[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/block/blk-throttle.c b/src/kernel/linux/v4.14/block/blk-throttle.c
new file mode 100644
index 0000000..a8cd7b3
--- /dev/null
+++ b/src/kernel/linux/v4.14/block/blk-throttle.c
@@ -0,0 +1,2485 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Interface for controlling IO bandwidth on a request queue
+ *
+ * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
+ */
+
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/blktrace_api.h>
+#include <linux/blk-cgroup.h>
+#include "blk.h"
+
+/* Max dispatch from a group in 1 round */
+static int throtl_grp_quantum = 8;
+
+/* Total max dispatch from all groups in one round */
+static int throtl_quantum = 32;
+
+/* Throttling is performed over a slice and after that slice is renewed */
+#define DFL_THROTL_SLICE_HD (HZ / 10)
+#define DFL_THROTL_SLICE_SSD (HZ / 50)
+#define MAX_THROTL_SLICE (HZ)
+#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
+#define MIN_THROTL_BPS (320 * 1024)
+#define MIN_THROTL_IOPS (10)
+#define DFL_LATENCY_TARGET (-1L)
+#define DFL_IDLE_THRESHOLD (0)
+#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
+#define LATENCY_FILTERED_SSD (0)
+/*
+ * For HD, very small latency comes from sequential IO. Such IO is helpless to
+ * help determine if its IO is impacted by others, hence we ignore the IO
+ */
+#define LATENCY_FILTERED_HD (1000L) /* 1ms */
+
+#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
+
+static struct blkcg_policy blkcg_policy_throtl;
+
+/* A workqueue to queue throttle related work */
+static struct workqueue_struct *kthrotld_workqueue;
+
+/*
+ * To implement hierarchical throttling, throtl_grps form a tree and bios
+ * are dispatched upwards level by level until they reach the top and get
+ * issued.  When dispatching bios from the children and local group at each
+ * level, if the bios are dispatched into a single bio_list, there's a risk
+ * of a local or child group which can queue many bios at once filling up
+ * the list starving others.
+ *
+ * To avoid such starvation, dispatched bios are queued separately
+ * according to where they came from.  When they are again dispatched to
+ * the parent, they're popped in round-robin order so that no single source
+ * hogs the dispatch window.
+ *
+ * throtl_qnode is used to keep the queued bios separated by their sources.
+ * Bios are queued to throtl_qnode which in turn is queued to
+ * throtl_service_queue and then dispatched in round-robin order.
+ *
+ * It's also used to track the reference counts on blkg's.  A qnode always
+ * belongs to a throtl_grp and gets queued on itself or the parent, so
+ * incrementing the reference of the associated throtl_grp when a qnode is
+ * queued and decrementing when dequeued is enough to keep the whole blkg
+ * tree pinned while bios are in flight.
+ */
+struct throtl_qnode {
+	struct list_head	node;		/* service_queue->queued[] */
+	struct bio_list		bios;		/* queued bios */
+	struct throtl_grp	*tg;		/* tg this qnode belongs to */
+};
+
+struct throtl_service_queue {
+	struct throtl_service_queue *parent_sq;	/* the parent service_queue */
+
+	/*
+	 * Bios queued directly to this service_queue or dispatched from
+	 * children throtl_grp's.
+	 */
+	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
+	unsigned int		nr_queued[2];	/* number of queued bios */
+
+	/*
+	 * RB tree of active children throtl_grp's, which are sorted by
+	 * their ->disptime.
+	 */
+	struct rb_root		pending_tree;	/* RB tree of active tgs */
+	struct rb_node		*first_pending;	/* first node in the tree */
+	unsigned int		nr_pending;	/* # queued in the tree */
+	unsigned long		first_pending_disptime;	/* disptime of the first tg */
+	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
+};
+
+enum tg_state_flags {
+	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
+	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
+};
+
+#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
+
+enum {
+	LIMIT_LOW,
+	LIMIT_MAX,
+	LIMIT_CNT,
+};
+
+struct throtl_grp {
+	/* must be the first member */
+	struct blkg_policy_data pd;
+
+	/* active throtl group service_queue member */
+	struct rb_node rb_node;
+
+	/* throtl_data this group belongs to */
+	struct throtl_data *td;
+
+	/* this group's service queue */
+	struct throtl_service_queue service_queue;
+
+	/*
+	 * qnode_on_self is used when bios are directly queued to this
+	 * throtl_grp so that local bios compete fairly with bios
+	 * dispatched from children.  qnode_on_parent is used when bios are
+	 * dispatched from this throtl_grp into its parent and will compete
+	 * with the sibling qnode_on_parents and the parent's
+	 * qnode_on_self.
+	 */
+	struct throtl_qnode qnode_on_self[2];
+	struct throtl_qnode qnode_on_parent[2];
+
+	/*
+	 * Dispatch time in jiffies. This is the estimated time when group
+	 * will unthrottle and is ready to dispatch more bio. It is used as
+	 * key to sort active groups in service tree.
+	 */
+	unsigned long disptime;
+
+	unsigned int flags;
+
+	/* are there any throtl rules between this group and td? */
+	bool has_rules[2];
+
+	/* internally used bytes per second rate limits */
+	uint64_t bps[2][LIMIT_CNT];
+	/* user configured bps limits */
+	uint64_t bps_conf[2][LIMIT_CNT];
+
+	/* internally used IOPS limits */
+	unsigned int iops[2][LIMIT_CNT];
+	/* user configured IOPS limits */
+	unsigned int iops_conf[2][LIMIT_CNT];
+
+	/* Number of bytes disptached in current slice */
+	uint64_t bytes_disp[2];
+	/* Number of bio's dispatched in current slice */
+	unsigned int io_disp[2];
+
+	unsigned long last_low_overflow_time[2];
+
+	uint64_t last_bytes_disp[2];
+	unsigned int last_io_disp[2];
+
+	unsigned long last_check_time;
+
+	unsigned long latency_target; /* us */
+	unsigned long latency_target_conf; /* us */
+	/* When did we start a new slice */
+	unsigned long slice_start[2];
+	unsigned long slice_end[2];
+
+	unsigned long last_finish_time; /* ns / 1024 */
+	unsigned long checked_last_finish_time; /* ns / 1024 */
+	unsigned long avg_idletime; /* ns / 1024 */
+	unsigned long idletime_threshold; /* us */
+	unsigned long idletime_threshold_conf; /* us */
+
+	unsigned int bio_cnt; /* total bios */
+	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
+	unsigned long bio_cnt_reset_time;
+};
+
+/* We measure latency for request size from <= 4k to >= 1M */
+#define LATENCY_BUCKET_SIZE 9
+
+struct latency_bucket {
+	unsigned long total_latency; /* ns / 1024 */
+	int samples;
+};
+
+struct avg_latency_bucket {
+	unsigned long latency; /* ns / 1024 */
+	bool valid;
+};
+
+struct throtl_data
+{
+	/* service tree for active throtl groups */
+	struct throtl_service_queue service_queue;
+
+	struct request_queue *queue;
+
+	/* Total Number of queued bios on READ and WRITE lists */
+	unsigned int nr_queued[2];
+
+	unsigned int throtl_slice;
+
+	/* Work for dispatching throttled bios */
+	struct work_struct dispatch_work;
+	unsigned int limit_index;
+	bool limit_valid[LIMIT_CNT];
+
+	unsigned long low_upgrade_time;
+	unsigned long low_downgrade_time;
+
+	unsigned int scale;
+
+	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
+	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
+	struct latency_bucket __percpu *latency_buckets;
+	unsigned long last_calculate_time;
+	unsigned long filtered_latency;
+
+	bool track_bio_latency;
+};
+
+static void throtl_pending_timer_fn(unsigned long arg);
+
+static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
+{
+	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
+}
+
+static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
+{
+	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
+}
+
+static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
+{
+	return pd_to_blkg(&tg->pd);
+}
+
+/**
+ * sq_to_tg - return the throl_grp the specified service queue belongs to
+ * @sq: the throtl_service_queue of interest
+ *
+ * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
+ * embedded in throtl_data, %NULL is returned.
+ */
+static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
+{
+	if (sq && sq->parent_sq)
+		return container_of(sq, struct throtl_grp, service_queue);
+	else
+		return NULL;
+}
+
+/**
+ * sq_to_td - return throtl_data the specified service queue belongs to
+ * @sq: the throtl_service_queue of interest
+ *
+ * A service_queue can be embedded in either a throtl_grp or throtl_data.
+ * Determine the associated throtl_data accordingly and return it.
+ */
+static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
+{
+	struct throtl_grp *tg = sq_to_tg(sq);
+
+	if (tg)
+		return tg->td;
+	else
+		return container_of(sq, struct throtl_data, service_queue);
+}
+
+/*
+ * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
+ * make the IO dispatch more smooth.
