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
+{
+	unsigned long ns_per_cyc;
+
+	if (!freq_khz)
+		freq_khz = ppc_proc_freq/1000;
+
+	/* To calculate a timeout in nanoseconds, the basic
+	 * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
+	 * To avoid floating point math, we use the scale math
+	 * technique as described in linux/jiffies.h.  We use
+	 * a scale factor of SCALE_SHIFT, which provides 4 decimal places
+	 * of precision.  This is close enough for the purpose at hand.
+	 *
+	 * The value of the timeout should be small enough that the hw
+	 * trace buffer will not get more than about 1/3 full for the
+	 * maximum user specified (the LFSR value) hw sampling frequency.
+	 * This is to ensure the trace buffer will never fill even if the
+	 * kernel thread scheduling varies under a heavy system load.
+	 */
+
+	ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
+	profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
+
+}
+
+/*
+ * Extract SPU PC from trace buffer entry
+ */
+static void spu_pc_extract(int cpu, int entry)
+{
+	/* the trace buffer is 128 bits */
+	u64 trace_buffer[2];
+	u64 spu_mask;
+	int spu;
+
+	spu_mask = SPU_PC_MASK;
+
+	/* Each SPU PC is 16 bits; hence, four spus in each of
+	 * the two 64-bit buffer entries that make up the
+	 * 128-bit trace_buffer entry.	Process two 64-bit values
+	 * simultaneously.
+	 * trace[0] SPU PC contents are: 0 1 2 3
+	 * trace[1] SPU PC contents are: 4 5 6 7
+	 */
+
+	cbe_read_trace_buffer(cpu, trace_buffer);
+
+	for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
+		/* spu PC trace entry is upper 16 bits of the
+		 * 18 bit SPU program counter
+		 */
+		samples[spu * TRACE_ARRAY_SIZE + entry]
+			= (spu_mask & trace_buffer[0]) << 2;
+		samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
+			= (spu_mask & trace_buffer[1]) << 2;
+
+		trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
+		trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
+	}
+}
+
+static int cell_spu_pc_collection(int cpu)
+{
+	u32 trace_addr;
+	int entry;
+
+	/* process the collected SPU PC for the node */
+
+	entry = 0;
+
+	trace_addr = cbe_read_pm(cpu, trace_address);
+	while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
+		/* there is data in the trace buffer to process */
+		spu_pc_extract(cpu, entry);
+
+		entry++;
+
+		if (entry >= TRACE_ARRAY_SIZE)
+			/* spu_samples is full */
+			break;
+
+		trace_addr = cbe_read_pm(cpu, trace_address);
+	}
+
+	return entry;
+}
+
+
+static enum hrtimer_restart profile_spus(struct hrtimer *timer)
+{
+	ktime_t kt;
+	int cpu, node, k, num_samples, spu_num;
+
+	if (!spu_prof_running)
+		goto stop;
+
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		node = cbe_cpu_to_node(cpu);
+
+		/* There should only be one kernel thread at a time processing
+		 * the samples.	 In the very unlikely case that the processing
+		 * is taking a very long time and multiple kernel threads are
+		 * started to process the samples.  Make sure only one kernel
+		 * thread is working on the samples array at a time.  The
+		 * sample array must be loaded and then processed for a given
+		 * cpu.	 The sample array is not per cpu.
+		 */
+		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
+				  oprof_spu_smpl_arry_lck_flags);
+		num_samples = cell_spu_pc_collection(cpu);
+
+		if (num_samples == 0) {
+			spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+					       oprof_spu_smpl_arry_lck_flags);
+			continue;
+		}
+
+		for (k = 0; k < SPUS_PER_NODE; k++) {
+			spu_num = k + (node * SPUS_PER_NODE);
+			spu_sync_buffer(spu_num,
+					samples + (k * TRACE_ARRAY_SIZE),
+					num_samples);
+		}
+
+		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+				       oprof_spu_smpl_arry_lck_flags);
+
+	}
+	smp_wmb();	/* insure spu event buffer updates are written */
+			/* don't want events intermingled... */
+
+	kt = profiling_interval;
+	if (!spu_prof_running)
+		goto stop;
+	hrtimer_forward(timer, timer->base->get_time(), kt);
+	return HRTIMER_RESTART;
+
+ stop:
+	printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
+	return HRTIMER_NORESTART;
+}
+
+static struct hrtimer timer;
+/*
+ * Entry point for SPU cycle profiling.
+ * NOTE:  SPU profiling is done system-wide, not per-CPU.
+ *
+ * cycles_reset is the count value specified by the user when
+ * setting up OProfile to count SPU_CYCLES.
+ */
+int start_spu_profiling_cycles(unsigned int cycles_reset)
+{
+	ktime_t kt;
+
+	pr_debug("timer resolution: %lu\n", TICK_NSEC);
+	kt = profiling_interval;
+	hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
+	hrtimer_set_expires(&timer, kt);
+	timer.function = profile_spus;
+
+	/* Allocate arrays for collecting SPU PC samples */
+	samples = kzalloc(SPUS_PER_NODE *
+			  TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL);
+
+	if (!samples)
+		return -ENOMEM;
+
+	spu_prof_running = 1;
+	hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
+	schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
+
+	return 0;
+}
+
+/*
+ * Entry point for SPU event profiling.
+ * NOTE:  SPU profiling is done system-wide, not per-CPU.
+ *
+ * cycles_reset is the count value specified by the user when
+ * setting up OProfile to count SPU_CYCLES.
+ */
+void start_spu_profiling_events(void)
+{
+	spu_prof_running = 1;
+	schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
+
+	return;
+}
+
+void stop_spu_profiling_cycles(void)
+{
+	spu_prof_running = 0;
+	hrtimer_cancel(&timer);
+	kfree(samples);
+	pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
+}
+
+void stop_spu_profiling_events(void)
+{
+	spu_prof_running = 0;
+}
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/spu_task_sync.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/spu_task_sync.c
new file mode 100644
index 0000000..44d67b1
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/spu_task_sync.c
@@ -0,0 +1,661 @@
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: Maynard Johnson <maynardj@us.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+/* The purpose of this file is to handle SPU event task switching
+ * and to record SPU context information into the OProfile
+ * event buffer.
+ *
+ * Additionally, the spu_sync_buffer function is provided as a helper
+ * for recoding actual SPU program counter samples to the event buffer.
+ */
+#include <linux/dcookies.h>
+#include <linux/kref.h>
+#include <linux/mm.h>
+#include <linux/fs.h>
+#include <linux/file.h>
+#include <linux/module.h>
+#include <linux/notifier.h>
+#include <linux/numa.h>
+#include <linux/oprofile.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+#include "pr_util.h"
+
+#define RELEASE_ALL 9999
+
+static DEFINE_SPINLOCK(buffer_lock);
+static DEFINE_SPINLOCK(cache_lock);
+static int num_spu_nodes;
+static int spu_prof_num_nodes;
+
+struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
+struct delayed_work spu_work;
+static unsigned max_spu_buff;
+
+static void spu_buff_add(unsigned long int value, int spu)
+{
+	/* spu buff is a circular buffer.  Add entries to the
+	 * head.  Head is the index to store the next value.
+	 * The buffer is full when there is one available entry
+	 * in the queue, i.e. head and tail can't be equal.
+	 * That way we can tell the difference between the
+	 * buffer being full versus empty.
+	 *
+	 *  ASSUMPTION: the buffer_lock is held when this function
+	 *             is called to lock the buffer, head and tail.
+	 */
+	int full = 1;
+
+	if (spu_buff[spu].head >= spu_buff[spu].tail) {
+		if ((spu_buff[spu].head - spu_buff[spu].tail)
+		    <  (max_spu_buff - 1))
+			full = 0;
+
+	} else if (spu_buff[spu].tail > spu_buff[spu].head) {
+		if ((spu_buff[spu].tail - spu_buff[spu].head)
+		    > 1)
+			full = 0;
+	}
+
+	if (!full) {
+		spu_buff[spu].buff[spu_buff[spu].head] = value;
+		spu_buff[spu].head++;
+
+		if (spu_buff[spu].head >= max_spu_buff)
+			spu_buff[spu].head = 0;
+	} else {
+		/* From the user's perspective make the SPU buffer
+		 * size management/overflow look like we are using
+		 * per cpu buffers.  The user uses the same
+		 * per cpu parameter to adjust the SPU buffer size.
+		 * Increment the sample_lost_overflow to inform
+		 * the user the buffer size needs to be increased.
+		 */
+		oprofile_cpu_buffer_inc_smpl_lost();
+	}
+}
+
+/* This function copies the per SPU buffers to the
+ * OProfile kernel buffer.
+ */
+static void sync_spu_buff(void)
+{
+	int spu;
+	unsigned long flags;
+	int curr_head;
+
+	for (spu = 0; spu < num_spu_nodes; spu++) {
+		/* In case there was an issue and the buffer didn't
+		 * get created skip it.
+		 */
+		if (spu_buff[spu].buff == NULL)
+			continue;
+
+		/* Hold the lock to make sure the head/tail
+		 * doesn't change while spu_buff_add() is
+		 * deciding if the buffer is full or not.
+		 * Being a little paranoid.
+		 */
+		spin_lock_irqsave(&buffer_lock, flags);
+		curr_head = spu_buff[spu].head;
+		spin_unlock_irqrestore(&buffer_lock, flags);
+
+		/* Transfer the current contents to the kernel buffer.
+		 * data can still be added to the head of the buffer.
+		 */
+		oprofile_put_buff(spu_buff[spu].buff,
+				  spu_buff[spu].tail,
+				  curr_head, max_spu_buff);
+
+		spin_lock_irqsave(&buffer_lock, flags);
+		spu_buff[spu].tail = curr_head;
+		spin_unlock_irqrestore(&buffer_lock, flags);
+	}
+
+}
+
+static void wq_sync_spu_buff(struct work_struct *work)
+{
+	/* move data from spu buffers to kernel buffer */
+	sync_spu_buff();
+
+	/* only reschedule if profiling is not done */
+	if (spu_prof_running)
+		schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
+}
+
+/* Container for caching information about an active SPU task. */
+struct cached_info {
+	struct vma_to_fileoffset_map *map;
+	struct spu *the_spu;	/* needed to access pointer to local_store */
+	struct kref cache_ref;
+};
+
+static struct cached_info *spu_info[MAX_NUMNODES * 8];
+
+static void destroy_cached_info(struct kref *kref)
+{
+	struct cached_info *info;
+
+	info = container_of(kref, struct cached_info, cache_ref);
+	vma_map_free(info->map);
+	kfree(info);
+	module_put(THIS_MODULE);
+}
+
+/* Return the cached_info for the passed SPU number.
+ * ATTENTION:  Callers are responsible for obtaining the
+ *	       cache_lock if needed prior to invoking this function.
+ */
+static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
+{
+	struct kref *ref;
+	struct cached_info *ret_info;
+
+	if (spu_num >= num_spu_nodes) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: Invalid index %d into spu info cache\n",
+		       __func__, __LINE__, spu_num);
+		ret_info = NULL;
+		goto out;
+	}
+	if (!spu_info[spu_num] && the_spu) {
+		ref = spu_get_profile_private_kref(the_spu->ctx);
+		if (ref) {
+			spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
+			kref_get(&spu_info[spu_num]->cache_ref);
+		}
+	}
+
+	ret_info = spu_info[spu_num];
+ out:
+	return ret_info;
+}
+
+
+/* Looks for cached info for the passed spu.  If not found, the
+ * cached info is created for the passed spu.
+ * Returns 0 for success; otherwise, -1 for error.
+ */
+static int
+prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
+{
+	unsigned long flags;
+	struct vma_to_fileoffset_map *new_map;
+	int retval = 0;
+	struct cached_info *info;
+
+	/* We won't bother getting cache_lock here since
+	 * don't do anything with the cached_info that's returned.
+	 */
+	info = get_cached_info(spu, spu->number);
+
+	if (info) {
+		pr_debug("Found cached SPU info.\n");
+		goto out;
+	}
+
+	/* Create cached_info and set spu_info[spu->number] to point to it.
+	 * spu->number is a system-wide value, not a per-node value.
+	 */
+	info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
+	if (!info) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: create vma_map failed\n",
+		       __func__, __LINE__);
+		retval = -ENOMEM;
+		goto err_alloc;
+	}
+	new_map = create_vma_map(spu, objectId);
+	if (!new_map) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: create vma_map failed\n",
+		       __func__, __LINE__);
+		retval = -ENOMEM;
+		goto err_alloc;
+	}
+
+	pr_debug("Created vma_map\n");
+	info->map = new_map;
+	info->the_spu = spu;
+	kref_init(&info->cache_ref);
+	spin_lock_irqsave(&cache_lock, flags);
+	spu_info[spu->number] = info;
+	/* Increment count before passing off ref to SPUFS. */
+	kref_get(&info->cache_ref);
+
+	/* We increment the module refcount here since SPUFS is
+	 * responsible for the final destruction of the cached_info,
+	 * and it must be able to access the destroy_cached_info()
+	 * function defined in the OProfile module.  We decrement
+	 * the module refcount in destroy_cached_info.
+	 */
+	try_module_get(THIS_MODULE);
+	spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
+				destroy_cached_info);
+	spin_unlock_irqrestore(&cache_lock, flags);
+	goto out;
+
+err_alloc:
+	kfree(info);
+out:
+	return retval;
+}
+
+/*
+ * NOTE:  The caller is responsible for locking the
+ *	  cache_lock prior to calling this function.
+ */
+static int release_cached_info(int spu_index)
+{
+	int index, end;
+
+	if (spu_index == RELEASE_ALL) {
+		end = num_spu_nodes;
+		index = 0;
+	} else {
+		if (spu_index >= num_spu_nodes) {
+			printk(KERN_ERR "SPU_PROF: "
+				"%s, line %d: "
+				"Invalid index %d into spu info cache\n",
+				__func__, __LINE__, spu_index);
+			goto out;
+		}
+		end = spu_index + 1;
+		index = spu_index;
+	}
+	for (; index < end; index++) {
+		if (spu_info[index]) {
+			kref_put(&spu_info[index]->cache_ref,
+				 destroy_cached_info);
+			spu_info[index] = NULL;
+		}
+	}
+
+out:
+	return 0;
+}
+
+/* The source code for fast_get_dcookie was "borrowed"
+ * from drivers/oprofile/buffer_sync.c.
+ */
+
+/* Optimisation. We can manage without taking the dcookie sem
+ * because we cannot reach this code without at least one
+ * dcookie user still being registered (namely, the reader
+ * of the event buffer).
+ */
+static inline unsigned long fast_get_dcookie(const struct path *path)
+{
+	unsigned long cookie;
+
+	if (path->dentry->d_flags & DCACHE_COOKIE)
+		return (unsigned long)path->dentry;
+	get_dcookie(path, &cookie);
+	return cookie;
+}
+
+/* Look up the dcookie for the task's mm->exe_file,
+ * which corresponds loosely to "application name". Also, determine
+ * the offset for the SPU ELF object.  If computed offset is
+ * non-zero, it implies an embedded SPU object; otherwise, it's a
+ * separate SPU binary, in which case we retrieve it's dcookie.
+ * For the embedded case, we must determine if SPU ELF is embedded
+ * in the executable application or another file (i.e., shared lib).
+ * If embedded in a shared lib, we must get the dcookie and return
+ * that to the caller.
+ */
+static unsigned long
+get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
+			    unsigned long *spu_bin_dcookie,
+			    unsigned long spu_ref)
+{
+	unsigned long app_cookie = 0;
+	unsigned int my_offset = 0;
+	struct vm_area_struct *vma;
+	struct file *exe_file;
+	struct mm_struct *mm = spu->mm;
+
+	if (!mm)
+		goto out;
+
+	exe_file = get_mm_exe_file(mm);
+	if (exe_file) {
+		app_cookie = fast_get_dcookie(&exe_file->f_path);
+		pr_debug("got dcookie for %pD\n", exe_file);
+		fput(exe_file);
+	}
+
+	down_read(&mm->mmap_sem);
+	for (vma = mm->mmap; vma; vma = vma->vm_next) {
+		if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
+			continue;
+		my_offset = spu_ref - vma->vm_start;
+		if (!vma->vm_file)
+			goto fail_no_image_cookie;
+
+		pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
+			 my_offset, spu_ref, vma->vm_file);
+		*offsetp = my_offset;
+		break;
+	}
+
+	*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
+	pr_debug("got dcookie for %pD\n", vma->vm_file);
+
+	up_read(&mm->mmap_sem);
+
+out:
+	return app_cookie;
+
+fail_no_image_cookie:
+	up_read(&mm->mmap_sem);
+
+	printk(KERN_ERR "SPU_PROF: "
+		"%s, line %d: Cannot find dcookie for SPU binary\n",
+		__func__, __LINE__);
+	goto out;
+}
+
+
+
+/* This function finds or creates cached context information for the
+ * passed SPU and records SPU context information into the OProfile
+ * event buffer.
