[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/crypto/caam/qi.c b/src/kernel/linux/v4.14/drivers/crypto/caam/qi.c
new file mode 100644
index 0000000..f9a44f4
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/crypto/caam/qi.c
@@ -0,0 +1,800 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * CAAM/SEC 4.x QI transport/backend driver
+ * Queue Interface backend functionality
+ *
+ * Copyright 2013-2016 Freescale Semiconductor, Inc.
+ * Copyright 2016-2017 NXP
+ */
+
+#include <linux/cpumask.h>
+#include <linux/kthread.h>
+#include <soc/fsl/qman.h>
+
+#include "regs.h"
+#include "qi.h"
+#include "desc.h"
+#include "intern.h"
+#include "desc_constr.h"
+
+#define PREHDR_RSLS_SHIFT	31
+
+/*
+ * Use a reasonable backlog of frames (per CPU) as congestion threshold,
+ * so that resources used by the in-flight buffers do not become a memory hog.
+ */
+#define MAX_RSP_FQ_BACKLOG_PER_CPU	256
+
+#define CAAM_QI_ENQUEUE_RETRIES	10000
+
+#define CAAM_NAPI_WEIGHT	63
+
+/*
+ * caam_napi - struct holding CAAM NAPI-related params
+ * @irqtask: IRQ task for QI backend
+ * @p: QMan portal
+ */
+struct caam_napi {
+	struct napi_struct irqtask;
+	struct qman_portal *p;
+};
+
+/*
+ * caam_qi_pcpu_priv - percpu private data structure to main list of pending
+ *                     responses expected on each cpu.
+ * @caam_napi: CAAM NAPI params
+ * @net_dev: netdev used by NAPI
+ * @rsp_fq: response FQ from CAAM
+ */
+struct caam_qi_pcpu_priv {
+	struct caam_napi caam_napi;
+	struct net_device net_dev;
+	struct qman_fq *rsp_fq;
+} ____cacheline_aligned;
+
+static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
+static DEFINE_PER_CPU(int, last_cpu);
+
+/*
+ * caam_qi_priv - CAAM QI backend private params
+ * @cgr: QMan congestion group
+ * @qi_pdev: platform device for QI backend
+ */
+struct caam_qi_priv {
+	struct qman_cgr cgr;
+	struct platform_device *qi_pdev;
+};
+
+static struct caam_qi_priv qipriv ____cacheline_aligned;
+
+/*
+ * This is written by only one core - the one that initialized the CGR - and
+ * read by multiple cores (all the others).
+ */
+bool caam_congested __read_mostly;
+EXPORT_SYMBOL(caam_congested);
+
+#ifdef CONFIG_DEBUG_FS
+/*
+ * This is a counter for the number of times the congestion group (where all
+ * the request and response queueus are) reached congestion. Incremented
+ * each time the congestion callback is called with congested == true.
+ */
+static u64 times_congested;
+#endif
+
+/*
+ * CPU from where the module initialised. This is required because QMan driver
+ * requires CGRs to be removed from same CPU from where they were originally
+ * allocated.
+ */
+static int mod_init_cpu;
+
+/*
+ * This is a a cache of buffers, from which the users of CAAM QI driver
+ * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
+ * doing malloc on the hotpath.
+ * NOTE: A more elegant solution would be to have some headroom in the frames
+ *       being processed. This could be added by the dpaa-ethernet driver.
+ *       This would pose a problem for userspace application processing which
+ *       cannot know of this limitation. So for now, this will work.
+ * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
+ */
+static struct kmem_cache *qi_cache;
+
+int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
+{
+	struct qm_fd fd;
+	dma_addr_t addr;
+	int ret;
+	int num_retries = 0;
+
+	qm_fd_clear_fd(&fd);
+	qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
+
+	addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
+			      DMA_BIDIRECTIONAL);
+	if (dma_mapping_error(qidev, addr)) {
+		dev_err(qidev, "DMA mapping error for QI enqueue request\n");
+		return -EIO;
+	}
+	qm_fd_addr_set64(&fd, addr);
+
+	do {
+		ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
+		if (likely(!ret))
+			return 0;
+
+		if (ret != -EBUSY)
+			break;
+		num_retries++;
+	} while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
+
+	dev_err(qidev, "qman_enqueue failed: %d\n", ret);
+
+	return ret;
+}
+EXPORT_SYMBOL(caam_qi_enqueue);
+
+static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
+			   const union qm_mr_entry *msg)
+{
+	const struct qm_fd *fd;
+	struct caam_drv_req *drv_req;
+	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
+
+	fd = &msg->ern.fd;
+
+	if (qm_fd_get_format(fd) != qm_fd_compound) {
+		dev_err(qidev, "Non-compound FD from CAAM\n");
+		return;
+	}
+
+	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
+	if (!drv_req) {
+		dev_err(qidev,
+			"Can't find original request for CAAM response\n");
+		return;
+	}
+
+	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
+			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
+
+	drv_req->cbk(drv_req, -EIO);
+}
+
+static struct qman_fq *create_caam_req_fq(struct device *qidev,
+					  struct qman_fq *rsp_fq,
+					  dma_addr_t hwdesc,
+					  int fq_sched_flag)
+{
+	int ret;
+	struct qman_fq *req_fq;
+	struct qm_mcc_initfq opts;
+
+	req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
+	if (!req_fq)
+		return ERR_PTR(-ENOMEM);
+
+	req_fq->cb.ern = caam_fq_ern_cb;
+	req_fq->cb.fqs = NULL;
+
+	ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
+				QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
+	if (ret) {
+		dev_err(qidev, "Failed to create session req FQ\n");
+		goto create_req_fq_fail;
+	}
+
+	memset(&opts, 0, sizeof(opts));
+	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
+				   QM_INITFQ_WE_CONTEXTB |
+				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
+	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
+	qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
+	opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
+	qm_fqd_context_a_set64(&opts.fqd, hwdesc);
+	opts.fqd.cgid = qipriv.cgr.cgrid;
+
+	ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
+	if (ret) {
+		dev_err(qidev, "Failed to init session req FQ\n");
+		goto init_req_fq_fail;
+	}
+
+	dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
+		smp_processor_id());
+	return req_fq;
+
+init_req_fq_fail:
+	qman_destroy_fq(req_fq);
+create_req_fq_fail:
+	kfree(req_fq);
+	return ERR_PTR(ret);
+}
+
+static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
+{
+	int ret;
+
+	ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
+				    QMAN_VOLATILE_FLAG_FINISH,
+				    QM_VDQCR_PRECEDENCE_VDQCR |
+				    QM_VDQCR_NUMFRAMES_TILLEMPTY);
+	if (ret) {
+		dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
+		return ret;
+	}
+
+	do {
+		struct qman_portal *p;
+
+		p = qman_get_affine_portal(smp_processor_id());
+		qman_p_poll_dqrr(p, 16);
+	} while (fq->flags & QMAN_FQ_STATE_NE);
+
+	return 0;
+}
+
+static int kill_fq(struct device *qidev, struct qman_fq *fq)
+{
+	u32 flags;
+	int ret;
+
+	ret = qman_retire_fq(fq, &flags);
+	if (ret < 0) {
+		dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
+		return ret;
+	}
+
+	if (!ret)
+		goto empty_fq;
+
+	/* Async FQ retirement condition */
+	if (ret == 1) {
+		/* Retry till FQ gets in retired state */
+		do {
+			msleep(20);
+		} while (fq->state != qman_fq_state_retired);
+
+		WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
+		WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
+	}
+
+empty_fq:
+	if (fq->flags & QMAN_FQ_STATE_NE) {
+		ret = empty_retired_fq(qidev, fq);
+		if (ret) {
+			dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
+				fq->fqid);
+			return ret;
+		}
+	}
+
+	ret = qman_oos_fq(fq);
+	if (ret)
+		dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
+
+	qman_destroy_fq(fq);
+	kfree(fq);
+
+	return ret;
+}
+
+static int empty_caam_fq(struct qman_fq *fq)
+{
+	int ret;
+	struct qm_mcr_queryfq_np np;
+
+	/* Wait till the older CAAM FQ get empty */
+	do {
+		ret = qman_query_fq_np(fq, &np);
+		if (ret)
+			return ret;
+
+		if (!qm_mcr_np_get(&np, frm_cnt))
+			break;
+
+		msleep(20);
+	} while (1);
+
+	/*
+	 * Give extra time for pending jobs from this FQ in holding tanks
+	 * to get processed
+	 */
+	msleep(20);
+	return 0;
+}
+
+int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
+{
+	int ret;
+	u32 num_words;
+	struct qman_fq *new_fq, *old_fq;
+	struct device *qidev = drv_ctx->qidev;
+
+	num_words = desc_len(sh_desc);
+	if (num_words > MAX_SDLEN) {
+		dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
+		return -EINVAL;
+	}
+
+	/* Note down older req FQ */
+	old_fq = drv_ctx->req_fq;
+
+	/* Create a new req FQ in parked state */
+	new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
+				    drv_ctx->context_a, 0);
+	if (unlikely(IS_ERR_OR_NULL(new_fq))) {
+		dev_err(qidev, "FQ allocation for shdesc update failed\n");
+		return PTR_ERR(new_fq);
+	}
+
+	/* Hook up new FQ to context so that new requests keep queuing */
+	drv_ctx->req_fq = new_fq;
+
+	/* Empty and remove the older FQ */
+	ret = empty_caam_fq(old_fq);
+	if (ret) {
+		dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
+
+		/* We can revert to older FQ */
+		drv_ctx->req_fq = old_fq;
+
+		if (kill_fq(qidev, new_fq))
+			dev_warn(qidev, "New CAAM FQ kill failed\n");
+
+		return ret;
+	}
+
+	/*
+	 * Re-initialise pre-header. Set RSLS and SDLEN.