+ * Scale up: linearly scale up according to lapsed time since upgrade. For
+ *           every throtl_slice, the limit scales up 1/2 .low limit till the
+ *           limit hits .max limit
+ * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
+ */
+static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
+{
+	/* arbitrary value to avoid too big scale */
+	if (td->scale < 4096 && time_after_eq(jiffies,
+	    td->low_upgrade_time + td->scale * td->throtl_slice))
+		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
+
+	return low + (low >> 1) * td->scale;
+}
+
+static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
+{
+	struct blkcg_gq *blkg = tg_to_blkg(tg);
+	struct throtl_data *td;
+	uint64_t ret;
+
+	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
+		return U64_MAX;
+
+	td = tg->td;
+	ret = tg->bps[rw][td->limit_index];
+	if (ret == 0 && td->limit_index == LIMIT_LOW) {
+		/* intermediate node or iops isn't 0 */
+		if (!list_empty(&blkg->blkcg->css.children) ||
+		    tg->iops[rw][td->limit_index])
+			return U64_MAX;
+		else
+			return MIN_THROTL_BPS;
+	}
+
+	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
+	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
+		uint64_t adjusted;
+
+		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
+		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
+	}
+	return ret;
+}
+
+static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
+{
+	struct blkcg_gq *blkg = tg_to_blkg(tg);
+	struct throtl_data *td;
+	unsigned int ret;
+
+	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
+		return UINT_MAX;
+
+	td = tg->td;
+	ret = tg->iops[rw][td->limit_index];
+	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
+		/* intermediate node or bps isn't 0 */
+		if (!list_empty(&blkg->blkcg->css.children) ||
+		    tg->bps[rw][td->limit_index])
+			return UINT_MAX;
+		else
+			return MIN_THROTL_IOPS;
+	}
+
+	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
+	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
+		uint64_t adjusted;
+
+		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
+		if (adjusted > UINT_MAX)
+			adjusted = UINT_MAX;
+		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
+	}
+	return ret;
+}
+
+#define request_bucket_index(sectors) \
+	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
+
+/**
+ * throtl_log - log debug message via blktrace
+ * @sq: the service_queue being reported
+ * @fmt: printf format string
+ * @args: printf args
+ *
+ * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
+ * throtl_grp; otherwise, just "throtl".
+ */
+#define throtl_log(sq, fmt, args...)	do {				\
+	struct throtl_grp *__tg = sq_to_tg((sq));			\
+	struct throtl_data *__td = sq_to_td((sq));			\
+									\
+	(void)__td;							\
+	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
+		break;							\
+	if ((__tg)) {							\
+		blk_add_cgroup_trace_msg(__td->queue,			\
+			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
+	} else {							\
+		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
+	}								\
+} while (0)
+
+static inline unsigned int throtl_bio_data_size(struct bio *bio)
+{
+	/* assume it's one sector */
+	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
+		return 512;
+	return bio->bi_iter.bi_size;
+}
+
+static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
+{
+	INIT_LIST_HEAD(&qn->node);
+	bio_list_init(&qn->bios);
+	qn->tg = tg;
+}
+
+/**
+ * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
+ * @bio: bio being added
+ * @qn: qnode to add bio to
+ * @queued: the service_queue->queued[] list @qn belongs to
+ *
+ * Add @bio to @qn and put @qn on @queued if it's not already on.
+ * @qn->tg's reference count is bumped when @qn is activated.  See the
+ * comment on top of throtl_qnode definition for details.
+ */
+static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
+				 struct list_head *queued)
+{
+	bio_list_add(&qn->bios, bio);
+	if (list_empty(&qn->node)) {
+		list_add_tail(&qn->node, queued);
+		blkg_get(tg_to_blkg(qn->tg));
+	}
+}
+
+/**
+ * throtl_peek_queued - peek the first bio on a qnode list
+ * @queued: the qnode list to peek
+ */
+static struct bio *throtl_peek_queued(struct list_head *queued)
+{
+	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
+	struct bio *bio;
+
+	if (list_empty(queued))
+		return NULL;
+
+	bio = bio_list_peek(&qn->bios);
+	WARN_ON_ONCE(!bio);
+	return bio;
+}
+
+/**
+ * throtl_pop_queued - pop the first bio form a qnode list
+ * @queued: the qnode list to pop a bio from
+ * @tg_to_put: optional out argument for throtl_grp to put
+ *
+ * Pop the first bio from the qnode list @queued.  After popping, the first
+ * qnode is removed from @queued if empty or moved to the end of @queued so
+ * that the popping order is round-robin.
+ *
+ * When the first qnode is removed, its associated throtl_grp should be put
+ * too.  If @tg_to_put is NULL, this function automatically puts it;
+ * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
+ * responsible for putting it.
+ */
+static struct bio *throtl_pop_queued(struct list_head *queued,
+				     struct throtl_grp **tg_to_put)
+{
+	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
+	struct bio *bio;
+
+	if (list_empty(queued))
+		return NULL;
+
+	bio = bio_list_pop(&qn->bios);
+	WARN_ON_ONCE(!bio);
+
+	if (bio_list_empty(&qn->bios)) {
+		list_del_init(&qn->node);
+		if (tg_to_put)
+			*tg_to_put = qn->tg;
+		else
+			blkg_put(tg_to_blkg(qn->tg));
+	} else {
+		list_move_tail(&qn->node, queued);
+	}
+
+	return bio;
+}
+
+/* init a service_queue, assumes the caller zeroed it */
+static void throtl_service_queue_init(struct throtl_service_queue *sq)
+{
+	INIT_LIST_HEAD(&sq->queued[0]);
+	INIT_LIST_HEAD(&sq->queued[1]);
+	sq->pending_tree = RB_ROOT;
+	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
+		    (unsigned long)sq);
+}
+
+static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
+{
+	struct throtl_grp *tg;
+	int rw;
+
+	tg = kzalloc_node(sizeof(*tg), gfp, node);
+	if (!tg)
+		return NULL;
+
+	throtl_service_queue_init(&tg->service_queue);
+
+	for (rw = READ; rw <= WRITE; rw++) {
+		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
+		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
+	}
+
+	RB_CLEAR_NODE(&tg->rb_node);
+	tg->bps[READ][LIMIT_MAX] = U64_MAX;
+	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
+	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
+	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
+	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
+	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
+	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
+	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
+	/* LIMIT_LOW will have default value 0 */
+
+	tg->latency_target = DFL_LATENCY_TARGET;
+	tg->latency_target_conf = DFL_LATENCY_TARGET;
+	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
+	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
+
+	return &tg->pd;
+}
+
+static void throtl_pd_init(struct blkg_policy_data *pd)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+	struct blkcg_gq *blkg = tg_to_blkg(tg);
+	struct throtl_data *td = blkg->q->td;
+	struct throtl_service_queue *sq = &tg->service_queue;
+
+	/*
+	 * If on the default hierarchy, we switch to properly hierarchical
+	 * behavior where limits on a given throtl_grp are applied to the
+	 * whole subtree rather than just the group itself.  e.g. If 16M
+	 * read_bps limit is set on the root group, the whole system can't
+	 * exceed 16M for the device.
+	 *
+	 * If not on the default hierarchy, the broken flat hierarchy
+	 * behavior is retained where all throtl_grps are treated as if
+	 * they're all separate root groups right below throtl_data.
+	 * Limits of a group don't interact with limits of other groups
+	 * regardless of the position of the group in the hierarchy.
+	 */
+	sq->parent_sq = &td->service_queue;
+	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
+		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
+	tg->td = td;
+}
+
+/*
+ * Set has_rules[] if @tg or any of its parents have limits configured.
+ * This doesn't require walking up to the top of the hierarchy as the
+ * parent's has_rules[] is guaranteed to be correct.
+ */
+static void tg_update_has_rules(struct throtl_grp *tg)
+{
+	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
+	struct throtl_data *td = tg->td;
+	int rw;
+
+	for (rw = READ; rw <= WRITE; rw++)
+		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
+			(td->limit_valid[td->limit_index] &&
+			 (tg_bps_limit(tg, rw) != U64_MAX ||
+			  tg_iops_limit(tg, rw) != UINT_MAX));
+}
+
+static void throtl_pd_online(struct blkg_policy_data *pd)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+	/*
+	 * We don't want new groups to escape the limits of its ancestors.
+	 * Update has_rules[] after a new group is brought online.