+ */
+static int process_context_switch(struct spu *spu, unsigned long objectId)
+{
+	unsigned long flags;
+	int retval;
+	unsigned int offset = 0;
+	unsigned long spu_cookie = 0, app_dcookie;
+
+	retval = prepare_cached_spu_info(spu, objectId);
+	if (retval)
+		goto out;
+
+	/* Get dcookie first because a mutex_lock is taken in that
+	 * code path, so interrupts must not be disabled.
+	 */
+	app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
+	if (!app_dcookie || !spu_cookie) {
+		retval  = -ENOENT;
+		goto out;
+	}
+
+	/* Record context info in event buffer */
+	spin_lock_irqsave(&buffer_lock, flags);
+	spu_buff_add(ESCAPE_CODE, spu->number);
+	spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
+	spu_buff_add(spu->number, spu->number);
+	spu_buff_add(spu->pid, spu->number);
+	spu_buff_add(spu->tgid, spu->number);
+	spu_buff_add(app_dcookie, spu->number);
+	spu_buff_add(spu_cookie, spu->number);
+	spu_buff_add(offset, spu->number);
+
+	/* Set flag to indicate SPU PC data can now be written out.  If
+	 * the SPU program counter data is seen before an SPU context
+	 * record is seen, the postprocessing will fail.
+	 */
+	spu_buff[spu->number].ctx_sw_seen = 1;
+
+	spin_unlock_irqrestore(&buffer_lock, flags);
+	smp_wmb();	/* insure spu event buffer updates are written */
+			/* don't want entries intermingled... */
+out:
+	return retval;
+}
+
+/*
+ * This function is invoked on either a bind_context or unbind_context.
+ * If called for an unbind_context, the val arg is 0; otherwise,
+ * it is the object-id value for the spu context.
+ * The data arg is of type 'struct spu *'.
+ */
+static int spu_active_notify(struct notifier_block *self, unsigned long val,
+				void *data)
+{
+	int retval;
+	unsigned long flags;
+	struct spu *the_spu = data;
+
+	pr_debug("SPU event notification arrived\n");
+	if (!val) {
+		spin_lock_irqsave(&cache_lock, flags);
+		retval = release_cached_info(the_spu->number);
+		spin_unlock_irqrestore(&cache_lock, flags);
+	} else {
+		retval = process_context_switch(the_spu, val);
+	}
+	return retval;
+}
+
+static struct notifier_block spu_active = {
+	.notifier_call = spu_active_notify,
+};
+
+static int number_of_online_nodes(void)
+{
+        u32 cpu; u32 tmp;
+        int nodes = 0;
+        for_each_online_cpu(cpu) {
+                tmp = cbe_cpu_to_node(cpu) + 1;
+                if (tmp > nodes)
+                        nodes++;
+        }
+        return nodes;
+}
+
+static int oprofile_spu_buff_create(void)
+{
+	int spu;
+
+	max_spu_buff = oprofile_get_cpu_buffer_size();
+
+	for (spu = 0; spu < num_spu_nodes; spu++) {
+		/* create circular buffers to store the data in.
+		 * use locks to manage accessing the buffers
+		 */
+		spu_buff[spu].head = 0;
+		spu_buff[spu].tail = 0;
+
+		/*
+		 * Create a buffer for each SPU.  Can't reliably
+		 * create a single buffer for all spus due to not
+		 * enough contiguous kernel memory.
+		 */
+
+		spu_buff[spu].buff = kzalloc((max_spu_buff
+					      * sizeof(unsigned long)),
+					     GFP_KERNEL);
+
+		if (!spu_buff[spu].buff) {
+			printk(KERN_ERR "SPU_PROF: "
+			       "%s, line %d:  oprofile_spu_buff_create "
+		       "failed to allocate spu buffer %d.\n",
+			       __func__, __LINE__, spu);
+
+			/* release the spu buffers that have been allocated */
+			while (spu >= 0) {
+				kfree(spu_buff[spu].buff);
+				spu_buff[spu].buff = 0;
+				spu--;
+			}
+			return -ENOMEM;
+		}
+	}
+	return 0;
+}
+
+/* The main purpose of this function is to synchronize
+ * OProfile with SPUFS by registering to be notified of
+ * SPU task switches.
+ *
+ * NOTE: When profiling SPUs, we must ensure that only
+ * spu_sync_start is invoked and not the generic sync_start
+ * in drivers/oprofile/oprof.c.	 A return value of
+ * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
+ * accomplish this.
+ */
+int spu_sync_start(void)
+{
+	int spu;
+	int ret = SKIP_GENERIC_SYNC;
+	int register_ret;
+	unsigned long flags = 0;
+
+	spu_prof_num_nodes = number_of_online_nodes();
+	num_spu_nodes = spu_prof_num_nodes * 8;
+	INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
+
+	/* create buffer for storing the SPU data to put in
+	 * the kernel buffer.
+	 */
+	ret = oprofile_spu_buff_create();
+	if (ret)
+		goto out;
+
+	spin_lock_irqsave(&buffer_lock, flags);
+	for (spu = 0; spu < num_spu_nodes; spu++) {
+		spu_buff_add(ESCAPE_CODE, spu);
+		spu_buff_add(SPU_PROFILING_CODE, spu);
+		spu_buff_add(num_spu_nodes, spu);
+	}
+	spin_unlock_irqrestore(&buffer_lock, flags);
+
+	for (spu = 0; spu < num_spu_nodes; spu++) {
+		spu_buff[spu].ctx_sw_seen = 0;
+		spu_buff[spu].last_guard_val = 0;
+	}
+
+	/* Register for SPU events  */
+	register_ret = spu_switch_event_register(&spu_active);
+	if (register_ret) {
+		ret = SYNC_START_ERROR;
+		goto out;
+	}
+
+	pr_debug("spu_sync_start -- running.\n");
+out:
+	return ret;
+}
+
+/* Record SPU program counter samples to the oprofile event buffer. */
+void spu_sync_buffer(int spu_num, unsigned int *samples,
+		     int num_samples)
+{
+	unsigned long long file_offset;
+	unsigned long flags;
+	int i;
+	struct vma_to_fileoffset_map *map;
+	struct spu *the_spu;
+	unsigned long long spu_num_ll = spu_num;
+	unsigned long long spu_num_shifted = spu_num_ll << 32;
+	struct cached_info *c_info;
+
+	/* We need to obtain the cache_lock here because it's
+	 * possible that after getting the cached_info, the SPU job
+	 * corresponding to this cached_info may end, thus resulting
+	 * in the destruction of the cached_info.
+	 */
+	spin_lock_irqsave(&cache_lock, flags);
+	c_info = get_cached_info(NULL, spu_num);
+	if (!c_info) {
+		/* This legitimately happens when the SPU task ends before all
+		 * samples are recorded.
+		 * No big deal -- so we just drop a few samples.
+		 */
+		pr_debug("SPU_PROF: No cached SPU contex "
+			  "for SPU #%d. Dropping samples.\n", spu_num);
+		goto out;
+	}
+
+	map = c_info->map;
+	the_spu = c_info->the_spu;
+	spin_lock(&buffer_lock);
+	for (i = 0; i < num_samples; i++) {
+		unsigned int sample = *(samples+i);
+		int grd_val = 0;
+		file_offset = 0;
+		if (sample == 0)
+			continue;
+		file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
+
+		/* If overlays are used by this SPU application, the guard
+		 * value is non-zero, indicating which overlay section is in
+		 * use.	 We need to discard samples taken during the time
+		 * period which an overlay occurs (i.e., guard value changes).
+		 */
+		if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
+			spu_buff[spu_num].last_guard_val = grd_val;
+			/* Drop the rest of the samples. */
+			break;
+		}
+
+		/* We must ensure that the SPU context switch has been written
+		 * out before samples for the SPU.  Otherwise, the SPU context
+		 * information is not available and the postprocessing of the
+		 * SPU PC will fail with no available anonymous map information.
+		 */
+		if (spu_buff[spu_num].ctx_sw_seen)
+			spu_buff_add((file_offset | spu_num_shifted),
+					 spu_num);
+	}
+	spin_unlock(&buffer_lock);
+out:
+	spin_unlock_irqrestore(&cache_lock, flags);
+}
+
+
+int spu_sync_stop(void)
+{
+	unsigned long flags = 0;
+	int ret;
+	int k;
+
+	ret = spu_switch_event_unregister(&spu_active);
+
+	if (ret)
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: spu_switch_event_unregister "	\
+		       "returned %d\n",
+		       __func__, __LINE__, ret);
+
+	/* flush any remaining data in the per SPU buffers */
+	sync_spu_buff();
+
+	spin_lock_irqsave(&cache_lock, flags);
+	ret = release_cached_info(RELEASE_ALL);
+	spin_unlock_irqrestore(&cache_lock, flags);
+
+	/* remove scheduled work queue item rather then waiting
+	 * for every queued entry to execute.  Then flush pending
+	 * system wide buffer to event buffer.
+	 */
+	cancel_delayed_work(&spu_work);
+
+	for (k = 0; k < num_spu_nodes; k++) {
+		spu_buff[k].ctx_sw_seen = 0;
+
+		/*
+		 * spu_sys_buff will be null if there was a problem
+		 * allocating the buffer.  Only delete if it exists.
+		 */
+		kfree(spu_buff[k].buff);
+		spu_buff[k].buff = 0;
+	}
+	pr_debug("spu_sync_stop -- done.\n");
+	return ret;
+}
+
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/vma_map.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/vma_map.c
new file mode 100644
index 0000000..c579b16
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/cell/vma_map.c
@@ -0,0 +1,283 @@
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: Maynard Johnson <maynardj@us.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+/* The code in this source file is responsible for generating
+ * vma-to-fileOffset maps for both overlay and non-overlay SPU
+ * applications.
+ */
+
+#include <linux/mm.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/elf.h>
+#include <linux/slab.h>
+#include "pr_util.h"
+
+
+void vma_map_free(struct vma_to_fileoffset_map *map)
+{
+	while (map) {
+		struct vma_to_fileoffset_map *next = map->next;
+		kfree(map);
+		map = next;
+	}
+}
+
+unsigned int
+vma_map_lookup(struct vma_to_fileoffset_map *map, unsigned int vma,
+	       const struct spu *aSpu, int *grd_val)
+{
+	/*
+	 * Default the offset to the physical address + a flag value.
+	 * Addresses of dynamically generated code can't be found in the vma
+	 * map.  For those addresses the flagged value will be sent on to
+	 * the user space tools so they can be reported rather than just
+	 * thrown away.
+	 */
+	u32 offset = 0x10000000 + vma;
+	u32 ovly_grd;
+
+	for (; map; map = map->next) {
+		if (vma < map->vma || vma >= map->vma + map->size)
+			continue;
+
+		if (map->guard_ptr) {
+			ovly_grd = *(u32 *)(aSpu->local_store + map->guard_ptr);
+			if (ovly_grd != map->guard_val)
+				continue;
+			*grd_val = ovly_grd;
+		}
+		offset = vma - map->vma + map->offset;
+		break;
+	}
+
+	return offset;
+}
+
+static struct vma_to_fileoffset_map *
+vma_map_add(struct vma_to_fileoffset_map *map, unsigned int vma,
+	    unsigned int size, unsigned int offset, unsigned int guard_ptr,
+	    unsigned int guard_val)
+{
+	struct vma_to_fileoffset_map *new =
+		kzalloc(sizeof(struct vma_to_fileoffset_map), GFP_KERNEL);
+	if (!new) {
+		printk(KERN_ERR "SPU_PROF: %s, line %d: malloc failed\n",
+		       __func__, __LINE__);
+		vma_map_free(map);
+		return NULL;
+	}
+
+	new->next = map;
+	new->vma = vma;
+	new->size = size;
+	new->offset = offset;
+	new->guard_ptr = guard_ptr;
+	new->guard_val = guard_val;
+
+	return new;
+}
+
+
+/* Parse SPE ELF header and generate a list of vma_maps.
+ * A pointer to the first vma_map in the generated list
+ * of vma_maps is returned.  */
+struct vma_to_fileoffset_map *create_vma_map(const struct spu *aSpu,
+					     unsigned long __spu_elf_start)
+{
+	static const unsigned char expected[EI_PAD] = {
+		[EI_MAG0] = ELFMAG0,
+		[EI_MAG1] = ELFMAG1,
+		[EI_MAG2] = ELFMAG2,
+		[EI_MAG3] = ELFMAG3,
+		[EI_CLASS] = ELFCLASS32,
+		[EI_DATA] = ELFDATA2MSB,
+		[EI_VERSION] = EV_CURRENT,
+		[EI_OSABI] = ELFOSABI_NONE
+	};
+
+	int grd_val;
+	struct vma_to_fileoffset_map *map = NULL;
+	void __user *spu_elf_start = (void __user *)__spu_elf_start;
+	struct spu_overlay_info ovly;
+	unsigned int overlay_tbl_offset = -1;
+	Elf32_Phdr __user *phdr_start;
+	Elf32_Shdr __user *shdr_start;
+	Elf32_Ehdr ehdr;
+	Elf32_Phdr phdr;
+	Elf32_Shdr shdr, shdr_str;
+	Elf32_Sym sym;
+	int i, j;
+	char name[32];
+
+	unsigned int ovly_table_sym = 0;
+	unsigned int ovly_buf_table_sym = 0;
+	unsigned int ovly_table_end_sym = 0;
+	unsigned int ovly_buf_table_end_sym = 0;
+	struct spu_overlay_info __user *ovly_table;
+	unsigned int n_ovlys;
+
+	/* Get and validate ELF header.	 */
+
+	if (copy_from_user(&ehdr, spu_elf_start, sizeof (ehdr)))
+		goto fail;
+
+	if (memcmp(ehdr.e_ident, expected, EI_PAD) != 0) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: Unexpected e_ident parsing SPU ELF\n",
+		       __func__, __LINE__);
+		goto fail;
+	}
+	if (ehdr.e_machine != EM_SPU) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: Unexpected e_machine parsing SPU ELF\n",
+		       __func__,  __LINE__);
+		goto fail;
+	}
+	if (ehdr.e_type != ET_EXEC) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: Unexpected e_type parsing SPU ELF\n",
+		       __func__, __LINE__);
+		goto fail;
+	}
+	phdr_start = spu_elf_start + ehdr.e_phoff;
+	shdr_start = spu_elf_start + ehdr.e_shoff;
+
+	/* Traverse program headers.  */
+	for (i = 0; i < ehdr.e_phnum; i++) {
+		if (copy_from_user(&phdr, phdr_start + i, sizeof(phdr)))
+			goto fail;
+
+		if (phdr.p_type != PT_LOAD)
+			continue;
+		if (phdr.p_flags & (1 << 27))
+			continue;
+
+		map = vma_map_add(map, phdr.p_vaddr, phdr.p_memsz,
+				  phdr.p_offset, 0, 0);
+		if (!map)
+			goto fail;
+	}
+
+	pr_debug("SPU_PROF: Created non-overlay maps\n");
+	/* Traverse section table and search for overlay-related symbols.  */
+	for (i = 0; i < ehdr.e_shnum; i++) {
+		if (copy_from_user(&shdr, shdr_start + i, sizeof(shdr)))
+			goto fail;
+
+		if (shdr.sh_type != SHT_SYMTAB)
+			continue;
+		if (shdr.sh_entsize != sizeof (sym))
+			continue;
+
+		if (copy_from_user(&shdr_str,
+				   shdr_start + shdr.sh_link,
+				   sizeof(shdr)))
+			goto fail;
+
+		if (shdr_str.sh_type != SHT_STRTAB)
+			goto fail;
+
+		for (j = 0; j < shdr.sh_size / sizeof (sym); j++) {
+			if (copy_from_user(&sym, spu_elf_start +
+						 shdr.sh_offset +
+						 j * sizeof (sym),
+					   sizeof (sym)))
+				goto fail;
+
+			if (copy_from_user(name, 
+					   spu_elf_start + shdr_str.sh_offset +
+					   sym.st_name,
+					   20))
+				goto fail;
+
+			if (memcmp(name, "_ovly_table", 12) == 0)
+				ovly_table_sym = sym.st_value;
+			if (memcmp(name, "_ovly_buf_table", 16) == 0)
+				ovly_buf_table_sym = sym.st_value;
+			if (memcmp(name, "_ovly_table_end", 16) == 0)
+				ovly_table_end_sym = sym.st_value;
+			if (memcmp(name, "_ovly_buf_table_end", 20) == 0)
+				ovly_buf_table_end_sym = sym.st_value;
+		}
+	}
+
+	/* If we don't have overlays, we're done.  */
+	if (ovly_table_sym == 0 || ovly_buf_table_sym == 0
+	    || ovly_table_end_sym == 0 || ovly_buf_table_end_sym == 0) {
+		pr_debug("SPU_PROF: No overlay table found\n");
+		goto out;
+	} else {
+		pr_debug("SPU_PROF: Overlay table found\n");
+	}
+
+	/* The _ovly_table symbol represents a table with one entry
+	 * per overlay section.	 The _ovly_buf_table symbol represents
+	 * a table with one entry per overlay region.
