[Feature]add MT2731_MP2_MR2_SVN388 baseline version
Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/base/arch_topology.c b/src/kernel/linux/v4.14/drivers/base/arch_topology.c
new file mode 100644
index 0000000..3b4936c
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/base/arch_topology.c
@@ -0,0 +1,501 @@
+/*
+ * Arch specific cpu topology information
+ *
+ * Copyright (C) 2016, ARM Ltd.
+ * Written by: Juri Lelli, ARM Ltd.
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Released under the GPLv2 only.
+ * SPDX-License-Identifier: GPL-2.0
+ */
+
+#include <linux/acpi.h>
+#include <linux/arch_topology.h>
+#include <linux/cpu.h>
+#include <linux/cpufreq.h>
+#include <linux/device.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/sched/topology.h>
+#include <linux/sched/energy.h>
+#include <linux/cpuset.h>
+
+DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
+DEFINE_PER_CPU(unsigned long, max_cpu_freq);
+DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE;
+
+void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
+ unsigned long max_freq)
+{
+ unsigned long scale;
+ int i;
+
+ scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
+
+ for_each_cpu(i, cpus) {
+ per_cpu(freq_scale, i) = scale;
+ per_cpu(max_cpu_freq, i) = max_freq;
+ }
+}
+
+void arch_set_max_freq_scale(struct cpumask *cpus,
+ unsigned long policy_max_freq)
+{
+ unsigned long scale, max_freq;
+ int cpu = cpumask_first(cpus);
+
+ if (cpu > nr_cpu_ids)
+ return;
+
+ max_freq = per_cpu(max_cpu_freq, cpu);
+ if (!max_freq)
+ return;
+
+ scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq;
+
+ for_each_cpu(cpu, cpus)
+ per_cpu(max_freq_scale, cpu) = scale;
+}
+
+static DEFINE_MUTEX(cpu_scale_mutex);
+DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
+
+void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
+{
+ per_cpu(cpu_scale, cpu) = capacity;
+}
+
+static ssize_t cpu_capacity_show(struct device *dev,
+ struct device_attribute *attr,
+ char *buf)
+{
+ struct cpu *cpu = container_of(dev, struct cpu, dev);
+
+ return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
+}
+
+static void update_topology_flags_workfn(struct work_struct *work);
+static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
+
+static ssize_t cpu_capacity_store(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf,
+ size_t count)
+{
+ struct cpu *cpu = container_of(dev, struct cpu, dev);
+ int this_cpu = cpu->dev.id;
+ int i;
+ unsigned long new_capacity;
+ ssize_t ret;
+ cpumask_var_t mask;
+
+ if (!count)
+ return 0;
+
+ ret = kstrtoul(buf, 0, &new_capacity);
+ if (ret)
+ return ret;
+ if (new_capacity > SCHED_CAPACITY_SCALE)
+ return -EINVAL;
+
+ mutex_lock(&cpu_scale_mutex);
+
+ if (new_capacity < SCHED_CAPACITY_SCALE) {
+ int highest_score_cpu = 0;
+
+ if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
+ mutex_unlock(&cpu_scale_mutex);
+ return -ENOMEM;
+ }
+
+ cpumask_andnot(mask, cpu_online_mask,
+ topology_core_cpumask(this_cpu));
+
+ for_each_cpu(i, mask) {
+ if (topology_get_cpu_scale(NULL, i) ==
+ SCHED_CAPACITY_SCALE) {
+ highest_score_cpu = 1;
+ break;
+ }
+ }
+
+ free_cpumask_var(mask);
+
+ if (!highest_score_cpu) {
+ mutex_unlock(&cpu_scale_mutex);
+ return -EINVAL;
+ }
+ }
+
+ for_each_cpu(i, topology_core_cpumask(this_cpu))
+ topology_set_cpu_scale(i, new_capacity);
+ mutex_unlock(&cpu_scale_mutex);
+
+ if (topology_detect_flags())
+ schedule_work(&update_topology_flags_work);
+
+ return count;
+}
+
+static DEVICE_ATTR_RW(cpu_capacity);
+
+static int register_cpu_capacity_sysctl(void)
+{
+ int i;
+ struct device *cpu;
+
+ for_each_possible_cpu(i) {
+ cpu = get_cpu_device(i);
+ if (!cpu) {
+ pr_err("%s: too early to get CPU%d device!\n",
+ __func__, i);
+ continue;
+ }