+	 */
+	tg_update_has_rules(tg);
+}
+
+static void blk_throtl_update_limit_valid(struct throtl_data *td)
+{
+	struct cgroup_subsys_state *pos_css;
+	struct blkcg_gq *blkg;
+	bool low_valid = false;
+
+	rcu_read_lock();
+	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
+		struct throtl_grp *tg = blkg_to_tg(blkg);
+
+		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
+		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
+			low_valid = true;
+	}
+	rcu_read_unlock();
+
+	td->limit_valid[LIMIT_LOW] = low_valid;
+}
+
+static void throtl_upgrade_state(struct throtl_data *td);
+static void throtl_pd_offline(struct blkg_policy_data *pd)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+
+	tg->bps[READ][LIMIT_LOW] = 0;
+	tg->bps[WRITE][LIMIT_LOW] = 0;
+	tg->iops[READ][LIMIT_LOW] = 0;
+	tg->iops[WRITE][LIMIT_LOW] = 0;
+
+	blk_throtl_update_limit_valid(tg->td);
+
+	if (!tg->td->limit_valid[tg->td->limit_index])
+		throtl_upgrade_state(tg->td);
+}
+
+static void throtl_pd_free(struct blkg_policy_data *pd)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+
+	del_timer_sync(&tg->service_queue.pending_timer);
+	kfree(tg);
+}
+
+static struct throtl_grp *
+throtl_rb_first(struct throtl_service_queue *parent_sq)
+{
+	/* Service tree is empty */
+	if (!parent_sq->nr_pending)
+		return NULL;
+
+	if (!parent_sq->first_pending)
+		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
+
+	if (parent_sq->first_pending)
+		return rb_entry_tg(parent_sq->first_pending);
+
+	return NULL;
+}
+
+static void rb_erase_init(struct rb_node *n, struct rb_root *root)
+{
+	rb_erase(n, root);
+	RB_CLEAR_NODE(n);
+}
+
+static void throtl_rb_erase(struct rb_node *n,
+			    struct throtl_service_queue *parent_sq)
+{
+	if (parent_sq->first_pending == n)
+		parent_sq->first_pending = NULL;
+	rb_erase_init(n, &parent_sq->pending_tree);
+	--parent_sq->nr_pending;
+}
+
+static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
+{
+	struct throtl_grp *tg;
+
+	tg = throtl_rb_first(parent_sq);
+	if (!tg)
+		return;
+
+	parent_sq->first_pending_disptime = tg->disptime;
+}
+
+static void tg_service_queue_add(struct throtl_grp *tg)
+{
+	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
+	struct rb_node **node = &parent_sq->pending_tree.rb_node;
+	struct rb_node *parent = NULL;
+	struct throtl_grp *__tg;
+	unsigned long key = tg->disptime;
+	int left = 1;
+
+	while (*node != NULL) {
+		parent = *node;
+		__tg = rb_entry_tg(parent);
+
+		if (time_before(key, __tg->disptime))
+			node = &parent->rb_left;
+		else {
+			node = &parent->rb_right;
+			left = 0;
+		}
+	}
+
+	if (left)
+		parent_sq->first_pending = &tg->rb_node;
+
+	rb_link_node(&tg->rb_node, parent, node);
+	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
+}
+
+static void __throtl_enqueue_tg(struct throtl_grp *tg)
+{
+	tg_service_queue_add(tg);
+	tg->flags |= THROTL_TG_PENDING;
+	tg->service_queue.parent_sq->nr_pending++;
+}
+
+static void throtl_enqueue_tg(struct throtl_grp *tg)
+{
+	if (!(tg->flags & THROTL_TG_PENDING))
+		__throtl_enqueue_tg(tg);
+}
+
+static void __throtl_dequeue_tg(struct throtl_grp *tg)
+{
+	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
+	tg->flags &= ~THROTL_TG_PENDING;
+}
+
+static void throtl_dequeue_tg(struct throtl_grp *tg)
+{
+	if (tg->flags & THROTL_TG_PENDING)
+		__throtl_dequeue_tg(tg);
+}
+
+/* Call with queue lock held */
+static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
+					  unsigned long expires)
+{
+	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
+
+	/*
+	 * Since we are adjusting the throttle limit dynamically, the sleep
+	 * time calculated according to previous limit might be invalid. It's
+	 * possible the cgroup sleep time is very long and no other cgroups
+	 * have IO running so notify the limit changes. Make sure the cgroup
+	 * doesn't sleep too long to avoid the missed notification.
+	 */
+	if (time_after(expires, max_expire))
+		expires = max_expire;
+	mod_timer(&sq->pending_timer, expires);
+	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
+		   expires - jiffies, jiffies);
+}
+
+/**
+ * throtl_schedule_next_dispatch - schedule the next dispatch cycle
+ * @sq: the service_queue to schedule dispatch for
+ * @force: force scheduling
+ *
+ * Arm @sq->pending_timer so that the next dispatch cycle starts on the
+ * dispatch time of the first pending child.  Returns %true if either timer
+ * is armed or there's no pending child left.  %false if the current
+ * dispatch window is still open and the caller should continue
+ * dispatching.
+ *
+ * If @force is %true, the dispatch timer is always scheduled and this
+ * function is guaranteed to return %true.  This is to be used when the
+ * caller can't dispatch itself and needs to invoke pending_timer
+ * unconditionally.  Note that forced scheduling is likely to induce short
+ * delay before dispatch starts even if @sq->first_pending_disptime is not
+ * in the future and thus shouldn't be used in hot paths.
+ */
+static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
+					  bool force)
+{
+	/* any pending children left? */
+	if (!sq->nr_pending)
+		return true;
+
+	update_min_dispatch_time(sq);
+
+	/* is the next dispatch time in the future? */
+	if (force || time_after(sq->first_pending_disptime, jiffies)) {
+		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
+		return true;
+	}
+
+	/* tell the caller to continue dispatching */
+	return false;
+}
+
+static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
+		bool rw, unsigned long start)
+{
+	tg->bytes_disp[rw] = 0;
+	tg->io_disp[rw] = 0;
+
+	/*
+	 * Previous slice has expired. We must have trimmed it after last
+	 * bio dispatch. That means since start of last slice, we never used
+	 * that bandwidth. Do try to make use of that bandwidth while giving
+	 * credit.
+	 */
+	if (time_after_eq(start, tg->slice_start[rw]))
+		tg->slice_start[rw] = start;
+
+	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
+	throtl_log(&tg->service_queue,
+		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
+		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
+		   tg->slice_end[rw], jiffies);
+}
+
+static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
+{
+	tg->bytes_disp[rw] = 0;
+	tg->io_disp[rw] = 0;
+	tg->slice_start[rw] = jiffies;
+	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
+	throtl_log(&tg->service_queue,
+		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
+		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
+		   tg->slice_end[rw], jiffies);
+}
+
+static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
+					unsigned long jiffy_end)
+{
+	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
+}
+
+static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
+				       unsigned long jiffy_end)
+{
+	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
+	throtl_log(&tg->service_queue,
+		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
+		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
+		   tg->slice_end[rw], jiffies);
+}
+
+/* Determine if previously allocated or extended slice is complete or not */
+static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
+{
+	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
+		return false;
+
+	return 1;
+}
+
+/* Trim the used slices and adjust slice start accordingly */
+static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
+{
+	unsigned long nr_slices, time_elapsed, io_trim;
+	u64 bytes_trim, tmp;
+
+	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
+
+	/*
+	 * If bps are unlimited (-1), then time slice don't get
+	 * renewed. Don't try to trim the slice if slice is used. A new
+	 * slice will start when appropriate.
+	 */
+	if (throtl_slice_used(tg, rw))
+		return;
+
+	/*
+	 * A bio has been dispatched. Also adjust slice_end. It might happen
+	 * that initially cgroup limit was very low resulting in high
+	 * slice_end, but later limit was bumped up and bio was dispached
+	 * sooner, then we need to reduce slice_end. A high bogus slice_end
+	 * is bad because it does not allow new slice to start.
+	 */
+
+	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
+
+	time_elapsed = jiffies - tg->slice_start[rw];
+
+	nr_slices = time_elapsed / tg->td->throtl_slice;
+
+	if (!nr_slices)
+		return;
+	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
+	do_div(tmp, HZ);
+	bytes_trim = tmp;
+
+	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
+		HZ;
+
+	if (!bytes_trim && !io_trim)
+		return;
+
+	if (tg->bytes_disp[rw] >= bytes_trim)
+		tg->bytes_disp[rw] -= bytes_trim;
+	else
+		tg->bytes_disp[rw] = 0;
+
+	if (tg->io_disp[rw] >= io_trim)
+		tg->io_disp[rw] -= io_trim;
+	else
+		tg->io_disp[rw] = 0;
+
+	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
+
+	throtl_log(&tg->service_queue,
+		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
+		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
+		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
+}
+
+static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
+				  unsigned long *wait)
+{
+	bool rw = bio_data_dir(bio);
+	unsigned int io_allowed;
+	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
+	u64 tmp;
+
+	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
+
+	/* Slice has just started. Consider one slice interval */
+	if (!jiffy_elapsed)
+		jiffy_elapsed_rnd = tg->td->throtl_slice;
+
+	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
+
+	/*
+	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
+	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
+	 * will allow dispatch after 1 second and after that slice should
+	 * have been trimmed.
+	 */
+
+	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
+	do_div(tmp, HZ);
+
+	if (tmp > UINT_MAX)
+		io_allowed = UINT_MAX;
+	else
+		io_allowed = tmp;
+
+	if (tg->io_disp[rw] + 1 <= io_allowed) {
+		if (wait)
+			*wait = 0;
+		return true;
+	}
+
+	/* Calc approx time to dispatch */
+	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
+
+	if (jiffy_wait > jiffy_elapsed)
+		jiffy_wait = jiffy_wait - jiffy_elapsed;
+	else
+		jiffy_wait = 1;
+
+	if (wait)
+		*wait = jiffy_wait;
+	return 0;
+}
+
+static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
+				 unsigned long *wait)
+{
+	bool rw = bio_data_dir(bio);
+	u64 bytes_allowed, extra_bytes, tmp;
+	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
+	unsigned int bio_size = throtl_bio_data_size(bio);
+
+	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
+
+	/* Slice has just started. Consider one slice interval */
+	if (!jiffy_elapsed)
+		jiffy_elapsed_rnd = tg->td->throtl_slice;
+
+	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
+
+	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
+	do_div(tmp, HZ);
+	bytes_allowed = tmp;
+
+	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
+		if (wait)
+			*wait = 0;
+		return true;
+	}
+
+	/* Calc approx time to dispatch */
+	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
+	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
+
+	if (!jiffy_wait)
+		jiffy_wait = 1;
+
+	/*
+	 * This wait time is without taking into consideration the rounding
+	 * up we did. Add that time also.