+	 * The struct spu_overlay_info gives the structure of the _ovly_table
+	 * entries.  The structure of _ovly_table_buf is simply one
+	 * u32 word per entry.
+	 */
+	overlay_tbl_offset = vma_map_lookup(map, ovly_table_sym,
+					    aSpu, &grd_val);
+	if (overlay_tbl_offset > 0x10000000) {
+		printk(KERN_ERR "SPU_PROF: "
+		       "%s, line %d: Error finding SPU overlay table\n",
+		       __func__, __LINE__);
+		goto fail;
+	}
+	ovly_table = spu_elf_start + overlay_tbl_offset;
+
+	n_ovlys = (ovly_table_end_sym -
+		   ovly_table_sym) / sizeof (ovly);
+
+	/* Traverse overlay table.  */
+	for (i = 0; i < n_ovlys; i++) {
+		if (copy_from_user(&ovly, ovly_table + i, sizeof (ovly)))
+			goto fail;
+
+		/* The ovly.vma/size/offset arguments are analogous to the same
+		 * arguments used above for non-overlay maps.  The final two
+		 * args are referred to as the guard pointer and the guard
+		 * value.
+		 * The guard pointer is an entry in the _ovly_buf_table,
+		 * computed using ovly.buf as the index into the table.	 Since
+		 * ovly.buf values begin at '1' to reference the first (or 0th)
+		 * entry in the _ovly_buf_table, the computation subtracts 1
+		 * from ovly.buf.
+		 * The guard value is stored in the _ovly_buf_table entry and
+		 * is an index (starting at 1) back to the _ovly_table entry
+		 * that is pointing at this _ovly_buf_table entry.  So, for
+		 * example, for an overlay scenario with one overlay segment
+		 * and two overlay sections:
+		 *	- Section 1 points to the first entry of the
+		 *	  _ovly_buf_table, which contains a guard value
+		 *	  of '1', referencing the first (index=0) entry of
+		 *	  _ovly_table.
+		 *	- Section 2 points to the second entry of the
+		 *	  _ovly_buf_table, which contains a guard value
+		 *	  of '2', referencing the second (index=1) entry of
+		 *	  _ovly_table.
+		 */
+		map = vma_map_add(map, ovly.vma, ovly.size, ovly.offset,
+				  ovly_buf_table_sym + (ovly.buf-1) * 4, i+1);
+		if (!map)
+			goto fail;
+	}
+	goto out;
+
+ fail:
+	map = NULL;
+ out:
+	return map;
+}
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/common.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/common.c
new file mode 100644
index 0000000..bf094c5
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/common.c
@@ -0,0 +1,247 @@
+/*
+ * PPC 64 oprofile support:
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ * PPC 32 oprofile support: (based on PPC 64 support)
+ * Copyright (C) Freescale Semiconductor, Inc 2004
+ *	Author: Andy Fleming
+ *
+ * Based on alpha version.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/oprofile.h>
+#include <linux/init.h>
+#include <linux/smp.h>
+#include <linux/errno.h>
+#include <asm/ptrace.h>
+#include <asm/pmc.h>
+#include <asm/cputable.h>
+#include <asm/oprofile_impl.h>
+#include <asm/firmware.h>
+
+static struct op_powerpc_model *model;
+
+static struct op_counter_config ctr[OP_MAX_COUNTER];
+static struct op_system_config sys;
+
+static int op_per_cpu_rc;
+
+static void op_handle_interrupt(struct pt_regs *regs)
+{
+	model->handle_interrupt(regs, ctr);
+}
+
+static void op_powerpc_cpu_setup(void *dummy)
+{
+	int ret;
+
+	ret = model->cpu_setup(ctr);
+
+	if (ret != 0)
+		op_per_cpu_rc = ret;
+}
+
+static int op_powerpc_setup(void)
+{
+	int err;
+
+	op_per_cpu_rc = 0;
+
+	/* Grab the hardware */
+	err = reserve_pmc_hardware(op_handle_interrupt);
+	if (err)
+		return err;
+
+	/* Pre-compute the values to stuff in the hardware registers.  */
+	op_per_cpu_rc = model->reg_setup(ctr, &sys, model->num_counters);
+
+	if (op_per_cpu_rc)
+		goto out;
+
+	/* Configure the registers on all cpus.	 If an error occurs on one
+	 * of the cpus, op_per_cpu_rc will be set to the error */
+	on_each_cpu(op_powerpc_cpu_setup, NULL, 1);
+
+out:	if (op_per_cpu_rc) {
+		/* error on setup release the performance counter hardware */
+		release_pmc_hardware();
+	}
+
+	return op_per_cpu_rc;
+}
+
+static void op_powerpc_shutdown(void)
+{
+	release_pmc_hardware();
+}
+
+static void op_powerpc_cpu_start(void *dummy)
+{
+	/* If any of the cpus have return an error, set the
+	 * global flag to the error so it can be returned
+	 * to the generic OProfile caller.
+	 */
+	int ret;
+
+	ret = model->start(ctr);
+	if (ret != 0)
+		op_per_cpu_rc = ret;
+}
+
+static int op_powerpc_start(void)
+{
+	op_per_cpu_rc = 0;
+
+	if (model->global_start)
+		return model->global_start(ctr);
+	if (model->start) {
+		on_each_cpu(op_powerpc_cpu_start, NULL, 1);
+		return op_per_cpu_rc;
+	}
+	return -EIO; /* No start function is defined for this
+			power architecture */
+}
+
+static inline void op_powerpc_cpu_stop(void *dummy)
+{
+	model->stop();
+}
+
+static void op_powerpc_stop(void)
+{
+	if (model->stop)
+		on_each_cpu(op_powerpc_cpu_stop, NULL, 1);
+        if (model->global_stop)
+                model->global_stop();
+}
+
+static int op_powerpc_create_files(struct dentry *root)
+{
+	int i;
+
+#ifdef CONFIG_PPC64
+	/*
+	 * There is one mmcr0, mmcr1 and mmcra for setting the events for
+	 * all of the counters.
+	 */
+	oprofilefs_create_ulong(root, "mmcr0", &sys.mmcr0);
+	oprofilefs_create_ulong(root, "mmcr1", &sys.mmcr1);
+	oprofilefs_create_ulong(root, "mmcra", &sys.mmcra);
+#ifdef CONFIG_OPROFILE_CELL
+	/* create a file the user tool can check to see what level of profiling
+	 * support exits with this kernel. Initialize bit mask to indicate
+	 * what support the kernel has:
+	 * bit 0      -  Supports SPU event profiling in addition to PPU
+	 *               event and cycles; and SPU cycle profiling
+	 * bits 1-31  -  Currently unused.
+	 *
+	 * If the file does not exist, then the kernel only supports SPU
+	 * cycle profiling, PPU event and cycle profiling.
+	 */
+	oprofilefs_create_ulong(root, "cell_support", &sys.cell_support);
+	sys.cell_support = 0x1; /* Note, the user OProfile tool must check
+				 * that this bit is set before attempting to
+				 * user SPU event profiling.  Older kernels
+				 * will not have this file, hence the user
+				 * tool is not allowed to do SPU event
+				 * profiling on older kernels.  Older kernels
+				 * will accept SPU events but collected data
+				 * is garbage.
+				 */
+#endif
+#endif
+
+	for (i = 0; i < model->num_counters; ++i) {
+		struct dentry *dir;
+		char buf[4];
+
+		snprintf(buf, sizeof buf, "%d", i);
+		dir = oprofilefs_mkdir(root, buf);
+
+		oprofilefs_create_ulong(dir, "enabled", &ctr[i].enabled);
+		oprofilefs_create_ulong(dir, "event", &ctr[i].event);
+		oprofilefs_create_ulong(dir, "count", &ctr[i].count);
+
+		/*
+		 * Classic PowerPC doesn't support per-counter
+		 * control like this, but the options are
+		 * expected, so they remain.  For Freescale
+		 * Book-E style performance monitors, we do
+		 * support them.
+		 */
+		oprofilefs_create_ulong(dir, "kernel", &ctr[i].kernel);
+		oprofilefs_create_ulong(dir, "user", &ctr[i].user);
+
+		oprofilefs_create_ulong(dir, "unit_mask", &ctr[i].unit_mask);
+	}
+
+	oprofilefs_create_ulong(root, "enable_kernel", &sys.enable_kernel);
+	oprofilefs_create_ulong(root, "enable_user", &sys.enable_user);
+
+	/* Default to tracing both kernel and user */
+	sys.enable_kernel = 1;
+	sys.enable_user = 1;
+
+	return 0;
+}
+
+int __init oprofile_arch_init(struct oprofile_operations *ops)
+{
+	if (!cur_cpu_spec->oprofile_cpu_type)
+		return -ENODEV;
+
+	switch (cur_cpu_spec->oprofile_type) {
+#ifdef CONFIG_PPC_BOOK3S_64
+#ifdef CONFIG_OPROFILE_CELL
+		case PPC_OPROFILE_CELL:
+			if (firmware_has_feature(FW_FEATURE_LPAR))
+				return -ENODEV;
+			model = &op_model_cell;
+			ops->sync_start = model->sync_start;
+			ops->sync_stop = model->sync_stop;
+			break;
+#endif
+		case PPC_OPROFILE_POWER4:
+			model = &op_model_power4;
+			break;
+		case PPC_OPROFILE_PA6T:
+			model = &op_model_pa6t;
+			break;
+#endif
+#ifdef CONFIG_6xx
+		case PPC_OPROFILE_G4:
+			model = &op_model_7450;
+			break;
+#endif
+#if defined(CONFIG_FSL_EMB_PERFMON)
+		case PPC_OPROFILE_FSL_EMB:
+			model = &op_model_fsl_emb;
+			break;
+#endif
+		default:
+			return -ENODEV;
+	}
+
+	model->num_counters = cur_cpu_spec->num_pmcs;
+
+	ops->cpu_type = cur_cpu_spec->oprofile_cpu_type;
+	ops->create_files = op_powerpc_create_files;
+	ops->setup = op_powerpc_setup;
+	ops->shutdown = op_powerpc_shutdown;
+	ops->start = op_powerpc_start;
+	ops->stop = op_powerpc_stop;
+	ops->backtrace = op_powerpc_backtrace;
+
+	printk(KERN_DEBUG "oprofile: using %s performance monitoring.\n",
+	       ops->cpu_type);
+
+	return 0;
+}
+
+void oprofile_arch_exit(void)
+{
+}
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_7450.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_7450.c
new file mode 100644
index 0000000..d29b6e4
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_7450.c
@@ -0,0 +1,211 @@
+/*
+ * arch/powerpc/oprofile/op_model_7450.c
+ *
+ * Freescale 745x/744x oprofile support, based on fsl_booke support
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ *
+ * Copyright (c) 2004 Freescale Semiconductor, Inc
+ *
+ * Author: Andy Fleming
+ * Maintainer: Kumar Gala <galak@kernel.crashing.org>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <asm/ptrace.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/page.h>
+#include <asm/pmc.h>
+#include <asm/oprofile_impl.h>
+
+static unsigned long reset_value[OP_MAX_COUNTER];
+
+static int oprofile_running;
+static u32 mmcr0_val, mmcr1_val, mmcr2_val, num_pmcs;
+
+#define MMCR0_PMC1_SHIFT	6
+#define MMCR0_PMC2_SHIFT	0
+#define MMCR1_PMC3_SHIFT	27
+#define MMCR1_PMC4_SHIFT	22
+#define MMCR1_PMC5_SHIFT	17
+#define MMCR1_PMC6_SHIFT	11
+
+#define mmcr0_event1(event) \
+	((event << MMCR0_PMC1_SHIFT) & MMCR0_PMC1SEL)
+#define mmcr0_event2(event) \
+	((event << MMCR0_PMC2_SHIFT) & MMCR0_PMC2SEL)
+
+#define mmcr1_event3(event) \
+	((event << MMCR1_PMC3_SHIFT) & MMCR1_PMC3SEL)
+#define mmcr1_event4(event) \
+	((event << MMCR1_PMC4_SHIFT) & MMCR1_PMC4SEL)
+#define mmcr1_event5(event) \
+	((event << MMCR1_PMC5_SHIFT) & MMCR1_PMC5SEL)
+#define mmcr1_event6(event) \
+	((event << MMCR1_PMC6_SHIFT) & MMCR1_PMC6SEL)
+
+#define MMCR0_INIT (MMCR0_FC | MMCR0_FCS | MMCR0_FCP | MMCR0_FCM1 | MMCR0_FCM0)
+
+/* Unfreezes the counters on this CPU, enables the interrupt,
+ * enables the counters to trigger the interrupt, and sets the
+ * counters to only count when the mark bit is not set.
+ */
+static void pmc_start_ctrs(void)
+{
+	u32 mmcr0 = mfspr(SPRN_MMCR0);
+
+	mmcr0 &= ~(MMCR0_FC | MMCR0_FCM0);
+	mmcr0 |= (MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
+
+	mtspr(SPRN_MMCR0, mmcr0);
+}
+
+/* Disables the counters on this CPU, and freezes them */
+static void pmc_stop_ctrs(void)
+{
+	u32 mmcr0 = mfspr(SPRN_MMCR0);
+
+	mmcr0 |= MMCR0_FC;
+	mmcr0 &= ~(MMCR0_FCECE | MMCR0_PMC1CE | MMCR0_PMCnCE | MMCR0_PMXE);
+
+	mtspr(SPRN_MMCR0, mmcr0);
+}
+
+/* Configures the counters on this CPU based on the global
+ * settings */
+static int fsl7450_cpu_setup(struct op_counter_config *ctr)
+{
+	/* freeze all counters */
+	pmc_stop_ctrs();
+
+	mtspr(SPRN_MMCR0, mmcr0_val);
+	mtspr(SPRN_MMCR1, mmcr1_val);
+	if (num_pmcs > 4)
+		mtspr(SPRN_MMCR2, mmcr2_val);
+
+	return 0;
+}
+
+/* Configures the global settings for the countes on all CPUs. */
+static int fsl7450_reg_setup(struct op_counter_config *ctr,
+			     struct op_system_config *sys,
+			     int num_ctrs)
+{
+	int i;
+
+	num_pmcs = num_ctrs;
+	/* Our counters count up, and "count" refers to
+	 * how much before the next interrupt, and we interrupt
+	 * on overflow.  So we calculate the starting value
+	 * which will give us "count" until overflow.
+	 * Then we set the events on the enabled counters */
+	for (i = 0; i < num_ctrs; ++i)
+		reset_value[i] = 0x80000000UL - ctr[i].count;
+
+	/* Set events for Counters 1 & 2 */
+	mmcr0_val = MMCR0_INIT | mmcr0_event1(ctr[0].event)
+		| mmcr0_event2(ctr[1].event);
+
+	/* Setup user/kernel bits */
+	if (sys->enable_kernel)
+		mmcr0_val &= ~(MMCR0_FCS);
+
+	if (sys->enable_user)
+		mmcr0_val &= ~(MMCR0_FCP);
+
+	/* Set events for Counters 3-6 */
+	mmcr1_val = mmcr1_event3(ctr[2].event)
+		| mmcr1_event4(ctr[3].event);
+	if (num_ctrs > 4)
+		mmcr1_val |= mmcr1_event5(ctr[4].event)
+			| mmcr1_event6(ctr[5].event);
+
+	mmcr2_val = 0;
+
+	return 0;
+}
+
+/* Sets the counters on this CPU to the chosen values, and starts them */
+static int fsl7450_start(struct op_counter_config *ctr)
+{
+	int i;
+
+	mtmsr(mfmsr() | MSR_PMM);
+
+	for (i = 0; i < num_pmcs; ++i) {
+		if (ctr[i].enabled)
+			classic_ctr_write(i, reset_value[i]);
+		else
+			classic_ctr_write(i, 0);
+	}
+
+	/* Clear the freeze bit, and enable the interrupt.
+	 * The counters won't actually start until the rfi clears
+	 * the PMM bit */
+	pmc_start_ctrs();
+
+	oprofile_running = 1;
+
+	return 0;
+}
+
+/* Stop the counters on this CPU */
+static void fsl7450_stop(void)
+{
+	/* freeze counters */
+	pmc_stop_ctrs();
+
+	oprofile_running = 0;
+
+	mb();
+}
+
+
+/* Handle the interrupt on this CPU, and log a sample for each
+ * event that triggered the interrupt */
+static void fsl7450_handle_interrupt(struct pt_regs *regs,
+				    struct op_counter_config *ctr)
+{
+	unsigned long pc;
+	int is_kernel;
+	int val;
+	int i;
+
+	/* set the PMM bit (see comment below) */
+	mtmsr(mfmsr() | MSR_PMM);
+
+	pc = mfspr(SPRN_SIAR);
+	is_kernel = is_kernel_addr(pc);
+
+	for (i = 0; i < num_pmcs; ++i) {
+		val = classic_ctr_read(i);
+		if (val < 0) {
+			if (oprofile_running && ctr[i].enabled) {
+				oprofile_add_ext_sample(pc, regs, i, is_kernel);
+				classic_ctr_write(i, reset_value[i]);
+			} else {
+				classic_ctr_write(i, 0);
+			}
+		}
+	}
+
+	/* The freeze bit was set by the interrupt. */
+	/* Clear the freeze bit, and reenable the interrupt.