+ device_create_file(cpu, &dev_attr_cpu_capacity);
+ }
+
+ return 0;
+}
+subsys_initcall(register_cpu_capacity_sysctl);
+
+enum asym_cpucap_type { no_asym, asym_thread, asym_core, asym_die };
+static enum asym_cpucap_type asym_cpucap = no_asym;
+enum share_cap_type { no_share_cap, share_cap_thread, share_cap_core, share_cap_die};
+static enum share_cap_type share_cap = no_share_cap;
+
+#ifdef CONFIG_CPU_FREQ
+int detect_share_cap_flag(void)
+{
+ int cpu;
+ enum share_cap_type share_cap_level = no_share_cap;
+ struct cpufreq_policy *policy;
+
+ for_each_possible_cpu(cpu) {
+ policy = cpufreq_cpu_get(cpu);
+
+ if (!policy)
+ return 0;
+
+ if (cpumask_equal(topology_sibling_cpumask(cpu),
+ policy->related_cpus)) {
+ share_cap_level = share_cap_thread;
+ continue;
+ }
+
+ if (cpumask_equal(topology_core_cpumask(cpu),
+ policy->related_cpus)) {
+ share_cap_level = share_cap_core;
+ continue;
+ }
+
+ if (cpumask_equal(cpu_cpu_mask(cpu),
+ policy->related_cpus)) {
+ share_cap_level = share_cap_die;
+ continue;
+ }
+ }
+
+ if (share_cap != share_cap_level) {
+ share_cap = share_cap_level;
+ return 1;
+ }
+
+ return 0;
+}
+#else
+int detect_share_cap_flag(void) { return 0; }
+#endif
+
+/*
+ * Walk cpu topology to determine sched_domain flags.
+ *
+ * SD_ASYM_CPUCAPACITY: Indicates the lowest level that spans all cpu
+ * capacities found in the system for all cpus, i.e. the flag is set
+ * at the same level for all systems. The current algorithm implements
+ * this by looking for higher capacities, which doesn't work for all
+ * conceivable topology, but don't complicate things until it is
+ * necessary.
+ */
+int topology_detect_flags(void)
+{
+ unsigned long max_capacity, capacity;
+ enum asym_cpucap_type asym_level = no_asym;
+ int cpu, die_cpu, core, thread, flags_changed = 0;
+
+ for_each_possible_cpu(cpu) {
+ max_capacity = 0;
+
+ if (asym_level >= asym_thread)
+ goto check_core;
+
+ for_each_cpu(thread, topology_sibling_cpumask(cpu)) {
+ capacity = topology_get_cpu_scale(NULL, thread);
+
+ if (capacity > max_capacity) {
+ if (max_capacity != 0)
+ asym_level = asym_thread;
+
+ max_capacity = capacity;
+ }
+ }
+
+check_core:
+ if (asym_level >= asym_core)
+ goto check_die;
+
+ for_each_cpu(core, topology_core_cpumask(cpu)) {
+ capacity = topology_get_cpu_scale(NULL, core);
+
+ if (capacity > max_capacity) {
+ if (max_capacity != 0)
+ asym_level = asym_core;
+
+ max_capacity = capacity;
+ }
+ }
+check_die:
+ for_each_possible_cpu(die_cpu) {
+ capacity = topology_get_cpu_scale(NULL, die_cpu);
+
+ if (capacity > max_capacity) {
+ if (max_capacity != 0) {
+ asym_level = asym_die;
+ goto done;
+ }
+ }
+ }
+ }
+
+done:
+ if (asym_cpucap != asym_level) {
+ asym_cpucap = asym_level;
+ flags_changed = 1;
+ pr_debug("topology flag change detected\n");
+ }
+
+ if (detect_share_cap_flag())
+ flags_changed = 1;
+
+ return flags_changed;
+}
+
+int topology_smt_flags(void)
+{
+ int flags = 0;
+
+ if (asym_cpucap == asym_thread)
+ flags |= SD_ASYM_CPUCAPACITY;
+
+ if (share_cap == share_cap_thread)
+ flags |= SD_SHARE_CAP_STATES;
+
+ return flags;
+}
+
+int topology_core_flags(void)
+{
+ int flags = 0;
+
+ if (asym_cpucap == asym_core)
+ flags |= SD_ASYM_CPUCAPACITY;
+
+ if (share_cap == share_cap_core)
+ flags |= SD_SHARE_CAP_STATES;
+
+ return flags;
+}
+
+int topology_cpu_flags(void)
+{
+ int flags = 0;
+
+ if (asym_cpucap == asym_die)
+ flags |= SD_ASYM_CPUCAPACITY;
+
+ if (share_cap == share_cap_die)
+ flags |= SD_SHARE_CAP_STATES;
+
+ return flags;
+}
+
+static int update_topology = 0;
+
+int topology_update_cpu_topology(void)
+{
+ return update_topology;
+}
+
+/*
+ * Updating the sched_domains can't be done directly from cpufreq callbacks
+ * due to locking, so queue the work for later.