+	 */
+	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
+	if (wait)
+		*wait = jiffy_wait;
+	return 0;
+}
+
+/*
+ * Returns whether one can dispatch a bio or not. Also returns approx number
+ * of jiffies to wait before this bio is with-in IO rate and can be dispatched
+ */
+static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
+			    unsigned long *wait)
+{
+	bool rw = bio_data_dir(bio);
+	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
+
+	/*
+ 	 * Currently whole state machine of group depends on first bio
+	 * queued in the group bio list. So one should not be calling
+	 * this function with a different bio if there are other bios
+	 * queued.
+	 */
+	BUG_ON(tg->service_queue.nr_queued[rw] &&
+	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
+
+	/* If tg->bps = -1, then BW is unlimited */
+	if (tg_bps_limit(tg, rw) == U64_MAX &&
+	    tg_iops_limit(tg, rw) == UINT_MAX) {
+		if (wait)
+			*wait = 0;
+		return true;
+	}
+
+	/*
+	 * If previous slice expired, start a new one otherwise renew/extend
+	 * existing slice to make sure it is at least throtl_slice interval
+	 * long since now. New slice is started only for empty throttle group.
+	 * If there is queued bio, that means there should be an active
+	 * slice and it should be extended instead.
+	 */
+	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
+		throtl_start_new_slice(tg, rw);
+	else {
+		if (time_before(tg->slice_end[rw],
+		    jiffies + tg->td->throtl_slice))
+			throtl_extend_slice(tg, rw,
+				jiffies + tg->td->throtl_slice);
+	}
+
+	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
+	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
+		if (wait)
+			*wait = 0;
+		return 1;
+	}
+
+	max_wait = max(bps_wait, iops_wait);
+
+	if (wait)
+		*wait = max_wait;
+
+	if (time_before(tg->slice_end[rw], jiffies + max_wait))
+		throtl_extend_slice(tg, rw, jiffies + max_wait);
+
+	return 0;
+}
+
+static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
+{
+	bool rw = bio_data_dir(bio);
+	unsigned int bio_size = throtl_bio_data_size(bio);
+
+	/* Charge the bio to the group */
+	tg->bytes_disp[rw] += bio_size;
+	tg->io_disp[rw]++;
+	tg->last_bytes_disp[rw] += bio_size;
+	tg->last_io_disp[rw]++;
+
+	/*
+	 * BIO_THROTTLED is used to prevent the same bio to be throttled
+	 * more than once as a throttled bio will go through blk-throtl the
+	 * second time when it eventually gets issued.  Set it when a bio
+	 * is being charged to a tg.
+	 */
+	if (!bio_flagged(bio, BIO_THROTTLED))
+		bio_set_flag(bio, BIO_THROTTLED);
+}
+
+/**
+ * throtl_add_bio_tg - add a bio to the specified throtl_grp
+ * @bio: bio to add
+ * @qn: qnode to use
+ * @tg: the target throtl_grp
+ *
+ * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
+ * tg->qnode_on_self[] is used.
+ */
+static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
+			      struct throtl_grp *tg)
+{
+	struct throtl_service_queue *sq = &tg->service_queue;
+	bool rw = bio_data_dir(bio);
+
+	if (!qn)
+		qn = &tg->qnode_on_self[rw];
+
+	/*
+	 * If @tg doesn't currently have any bios queued in the same
+	 * direction, queueing @bio can change when @tg should be
+	 * dispatched.  Mark that @tg was empty.  This is automatically
+	 * cleaered on the next tg_update_disptime().
+	 */
+	if (!sq->nr_queued[rw])
+		tg->flags |= THROTL_TG_WAS_EMPTY;
+
+	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
+
+	sq->nr_queued[rw]++;
+	throtl_enqueue_tg(tg);
+}
+
+static void tg_update_disptime(struct throtl_grp *tg)
+{
+	struct throtl_service_queue *sq = &tg->service_queue;
+	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
+	struct bio *bio;
+
+	bio = throtl_peek_queued(&sq->queued[READ]);
+	if (bio)
+		tg_may_dispatch(tg, bio, &read_wait);
+
+	bio = throtl_peek_queued(&sq->queued[WRITE]);
+	if (bio)
+		tg_may_dispatch(tg, bio, &write_wait);
+
+	min_wait = min(read_wait, write_wait);
+	disptime = jiffies + min_wait;
+
+	/* Update dispatch time */
+	throtl_dequeue_tg(tg);
+	tg->disptime = disptime;
+	throtl_enqueue_tg(tg);
+
+	/* see throtl_add_bio_tg() */
+	tg->flags &= ~THROTL_TG_WAS_EMPTY;
+}
+
+static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
+					struct throtl_grp *parent_tg, bool rw)
+{
+	if (throtl_slice_used(parent_tg, rw)) {
+		throtl_start_new_slice_with_credit(parent_tg, rw,
+				child_tg->slice_start[rw]);
+	}
+
+}
+
+static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
+{
+	struct throtl_service_queue *sq = &tg->service_queue;
+	struct throtl_service_queue *parent_sq = sq->parent_sq;
+	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
+	struct throtl_grp *tg_to_put = NULL;
+	struct bio *bio;
+
+	/*
+	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
+	 * from @tg may put its reference and @parent_sq might end up
+	 * getting released prematurely.  Remember the tg to put and put it
+	 * after @bio is transferred to @parent_sq.
+	 */
+	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
+	sq->nr_queued[rw]--;
+
+	throtl_charge_bio(tg, bio);
+
+	/*
+	 * If our parent is another tg, we just need to transfer @bio to
+	 * the parent using throtl_add_bio_tg().  If our parent is
+	 * @td->service_queue, @bio is ready to be issued.  Put it on its
+	 * bio_lists[] and decrease total number queued.  The caller is
+	 * responsible for issuing these bios.
+	 */
+	if (parent_tg) {
+		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
+		start_parent_slice_with_credit(tg, parent_tg, rw);
+	} else {
+		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
+				     &parent_sq->queued[rw]);
+		BUG_ON(tg->td->nr_queued[rw] <= 0);
+		tg->td->nr_queued[rw]--;
+	}
+
+	throtl_trim_slice(tg, rw);
+
+	if (tg_to_put)
+		blkg_put(tg_to_blkg(tg_to_put));
+}
+
+static int throtl_dispatch_tg(struct throtl_grp *tg)
+{
+	struct throtl_service_queue *sq = &tg->service_queue;
+	unsigned int nr_reads = 0, nr_writes = 0;
+	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
+	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
+	struct bio *bio;
+
+	/* Try to dispatch 75% READS and 25% WRITES */
+
+	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
+	       tg_may_dispatch(tg, bio, NULL)) {
+
+		tg_dispatch_one_bio(tg, bio_data_dir(bio));
+		nr_reads++;
+
+		if (nr_reads >= max_nr_reads)
+			break;
+	}
+
+	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
+	       tg_may_dispatch(tg, bio, NULL)) {
+
+		tg_dispatch_one_bio(tg, bio_data_dir(bio));
+		nr_writes++;
+
+		if (nr_writes >= max_nr_writes)
+			break;
+	}
+
+	return nr_reads + nr_writes;
+}
+
+static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
+{
+	unsigned int nr_disp = 0;
+
+	while (1) {
+		struct throtl_grp *tg = throtl_rb_first(parent_sq);
+		struct throtl_service_queue *sq = &tg->service_queue;
+
+		if (!tg)
+			break;
+
+		if (time_before(jiffies, tg->disptime))
+			break;
+
+		throtl_dequeue_tg(tg);
+
+		nr_disp += throtl_dispatch_tg(tg);
+
+		if (sq->nr_queued[0] || sq->nr_queued[1])
+			tg_update_disptime(tg);
+
+		if (nr_disp >= throtl_quantum)
+			break;
+	}
+
+	return nr_disp;
+}
+
+static bool throtl_can_upgrade(struct throtl_data *td,
+	struct throtl_grp *this_tg);
+/**
+ * throtl_pending_timer_fn - timer function for service_queue->pending_timer
+ * @arg: the throtl_service_queue being serviced
+ *
+ * This timer is armed when a child throtl_grp with active bio's become
+ * pending and queued on the service_queue's pending_tree and expires when
+ * the first child throtl_grp should be dispatched.  This function
+ * dispatches bio's from the children throtl_grps to the parent
+ * service_queue.
+ *
+ * If the parent's parent is another throtl_grp, dispatching is propagated
+ * by either arming its pending_timer or repeating dispatch directly.  If
+ * the top-level service_tree is reached, throtl_data->dispatch_work is
+ * kicked so that the ready bio's are issued.