+	 * The counters won't actually start until the rfi clears
+	 * the PM/M bit */
+	pmc_start_ctrs();
+}
+
+struct op_powerpc_model op_model_7450= {
+	.reg_setup		= fsl7450_reg_setup,
+	.cpu_setup		= fsl7450_cpu_setup,
+	.start			= fsl7450_start,
+	.stop			= fsl7450_stop,
+	.handle_interrupt	= fsl7450_handle_interrupt,
+};
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_cell.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_cell.c
new file mode 100644
index 0000000..c82497a
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_cell.c
@@ -0,0 +1,1717 @@
+/*
+ * Cell Broadband Engine OProfile Support
+ *
+ * (C) Copyright IBM Corporation 2006
+ *
+ * Author: David Erb (djerb@us.ibm.com)
+ * Modifications:
+ *	   Carl Love <carll@us.ibm.com>
+ *	   Maynard Johnson <maynardj@us.ibm.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/cpufreq.h>
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/kthread.h>
+#include <linux/oprofile.h>
+#include <linux/percpu.h>
+#include <linux/smp.h>
+#include <linux/spinlock.h>
+#include <linux/timer.h>
+#include <asm/cell-pmu.h>
+#include <asm/cputable.h>
+#include <asm/firmware.h>
+#include <asm/io.h>
+#include <asm/oprofile_impl.h>
+#include <asm/processor.h>
+#include <asm/prom.h>
+#include <asm/ptrace.h>
+#include <asm/reg.h>
+#include <asm/rtas.h>
+#include <asm/cell-regs.h>
+
+#include "../platforms/cell/interrupt.h"
+#include "cell/pr_util.h"
+
+#define PPU_PROFILING            0
+#define SPU_PROFILING_CYCLES     1
+#define SPU_PROFILING_EVENTS     2
+
+#define SPU_EVENT_NUM_START      4100
+#define SPU_EVENT_NUM_STOP       4399
+#define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
+#define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
+#define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
+
+#define NUM_SPUS_PER_NODE    8
+#define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
+
+#define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
+#define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
+				 * PPU_CYCLES event
+				 */
+#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
+
+#define NUM_THREADS 2         /* number of physical threads in
+			       * physical processor
+			       */
+#define NUM_DEBUG_BUS_WORDS 4
+#define NUM_INPUT_BUS_WORDS 2
+
+#define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
+
+/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
+ * To configure counter to send value every N cycles set counter to
+ * 2^32 - 1 - N.
+ */
+#define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
+
+/*
+ * spu_cycle_reset is the number of cycles between samples.
+ * This variable is used for SPU profiling and should ONLY be set
+ * at the beginning of cell_reg_setup; otherwise, it's read-only.
+ */
+static unsigned int spu_cycle_reset;
+static unsigned int profiling_mode;
+static int spu_evnt_phys_spu_indx;
+
+struct pmc_cntrl_data {
+	unsigned long vcntr;
+	unsigned long evnts;
+	unsigned long masks;
+	unsigned long enabled;
+};
+
+/*
+ * ibm,cbe-perftools rtas parameters
+ */
+struct pm_signal {
+	u16 cpu;		/* Processor to modify */
+	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
+	short int signal_group; /* Signal Group to Enable/Disable */
+	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
+				 * Bus Word(s) (bitmask)
+				 */
+	u8 bit;			/* Trigger/Event bit (if applicable) */
+};
+
+/*
+ * rtas call arguments
+ */
+enum {
+	SUBFUNC_RESET = 1,
+	SUBFUNC_ACTIVATE = 2,
+	SUBFUNC_DEACTIVATE = 3,
+
+	PASSTHRU_IGNORE = 0,
+	PASSTHRU_ENABLE = 1,
+	PASSTHRU_DISABLE = 2,
+};
+
+struct pm_cntrl {
+	u16 enable;
+	u16 stop_at_max;
+	u16 trace_mode;
+	u16 freeze;
+	u16 count_mode;
+	u16 spu_addr_trace;
+	u8  trace_buf_ovflw;
+};
+
+static struct {
+	u32 group_control;
+	u32 debug_bus_control;
+	struct pm_cntrl pm_cntrl;
+	u32 pm07_cntrl[NR_PHYS_CTRS];
+} pm_regs;
+
+#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
+#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
+#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
+#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
+#define GET_COUNT_CYCLES(x) (x & 0x00000001)
+#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
+
+static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
+static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
+static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
+
+/*
+ * The CELL profiling code makes rtas calls to setup the debug bus to
+ * route the performance signals.  Additionally, SPU profiling requires
+ * a second rtas call to setup the hardware to capture the SPU PCs.
+ * The EIO error value is returned if the token lookups or the rtas
+ * call fail.  The EIO error number is the best choice of the existing
+ * error numbers.  The probability of rtas related error is very low.  But
+ * by returning EIO and printing additional information to dmsg the user
+ * will know that OProfile did not start and dmesg will tell them why.
+ * OProfile does not support returning errors on Stop.	Not a huge issue
+ * since failure to reset the debug bus or stop the SPU PC collection is
+ * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
+ * either.
+ */
+
+/*
+ * Interpetation of hdw_thread:
+ * 0 - even virtual cpus 0, 2, 4,...
+ * 1 - odd virtual cpus 1, 3, 5, ...
+ *
+ * FIXME: this is strictly wrong, we need to clean this up in a number
+ * of places. It works for now. -arnd
+ */
+static u32 hdw_thread;
+
+static u32 virt_cntr_inter_mask;
+static struct timer_list timer_virt_cntr;
+static struct timer_list timer_spu_event_swap;
+
+/*
+ * pm_signal needs to be global since it is initialized in
+ * cell_reg_setup at the time when the necessary information
+ * is available.
+ */
+static struct pm_signal pm_signal[NR_PHYS_CTRS];
+static int pm_rtas_token;    /* token for debug bus setup call */
+static int spu_rtas_token;   /* token for SPU cycle profiling */
+
+static u32 reset_value[NR_PHYS_CTRS];
+static int num_counters;
+static int oprofile_running;
+static DEFINE_SPINLOCK(cntr_lock);
+
+static u32 ctr_enabled;
+
+static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
+
+/*
+ * Firmware interface functions
+ */
+static int
+rtas_ibm_cbe_perftools(int subfunc, int passthru,
+		       void *address, unsigned long length)
+{
+	u64 paddr = __pa(address);
+
+	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
+			 passthru, paddr >> 32, paddr & 0xffffffff, length);
+}
+
+static void pm_rtas_reset_signals(u32 node)
+{
+	int ret;
+	struct pm_signal pm_signal_local;
+
+	/*
+	 * The debug bus is being set to the passthru disable state.
+	 * However, the FW still expects at least one legal signal routing
+	 * entry or it will return an error on the arguments.	If we don't
+	 * supply a valid entry, we must ignore all return values.  Ignoring
+	 * all return values means we might miss an error we should be
+	 * concerned about.
+	 */
+
+	/*  fw expects physical cpu #. */
+	pm_signal_local.cpu = node;
+	pm_signal_local.signal_group = 21;
+	pm_signal_local.bus_word = 1;
+	pm_signal_local.sub_unit = 0;
+	pm_signal_local.bit = 0;
+
+	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
+				     &pm_signal_local,
+				     sizeof(struct pm_signal));
+
+	if (unlikely(ret))
+		/*
+		 * Not a fatal error. For Oprofile stop, the oprofile
+		 * functions do not support returning an error for
+		 * failure to stop OProfile.
+		 */
+		printk(KERN_WARNING "%s: rtas returned: %d\n",
+		       __func__, ret);
+}
+
+static int pm_rtas_activate_signals(u32 node, u32 count)
+{
+	int ret;
+	int i, j;
+	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
+
+	/*
+	 * There is no debug setup required for the cycles event.
+	 * Note that only events in the same group can be used.
+	 * Otherwise, there will be conflicts in correctly routing
+	 * the signals on the debug bus.  It is the responsibility
+	 * of the OProfile user tool to check the events are in
+	 * the same group.
+	 */
+	i = 0;
+	for (j = 0; j < count; j++) {
+		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
+
+			/* fw expects physical cpu # */
+			pm_signal_local[i].cpu = node;
+			pm_signal_local[i].signal_group
+				= pm_signal[j].signal_group;
+			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
+			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
+			pm_signal_local[i].bit = pm_signal[j].bit;
+			i++;
+		}
+	}
+
+	if (i != 0) {
+		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
+					     pm_signal_local,
+					     i * sizeof(struct pm_signal));
+
+		if (unlikely(ret)) {
+			printk(KERN_WARNING "%s: rtas returned: %d\n",
+			       __func__, ret);
+			return -EIO;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * PM Signal functions
+ */
+static void set_pm_event(u32 ctr, int event, u32 unit_mask)
+{
+	struct pm_signal *p;
+	u32 signal_bit;
+	u32 bus_word, bus_type, count_cycles, polarity, input_control;
+	int j, i;
+
+	if (event == PPU_CYCLES_EVENT_NUM) {
+		/* Special Event: Count all cpu cycles */
+		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
+		p = &(pm_signal[ctr]);
+		p->signal_group = PPU_CYCLES_GRP_NUM;
+		p->bus_word = 1;
+		p->sub_unit = 0;
+		p->bit = 0;
+		goto out;
+	} else {
+		pm_regs.pm07_cntrl[ctr] = 0;
+	}
+
+	bus_word = GET_BUS_WORD(unit_mask);
+	bus_type = GET_BUS_TYPE(unit_mask);
+	count_cycles = GET_COUNT_CYCLES(unit_mask);
+	polarity = GET_POLARITY(unit_mask);
+	input_control = GET_INPUT_CONTROL(unit_mask);
+	signal_bit = (event % 100);
+
+	p = &(pm_signal[ctr]);
+
+	p->signal_group = event / 100;
+	p->bus_word = bus_word;
+	p->sub_unit = GET_SUB_UNIT(unit_mask);
+
+	pm_regs.pm07_cntrl[ctr] = 0;
+	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
+	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
+	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
+
+	/*
+	 * Some of the islands signal selection is based on 64 bit words.
+	 * The debug bus words are 32 bits, the input words to the performance
+	 * counters are defined as 32 bits.  Need to convert the 64 bit island
+	 * specification to the appropriate 32 input bit and bus word for the
+	 * performance counter event selection.	 See the CELL Performance
+	 * monitoring signals manual and the Perf cntr hardware descriptions
+	 * for the details.
+	 */
+	if (input_control == 0) {
+		if (signal_bit > 31) {
+			signal_bit -= 32;
+			if (bus_word == 0x3)
+				bus_word = 0x2;
+			else if (bus_word == 0xc)
+				bus_word = 0x8;
+		}
+
+		if ((bus_type == 0) && p->signal_group >= 60)
+			bus_type = 2;
+		if ((bus_type == 1) && p->signal_group >= 50)
+			bus_type = 0;
+
+		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
+	} else {
+		pm_regs.pm07_cntrl[ctr] = 0;
+		p->bit = signal_bit;
+	}
+
+	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
+		if (bus_word & (1 << i)) {
+			pm_regs.debug_bus_control |=
+				(bus_type << (30 - (2 * i)));
+
+			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
+				if (input_bus[j] == 0xff) {
+					input_bus[j] = i;
+					pm_regs.group_control |=
+						(i << (30 - (2 * j)));
+
+					break;
+				}
+			}
+		}
+	}
+out:
+	;
+}
+
+static void write_pm_cntrl(int cpu)
+{
+	/*
+	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
+	 * pmregs.pm_cntrl is a global
+	 */
+
+	u32 val = 0;
+	if (pm_regs.pm_cntrl.enable == 1)
+		val |= CBE_PM_ENABLE_PERF_MON;
+
+	if (pm_regs.pm_cntrl.stop_at_max == 1)
+		val |= CBE_PM_STOP_AT_MAX;
+
+	if (pm_regs.pm_cntrl.trace_mode != 0)
+		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
+
+	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
+		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
+	if (pm_regs.pm_cntrl.freeze == 1)
+		val |= CBE_PM_FREEZE_ALL_CTRS;
+
+	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
+
+	/*
+	 * Routine set_count_mode must be called previously to set
+	 * the count mode based on the user selection of user and kernel.
+	 */
+	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
+	cbe_write_pm(cpu, pm_control, val);
+}
+
+static inline void
+set_count_mode(u32 kernel, u32 user)
+{
+	/*
+	 * The user must specify user and kernel if they want them. If
+	 *  neither is specified, OProfile will count in hypervisor mode.
+	 *  pm_regs.pm_cntrl is a global
+	 */
+	if (kernel) {
+		if (user)
+			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
+		else
+			pm_regs.pm_cntrl.count_mode =
+				CBE_COUNT_SUPERVISOR_MODE;
+	} else {
+		if (user)
+			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
+		else
+			pm_regs.pm_cntrl.count_mode =
+				CBE_COUNT_HYPERVISOR_MODE;
+	}
+}
+
+static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
+{
+
+	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
+	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
+}
+
+/*
+ * Oprofile is expected to collect data on all CPUs simultaneously.
+ * However, there is one set of performance counters per node.	There are
+ * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
+ * multiplex in time the performance counter collection on the two virtual
+ * CPUs.  The multiplexing of the performance counters is done by this
+ * virtual counter routine.
+ *
+ * The pmc_values used below is defined as 'per-cpu' but its use is
+ * more akin to 'per-node'.  We need to store two sets of counter
+ * values per node -- one for the previous run and one for the next.
+ * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
+ * pair of per-cpu arrays is used for storing the previous and next
+ * pmc values for a given node.
+ * NOTE: We use the per-cpu variable to improve cache performance.
+ *
+ * This routine will alternate loading the virtual counters for
+ * virtual CPUs
+ */
+static void cell_virtual_cntr(unsigned long data)
+{
+	int i, prev_hdw_thread, next_hdw_thread;
+	u32 cpu;
+	unsigned long flags;
+
+	/*
+	 * Make sure that the interrupt_hander and the virt counter are
+	 * not both playing with the counters on the same node.
+	 */
+
+	spin_lock_irqsave(&cntr_lock, flags);
+
+	prev_hdw_thread = hdw_thread;
+
+	/* switch the cpu handling the interrupts */
+	hdw_thread = 1 ^ hdw_thread;
+	next_hdw_thread = hdw_thread;
+
+	pm_regs.group_control = 0;
+	pm_regs.debug_bus_control = 0;
+
+	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
+		input_bus[i] = 0xff;
+
+	/*
+	 * There are some per thread events.  Must do the
+	 * set event, for the thread that is being started
+	 */
+	for (i = 0; i < num_counters; i++)
+		set_pm_event(i,
+			pmc_cntrl[next_hdw_thread][i].evnts,
+			pmc_cntrl[next_hdw_thread][i].masks);
+
+	/*
+	 * The following is done only once per each node, but
+	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
+	 */
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		/*
+		 * stop counters, save counter values, restore counts
+		 * for previous thread
+		 */
+		cbe_disable_pm(cpu);
+		cbe_disable_pm_interrupts(cpu);
+		for (i = 0; i < num_counters; i++) {
+			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
+				= cbe_read_ctr(cpu, i);
+
+			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
+			    == 0xFFFFFFFF)
+				/* If the cntr value is 0xffffffff, we must
+				 * reset that to 0xfffffff0 when the current
+				 * thread is restarted.	 This will generate a
+				 * new interrupt and make sure that we never
+				 * restore the counters to the max value.  If
+				 * the counters were restored to the max value,
+				 * they do not increment and no interrupts are
+				 * generated.  Hence no more samples will be
+				 * collected on that cpu.
+				 */
+				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
+			else
+				cbe_write_ctr(cpu, i,
+					      per_cpu(pmc_values,
+						      cpu +
+						      next_hdw_thread)[i]);
+		}
+
+		/*
+		 * Switch to the other thread. Change the interrupt
+		 * and control regs to be scheduled on the CPU
+		 * corresponding to the thread to execute.
+		 */
+		for (i = 0; i < num_counters; i++) {
+			if (pmc_cntrl[next_hdw_thread][i].enabled) {
+				/*
+				 * There are some per thread events.
+				 * Must do the set event, enable_cntr
+				 * for each cpu.
+				 */
+				enable_ctr(cpu, i,
+					   pm_regs.pm07_cntrl);
+			} else {
+				cbe_write_pm07_control(cpu, i, 0);
+			}
+		}
+
+		/* Enable interrupts on the CPU thread that is starting */
+		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
+					 virt_cntr_inter_mask);
+		cbe_enable_pm(cpu);
+	}
+
+	spin_unlock_irqrestore(&cntr_lock, flags);
+
+	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
+}
+
+static void start_virt_cntrs(void)
+{
+	init_timer(&timer_virt_cntr);
+	timer_virt_cntr.function = cell_virtual_cntr;
+	timer_virt_cntr.data = 0UL;
+	timer_virt_cntr.expires = jiffies + HZ / 10;
+	add_timer(&timer_virt_cntr);
+}
+
+static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
+			struct op_system_config *sys, int num_ctrs)
+{
+	spu_cycle_reset = ctr[0].count;
+
+	/*
+	 * Each node will need to make the rtas call to start
+	 * and stop SPU profiling.  Get the token once and store it.