+ */
+static void update_topology_flags_workfn(struct work_struct *work)
+{
+ update_topology = 1;
+ rebuild_sched_domains();
+ pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
+ update_topology = 0;
+}
+
+static u32 capacity_scale;
+static u32 *raw_capacity;
+
+static int free_raw_capacity(void)
+{
+ kfree(raw_capacity);
+ raw_capacity = NULL;
+
+ return 0;
+}
+
+void topology_normalize_cpu_scale(void)
+{
+ u64 capacity;
+ int cpu;
+
+ if (!raw_capacity)
+ return;
+
+ pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
+ mutex_lock(&cpu_scale_mutex);
+ for_each_possible_cpu(cpu) {
+ capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
+ / capacity_scale;
+ topology_set_cpu_scale(cpu, capacity);
+ pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu raw_capacity=%u\n",
+ cpu, topology_get_cpu_scale(NULL, cpu),
+ raw_capacity[cpu]);
+ }
+ mutex_unlock(&cpu_scale_mutex);
+}
+
+bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
+{
+ static bool cap_parsing_failed;
+ int ret;
+ u32 cpu_capacity;
+
+ if (cap_parsing_failed)
+ return false;
+
+ ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
+ &cpu_capacity);
+ if (!ret) {
+ if (!raw_capacity) {
+ raw_capacity = kcalloc(num_possible_cpus(),
+ sizeof(*raw_capacity),
+ GFP_KERNEL);
+ if (!raw_capacity) {
+ pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
+ cap_parsing_failed = true;
+ return false;
+ }
+ }
+ capacity_scale = max(cpu_capacity, capacity_scale);
+ raw_capacity[cpu] = cpu_capacity;
+ pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
+ cpu_node, raw_capacity[cpu]);
+ } else {
+ if (raw_capacity) {
+ pr_err("cpu_capacity: missing %pOF raw capacity\n",
+ cpu_node);
+ pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
+ }
+ cap_parsing_failed = true;
+ free_raw_capacity();
+ }
+
+ return !ret;
+}
+
+#ifdef CONFIG_CPU_FREQ
+static cpumask_var_t cpus_to_visit;
+static void parsing_done_workfn(struct work_struct *work);
+static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
+
+static int
+init_cpu_capacity_callback(struct notifier_block *nb,
+ unsigned long val,
+ void *data)
+{
+ struct cpufreq_policy *policy = data;
+ int cpu;
+
+ if (!raw_capacity)
+ return 0;
+
+ if (val != CPUFREQ_NOTIFY)
+ return 0;
+
+ pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
+ cpumask_pr_args(policy->related_cpus),
+ cpumask_pr_args(cpus_to_visit));
+
+ cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
+
+ for_each_cpu(cpu, policy->related_cpus) {
+ raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
+ policy->cpuinfo.max_freq / 1000UL;
+ capacity_scale = max(raw_capacity[cpu], capacity_scale);
+ }
+
+ if (cpumask_empty(cpus_to_visit)) {
+ topology_normalize_cpu_scale();
+ init_sched_energy_costs();
+ if (topology_detect_flags())
+ schedule_work(&update_topology_flags_work);
+ free_raw_capacity();
+ pr_debug("cpu_capacity: parsing done\n");
+ schedule_work(&parsing_done_work);
+ }
+
+ return 0;
+}
+
+static struct notifier_block init_cpu_capacity_notifier = {
+ .notifier_call = init_cpu_capacity_callback,
+};
+
+static int __init register_cpufreq_notifier(void)
+{
+ int ret;
+
+ /*
+ * on ACPI-based systems we need to use the default cpu capacity
+ * until we have the necessary code to parse the cpu capacity, so
+ * skip registering cpufreq notifier.
+ */
+ if (!acpi_disabled || !raw_capacity)
+ return -EINVAL;
+
+ if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
+ pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
+ return -ENOMEM;
+ }
+
+ cpumask_copy(cpus_to_visit, cpu_possible_mask);
+
+ ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
+ CPUFREQ_POLICY_NOTIFIER);
+
+ if (ret)
+ free_cpumask_var(cpus_to_visit);
+
+ return ret;
+}
+core_initcall(register_cpufreq_notifier);
+
+static void parsing_done_workfn(struct work_struct *work)
+{
+ cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
+ CPUFREQ_POLICY_NOTIFIER);
+ free_cpumask_var(cpus_to_visit);
+}
+
+#else
+core_initcall(free_raw_capacity);
+#endif