+ */
+static void throtl_pending_timer_fn(unsigned long arg)
+{
+	struct throtl_service_queue *sq = (void *)arg;
+	struct throtl_grp *tg = sq_to_tg(sq);
+	struct throtl_data *td = sq_to_td(sq);
+	struct request_queue *q = td->queue;
+	struct throtl_service_queue *parent_sq;
+	bool dispatched;
+	int ret;
+
+	spin_lock_irq(q->queue_lock);
+	if (throtl_can_upgrade(td, NULL))
+		throtl_upgrade_state(td);
+
+again:
+	parent_sq = sq->parent_sq;
+	dispatched = false;
+
+	while (true) {
+		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
+			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
+			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
+
+		ret = throtl_select_dispatch(sq);
+		if (ret) {
+			throtl_log(sq, "bios disp=%u", ret);
+			dispatched = true;
+		}
+
+		if (throtl_schedule_next_dispatch(sq, false))
+			break;
+
+		/* this dispatch windows is still open, relax and repeat */
+		spin_unlock_irq(q->queue_lock);
+		cpu_relax();
+		spin_lock_irq(q->queue_lock);
+	}
+
+	if (!dispatched)
+		goto out_unlock;
+
+	if (parent_sq) {
+		/* @parent_sq is another throl_grp, propagate dispatch */
+		if (tg->flags & THROTL_TG_WAS_EMPTY) {
+			tg_update_disptime(tg);
+			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
+				/* window is already open, repeat dispatching */
+				sq = parent_sq;
+				tg = sq_to_tg(sq);
+				goto again;
+			}
+		}
+	} else {
+		/* reached the top-level, queue issueing */
+		queue_work(kthrotld_workqueue, &td->dispatch_work);
+	}
+out_unlock:
+	spin_unlock_irq(q->queue_lock);
+}
+
+/**
+ * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
+ * @work: work item being executed
+ *
+ * This function is queued for execution when bio's reach the bio_lists[]
+ * of throtl_data->service_queue.  Those bio's are ready and issued by this
+ * function.
+ */
+static void blk_throtl_dispatch_work_fn(struct work_struct *work)
+{
+	struct throtl_data *td = container_of(work, struct throtl_data,
+					      dispatch_work);
+	struct throtl_service_queue *td_sq = &td->service_queue;
+	struct request_queue *q = td->queue;
+	struct bio_list bio_list_on_stack;
+	struct bio *bio;
+	struct blk_plug plug;
+	int rw;
+
+	bio_list_init(&bio_list_on_stack);
+
+	spin_lock_irq(q->queue_lock);
+	for (rw = READ; rw <= WRITE; rw++)
+		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
+			bio_list_add(&bio_list_on_stack, bio);
+	spin_unlock_irq(q->queue_lock);
+
+	if (!bio_list_empty(&bio_list_on_stack)) {
+		blk_start_plug(&plug);
+		while((bio = bio_list_pop(&bio_list_on_stack)))
+			generic_make_request(bio);
+		blk_finish_plug(&plug);
+	}
+}
+
+static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
+			      int off)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+	u64 v = *(u64 *)((void *)tg + off);
+
+	if (v == U64_MAX)
+		return 0;
+	return __blkg_prfill_u64(sf, pd, v);
+}
+
+static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
+			       int off)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+	unsigned int v = *(unsigned int *)((void *)tg + off);
+
+	if (v == UINT_MAX)
+		return 0;
+	return __blkg_prfill_u64(sf, pd, v);
+}
+
+static int tg_print_conf_u64(struct seq_file *sf, void *v)
+{
+	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
+			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
+	return 0;
+}
+
+static int tg_print_conf_uint(struct seq_file *sf, void *v)
+{
+	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
+			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
+	return 0;
+}
+
+static void tg_conf_updated(struct throtl_grp *tg, bool global)
+{
+	struct throtl_service_queue *sq = &tg->service_queue;
+	struct cgroup_subsys_state *pos_css;
+	struct blkcg_gq *blkg;
+
+	throtl_log(&tg->service_queue,
+		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
+		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
+		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
+
+	/*
+	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
+	 * considered to have rules if either the tg itself or any of its
+	 * ancestors has rules.  This identifies groups without any
+	 * restrictions in the whole hierarchy and allows them to bypass
+	 * blk-throttle.
+	 */
+	blkg_for_each_descendant_pre(blkg, pos_css,
+			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
+		struct throtl_grp *this_tg = blkg_to_tg(blkg);
+		struct throtl_grp *parent_tg;
+
+		tg_update_has_rules(this_tg);
+		/* ignore root/second level */
+		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
+		    !blkg->parent->parent)
+			continue;
+		parent_tg = blkg_to_tg(blkg->parent);
+		/*
+		 * make sure all children has lower idle time threshold and
+		 * higher latency target
+		 */
+		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
+				parent_tg->idletime_threshold);
+		this_tg->latency_target = max(this_tg->latency_target,
+				parent_tg->latency_target);
+	}
+
+	/*
+	 * We're already holding queue_lock and know @tg is valid.  Let's
+	 * apply the new config directly.
+	 *
+	 * Restart the slices for both READ and WRITES. It might happen
+	 * that a group's limit are dropped suddenly and we don't want to
+	 * account recently dispatched IO with new low rate.
+	 */
+	throtl_start_new_slice(tg, 0);
+	throtl_start_new_slice(tg, 1);
+
+	if (tg->flags & THROTL_TG_PENDING) {
+		tg_update_disptime(tg);
+		throtl_schedule_next_dispatch(sq->parent_sq, true);
+	}
+}
+
+static ssize_t tg_set_conf(struct kernfs_open_file *of,
+			   char *buf, size_t nbytes, loff_t off, bool is_u64)
+{
+	struct blkcg *blkcg = css_to_blkcg(of_css(of));
+	struct blkg_conf_ctx ctx;
+	struct throtl_grp *tg;
+	int ret;
+	u64 v;
+
+	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
+	if (ret)
+		return ret;
+
+	ret = -EINVAL;
+	if (sscanf(ctx.body, "%llu", &v) != 1)
+		goto out_finish;
+	if (!v)
+		v = U64_MAX;
+
+	tg = blkg_to_tg(ctx.blkg);
+
+	if (is_u64)
+		*(u64 *)((void *)tg + of_cft(of)->private) = v;
+	else
+		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
+
+	tg_conf_updated(tg, false);
+	ret = 0;
+out_finish:
+	blkg_conf_finish(&ctx);
+	return ret ?: nbytes;
+}
+
+static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
+			       char *buf, size_t nbytes, loff_t off)
+{
+	return tg_set_conf(of, buf, nbytes, off, true);
+}
+
+static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
+				char *buf, size_t nbytes, loff_t off)
+{
+	return tg_set_conf(of, buf, nbytes, off, false);
+}
+
+static struct cftype throtl_legacy_files[] = {
+	{
+		.name = "throttle.read_bps_device",
+		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
+		.seq_show = tg_print_conf_u64,
+		.write = tg_set_conf_u64,
+	},
+	{
+		.name = "throttle.write_bps_device",
+		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
+		.seq_show = tg_print_conf_u64,
+		.write = tg_set_conf_u64,
+	},
+	{
+		.name = "throttle.read_iops_device",
+		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
+		.seq_show = tg_print_conf_uint,
+		.write = tg_set_conf_uint,
+	},
+	{
+		.name = "throttle.write_iops_device",
+		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
+		.seq_show = tg_print_conf_uint,
+		.write = tg_set_conf_uint,
+	},
+	{
+		.name = "throttle.io_service_bytes",
+		.private = (unsigned long)&blkcg_policy_throtl,
+		.seq_show = blkg_print_stat_bytes,
+	},
+	{
+		.name = "throttle.io_serviced",
+		.private = (unsigned long)&blkcg_policy_throtl,
+		.seq_show = blkg_print_stat_ios,
+	},
+	{ }	/* terminate */
+};
+
+static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
+			 int off)
+{
+	struct throtl_grp *tg = pd_to_tg(pd);
+	const char *dname = blkg_dev_name(pd->blkg);
+	char bufs[4][21] = { "max", "max", "max", "max" };
+	u64 bps_dft;
+	unsigned int iops_dft;
+	char idle_time[26] = "";
+	char latency_time[26] = "";
+
+	if (!dname)
+		return 0;
+
+	if (off == LIMIT_LOW) {
+		bps_dft = 0;
+		iops_dft = 0;
+	} else {
+		bps_dft = U64_MAX;
+		iops_dft = UINT_MAX;
+	}
+
+	if (tg->bps_conf[READ][off] == bps_dft &&
+	    tg->bps_conf[WRITE][off] == bps_dft &&
+	    tg->iops_conf[READ][off] == iops_dft &&
+	    tg->iops_conf[WRITE][off] == iops_dft &&
+	    (off != LIMIT_LOW ||
+	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
+	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
+		return 0;
+
+	if (tg->bps_conf[READ][off] != U64_MAX)
+		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
+			tg->bps_conf[READ][off]);
+	if (tg->bps_conf[WRITE][off] != U64_MAX)
+		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
+			tg->bps_conf[WRITE][off]);
+	if (tg->iops_conf[READ][off] != UINT_MAX)