+	 */
+	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
+
+	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+		printk(KERN_ERR
+		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
+		       __func__);
+		return -EIO;
+	}
+	return 0;
+}
+
+/* Unfortunately, the hardware will only support event profiling
+ * on one SPU per node at a time.  Therefore, we must time slice
+ * the profiling across all SPUs in the node.  Note, we do this
+ * in parallel for each node.  The following routine is called
+ * periodically based on kernel timer to switch which SPU is
+ * being monitored in a round robbin fashion.
+ */
+static void spu_evnt_swap(unsigned long data)
+{
+	int node;
+	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
+	unsigned long flags;
+	int cpu;
+	int ret;
+	u32 interrupt_mask;
+
+
+	/* enable interrupts on cntr 0 */
+	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
+
+	hdw_thread = 0;
+
+	/* Make sure spu event interrupt handler and spu event swap
+	 * don't access the counters simultaneously.
+	 */
+	spin_lock_irqsave(&cntr_lock, flags);
+
+	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
+
+	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
+		spu_evnt_phys_spu_indx = 0;
+
+	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
+	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
+	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
+
+	/* switch the SPU being profiled on each node */
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		node = cbe_cpu_to_node(cpu);
+		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
+			+ cur_spu_evnt_phys_spu_indx;
+		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
+			+ spu_evnt_phys_spu_indx;
+
+		/*
+		 * stop counters, save counter values, restore counts
+		 * for previous physical SPU
+		 */
+		cbe_disable_pm(cpu);
+		cbe_disable_pm_interrupts(cpu);
+
+		spu_pm_cnt[cur_phys_spu]
+			= cbe_read_ctr(cpu, 0);
+
+		/* restore previous count for the next spu to sample */
+		/* NOTE, hardware issue, counter will not start if the
+		 * counter value is at max (0xFFFFFFFF).
+		 */
+		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
+			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
+		 else
+			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
+
+		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+		/* setup the debug bus measure the one event and
+		 * the two events to route the next SPU's PC on
+		 * the debug bus
+		 */
+		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
+		if (ret)
+			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
+			       "SPU event swap\n", __func__);
+
+		/* clear the trace buffer, don't want to take PC for
+		 * previous SPU*/
+		cbe_write_pm(cpu, trace_address, 0);
+
+		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
+
+		/* Enable interrupts on the CPU thread that is starting */
+		cbe_enable_pm_interrupts(cpu, hdw_thread,
+					 interrupt_mask);
+		cbe_enable_pm(cpu);
+	}
+
+	spin_unlock_irqrestore(&cntr_lock, flags);
+
+	/* swap approximately every 0.1 seconds */
+	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
+}
+
+static void start_spu_event_swap(void)
+{
+	init_timer(&timer_spu_event_swap);
+	timer_spu_event_swap.function = spu_evnt_swap;
+	timer_spu_event_swap.data = 0UL;
+	timer_spu_event_swap.expires = jiffies + HZ / 25;
+	add_timer(&timer_spu_event_swap);
+}
+
+static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
+			struct op_system_config *sys, int num_ctrs)
+{
+	int i;
+
+	/* routine is called once for all nodes */
+
+	spu_evnt_phys_spu_indx = 0;
+	/*
+	 * For all events except PPU CYCLEs, each node will need to make
+	 * the rtas cbe-perftools call to setup and reset the debug bus.
+	 * Make the token lookup call once and store it in the global
+	 * variable pm_rtas_token.
+	 */
+	pm_rtas_token = rtas_token("ibm,cbe-perftools");
+
+	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+		printk(KERN_ERR
+		       "%s: rtas token ibm,cbe-perftools unknown\n",
+		       __func__);
+		return -EIO;
+	}
+
+	/* setup the pm_control register settings,
+	 * settings will be written per node by the
+	 * cell_cpu_setup() function.
+	 */
+	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
+
+	/* Use the occurrence trace mode to have SPU PC saved
+	 * to the trace buffer.  Occurrence data in trace buffer
+	 * is not used.  Bit 2 must be set to store SPU addresses.
+	 */
+	pm_regs.pm_cntrl.trace_mode = 2;
+
+	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
+						   event 2 & 3 */
+
+	/* setup the debug bus event array with the SPU PC routing events.
+	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
+	*/
+	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
+	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
+	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
+	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
+
+	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
+	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
+	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
+	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
+
+	/* Set the user selected spu event to profile on,
+	 * note, only one SPU profiling event is supported
+	 */
+	num_counters = 1;  /* Only support one SPU event at a time */
+	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
+
+	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
+
+	/* global, used by cell_cpu_setup */
+	ctr_enabled |= 1;
+
+	/* Initialize the count for each SPU to the reset value */
+	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
+		spu_pm_cnt[i] = reset_value[0];
+
+	return 0;
+}
+
+static int cell_reg_setup_ppu(struct op_counter_config *ctr,
+			struct op_system_config *sys, int num_ctrs)
+{
+	/* routine is called once for all nodes */
+	int i, j, cpu;
+
+	num_counters = num_ctrs;
+
+	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
+		printk(KERN_ERR
+		       "%s: Oprofile, number of specified events " \
+		       "exceeds number of physical counters\n",
+		       __func__);
+		return -EIO;
+	}
+
+	set_count_mode(sys->enable_kernel, sys->enable_user);
+
+	/* Setup the thread 0 events */
+	for (i = 0; i < num_ctrs; ++i) {
+
+		pmc_cntrl[0][i].evnts = ctr[i].event;
+		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
+		pmc_cntrl[0][i].enabled = ctr[i].enabled;
+		pmc_cntrl[0][i].vcntr = i;
+
+		for_each_possible_cpu(j)
+			per_cpu(pmc_values, j)[i] = 0;
+	}
+
+	/*
+	 * Setup the thread 1 events, map the thread 0 event to the
+	 * equivalent thread 1 event.
+	 */
+	for (i = 0; i < num_ctrs; ++i) {
+		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
+			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
+		else if (ctr[i].event == 2203)
+			pmc_cntrl[1][i].evnts = ctr[i].event;
+		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
+			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
+		else
+			pmc_cntrl[1][i].evnts = ctr[i].event;
+
+		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
+		pmc_cntrl[1][i].enabled = ctr[i].enabled;
+		pmc_cntrl[1][i].vcntr = i;
+	}
+
+	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
+		input_bus[i] = 0xff;
+
+	/*
+	 * Our counters count up, and "count" refers to
+	 * how much before the next interrupt, and we interrupt
+	 * on overflow.	 So we calculate the starting value
+	 * which will give us "count" until overflow.
+	 * Then we set the events on the enabled counters.
+	 */
+	for (i = 0; i < num_counters; ++i) {
+		/* start with virtual counter set 0 */
+		if (pmc_cntrl[0][i].enabled) {
+			/* Using 32bit counters, reset max - count */
+			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
+			set_pm_event(i,
+				     pmc_cntrl[0][i].evnts,
+				     pmc_cntrl[0][i].masks);
+
+			/* global, used by cell_cpu_setup */
+			ctr_enabled |= (1 << i);
+		}
+	}
+
+	/* initialize the previous counts for the virtual cntrs */
+	for_each_online_cpu(cpu)
+		for (i = 0; i < num_counters; ++i) {
+			per_cpu(pmc_values, cpu)[i] = reset_value[i];
+		}
+
+	return 0;
+}
+
+
+/* This function is called once for all cpus combined */
+static int cell_reg_setup(struct op_counter_config *ctr,
+			struct op_system_config *sys, int num_ctrs)
+{
+	int ret=0;
+	spu_cycle_reset = 0;
+
+	/* initialize the spu_arr_trace value, will be reset if
+	 * doing spu event profiling.
+	 */
+	pm_regs.group_control = 0;
+	pm_regs.debug_bus_control = 0;
+	pm_regs.pm_cntrl.stop_at_max = 1;
+	pm_regs.pm_cntrl.trace_mode = 0;
+	pm_regs.pm_cntrl.freeze = 1;
+	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
+	pm_regs.pm_cntrl.spu_addr_trace = 0;
+
+	/*
+	 * For all events except PPU CYCLEs, each node will need to make
+	 * the rtas cbe-perftools call to setup and reset the debug bus.
+	 * Make the token lookup call once and store it in the global
+	 * variable pm_rtas_token.
+	 */
+	pm_rtas_token = rtas_token("ibm,cbe-perftools");
+
+	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
+		printk(KERN_ERR
+		       "%s: rtas token ibm,cbe-perftools unknown\n",
+		       __func__);
+		return -EIO;
+	}
+
+	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
+		profiling_mode = SPU_PROFILING_CYCLES;
+		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
+	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
+		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
+		profiling_mode = SPU_PROFILING_EVENTS;
+		spu_cycle_reset = ctr[0].count;
+
+		/* for SPU event profiling, need to setup the
+		 * pm_signal array with the events to route the
+		 * SPU PC before making the FW call.  Note, only
+		 * one SPU event for profiling can be specified
+		 * at a time.
+		 */
+		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
+	} else {
+		profiling_mode = PPU_PROFILING;
+		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
+	}
+
+	return ret;
+}
+
+
+
+/* This function is called once for each cpu */
+static int cell_cpu_setup(struct op_counter_config *cntr)
+{
+	u32 cpu = smp_processor_id();
+	u32 num_enabled = 0;
+	int i;
+	int ret;
+
+	/* Cycle based SPU profiling does not use the performance
+	 * counters.  The trace array is configured to collect
+	 * the data.
+	 */
+	if (profiling_mode == SPU_PROFILING_CYCLES)
+		return 0;
+
+	/* There is one performance monitor per processor chip (i.e. node),
+	 * so we only need to perform this function once per node.
+	 */
+	if (cbe_get_hw_thread_id(cpu))
+		return 0;
+
+	/* Stop all counters */
+	cbe_disable_pm(cpu);
+	cbe_disable_pm_interrupts(cpu);
+
+	cbe_write_pm(cpu, pm_start_stop, 0);
+	cbe_write_pm(cpu, group_control, pm_regs.group_control);
+	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
+	write_pm_cntrl(cpu);
+
+	for (i = 0; i < num_counters; ++i) {
+		if (ctr_enabled & (1 << i)) {
+			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
+			num_enabled++;
+		}
+	}
+
+	/*
+	 * The pm_rtas_activate_signals will return -EIO if the FW
+	 * call failed.
+	 */
+	if (profiling_mode == SPU_PROFILING_EVENTS) {
+		/* For SPU event profiling also need to setup the
+		 * pm interval timer
+		 */
+		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
+					       num_enabled+2);
+		/* store PC from debug bus to Trace buffer as often
+		 * as possible (every 10 cycles)
+		 */
+		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+		return ret;
+	} else
+		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
+						num_enabled);
+}
+
+#define ENTRIES	 303
+#define MAXLFSR	 0xFFFFFF
+
+/* precomputed table of 24 bit LFSR values */
+static int initial_lfsr[] = {
+ 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
+ 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
+ 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
+ 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
+ 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
+ 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
+ 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
+ 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
+ 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
+ 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
+ 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
+ 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
+ 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
+ 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
+ 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
+ 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
+ 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
+ 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
+ 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
+ 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
+ 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
+ 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
+ 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
+ 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
+ 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
+ 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
+ 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
+ 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
+ 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
+ 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
+ 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
+ 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
+ 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
+ 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
+ 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
+ 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
+ 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
+ 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
+};
+
+/*
+ * The hardware uses an LFSR counting sequence to determine when to capture
+ * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
+ * where each number occurs once in the sequence but the sequence is not in
+ * numerical order. The SPU PC capture is done when the LFSR sequence reaches
+ * the last value in the sequence.  Hence the user specified value N
+ * corresponds to the LFSR number that is N from the end of the sequence.
+ *
+ * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
+ * LFSR sequence is broken into four ranges.  The spacing of the precomputed
+ * values is adjusted in each range so the error between the user specified
+ * number (N) of events between samples and the actual number of events based
+ * on the precomputed value will be les then about 6.2%.  Note, if the user
+ * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
+ * This is to prevent the loss of samples because the trace buffer is full.
+ *
+ *	   User specified N		     Step between	   Index in
+ *					 precomputed values	 precomputed
+ *								    table
+ * 0		    to	2^16-1			----		      0
+ * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
+ * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
+ * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
+ *
+ *
+ * For example, the LFSR values in the second range are computed for 2^16,
+ * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
+ * 1, 2,..., 127, 128.
+ *
+ * The 24 bit LFSR value for the nth number in the sequence can be
+ * calculated using the following code:
+ *
+ * #define size 24
+ * int calculate_lfsr(int n)
+ * {
+ *	int i;
+ *	unsigned int newlfsr0;
+ *	unsigned int lfsr = 0xFFFFFF;
+ *	unsigned int howmany = n;
+ *
+ *	for (i = 2; i < howmany + 2; i++) {
+ *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
+ *		((lfsr >> (size - 1 - 1)) & 1) ^
+ *		(((lfsr >> (size - 1 - 6)) & 1) ^
+ *		((lfsr >> (size - 1 - 23)) & 1)));
+ *
+ *		lfsr >>= 1;
+ *		lfsr = lfsr | (newlfsr0 << (size - 1));
+ *	}
+ *	return lfsr;
+ * }
+ */
+
+#define V2_16  (0x1 << 16)
+#define V2_19  (0x1 << 19)
+#define V2_22  (0x1 << 22)
+
+static int calculate_lfsr(int n)
+{
+	/*
+	 * The ranges and steps are in powers of 2 so the calculations
+	 * can be done using shifts rather then divide.
+	 */
+	int index;
+
+	if ((n >> 16) == 0)
+		index = 0;
+	else if (((n - V2_16) >> 19) == 0)
+		index = ((n - V2_16) >> 12) + 1;
+	else if (((n - V2_16 - V2_19) >> 22) == 0)
+		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
+	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
+		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
+	else
+		index = ENTRIES-1;
+
+	/* make sure index is valid */
+	if ((index >= ENTRIES) || (index < 0))
+		index = ENTRIES-1;
+
+	return initial_lfsr[index];
+}
+
+static int pm_rtas_activate_spu_profiling(u32 node)
+{
+	int ret, i;
+	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
+
+	/*
+	 * Set up the rtas call to configure the debug bus to
+	 * route the SPU PCs.  Setup the pm_signal for each SPU
+	 */
+	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
+		pm_signal_local[i].cpu = node;
+		pm_signal_local[i].signal_group = 41;
+		/* spu i on word (i/2) */
+		pm_signal_local[i].bus_word = 1 << i / 2;
+		/* spu i */
+		pm_signal_local[i].sub_unit = i;
+		pm_signal_local[i].bit = 63;
+	}
+
+	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
+				     PASSTHRU_ENABLE, pm_signal_local,
+				     (ARRAY_SIZE(pm_signal_local)
+				      * sizeof(struct pm_signal)));
+
+	if (unlikely(ret)) {
+		printk(KERN_WARNING "%s: rtas returned: %d\n",
+		       __func__, ret);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+#ifdef CONFIG_CPU_FREQ
+static int
+oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
+{
+	int ret = 0;
+	struct cpufreq_freqs *frq = data;
+	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
+	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
+		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
+	return ret;
+}
+
+static struct notifier_block cpu_freq_notifier_block = {
+	.notifier_call	= oprof_cpufreq_notify
+};
+#endif
+
+/*
+ * Note the generic OProfile stop calls do not support returning
+ * an error on stop.  Hence, will not return an error if the FW
+ * calls fail on stop.	Failure to reset the debug bus is not an issue.
+ * Failure to disable the SPU profiling is not an issue.  The FW calls
+ * to enable the performance counters and debug bus will work even if
+ * the hardware was not cleanly reset.
+ */
+static void cell_global_stop_spu_cycles(void)
+{
+	int subfunc, rtn_value;
+	unsigned int lfsr_value;
+	int cpu;
+
+	oprofile_running = 0;
+	smp_wmb();
+
+#ifdef CONFIG_CPU_FREQ
+	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
+				    CPUFREQ_TRANSITION_NOTIFIER);
+#endif
+
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		subfunc = 3;	/*
+				 * 2 - activate SPU tracing,
+				 * 3 - deactivate
+				 */
+		lfsr_value = 0x8f100000;
+
+		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
+				      subfunc, cbe_cpu_to_node(cpu),
+				      lfsr_value);
+
+		if (unlikely(rtn_value != 0)) {
+			printk(KERN_ERR
+			       "%s: rtas call ibm,cbe-spu-perftools " \
+			       "failed, return = %d\n",
+			       __func__, rtn_value);
+		}
+
+		/* Deactivate the signals */
+		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+	}
+
+	stop_spu_profiling_cycles();
+}
+
+static void cell_global_stop_spu_events(void)
+{
+	int cpu;
+	oprofile_running = 0;
+
+	stop_spu_profiling_events();
+	smp_wmb();
+
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		cbe_sync_irq(cbe_cpu_to_node(cpu));
+		/* Stop the counters */
+		cbe_disable_pm(cpu);
+		cbe_write_pm07_control(cpu, 0, 0);
+
+		/* Deactivate the signals */
+		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+		/* Deactivate interrupts */
+		cbe_disable_pm_interrupts(cpu);
+	}
+	del_timer_sync(&timer_spu_event_swap);
+}
+
+static void cell_global_stop_ppu(void)
+{
+	int cpu;
+
+	/*
+	 * This routine will be called once for the system.