+		snprintf(bufs[2], sizeof(bufs[2]), "%u",
+			tg->iops_conf[READ][off]);
+	if (tg->iops_conf[WRITE][off] != UINT_MAX)
+		snprintf(bufs[3], sizeof(bufs[3]), "%u",
+			tg->iops_conf[WRITE][off]);
+	if (off == LIMIT_LOW) {
+		if (tg->idletime_threshold_conf == ULONG_MAX)
+			strcpy(idle_time, " idle=max");
+		else
+			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
+				tg->idletime_threshold_conf);
+
+		if (tg->latency_target_conf == ULONG_MAX)
+			strcpy(latency_time, " latency=max");
+		else
+			snprintf(latency_time, sizeof(latency_time),
+				" latency=%lu", tg->latency_target_conf);
+	}
+
+	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
+		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
+		   latency_time);
+	return 0;
+}
+
+static int tg_print_limit(struct seq_file *sf, void *v)
+{
+	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
+			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
+	return 0;
+}
+
+static ssize_t tg_set_limit(struct kernfs_open_file *of,
+			  char *buf, size_t nbytes, loff_t off)
+{
+	struct blkcg *blkcg = css_to_blkcg(of_css(of));
+	struct blkg_conf_ctx ctx;
+	struct throtl_grp *tg;
+	u64 v[4];
+	unsigned long idle_time;
+	unsigned long latency_time;
+	int ret;
+	int index = of_cft(of)->private;
+
+	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
+	if (ret)
+		return ret;
+
+	tg = blkg_to_tg(ctx.blkg);
+
+	v[0] = tg->bps_conf[READ][index];
+	v[1] = tg->bps_conf[WRITE][index];
+	v[2] = tg->iops_conf[READ][index];
+	v[3] = tg->iops_conf[WRITE][index];
+
+	idle_time = tg->idletime_threshold_conf;
+	latency_time = tg->latency_target_conf;
+	while (true) {
+		char tok[27];	/* wiops=18446744073709551616 */
+		char *p;
+		u64 val = U64_MAX;
+		int len;
+
+		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
+			break;
+		if (tok[0] == '\0')
+			break;
+		ctx.body += len;
+
+		ret = -EINVAL;
+		p = tok;
+		strsep(&p, "=");
+		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
+			goto out_finish;
+
+		ret = -ERANGE;
+		if (!val)
+			goto out_finish;
+
+		ret = -EINVAL;
+		if (!strcmp(tok, "rbps"))
+			v[0] = val;
+		else if (!strcmp(tok, "wbps"))
+			v[1] = val;
+		else if (!strcmp(tok, "riops"))
+			v[2] = min_t(u64, val, UINT_MAX);
+		else if (!strcmp(tok, "wiops"))
+			v[3] = min_t(u64, val, UINT_MAX);
+		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
+			idle_time = val;
+		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
+			latency_time = val;
+		else
+			goto out_finish;
+	}
+
+	tg->bps_conf[READ][index] = v[0];
+	tg->bps_conf[WRITE][index] = v[1];
+	tg->iops_conf[READ][index] = v[2];
+	tg->iops_conf[WRITE][index] = v[3];
+
+	if (index == LIMIT_MAX) {
+		tg->bps[READ][index] = v[0];
+		tg->bps[WRITE][index] = v[1];
+		tg->iops[READ][index] = v[2];
+		tg->iops[WRITE][index] = v[3];
+	}
+	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
+		tg->bps_conf[READ][LIMIT_MAX]);
+	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
+		tg->bps_conf[WRITE][LIMIT_MAX]);
+	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
+		tg->iops_conf[READ][LIMIT_MAX]);
+	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
+		tg->iops_conf[WRITE][LIMIT_MAX]);
+	tg->idletime_threshold_conf = idle_time;
+	tg->latency_target_conf = latency_time;
+
+	/* force user to configure all settings for low limit  */
+	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
+	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
+	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
+	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
+		tg->bps[READ][LIMIT_LOW] = 0;
+		tg->bps[WRITE][LIMIT_LOW] = 0;
+		tg->iops[READ][LIMIT_LOW] = 0;
+		tg->iops[WRITE][LIMIT_LOW] = 0;
+		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
+		tg->latency_target = DFL_LATENCY_TARGET;
+	} else if (index == LIMIT_LOW) {
+		tg->idletime_threshold = tg->idletime_threshold_conf;
+		tg->latency_target = tg->latency_target_conf;
+	}
+
+	blk_throtl_update_limit_valid(tg->td);
+	if (tg->td->limit_valid[LIMIT_LOW]) {
+		if (index == LIMIT_LOW)
+			tg->td->limit_index = LIMIT_LOW;
+	} else
+		tg->td->limit_index = LIMIT_MAX;
+	tg_conf_updated(tg, index == LIMIT_LOW &&
+		tg->td->limit_valid[LIMIT_LOW]);
+	ret = 0;
+out_finish:
+	blkg_conf_finish(&ctx);
+	return ret ?: nbytes;
+}
+
+static struct cftype throtl_files[] = {
+#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
+	{
+		.name = "low",
+		.flags = CFTYPE_NOT_ON_ROOT,
+		.seq_show = tg_print_limit,
+		.write = tg_set_limit,
+		.private = LIMIT_LOW,
+	},
+#endif
+	{
+		.name = "max",
+		.flags = CFTYPE_NOT_ON_ROOT,
+		.seq_show = tg_print_limit,
+		.write = tg_set_limit,
+		.private = LIMIT_MAX,
+	},
+	{ }	/* terminate */
+};
+
+static void throtl_shutdown_wq(struct request_queue *q)
+{
+	struct throtl_data *td = q->td;
+
+	cancel_work_sync(&td->dispatch_work);
+}
+
+static struct blkcg_policy blkcg_policy_throtl = {
+	.dfl_cftypes		= throtl_files,
+	.legacy_cftypes		= throtl_legacy_files,
+
+	.pd_alloc_fn		= throtl_pd_alloc,
+	.pd_init_fn		= throtl_pd_init,
+	.pd_online_fn		= throtl_pd_online,
+	.pd_offline_fn		= throtl_pd_offline,
+	.pd_free_fn		= throtl_pd_free,
+};
+
+static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
+{
+	unsigned long rtime = jiffies, wtime = jiffies;
+
+	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
+		rtime = tg->last_low_overflow_time[READ];
+	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
+		wtime = tg->last_low_overflow_time[WRITE];
+	return min(rtime, wtime);
+}
+
+/* tg should not be an intermediate node */
+static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
+{
+	struct throtl_service_queue *parent_sq;
+	struct throtl_grp *parent = tg;
+	unsigned long ret = __tg_last_low_overflow_time(tg);
+
+	while (true) {
+		parent_sq = parent->service_queue.parent_sq;
+		parent = sq_to_tg(parent_sq);
+		if (!parent)
+			break;
+
+		/*
+		 * The parent doesn't have low limit, it always reaches low
+		 * limit. Its overflow time is useless for children
+		 */
+		if (!parent->bps[READ][LIMIT_LOW] &&
+		    !parent->iops[READ][LIMIT_LOW] &&
+		    !parent->bps[WRITE][LIMIT_LOW] &&
+		    !parent->iops[WRITE][LIMIT_LOW])
+			continue;
+		if (time_after(__tg_last_low_overflow_time(parent), ret))
+			ret = __tg_last_low_overflow_time(parent);
+	}
+	return ret;
+}
+
+static bool throtl_tg_is_idle(struct throtl_grp *tg)
+{
+	/*
+	 * cgroup is idle if:
+	 * - single idle is too long, longer than a fixed value (in case user
+	 *   configure a too big threshold) or 4 times of idletime threshold
+	 * - average think time is more than threshold
+	 * - IO latency is largely below threshold
+	 */
+	unsigned long time;
+	bool ret;
+
+	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
+	ret = tg->latency_target == DFL_LATENCY_TARGET ||
+	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
+	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
+	      tg->avg_idletime > tg->idletime_threshold ||
+	      (tg->latency_target && tg->bio_cnt &&
+		tg->bad_bio_cnt * 5 < tg->bio_cnt);
+	throtl_log(&tg->service_queue,
+		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
+		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
+		tg->bio_cnt, ret, tg->td->scale);
+	return ret;
+}
+
+static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
+{
+	struct throtl_service_queue *sq = &tg->service_queue;
+	bool read_limit, write_limit;
+
+	/*
+	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
+	 * reaches), it's ok to upgrade to next limit
+	 */
+	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
+	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
+	if (!read_limit && !write_limit)
+		return true;
+	if (read_limit && sq->nr_queued[READ] &&
+	    (!write_limit || sq->nr_queued[WRITE]))
+		return true;
+	if (write_limit && sq->nr_queued[WRITE] &&
+	    (!read_limit || sq->nr_queued[READ]))
+		return true;
+
+	if (time_after_eq(jiffies,
+		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
+	    throtl_tg_is_idle(tg))
+		return true;
+	return false;
+}
+
+static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
+{
+	while (true) {
+		if (throtl_tg_can_upgrade(tg))
+			return true;
+		tg = sq_to_tg(tg->service_queue.parent_sq);
+		if (!tg || !tg_to_blkg(tg)->parent)
+			return false;
+	}
+	return false;
+}
+
+static bool throtl_can_upgrade(struct throtl_data *td,
+	struct throtl_grp *this_tg)
+{
+	struct cgroup_subsys_state *pos_css;
+	struct blkcg_gq *blkg;
+
+	if (td->limit_index != LIMIT_LOW)
+		return false;
+
+	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
+		return false;
+
+	rcu_read_lock();
+	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
+		struct throtl_grp *tg = blkg_to_tg(blkg);
+
+		if (tg == this_tg)
+			continue;
+		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
+			continue;
+		if (!throtl_hierarchy_can_upgrade(tg)) {
+			rcu_read_unlock();
+			return false;
+		}
+	}
+	rcu_read_unlock();
+	return true;
+}
+
+static void throtl_upgrade_check(struct throtl_grp *tg)
+{
+	unsigned long now = jiffies;
+
+	if (tg->td->limit_index != LIMIT_LOW)
+		return;
+
+	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
+		return;
+
+	tg->last_check_time = now;
+
+	if (!time_after_eq(now,
+	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
+		return;
+
+	if (throtl_can_upgrade(tg->td, NULL))
+		throtl_upgrade_state(tg->td);
+}
+
+static void throtl_upgrade_state(struct throtl_data *td)
+{
+	struct cgroup_subsys_state *pos_css;
+	struct blkcg_gq *blkg;
+
+	throtl_log(&td->service_queue, "upgrade to max");
+	td->limit_index = LIMIT_MAX;
+	td->low_upgrade_time = jiffies;
+	td->scale = 0;
+	rcu_read_lock();
+	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
+		struct throtl_grp *tg = blkg_to_tg(blkg);
+		struct throtl_service_queue *sq = &tg->service_queue;
+
+		tg->disptime = jiffies - 1;
+		throtl_select_dispatch(sq);
+		throtl_schedule_next_dispatch(sq, true);
+	}
+	rcu_read_unlock();
+	throtl_select_dispatch(&td->service_queue);
+	throtl_schedule_next_dispatch(&td->service_queue, true);
+	queue_work(kthrotld_workqueue, &td->dispatch_work);
+}
+
+static void throtl_downgrade_state(struct throtl_data *td, int new)
+{
+	td->scale /= 2;
+
+	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
+	if (td->scale) {
+		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
+		return;
+	}
+
+	td->limit_index = new;
+	td->low_downgrade_time = jiffies;
+}
+
+static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
+{
+	struct throtl_data *td = tg->td;
+	unsigned long now = jiffies;
+
+	/*
+	 * If cgroup is below low limit, consider downgrade and throttle other
+	 * cgroups
+	 */
+	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
+	    time_after_eq(now, tg_last_low_overflow_time(tg) +
+					td->throtl_slice) &&
+	    (!throtl_tg_is_idle(tg) ||
+	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
+		return true;
+	return false;
+}
+
+static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
+{
+	while (true) {
+		if (!throtl_tg_can_downgrade(tg))
+			return false;
+		tg = sq_to_tg(tg->service_queue.parent_sq);
+		if (!tg || !tg_to_blkg(tg)->parent)
+			break;
+	}
+	return true;
+}
+
+static void throtl_downgrade_check(struct throtl_grp *tg)
+{
+	uint64_t bps;
+	unsigned int iops;
+	unsigned long elapsed_time;
+	unsigned long now = jiffies;
+
+	if (tg->td->limit_index != LIMIT_MAX ||
+	    !tg->td->limit_valid[LIMIT_LOW])
+		return;
+	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
+		return;
+	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
+		return;
+
+	elapsed_time = now - tg->last_check_time;
+	tg->last_check_time = now;
+
+	if (time_before(now, tg_last_low_overflow_time(tg) +
+			tg->td->throtl_slice))
+		return;
+
+	if (tg->bps[READ][LIMIT_LOW]) {
+		bps = tg->last_bytes_disp[READ] * HZ;
+		do_div(bps, elapsed_time);
+		if (bps >= tg->bps[READ][LIMIT_LOW])
+			tg->last_low_overflow_time[READ] = now;
+	}
+
+	if (tg->bps[WRITE][LIMIT_LOW]) {
+		bps = tg->last_bytes_disp[WRITE] * HZ;
+		do_div(bps, elapsed_time);
+		if (bps >= tg->bps[WRITE][LIMIT_LOW])
+			tg->last_low_overflow_time[WRITE] = now;
+	}
+
+	if (tg->iops[READ][LIMIT_LOW]) {
+		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
+		if (iops >= tg->iops[READ][LIMIT_LOW])
+			tg->last_low_overflow_time[READ] = now;
+	}
+
+	if (tg->iops[WRITE][LIMIT_LOW]) {
+		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
+		if (iops >= tg->iops[WRITE][LIMIT_LOW])
+			tg->last_low_overflow_time[WRITE] = now;
+	}
+
+	/*
+	 * If cgroup is below low limit, consider downgrade and throttle other
+	 * cgroups
+	 */
+	if (throtl_hierarchy_can_downgrade(tg))
+		throtl_downgrade_state(tg->td, LIMIT_LOW);
+
+	tg->last_bytes_disp[READ] = 0;
+	tg->last_bytes_disp[WRITE] = 0;
+	tg->last_io_disp[READ] = 0;
+	tg->last_io_disp[WRITE] = 0;
+}
+
+static void blk_throtl_update_idletime(struct throtl_grp *tg)
+{
+	unsigned long now = ktime_get_ns() >> 10;
+	unsigned long last_finish_time = tg->last_finish_time;
+
+	if (now <= last_finish_time || last_finish_time == 0 ||
+	    last_finish_time == tg->checked_last_finish_time)
+		return;
+
+	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
+	tg->checked_last_finish_time = last_finish_time;
+}
+
+#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
+static void throtl_update_latency_buckets(struct throtl_data *td)
+{
+	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
+	int i, cpu;
+	unsigned long last_latency = 0;
+	unsigned long latency;
+
+	if (!blk_queue_nonrot(td->queue))
+		return;
+	if (time_before(jiffies, td->last_calculate_time + HZ))
+		return;
+	td->last_calculate_time = jiffies;
+
+	memset(avg_latency, 0, sizeof(avg_latency));
+	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
+		struct latency_bucket *tmp = &td->tmp_buckets[i];
+
+		for_each_possible_cpu(cpu) {
+			struct latency_bucket *bucket;
+
+			/* this isn't race free, but ok in practice */
+			bucket = per_cpu_ptr(td->latency_buckets, cpu);
+			tmp->total_latency += bucket[i].total_latency;
+			tmp->samples += bucket[i].samples;
+			bucket[i].total_latency = 0;
+			bucket[i].samples = 0;
+		}
+
+		if (tmp->samples >= 32) {
+			int samples = tmp->samples;
+
+			latency = tmp->total_latency;
+
+			tmp->total_latency = 0;
+			tmp->samples = 0;
+			latency /= samples;
+			if (latency == 0)
+				continue;
+			avg_latency[i].latency = latency;
+		}
+	}
+
+	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
+		if (!avg_latency[i].latency) {
+			if (td->avg_buckets[i].latency < last_latency)
+				td->avg_buckets[i].latency = last_latency;
+			continue;
+		}
+
+		if (!td->avg_buckets[i].valid)
+			latency = avg_latency[i].latency;
+		else
+			latency = (td->avg_buckets[i].latency * 7 +
+				avg_latency[i].latency) >> 3;
+
+		td->avg_buckets[i].latency = max(latency, last_latency);
+		td->avg_buckets[i].valid = true;
+		last_latency = td->avg_buckets[i].latency;
+	}
+
+	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
+		throtl_log(&td->service_queue,
+			"Latency bucket %d: latency=%ld, valid=%d", i,
+			td->avg_buckets[i].latency, td->avg_buckets[i].valid);
+}
+#else
+static inline void throtl_update_latency_buckets(struct throtl_data *td)
+{
+}
+#endif
+
+static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
+{
+#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
+	if (bio->bi_css)
+		bio->bi_cg_private = tg;
+	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
+#endif
+}
+
+bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
+		    struct bio *bio)
+{
+	struct throtl_qnode *qn = NULL;
+	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
+	struct throtl_service_queue *sq;
+	bool rw = bio_data_dir(bio);
+	bool throttled = false;
+	struct throtl_data *td = tg->td;
+
+	WARN_ON_ONCE(!rcu_read_lock_held());
+
+	/* see throtl_charge_bio() */
+	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
+		goto out;
+
+	spin_lock_irq(q->queue_lock);
+
+	throtl_update_latency_buckets(td);
+
+	if (unlikely(blk_queue_bypass(q)))
+		goto out_unlock;
+
+	blk_throtl_assoc_bio(tg, bio);
+	blk_throtl_update_idletime(tg);
+
+	sq = &tg->service_queue;
+
+again:
+	while (true) {
+		if (tg->last_low_overflow_time[rw] == 0)
+			tg->last_low_overflow_time[rw] = jiffies;
+		throtl_downgrade_check(tg);
+		throtl_upgrade_check(tg);
+		/* throtl is FIFO - if bios are already queued, should queue */
+		if (sq->nr_queued[rw])
+			break;
+
+		/* if above limits, break to queue */
+		if (!tg_may_dispatch(tg, bio, NULL)) {
+			tg->last_low_overflow_time[rw] = jiffies;
+			if (throtl_can_upgrade(td, tg)) {
+				throtl_upgrade_state(td);
+				goto again;
+			}
+			break;
+		}
+
+		/* within limits, let's charge and dispatch directly */
+		throtl_charge_bio(tg, bio);
+
+		/*
+		 * We need to trim slice even when bios are not being queued
+		 * otherwise it might happen that a bio is not queued for
+		 * a long time and slice keeps on extending and trim is not
+		 * called for a long time. Now if limits are reduced suddenly
+		 * we take into account all the IO dispatched so far at new
+		 * low rate and * newly queued IO gets a really long dispatch
+		 * time.