+	 * There is one performance monitor per node, so we
+	 * only need to perform this function once per node.
+	 */
+	del_timer_sync(&timer_virt_cntr);
+	oprofile_running = 0;
+	smp_wmb();
+
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		cbe_sync_irq(cbe_cpu_to_node(cpu));
+		/* Stop the counters */
+		cbe_disable_pm(cpu);
+
+		/* Deactivate the signals */
+		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
+
+		/* Deactivate interrupts */
+		cbe_disable_pm_interrupts(cpu);
+	}
+}
+
+static void cell_global_stop(void)
+{
+	if (profiling_mode == PPU_PROFILING)
+		cell_global_stop_ppu();
+	else if (profiling_mode == SPU_PROFILING_EVENTS)
+		cell_global_stop_spu_events();
+	else
+		cell_global_stop_spu_cycles();
+}
+
+static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
+{
+	int subfunc;
+	unsigned int lfsr_value;
+	int cpu;
+	int ret;
+	int rtas_error;
+	unsigned int cpu_khzfreq = 0;
+
+	/* The SPU profiling uses time-based profiling based on
+	 * cpu frequency, so if configured with the CPU_FREQ
+	 * option, we should detect frequency changes and react
+	 * accordingly.
+	 */
+#ifdef CONFIG_CPU_FREQ
+	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
+					CPUFREQ_TRANSITION_NOTIFIER);
+	if (ret < 0)
+		/* this is not a fatal error */
+		printk(KERN_ERR "CPU freq change registration failed: %d\n",
+		       ret);
+
+	else
+		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
+#endif
+
+	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
+
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		/*
+		 * Setup SPU cycle-based profiling.
+		 * Set perf_mon_control bit 0 to a zero before
+		 * enabling spu collection hardware.
+		 */
+		cbe_write_pm(cpu, pm_control, 0);
+
+		if (spu_cycle_reset > MAX_SPU_COUNT)
+			/* use largest possible value */
+			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
+		else
+			lfsr_value = calculate_lfsr(spu_cycle_reset);
+
+		/* must use a non zero value. Zero disables data collection. */
+		if (lfsr_value == 0)
+			lfsr_value = calculate_lfsr(1);
+
+		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
+						* register location
+						*/
+
+		/* debug bus setup */
+		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
+
+		if (unlikely(ret)) {
+			rtas_error = ret;
+			goto out;
+		}
+
+
+		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
+
+		/* start profiling */
+		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
+				cbe_cpu_to_node(cpu), lfsr_value);
+
+		if (unlikely(ret != 0)) {
+			printk(KERN_ERR
+			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
+			       "return = %d\n", __func__, ret);
+			rtas_error = -EIO;
+			goto out;
+		}
+	}
+
+	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
+	if (rtas_error)
+		goto out_stop;
+
+	oprofile_running = 1;
+	return 0;
+
+out_stop:
+	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
+out:
+	return rtas_error;
+}
+
+static int cell_global_start_spu_events(struct op_counter_config *ctr)
+{
+	int cpu;
+	u32 interrupt_mask = 0;
+	int rtn = 0;
+
+	hdw_thread = 0;
+
+	/* spu event profiling, uses the performance counters to generate
+	 * an interrupt.  The hardware is setup to store the SPU program
+	 * counter into the trace array.  The occurrence mode is used to
+	 * enable storing data to the trace buffer.  The bits are set
+	 * to send/store the SPU address in the trace buffer.  The debug
+	 * bus must be setup to route the SPU program counter onto the
+	 * debug bus.  The occurrence data in the trace buffer is not used.
+	 */
+
+	/* This routine gets called once for the system.
+	 * There is one performance monitor per node, so we
+	 * only need to perform this function once per node.
+	 */
+
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		/*
+		 * Setup SPU event-based profiling.
+		 * Set perf_mon_control bit 0 to a zero before
+		 * enabling spu collection hardware.
+		 *
+		 * Only support one SPU event on one SPU per node.
+		 */
+		if (ctr_enabled & 1) {
+			cbe_write_ctr(cpu, 0, reset_value[0]);
+			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
+			interrupt_mask |=
+				CBE_PM_CTR_OVERFLOW_INTR(0);
+		} else {
+			/* Disable counter */
+			cbe_write_pm07_control(cpu, 0, 0);
+		}
+
+		cbe_get_and_clear_pm_interrupts(cpu);
+		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
+		cbe_enable_pm(cpu);
+
+		/* clear the trace buffer */
+		cbe_write_pm(cpu, trace_address, 0);
+	}
+
+	/* Start the timer to time slice collecting the event profile
+	 * on each of the SPUs.  Note, can collect profile on one SPU
+	 * per node at a time.
+	 */
+	start_spu_event_swap();
+	start_spu_profiling_events();
+	oprofile_running = 1;
+	smp_wmb();
+
+	return rtn;
+}
+
+static int cell_global_start_ppu(struct op_counter_config *ctr)
+{
+	u32 cpu, i;
+	u32 interrupt_mask = 0;
+
+	/* This routine gets called once for the system.
+	 * There is one performance monitor per node, so we
+	 * only need to perform this function once per node.
+	 */
+	for_each_online_cpu(cpu) {
+		if (cbe_get_hw_thread_id(cpu))
+			continue;
+
+		interrupt_mask = 0;
+
+		for (i = 0; i < num_counters; ++i) {
+			if (ctr_enabled & (1 << i)) {
+				cbe_write_ctr(cpu, i, reset_value[i]);
+				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
+				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
+			} else {
+				/* Disable counter */
+				cbe_write_pm07_control(cpu, i, 0);
+			}
+		}
+
+		cbe_get_and_clear_pm_interrupts(cpu);
+		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
+		cbe_enable_pm(cpu);
+	}
+
+	virt_cntr_inter_mask = interrupt_mask;
+	oprofile_running = 1;
+	smp_wmb();
+
+	/*
+	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
+	 * executed which manipulates the PMU.	We start the "virtual counter"
+	 * here so that we do not need to synchronize access to the PMU in
+	 * the above for-loop.
+	 */
+	start_virt_cntrs();
+
+	return 0;
+}
+
+static int cell_global_start(struct op_counter_config *ctr)
+{
+	if (profiling_mode == SPU_PROFILING_CYCLES)
+		return cell_global_start_spu_cycles(ctr);
+	else if (profiling_mode == SPU_PROFILING_EVENTS)
+		return cell_global_start_spu_events(ctr);
+	else
+		return cell_global_start_ppu(ctr);
+}
+
+
+/* The SPU interrupt handler
+ *
+ * SPU event profiling works as follows:
+ * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
+ * the debug bus using word 0 or 1.  The value of pm_signal[1] and
+ * pm_signal[2] contain the necessary events to route the SPU program
+ * counter for the selected SPU onto the debug bus using words 2 and 3.
+ * The pm_interval register is setup to write the SPU PC value into the
+ * trace buffer at the maximum rate possible.  The trace buffer is configured
+ * to store the PCs, wrapping when it is full.  The performance counter is
+ * initialized to the max hardware count minus the number of events, N, between
+ * samples.  Once the N events have occurred, a HW counter overflow occurs
+ * causing the generation of a HW counter interrupt which also stops the
+ * writing of the SPU PC values to the trace buffer.  Hence the last PC
+ * written to the trace buffer is the SPU PC that we want.  Unfortunately,
+ * we have to read from the beginning of the trace buffer to get to the
+ * last value written.  We just hope the PPU has nothing better to do then
+ * service this interrupt. The PC for the specific SPU being profiled is
+ * extracted from the trace buffer processed and stored.  The trace buffer
+ * is cleared, interrupts are cleared, the counter is reset to max - N.
+ * A kernel timer is used to periodically call the routine spu_evnt_swap()
+ * to switch to the next physical SPU in the node to profile in round robbin
+ * order.  This way data is collected for all SPUs on the node. It does mean
+ * that we need to use a relatively small value of N to ensure enough samples
+ * on each SPU are collected each SPU is being profiled 1/8 of the time.
+ * It may also be necessary to use a longer sample collection period.
+ */
+static void cell_handle_interrupt_spu(struct pt_regs *regs,
+				      struct op_counter_config *ctr)
+{
+	u32 cpu, cpu_tmp;
+	u64 trace_entry;
+	u32 interrupt_mask;
+	u64 trace_buffer[2];
+	u64 last_trace_buffer;
+	u32 sample;
+	u32 trace_addr;
+	unsigned long sample_array_lock_flags;
+	int spu_num;
+	unsigned long flags;
+
+	/* Make sure spu event interrupt handler and spu event swap
+	 * don't access the counters simultaneously.
+	 */
+	cpu = smp_processor_id();
+	spin_lock_irqsave(&cntr_lock, flags);
+
+	cpu_tmp = cpu;
+	cbe_disable_pm(cpu);
+
+	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
+
+	sample = 0xABCDEF;
+	trace_entry = 0xfedcba;
+	last_trace_buffer = 0xdeadbeaf;
+
+	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
+		/* disable writes to trace buff */
+		cbe_write_pm(cpu, pm_interval, 0);
+
+		/* only have one perf cntr being used, cntr 0 */
+		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
+		    && ctr[0].enabled)
+			/* The SPU PC values will be read
+			 * from the trace buffer, reset counter
+			 */
+
+			cbe_write_ctr(cpu, 0, reset_value[0]);
+
+		trace_addr = cbe_read_pm(cpu, trace_address);
+
+		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
+			/* There is data in the trace buffer to process
+			 * Read the buffer until you get to the last
+			 * entry.  This is the value we want.
+			 */
+
+			cbe_read_trace_buffer(cpu, trace_buffer);
+			trace_addr = cbe_read_pm(cpu, trace_address);
+		}
+
+		/* SPU Address 16 bit count format for 128 bit
+		 * HW trace buffer is used for the SPU PC storage
+		 *    HDR bits          0:15
+		 *    SPU Addr 0 bits   16:31
+		 *    SPU Addr 1 bits   32:47
+		 *    unused bits       48:127
+		 *
+		 * HDR: bit4 = 1 SPU Address 0 valid
+		 * HDR: bit5 = 1 SPU Address 1 valid
+		 *  - unfortunately, the valid bits don't seem to work
+		 *
+		 * Note trace_buffer[0] holds bits 0:63 of the HW
+		 * trace buffer, trace_buffer[1] holds bits 64:127
+		 */
+
+		trace_entry = trace_buffer[0]
+			& 0x00000000FFFF0000;
+
+		/* only top 16 of the 18 bit SPU PC address
+		 * is stored in trace buffer, hence shift right
+		 * by 16 -2 bits */
+		sample = trace_entry >> 14;
+		last_trace_buffer = trace_buffer[0];
+
+		spu_num = spu_evnt_phys_spu_indx
+			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
+
+		/* make sure only one process at a time is calling
+		 * spu_sync_buffer()
+		 */
+		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
+				  sample_array_lock_flags);
+		spu_sync_buffer(spu_num, &sample, 1);
+		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
+				       sample_array_lock_flags);
+
+		smp_wmb();    /* insure spu event buffer updates are written
+			       * don't want events intermingled... */
+
+		/* The counters were frozen by the interrupt.
+		 * Reenable the interrupt and restart the counters.
+		 */
+		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+		cbe_enable_pm_interrupts(cpu, hdw_thread,
+					 virt_cntr_inter_mask);
+
+		/* clear the trace buffer, re-enable writes to trace buff */
+		cbe_write_pm(cpu, trace_address, 0);
+		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
+
+		/* The writes to the various performance counters only writes
+		 * to a latch.  The new values (interrupt setting bits, reset
+		 * counter value etc.) are not copied to the actual registers
+		 * until the performance monitor is enabled.  In order to get
+		 * this to work as desired, the performance monitor needs to
+		 * be disabled while writing to the latches.  This is a
+		 * HW design issue.
+		 */
+		write_pm_cntrl(cpu);
+		cbe_enable_pm(cpu);
+	}
+	spin_unlock_irqrestore(&cntr_lock, flags);
+}
+
+static void cell_handle_interrupt_ppu(struct pt_regs *regs,
+				      struct op_counter_config *ctr)
+{
+	u32 cpu;
+	u64 pc;
+	int is_kernel;
+	unsigned long flags = 0;
+	u32 interrupt_mask;
+	int i;
+
+	cpu = smp_processor_id();
+
+	/*
+	 * Need to make sure the interrupt handler and the virt counter
+	 * routine are not running at the same time. See the
+	 * cell_virtual_cntr() routine for additional comments.
+	 */
+	spin_lock_irqsave(&cntr_lock, flags);
+
+	/*
+	 * Need to disable and reenable the performance counters
+	 * to get the desired behavior from the hardware.  This
+	 * is hardware specific.
+	 */
+
+	cbe_disable_pm(cpu);
+
+	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
+
+	/*
+	 * If the interrupt mask has been cleared, then the virt cntr
+	 * has cleared the interrupt.  When the thread that generated
+	 * the interrupt is restored, the data count will be restored to
+	 * 0xffffff0 to cause the interrupt to be regenerated.
+	 */
+
+	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
+		pc = regs->nip;
+		is_kernel = is_kernel_addr(pc);
+
+		for (i = 0; i < num_counters; ++i) {
+			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
+			    && ctr[i].enabled) {
+				oprofile_add_ext_sample(pc, regs, i, is_kernel);
+				cbe_write_ctr(cpu, i, reset_value[i]);
+			}
+		}
+
+		/*
+		 * The counters were frozen by the interrupt.
+		 * Reenable the interrupt and restart the counters.
+		 * If there was a race between the interrupt handler and
+		 * the virtual counter routine.	 The virtual counter
+		 * routine may have cleared the interrupts.  Hence must
+		 * use the virt_cntr_inter_mask to re-enable the interrupts.
+		 */
+		cbe_enable_pm_interrupts(cpu, hdw_thread,
+					 virt_cntr_inter_mask);
+
+		/*
+		 * The writes to the various performance counters only writes
+		 * to a latch.	The new values (interrupt setting bits, reset
+		 * counter value etc.) are not copied to the actual registers
+		 * until the performance monitor is enabled.  In order to get
+		 * this to work as desired, the performance monitor needs to
+		 * be disabled while writing to the latches.  This is a
+		 * HW design issue.
+		 */
+		cbe_enable_pm(cpu);
+	}
+	spin_unlock_irqrestore(&cntr_lock, flags);
+}
+
+static void cell_handle_interrupt(struct pt_regs *regs,
+				  struct op_counter_config *ctr)
+{
+	if (profiling_mode == PPU_PROFILING)
+		cell_handle_interrupt_ppu(regs, ctr);
+	else
+		cell_handle_interrupt_spu(regs, ctr);
+}
+
+/*
+ * This function is called from the generic OProfile
+ * driver.  When profiling PPUs, we need to do the
+ * generic sync start; otherwise, do spu_sync_start.
+ */
+static int cell_sync_start(void)
+{
+	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
+	    (profiling_mode == SPU_PROFILING_EVENTS))
+		return spu_sync_start();
+	else
+		return DO_GENERIC_SYNC;
+}
+
+static int cell_sync_stop(void)
+{
+	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
+	    (profiling_mode == SPU_PROFILING_EVENTS))
+		return spu_sync_stop();
+	else
+		return 1;
+}
+
+struct op_powerpc_model op_model_cell = {
+	.reg_setup = cell_reg_setup,
+	.cpu_setup = cell_cpu_setup,
+	.global_start = cell_global_start,
+	.global_stop = cell_global_stop,
+	.sync_start = cell_sync_start,
+	.sync_stop = cell_sync_stop,
+	.handle_interrupt = cell_handle_interrupt,
+};
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_fsl_emb.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_fsl_emb.c
new file mode 100644
index 0000000..14cf86f
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_fsl_emb.c
@@ -0,0 +1,384 @@
+/*
+ * Freescale Embedded oprofile support, based on ppc64 oprofile support
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ *
+ * Copyright (c) 2004, 2010 Freescale Semiconductor, Inc
+ *
+ * Author: Andy Fleming
+ * Maintainer: Kumar Gala <galak@kernel.crashing.org>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <asm/ptrace.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/reg_fsl_emb.h>
+#include <asm/page.h>
+#include <asm/pmc.h>
+#include <asm/oprofile_impl.h>
+
+static unsigned long reset_value[OP_MAX_COUNTER];
+
+static int num_counters;
+static int oprofile_running;
+
+static inline u32 get_pmlca(int ctr)
+{
+	u32 pmlca;
+
+	switch (ctr) {
+		case 0:
+			pmlca = mfpmr(PMRN_PMLCA0);
+			break;
+		case 1:
+			pmlca = mfpmr(PMRN_PMLCA1);
+			break;
+		case 2:
+			pmlca = mfpmr(PMRN_PMLCA2);
+			break;
+		case 3:
+			pmlca = mfpmr(PMRN_PMLCA3);
+			break;
+		case 4:
+			pmlca = mfpmr(PMRN_PMLCA4);
+			break;
+		case 5:
+			pmlca = mfpmr(PMRN_PMLCA5);
+			break;
+		default:
+			panic("Bad ctr number\n");
+	}
+
+	return pmlca;
+}
+
+static inline void set_pmlca(int ctr, u32 pmlca)
+{
+	switch (ctr) {
+		case 0:
+			mtpmr(PMRN_PMLCA0, pmlca);
+			break;
+		case 1:
+			mtpmr(PMRN_PMLCA1, pmlca);
+			break;
+		case 2:
+			mtpmr(PMRN_PMLCA2, pmlca);
+			break;
+		case 3:
+			mtpmr(PMRN_PMLCA3, pmlca);
+			break;
+		case 4:
+			mtpmr(PMRN_PMLCA4, pmlca);
+			break;
+		case 5:
+			mtpmr(PMRN_PMLCA5, pmlca);
+			break;
+		default:
+			panic("Bad ctr number\n");
+	}
+}
+
+static inline unsigned int ctr_read(unsigned int i)
+{
+	switch(i) {
+		case 0:
+			return mfpmr(PMRN_PMC0);
+		case 1:
+			return mfpmr(PMRN_PMC1);
+		case 2:
+			return mfpmr(PMRN_PMC2);
+		case 3:
+			return mfpmr(PMRN_PMC3);
+		case 4:
+			return mfpmr(PMRN_PMC4);
+		case 5:
+			return mfpmr(PMRN_PMC5);
+		default:
+			return 0;
+	}
+}
+
+static inline void ctr_write(unsigned int i, unsigned int val)
+{
+	switch(i) {
+		case 0:
+			mtpmr(PMRN_PMC0, val);
+			break;
+		case 1:
+			mtpmr(PMRN_PMC1, val);
+			break;
+		case 2:
+			mtpmr(PMRN_PMC2, val);
+			break;
+		case 3:
+			mtpmr(PMRN_PMC3, val);
+			break;
+		case 4:
+			mtpmr(PMRN_PMC4, val);
+			break;
+		case 5:
+			mtpmr(PMRN_PMC5, val);
+			break;
+		default:
+			break;
+	}
+}
+
+
+static void init_pmc_stop(int ctr)
+{
+	u32 pmlca = (PMLCA_FC | PMLCA_FCS | PMLCA_FCU |
+			PMLCA_FCM1 | PMLCA_FCM0);
+	u32 pmlcb = 0;
+
+	switch (ctr) {
+		case 0:
+			mtpmr(PMRN_PMLCA0, pmlca);
+			mtpmr(PMRN_PMLCB0, pmlcb);
+			break;
+		case 1:
+			mtpmr(PMRN_PMLCA1, pmlca);
+			mtpmr(PMRN_PMLCB1, pmlcb);
+			break;
+		case 2:
+			mtpmr(PMRN_PMLCA2, pmlca);
+			mtpmr(PMRN_PMLCB2, pmlcb);
+			break;
+		case 3:
+			mtpmr(PMRN_PMLCA3, pmlca);
+			mtpmr(PMRN_PMLCB3, pmlcb);
+			break;
+		case 4:
+			mtpmr(PMRN_PMLCA4, pmlca);
+			mtpmr(PMRN_PMLCB4, pmlcb);
+			break;
+		case 5:
+			mtpmr(PMRN_PMLCA5, pmlca);
+			mtpmr(PMRN_PMLCB5, pmlcb);
+			break;
+		default:
+			panic("Bad ctr number!\n");
+	}
+}
+
+static void set_pmc_event(int ctr, int event)
+{
+	u32 pmlca;
+
+	pmlca = get_pmlca(ctr);
+
+	pmlca = (pmlca & ~PMLCA_EVENT_MASK) |
+		((event << PMLCA_EVENT_SHIFT) &
+		 PMLCA_EVENT_MASK);
+
+	set_pmlca(ctr, pmlca);
+}
+
+static void set_pmc_user_kernel(int ctr, int user, int kernel)
+{
+	u32 pmlca;
+
+	pmlca = get_pmlca(ctr);
+
+	if(user)
+		pmlca &= ~PMLCA_FCU;
+	else
+		pmlca |= PMLCA_FCU;
+
+	if(kernel)
+		pmlca &= ~PMLCA_FCS;
+	else
+		pmlca |= PMLCA_FCS;
+
+	set_pmlca(ctr, pmlca);
+}
+
+static void set_pmc_marked(int ctr, int mark0, int mark1)
+{
+	u32 pmlca = get_pmlca(ctr);
+
+	if(mark0)
+		pmlca &= ~PMLCA_FCM0;
+	else
+		pmlca |= PMLCA_FCM0;
+
+	if(mark1)
+		pmlca &= ~PMLCA_FCM1;
+	else
+		pmlca |= PMLCA_FCM1;
+
+	set_pmlca(ctr, pmlca);
+}
+
+static void pmc_start_ctr(int ctr, int enable)
+{
+	u32 pmlca = get_pmlca(ctr);
+
+	pmlca &= ~PMLCA_FC;
+
+	if (enable)
+		pmlca |= PMLCA_CE;
+	else
+		pmlca &= ~PMLCA_CE;
+
+	set_pmlca(ctr, pmlca);
+}
+
+static void pmc_start_ctrs(int enable)
+{
+	u32 pmgc0 = mfpmr(PMRN_PMGC0);
+
+	pmgc0 &= ~PMGC0_FAC;
+	pmgc0 |= PMGC0_FCECE;
+
+	if (enable)
+		pmgc0 |= PMGC0_PMIE;
+	else
+		pmgc0 &= ~PMGC0_PMIE;
+
+	mtpmr(PMRN_PMGC0, pmgc0);
+}
+
+static void pmc_stop_ctrs(void)
+{
+	u32 pmgc0 = mfpmr(PMRN_PMGC0);
+
+	pmgc0 |= PMGC0_FAC;
+
+	pmgc0 &= ~(PMGC0_PMIE | PMGC0_FCECE);
+
+	mtpmr(PMRN_PMGC0, pmgc0);
+}
+
+static int fsl_emb_cpu_setup(struct op_counter_config *ctr)
+{
+	int i;
+
+	/* freeze all counters */
+	pmc_stop_ctrs();
+
+	for (i = 0;i < num_counters;i++) {
+		init_pmc_stop(i);
+
+		set_pmc_event(i, ctr[i].event);
+
+		set_pmc_user_kernel(i, ctr[i].user, ctr[i].kernel);
+	}
+
+	return 0;
+}
+
+static int fsl_emb_reg_setup(struct op_counter_config *ctr,
+			     struct op_system_config *sys,
+			     int num_ctrs)
+{
+	int i;
+
+	num_counters = num_ctrs;
+
+	/* Our counters count up, and "count" refers to
+	 * how much before the next interrupt, and we interrupt
+	 * on overflow.  So we calculate the starting value
+	 * which will give us "count" until overflow.
+	 * Then we set the events on the enabled counters */
+	for (i = 0; i < num_counters; ++i)
+		reset_value[i] = 0x80000000UL - ctr[i].count;
+
+	return 0;
+}
+
+static int fsl_emb_start(struct op_counter_config *ctr)
+{
+	int i;
+
+	mtmsr(mfmsr() | MSR_PMM);
+
+	for (i = 0; i < num_counters; ++i) {
+		if (ctr[i].enabled) {
+			ctr_write(i, reset_value[i]);
+			/* Set each enabled counter to only
+			 * count when the Mark bit is *not* set */
+			set_pmc_marked(i, 1, 0);
+			pmc_start_ctr(i, 1);
+		} else {
+			ctr_write(i, 0);
+
+			/* Set the ctr to be stopped */
+			pmc_start_ctr(i, 0);
+		}
+	}
+
+	/* Clear the freeze bit, and enable the interrupt.
+	 * The counters won't actually start until the rfi clears
+	 * the PMM bit */
+	pmc_start_ctrs(1);
+
+	oprofile_running = 1;
+
+	pr_debug("start on cpu %d, pmgc0 %x\n", smp_processor_id(),
+			mfpmr(PMRN_PMGC0));
+
+	return 0;
+}
+
+static void fsl_emb_stop(void)
+{
+	/* freeze counters */
+	pmc_stop_ctrs();
+
+	oprofile_running = 0;
+
+	pr_debug("stop on cpu %d, pmgc0 %x\n", smp_processor_id(),
+			mfpmr(PMRN_PMGC0));
+
+	mb();
+}
+
+
+static void fsl_emb_handle_interrupt(struct pt_regs *regs,
+				    struct op_counter_config *ctr)
+{
+	unsigned long pc;
+	int is_kernel;
+	int val;
+	int i;
+
+	pc = regs->nip;
+	is_kernel = is_kernel_addr(pc);
+
+	for (i = 0; i < num_counters; ++i) {
+		val = ctr_read(i);
+		if (val < 0) {
+			if (oprofile_running && ctr[i].enabled) {
+				oprofile_add_ext_sample(pc, regs, i, is_kernel);
+				ctr_write(i, reset_value[i]);
+			} else {
+				ctr_write(i, 0);
+			}
+		}
+	}
+
+	/* The freeze bit was set by the interrupt. */
+	/* Clear the freeze bit, and reenable the interrupt.  The
+	 * counters won't actually start until the rfi clears the PMM
+	 * bit.  The PMM bit should not be set until after the interrupt
+	 * is cleared to avoid it getting lost in some hypervisor
+	 * environments.
+	 */
+	mtmsr(mfmsr() | MSR_PMM);
+	pmc_start_ctrs(1);
+}
+
+struct op_powerpc_model op_model_fsl_emb = {
+	.reg_setup		= fsl_emb_reg_setup,
+	.cpu_setup		= fsl_emb_cpu_setup,
+	.start			= fsl_emb_start,
+	.stop			= fsl_emb_stop,
+	.handle_interrupt	= fsl_emb_handle_interrupt,
+};
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_pa6t.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_pa6t.c
new file mode 100644
index 0000000..a114a7c
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_pa6t.c
@@ -0,0 +1,239 @@
+/*
+ * Copyright (C) 2006-2007 PA Semi, Inc
+ *
+ * Author: Shashi Rao, PA Semi
+ *
+ * Maintained by: Olof Johansson <olof@lixom.net>
+ *
+ * Based on arch/powerpc/oprofile/op_model_power4.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <linux/percpu.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/oprofile_impl.h>
+#include <asm/reg.h>
+
+static unsigned char oprofile_running;
+
+/* mmcr values are set in pa6t_reg_setup, used in pa6t_cpu_setup */
+static u64 mmcr0_val;
+static u64 mmcr1_val;
+
+/* inited in pa6t_reg_setup */
+static u64 reset_value[OP_MAX_COUNTER];
+
+static inline u64 ctr_read(unsigned int i)
+{
+	switch (i) {
+	case 0:
+		return mfspr(SPRN_PA6T_PMC0);
+	case 1:
+		return mfspr(SPRN_PA6T_PMC1);
+	case 2:
+		return mfspr(SPRN_PA6T_PMC2);
+	case 3:
+		return mfspr(SPRN_PA6T_PMC3);
+	case 4:
+		return mfspr(SPRN_PA6T_PMC4);
+	case 5:
+		return mfspr(SPRN_PA6T_PMC5);
+	default:
+		printk(KERN_ERR "ctr_read called with bad arg %u\n", i);
+		return 0;
+	}
+}
+
+static inline void ctr_write(unsigned int i, u64 val)
+{
+	switch (i) {
+	case 0:
+		mtspr(SPRN_PA6T_PMC0, val);
+		break;
+	case 1:
+		mtspr(SPRN_PA6T_PMC1, val);
+		break;
+	case 2:
+		mtspr(SPRN_PA6T_PMC2, val);
+		break;
+	case 3:
+		mtspr(SPRN_PA6T_PMC3, val);
+		break;
+	case 4:
+		mtspr(SPRN_PA6T_PMC4, val);
+		break;
+	case 5:
+		mtspr(SPRN_PA6T_PMC5, val);
+		break;
+	default:
+		printk(KERN_ERR "ctr_write called with bad arg %u\n", i);
+		break;
+	}
+}
+
+
+/* precompute the values to stuff in the hardware registers */
+static int pa6t_reg_setup(struct op_counter_config *ctr,
+			   struct op_system_config *sys,
+			   int num_ctrs)
+{
+	int pmc;
+
+	/*
+	 * adjust the mmcr0.en[0-5] and mmcr0.inten[0-5] values obtained from the
+	 * event_mappings file by turning off the counters that the user doesn't
+	 * care about
+	 *
+	 * setup user and kernel profiling
+	 */
+	for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++)
+		if (!ctr[pmc].enabled) {
+			sys->mmcr0 &= ~(0x1UL << pmc);
+			sys->mmcr0 &= ~(0x1UL << (pmc+12));
+			pr_debug("turned off counter %u\n", pmc);
+		}
+
+	if (sys->enable_kernel)
+		sys->mmcr0 |= PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN;
+	else
+		sys->mmcr0 &= ~(PA6T_MMCR0_SUPEN | PA6T_MMCR0_HYPEN);
+
+	if (sys->enable_user)
+		sys->mmcr0 |= PA6T_MMCR0_PREN;
+	else
+		sys->mmcr0 &= ~PA6T_MMCR0_PREN;
+
+	/*
+	 * The performance counter event settings are given in the mmcr0 and
+	 * mmcr1 values passed from the user in the op_system_config
+	 * structure (sys variable).
+	 */
+	mmcr0_val = sys->mmcr0;
+	mmcr1_val = sys->mmcr1;
+	pr_debug("mmcr0_val inited to %016lx\n", sys->mmcr0);
+	pr_debug("mmcr1_val inited to %016lx\n", sys->mmcr1);
+
+	for (pmc = 0; pmc < cur_cpu_spec->num_pmcs; pmc++) {
+		/* counters are 40 bit. Move to cputable at some point? */
+		reset_value[pmc] = (0x1UL << 39) - ctr[pmc].count;
+		pr_debug("reset_value for pmc%u inited to 0x%llx\n",
+				 pmc, reset_value[pmc]);
+	}
+
+	return 0;
+}
+
+/* configure registers on this cpu */
+static int pa6t_cpu_setup(struct op_counter_config *ctr)
+{
+	u64 mmcr0 = mmcr0_val;
+	u64 mmcr1 = mmcr1_val;
+
+	/* Default is all PMCs off */
+	mmcr0 &= ~(0x3FUL);
+	mtspr(SPRN_PA6T_MMCR0, mmcr0);
+
+	/* program selected programmable events in */
+	mtspr(SPRN_PA6T_MMCR1, mmcr1);
+
+	pr_debug("setup on cpu %d, mmcr0 %016lx\n", smp_processor_id(),
+		mfspr(SPRN_PA6T_MMCR0));
+	pr_debug("setup on cpu %d, mmcr1 %016lx\n", smp_processor_id(),
+		mfspr(SPRN_PA6T_MMCR1));
+
+	return 0;
+}
+
+static int pa6t_start(struct op_counter_config *ctr)
+{
+	int i;
+
+	/* Hold off event counting until rfid */
+	u64 mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
+
+	for (i = 0; i < cur_cpu_spec->num_pmcs; i++)
+		if (ctr[i].enabled)
+			ctr_write(i, reset_value[i]);
+		else
+			ctr_write(i, 0UL);
+
+	mtspr(SPRN_PA6T_MMCR0, mmcr0);
+
+	oprofile_running = 1;
+
+	pr_debug("start on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
+
+	return 0;
+}
+
+static void pa6t_stop(void)
+{
+	u64 mmcr0;
+
+	/* freeze counters */
+	mmcr0 = mfspr(SPRN_PA6T_MMCR0);
+	mmcr0 |= PA6T_MMCR0_FCM0;
+	mtspr(SPRN_PA6T_MMCR0, mmcr0);
+
+	oprofile_running = 0;
+
+	pr_debug("stop on cpu %d, mmcr0 %llx\n", smp_processor_id(), mmcr0);
+}
+
+/* handle the perfmon overflow vector */
+static void pa6t_handle_interrupt(struct pt_regs *regs,
+				  struct op_counter_config *ctr)
+{
+	unsigned long pc = mfspr(SPRN_PA6T_SIAR);
+	int is_kernel = is_kernel_addr(pc);
+	u64 val;
+	int i;
+	u64 mmcr0;
+
+	/* disable perfmon counting until rfid */
+	mmcr0 = mfspr(SPRN_PA6T_MMCR0);
+	mtspr(SPRN_PA6T_MMCR0, mmcr0 | PA6T_MMCR0_HANDDIS);
+
+	/* Record samples. We've got one global bit for whether a sample
+	 * was taken, so add it for any counter that triggered overflow.