+		 *
+		 * So keep on trimming slice even if bio is not queued.
+		 */
+		throtl_trim_slice(tg, rw);
+
+		/*
+		 * @bio passed through this layer without being throttled.
+		 * Climb up the ladder.  If we''re already at the top, it
+		 * can be executed directly.
+		 */
+		qn = &tg->qnode_on_parent[rw];
+		sq = sq->parent_sq;
+		tg = sq_to_tg(sq);
+		if (!tg)
+			goto out_unlock;
+	}
+
+	/* out-of-limit, queue to @tg */
+	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
+		   rw == READ ? 'R' : 'W',
+		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
+		   tg_bps_limit(tg, rw),
+		   tg->io_disp[rw], tg_iops_limit(tg, rw),
+		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
+
+	tg->last_low_overflow_time[rw] = jiffies;
+
+	td->nr_queued[rw]++;
+	throtl_add_bio_tg(bio, qn, tg);
+	throttled = true;
+
+	/*
+	 * Update @tg's dispatch time and force schedule dispatch if @tg
+	 * was empty before @bio.  The forced scheduling isn't likely to
+	 * cause undue delay as @bio is likely to be dispatched directly if
+	 * its @tg's disptime is not in the future.
+	 */
+	if (tg->flags & THROTL_TG_WAS_EMPTY) {
+		tg_update_disptime(tg);
+		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
+	}
+
+out_unlock:
+	spin_unlock_irq(q->queue_lock);
+out:
+	bio_set_flag(bio, BIO_THROTTLED);
+
+#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
+	if (throttled || !td->track_bio_latency)
+		bio->bi_issue_stat.stat |= SKIP_LATENCY;
+#endif
+	return throttled;
+}
+
+#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
+static void throtl_track_latency(struct throtl_data *td, sector_t size,
+	int op, unsigned long time)
+{
+	struct latency_bucket *latency;
+	int index;
+
+	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
+	    !blk_queue_nonrot(td->queue))
+		return;
+
+	index = request_bucket_index(size);
+
+	latency = get_cpu_ptr(td->latency_buckets);
+	latency[index].total_latency += time;
+	latency[index].samples++;
+	put_cpu_ptr(td->latency_buckets);
+}
+
+void blk_throtl_stat_add(struct request *rq, u64 time_ns)
+{
+	struct request_queue *q = rq->q;
+	struct throtl_data *td = q->td;
+
+	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
+		req_op(rq), time_ns >> 10);
+}
+
+void blk_throtl_bio_endio(struct bio *bio)
+{
+	struct throtl_grp *tg;
+	u64 finish_time_ns;
+	unsigned long finish_time;
+	unsigned long start_time;
+	unsigned long lat;
+
+	tg = bio->bi_cg_private;
+	if (!tg)
+		return;
+	bio->bi_cg_private = NULL;
+
+	finish_time_ns = ktime_get_ns();
+	tg->last_finish_time = finish_time_ns >> 10;
+
+	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
+	finish_time = __blk_stat_time(finish_time_ns) >> 10;
+	if (!start_time || finish_time <= start_time)
+		return;
+
+	lat = finish_time - start_time;
+	/* this is only for bio based driver */
+	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
+		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
+			bio_op(bio), lat);
+
+	if (tg->latency_target && lat >= tg->td->filtered_latency) {
+		int bucket;
+		unsigned int threshold;
+
+		bucket = request_bucket_index(
+			blk_stat_size(&bio->bi_issue_stat));
+		threshold = tg->td->avg_buckets[bucket].latency +
+			tg->latency_target;
+		if (lat > threshold)
+			tg->bad_bio_cnt++;
+		/*
+		 * Not race free, could get wrong count, which means cgroups
+		 * will be throttled
+		 */
+		tg->bio_cnt++;
+	}
+
+	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
+		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
+		tg->bio_cnt /= 2;
+		tg->bad_bio_cnt /= 2;
+	}
+}
+#endif
+
+/*
+ * Dispatch all bios from all children tg's queued on @parent_sq.  On
+ * return, @parent_sq is guaranteed to not have any active children tg's
+ * and all bios from previously active tg's are on @parent_sq->bio_lists[].
+ */
+static void tg_drain_bios(struct throtl_service_queue *parent_sq)
+{
+	struct throtl_grp *tg;
+
+	while ((tg = throtl_rb_first(parent_sq))) {
+		struct throtl_service_queue *sq = &tg->service_queue;
+		struct bio *bio;
+
+		throtl_dequeue_tg(tg);
+
+		while ((bio = throtl_peek_queued(&sq->queued[READ])))
+			tg_dispatch_one_bio(tg, bio_data_dir(bio));
+		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
+			tg_dispatch_one_bio(tg, bio_data_dir(bio));
+	}
+}
+
+/**
+ * blk_throtl_drain - drain throttled bios
+ * @q: request_queue to drain throttled bios for
+ *
+ * Dispatch all currently throttled bios on @q through ->make_request_fn().
+ */
+void blk_throtl_drain(struct request_queue *q)
+	__releases(q->queue_lock) __acquires(q->queue_lock)
+{
+	struct throtl_data *td = q->td;
+	struct blkcg_gq *blkg;
+	struct cgroup_subsys_state *pos_css;
+	struct bio *bio;
+	int rw;
+
+	queue_lockdep_assert_held(q);
+	rcu_read_lock();
+
+	/*
+	 * Drain each tg while doing post-order walk on the blkg tree, so
+	 * that all bios are propagated to td->service_queue.  It'd be
+	 * better to walk service_queue tree directly but blkg walk is
+	 * easier.
+	 */
+	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
+		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
+
+	/* finally, transfer bios from top-level tg's into the td */
+	tg_drain_bios(&td->service_queue);
+
+	rcu_read_unlock();
+	spin_unlock_irq(q->queue_lock);
+
+	/* all bios now should be in td->service_queue, issue them */
+	for (rw = READ; rw <= WRITE; rw++)
+		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
+						NULL)))
+			generic_make_request(bio);
+
+	spin_lock_irq(q->queue_lock);
+}
+
+int blk_throtl_init(struct request_queue *q)
+{
+	struct throtl_data *td;
+	int ret;
+
+	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
+	if (!td)
+		return -ENOMEM;
+	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
+		LATENCY_BUCKET_SIZE, __alignof__(u64));
+	if (!td->latency_buckets) {
+		kfree(td);
+		return -ENOMEM;
+	}
+
+	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
+	throtl_service_queue_init(&td->service_queue);
+
+	q->td = td;
+	td->queue = q;
+
+	td->limit_valid[LIMIT_MAX] = true;
+	td->limit_index = LIMIT_MAX;
+	td->low_upgrade_time = jiffies;
+	td->low_downgrade_time = jiffies;
+
+	/* activate policy */
+	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
+	if (ret) {
+		free_percpu(td->latency_buckets);
+		kfree(td);
+	}
+	return ret;
+}
+
+void blk_throtl_exit(struct request_queue *q)
+{
+	BUG_ON(!q->td);
+	throtl_shutdown_wq(q);
+	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
+	free_percpu(q->td->latency_buckets);
+	kfree(q->td);
+}
+
+void blk_throtl_register_queue(struct request_queue *q)
+{
+	struct throtl_data *td;
+	int i;
+
+	td = q->td;
+	BUG_ON(!td);
+
+	if (blk_queue_nonrot(q)) {
+		td->throtl_slice = DFL_THROTL_SLICE_SSD;
+		td->filtered_latency = LATENCY_FILTERED_SSD;
+	} else {
+		td->throtl_slice = DFL_THROTL_SLICE_HD;
+		td->filtered_latency = LATENCY_FILTERED_HD;
+		for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
+			td->avg_buckets[i].latency = DFL_HD_BASELINE_LATENCY;
+	}
+#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
+	/* if no low limit, use previous default */
+	td->throtl_slice = DFL_THROTL_SLICE_HD;
+#endif
+
+	td->track_bio_latency = !q->mq_ops && !q->request_fn;
+	if (!td->track_bio_latency)
+		blk_stat_enable_accounting(q);
+}
+
+#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
+ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
+{
+	if (!q->td)
+		return -EINVAL;
+	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
+}
+
+ssize_t blk_throtl_sample_time_store(struct request_queue *q,
+	const char *page, size_t count)
+{
+	unsigned long v;
+	unsigned long t;
+
+	if (!q->td)
+		return -EINVAL;
+	if (kstrtoul(page, 10, &v))
+		return -EINVAL;
+	t = msecs_to_jiffies(v);
+	if (t == 0 || t > MAX_THROTL_SLICE)
+		return -EINVAL;
+	q->td->throtl_slice = t;
+	return count;
+}
+#endif
+
+static int __init throtl_init(void)
+{
+	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
+	if (!kthrotld_workqueue)
+		panic("Failed to create kthrotld\n");
+
+	return blkcg_policy_register(&blkcg_policy_throtl);
+}
+
+module_init(throtl_init);