+	 */
+	for (i = 0; i < cur_cpu_spec->num_pmcs; i++) {
+		val = ctr_read(i);
+		if (val & (0x1UL << 39)) { /* Overflow bit set */
+			if (oprofile_running && ctr[i].enabled) {
+				if (mmcr0 & PA6T_MMCR0_SIARLOG)
+					oprofile_add_ext_sample(pc, regs, i, is_kernel);
+				ctr_write(i, reset_value[i]);
+			} else {
+				ctr_write(i, 0UL);
+			}
+		}
+	}
+
+	/* Restore mmcr0 to a good known value since the PMI changes it */
+	mmcr0 = mmcr0_val | PA6T_MMCR0_HANDDIS;
+	mtspr(SPRN_PA6T_MMCR0, mmcr0);
+}
+
+struct op_powerpc_model op_model_pa6t = {
+	.reg_setup		= pa6t_reg_setup,
+	.cpu_setup		= pa6t_cpu_setup,
+	.start			= pa6t_start,
+	.stop			= pa6t_stop,
+	.handle_interrupt	= pa6t_handle_interrupt,
+};
diff --git a/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_power4.c b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_power4.c
new file mode 100644
index 0000000..4b32e94
--- /dev/null
+++ b/src/kernel/linux/v4.14/arch/powerpc/oprofile/op_model_power4.c
@@ -0,0 +1,442 @@
+/*
+ * Copyright (C) 2004 Anton Blanchard <anton@au.ibm.com>, IBM
+ * Added mmcra[slot] support:
+ * Copyright (C) 2006-2007 Will Schmidt <willschm@us.ibm.com>, IBM
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/oprofile.h>
+#include <linux/smp.h>
+#include <asm/firmware.h>
+#include <asm/ptrace.h>
+#include <asm/processor.h>
+#include <asm/cputable.h>
+#include <asm/rtas.h>
+#include <asm/oprofile_impl.h>
+#include <asm/reg.h>
+
+#define dbg(args...)
+#define OPROFILE_PM_PMCSEL_MSK      0xffULL
+#define OPROFILE_PM_UNIT_SHIFT      60
+#define OPROFILE_PM_UNIT_MSK        0xfULL
+#define OPROFILE_MAX_PMC_NUM        3
+#define OPROFILE_PMSEL_FIELD_WIDTH  8
+#define OPROFILE_UNIT_FIELD_WIDTH   4
+#define MMCRA_SIAR_VALID_MASK       0x10000000ULL
+
+static unsigned long reset_value[OP_MAX_COUNTER];
+
+static int oprofile_running;
+static int use_slot_nums;
+
+/* mmcr values are set in power4_reg_setup, used in power4_cpu_setup */
+static u32 mmcr0_val;
+static u64 mmcr1_val;
+static u64 mmcra_val;
+static u32 cntr_marked_events;
+
+static int power7_marked_instr_event(u64 mmcr1)
+{
+	u64 psel, unit;
+	int pmc, cntr_marked_events = 0;
+
+	/* Given the MMCR1 value, look at the field for each counter to
+	 * determine if it is a marked event.  Code based on the function
+	 * power7_marked_instr_event() in file arch/powerpc/perf/power7-pmu.c.
+	 */
+	for (pmc = 0; pmc < 4; pmc++) {
+		psel = mmcr1 & (OPROFILE_PM_PMCSEL_MSK
+				<< (OPROFILE_MAX_PMC_NUM - pmc)
+				* OPROFILE_PMSEL_FIELD_WIDTH);
+		psel = (psel >> ((OPROFILE_MAX_PMC_NUM - pmc)
+				 * OPROFILE_PMSEL_FIELD_WIDTH)) & ~1ULL;
+		unit = mmcr1 & (OPROFILE_PM_UNIT_MSK
+				<< (OPROFILE_PM_UNIT_SHIFT
+				    - (pmc * OPROFILE_PMSEL_FIELD_WIDTH )));
+		unit = unit >> (OPROFILE_PM_UNIT_SHIFT
+				- (pmc * OPROFILE_PMSEL_FIELD_WIDTH));
+
+		switch (psel >> 4) {
+		case 2:
+			cntr_marked_events |= (pmc == 1 || pmc == 3) << pmc;
+			break;
+		case 3:
+			if (psel == 0x3c) {
+				cntr_marked_events |= (pmc == 0) << pmc;
+				break;
+			}
+
+			if (psel == 0x3e) {
+				cntr_marked_events |= (pmc != 1) << pmc;
+				break;
+			}
+
+			cntr_marked_events |= 1 << pmc;
+			break;
+		case 4:
+		case 5:
+			cntr_marked_events |= (unit == 0xd) << pmc;
+			break;
+		case 6:
+			if (psel == 0x64)
+				cntr_marked_events |= (pmc >= 2) << pmc;
+			break;
+		case 8:
+			cntr_marked_events |= (unit == 0xd) << pmc;
+			break;
+		}
+	}
+	return cntr_marked_events;
+}
+
+static int power4_reg_setup(struct op_counter_config *ctr,
+			     struct op_system_config *sys,
+			     int num_ctrs)
+{
+	int i;
+
+	/*
+	 * The performance counter event settings are given in the mmcr0,
+	 * mmcr1 and mmcra values passed from the user in the
+	 * op_system_config structure (sys variable).
+	 */
+	mmcr0_val = sys->mmcr0;
+	mmcr1_val = sys->mmcr1;
+	mmcra_val = sys->mmcra;
+
+	/* Power 7+ and newer architectures:
+	 * Determine which counter events in the group (the group of events is
+	 * specified by the bit settings in the MMCR1 register) are marked
+	 * events for use in the interrupt handler.  Do the calculation once
+	 * before OProfile starts.  Information is used in the interrupt
+	 * handler.  Starting with Power 7+ we only record the sample for
+	 * marked events if the SIAR valid bit is set.  For non marked events
+	 * the sample is always recorded.
+	 */
+	if (pvr_version_is(PVR_POWER7p))
+		cntr_marked_events = power7_marked_instr_event(mmcr1_val);
+	else
+		cntr_marked_events = 0; /* For older processors, set the bit map
+					 * to zero so the sample will always be
+					 * be recorded.
+					 */
+
+	for (i = 0; i < cur_cpu_spec->num_pmcs; ++i)
+		reset_value[i] = 0x80000000UL - ctr[i].count;
+
+	/* setup user and kernel profiling */
+	if (sys->enable_kernel)
+		mmcr0_val &= ~MMCR0_KERNEL_DISABLE;
+	else
+		mmcr0_val |= MMCR0_KERNEL_DISABLE;
+
+	if (sys->enable_user)
+		mmcr0_val &= ~MMCR0_PROBLEM_DISABLE;
+	else
+		mmcr0_val |= MMCR0_PROBLEM_DISABLE;
+
+	if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
+	    pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
+	    pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX) ||
+	    pvr_version_is(PVR_POWER5) || pvr_version_is(PVR_POWER5p))
+		use_slot_nums = 1;
+
+	return 0;
+}
+
+extern void ppc_enable_pmcs(void);
+
+/*
+ * Older CPUs require the MMCRA sample bit to be always set, but newer 
+ * CPUs only want it set for some groups. Eventually we will remove all
+ * knowledge of this bit in the kernel, oprofile userspace should be
+ * setting it when required.
+ *
+ * In order to keep current installations working we force the bit for
+ * those older CPUs. Once everyone has updated their oprofile userspace we
+ * can remove this hack.
+ */
+static inline int mmcra_must_set_sample(void)
+{
+	if (pvr_version_is(PVR_POWER4) || pvr_version_is(PVR_POWER4p) ||
+	    pvr_version_is(PVR_970) || pvr_version_is(PVR_970FX) ||
+	    pvr_version_is(PVR_970MP) || pvr_version_is(PVR_970GX))
+		return 1;
+
+	return 0;
+}
+
+static int power4_cpu_setup(struct op_counter_config *ctr)
+{
+	unsigned int mmcr0 = mmcr0_val;
+	unsigned long mmcra = mmcra_val;
+
+	ppc_enable_pmcs();
+
+	/* set the freeze bit */
+	mmcr0 |= MMCR0_FC;
+	mtspr(SPRN_MMCR0, mmcr0);
+
+	mmcr0 |= MMCR0_FCM1|MMCR0_PMXE|MMCR0_FCECE;
+	mmcr0 |= MMCR0_PMC1CE|MMCR0_PMCjCE;
+	mtspr(SPRN_MMCR0, mmcr0);
+
+	mtspr(SPRN_MMCR1, mmcr1_val);
+
+	if (mmcra_must_set_sample())
+		mmcra |= MMCRA_SAMPLE_ENABLE;
+	mtspr(SPRN_MMCRA, mmcra);
+
+	dbg("setup on cpu %d, mmcr0 %lx\n", smp_processor_id(),
+	    mfspr(SPRN_MMCR0));
+	dbg("setup on cpu %d, mmcr1 %lx\n", smp_processor_id(),
+	    mfspr(SPRN_MMCR1));
+	dbg("setup on cpu %d, mmcra %lx\n", smp_processor_id(),
+	    mfspr(SPRN_MMCRA));
+
+	return 0;
+}
+
+static int power4_start(struct op_counter_config *ctr)
+{
+	int i;
+	unsigned int mmcr0;
+
+	/* set the PMM bit (see comment below) */
+	mtmsr(mfmsr() | MSR_PMM);
+
+	for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
+		if (ctr[i].enabled) {
+			classic_ctr_write(i, reset_value[i]);
+		} else {
+			classic_ctr_write(i, 0);
+		}
+	}
+
+	mmcr0 = mfspr(SPRN_MMCR0);
+
+	/*
+	 * We must clear the PMAO bit on some (GQ) chips. Just do it
+	 * all the time
+	 */
+	mmcr0 &= ~MMCR0_PMAO;
+
+	/*
+	 * now clear the freeze bit, counting will not start until we
+	 * rfid from this excetion, because only at that point will
+	 * the PMM bit be cleared
+	 */
+	mmcr0 &= ~MMCR0_FC;
+	mtspr(SPRN_MMCR0, mmcr0);
+
+	oprofile_running = 1;
+
+	dbg("start on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
+	return 0;
+}
+
+static void power4_stop(void)
+{
+	unsigned int mmcr0;
+
+	/* freeze counters */
+	mmcr0 = mfspr(SPRN_MMCR0);
+	mmcr0 |= MMCR0_FC;
+	mtspr(SPRN_MMCR0, mmcr0);
+
+	oprofile_running = 0;
+
+	dbg("stop on cpu %d, mmcr0 %x\n", smp_processor_id(), mmcr0);
+
+	mb();
+}
+
+/* Fake functions used by canonicalize_pc */
+static void __used hypervisor_bucket(void)
+{
+}
+
+static void __used rtas_bucket(void)
+{
+}
+
+static void __used kernel_unknown_bucket(void)
+{
+}
+
+/*
+ * On GQ and newer the MMCRA stores the HV and PR bits at the time
+ * the SIAR was sampled. We use that to work out if the SIAR was sampled in
+ * the hypervisor, our exception vectors or RTAS.
+ * If the MMCRA_SAMPLE_ENABLE bit is set, we can use the MMCRA[slot] bits
+ * to more accurately identify the address of the sampled instruction. The
+ * mmcra[slot] bits represent the slot number of a sampled instruction
+ * within an instruction group.  The slot will contain a value between 1
+ * and 5 if MMCRA_SAMPLE_ENABLE is set, otherwise 0.
+ */
+static unsigned long get_pc(struct pt_regs *regs)
+{
+	unsigned long pc = mfspr(SPRN_SIAR);
+	unsigned long mmcra;
+	unsigned long slot;
+
+	/* Can't do much about it */
+	if (!cur_cpu_spec->oprofile_mmcra_sihv)
+		return pc;
+
+	mmcra = mfspr(SPRN_MMCRA);
+
+	if (use_slot_nums && (mmcra & MMCRA_SAMPLE_ENABLE)) {
+		slot = ((mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT);
+		if (slot > 1)
+			pc += 4 * (slot - 1);
+	}
+
+	/* Were we in the hypervisor? */
+	if (firmware_has_feature(FW_FEATURE_LPAR) &&
+	    (mmcra & cur_cpu_spec->oprofile_mmcra_sihv))
+		/* function descriptor madness */
+		return *((unsigned long *)hypervisor_bucket);
+
+	/* We were in userspace, nothing to do */
+	if (mmcra & cur_cpu_spec->oprofile_mmcra_sipr)
+		return pc;
+
+#ifdef CONFIG_PPC_RTAS
+	/* Were we in RTAS? */
+	if (pc >= rtas.base && pc < (rtas.base + rtas.size))
+		/* function descriptor madness */
+		return *((unsigned long *)rtas_bucket);
+#endif
+
+	/* Were we in our exception vectors or SLB real mode miss handler? */
+	if (pc < 0x1000000UL)
+		return (unsigned long)__va(pc);
+
+	/* Not sure where we were */
+	if (!is_kernel_addr(pc))
+		/* function descriptor madness */
+		return *((unsigned long *)kernel_unknown_bucket);
+
+	return pc;
+}
+
+static int get_kernel(unsigned long pc, unsigned long mmcra)
+{
+	int is_kernel;
+
+	if (!cur_cpu_spec->oprofile_mmcra_sihv) {
+		is_kernel = is_kernel_addr(pc);
+	} else {
+		is_kernel = ((mmcra & cur_cpu_spec->oprofile_mmcra_sipr) == 0);
+	}
+
+	return is_kernel;
+}
+
+static bool pmc_overflow(unsigned long val)
+{
+	if ((int)val < 0)
+		return true;
+
+	/*
+	 * Events on POWER7 can roll back if a speculative event doesn't
+	 * eventually complete. Unfortunately in some rare cases they will
+	 * raise a performance monitor exception. We need to catch this to
+	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
+	 * cycles from overflow.
+	 *
+	 * We only do this if the first pass fails to find any overflowing
+	 * PMCs because a user might set a period of less than 256 and we
+	 * don't want to mistakenly reset them.
+	 */
+	if (pvr_version_is(PVR_POWER7) && ((0x80000000 - val) <= 256))
+		return true;
+
+	return false;
+}
+
+static void power4_handle_interrupt(struct pt_regs *regs,
+				    struct op_counter_config *ctr)
+{
+	unsigned long pc;
+	int is_kernel;
+	int val;
+	int i;
+	unsigned int mmcr0;
+	unsigned long mmcra;
+	bool siar_valid = false;
+
+	mmcra = mfspr(SPRN_MMCRA);
+
+	pc = get_pc(regs);
+	is_kernel = get_kernel(pc, mmcra);
+
+	/* set the PMM bit (see comment below) */
+	mtmsr(mfmsr() | MSR_PMM);
+
+	/* Check that the SIAR  valid bit in MMCRA is set to 1. */
+	if ((mmcra & MMCRA_SIAR_VALID_MASK) == MMCRA_SIAR_VALID_MASK)
+		siar_valid = true;
+
+	for (i = 0; i < cur_cpu_spec->num_pmcs; ++i) {
+		val = classic_ctr_read(i);
+		if (pmc_overflow(val)) {
+			if (oprofile_running && ctr[i].enabled) {
+				/* Power 7+ and newer architectures:
+				 * If the event is a marked event, then only
+				 * save the sample if the SIAR valid bit is
+				 * set.  If the event is not marked, then
+				 * always save the sample.
+				 * Note, the Sample enable bit in the MMCRA
+				 * register must be set to 1 if the group
+				 * contains a marked event.
+				 */
+				if ((siar_valid &&
+				     (cntr_marked_events & (1 << i)))
+				    || !(cntr_marked_events & (1 << i)))
+					oprofile_add_ext_sample(pc, regs, i,
+								is_kernel);
+
+				classic_ctr_write(i, reset_value[i]);
+			} else {
+				classic_ctr_write(i, 0);
+			}
+		}
+	}
+
+	mmcr0 = mfspr(SPRN_MMCR0);
+
+	/* reset the perfmon trigger */
+	mmcr0 |= MMCR0_PMXE;
+
+	/*
+	 * We must clear the PMAO bit on some (GQ) chips. Just do it
+	 * all the time
+	 */
+	mmcr0 &= ~MMCR0_PMAO;
+
+	/* Clear the appropriate bits in the MMCRA */
+	mmcra &= ~cur_cpu_spec->oprofile_mmcra_clear;
+	mtspr(SPRN_MMCRA, mmcra);
+
+	/*
+	 * now clear the freeze bit, counting will not start until we
+	 * rfid from this exception, because only at that point will
+	 * the PMM bit be cleared
+	 */
+	mmcr0 &= ~MMCR0_FC;
+	mtspr(SPRN_MMCR0, mmcr0);
+}
+
+struct op_powerpc_model op_model_power4 = {
+	.reg_setup		= power4_reg_setup,
+	.cpu_setup		= power4_cpu_setup,
+	.start			= power4_start,
+	.stop			= power4_stop,
+	.handle_interrupt	= power4_handle_interrupt,
+};