+	 * Update the shared descriptor for driver context.
+	 */
+	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
+					   num_words);
+	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
+	dma_sync_single_for_device(qidev, drv_ctx->context_a,
+				   sizeof(drv_ctx->sh_desc) +
+				   sizeof(drv_ctx->prehdr),
+				   DMA_BIDIRECTIONAL);
+
+	/* Put the new FQ in scheduled state */
+	ret = qman_schedule_fq(new_fq);
+	if (ret) {
+		dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
+
+		/*
+		 * We can kill new FQ and revert to old FQ.
+		 * Since the desc is already modified, it is success case
+		 */
+
+		drv_ctx->req_fq = old_fq;
+
+		if (kill_fq(qidev, new_fq))
+			dev_warn(qidev, "New CAAM FQ kill failed\n");
+	} else if (kill_fq(qidev, old_fq)) {
+		dev_warn(qidev, "Old CAAM FQ kill failed\n");
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(caam_drv_ctx_update);
+
+struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
+				       int *cpu,
+				       u32 *sh_desc)
+{
+	size_t size;
+	u32 num_words;
+	dma_addr_t hwdesc;
+	struct caam_drv_ctx *drv_ctx;
+	const cpumask_t *cpus = qman_affine_cpus();
+
+	num_words = desc_len(sh_desc);
+	if (num_words > MAX_SDLEN) {
+		dev_err(qidev, "Invalid descriptor len: %d words\n",
+			num_words);
+		return ERR_PTR(-EINVAL);
+	}
+
+	drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
+	if (!drv_ctx)
+		return ERR_PTR(-ENOMEM);
+
+	/*
+	 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
+	 * and dma-map them.
+	 */
+	drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
+					   num_words);
+	memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
+	size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
+	hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
+				DMA_BIDIRECTIONAL);
+	if (dma_mapping_error(qidev, hwdesc)) {
+		dev_err(qidev, "DMA map error for preheader + shdesc\n");
+		kfree(drv_ctx);
+		return ERR_PTR(-ENOMEM);
+	}
+	drv_ctx->context_a = hwdesc;
+
+	/* If given CPU does not own the portal, choose another one that does */
+	if (!cpumask_test_cpu(*cpu, cpus)) {
+		int *pcpu = &get_cpu_var(last_cpu);
+
+		*pcpu = cpumask_next(*pcpu, cpus);
+		if (*pcpu >= nr_cpu_ids)
+			*pcpu = cpumask_first(cpus);
+		*cpu = *pcpu;
+
+		put_cpu_var(last_cpu);
+	}
+	drv_ctx->cpu = *cpu;
+
+	/* Find response FQ hooked with this CPU */
+	drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
+
+	/* Attach request FQ */
+	drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
+					     QMAN_INITFQ_FLAG_SCHED);
+	if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) {
+		dev_err(qidev, "create_caam_req_fq failed\n");
+		dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
+		kfree(drv_ctx);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	drv_ctx->qidev = qidev;
+	return drv_ctx;
+}
+EXPORT_SYMBOL(caam_drv_ctx_init);
+
+void *qi_cache_alloc(gfp_t flags)
+{
+	return kmem_cache_alloc(qi_cache, flags);
+}
+EXPORT_SYMBOL(qi_cache_alloc);
+
+void qi_cache_free(void *obj)
+{
+	kmem_cache_free(qi_cache, obj);
+}
+EXPORT_SYMBOL(qi_cache_free);
+
+static int caam_qi_poll(struct napi_struct *napi, int budget)
+{
+	struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
+
+	int cleaned = qman_p_poll_dqrr(np->p, budget);
+
+	if (cleaned < budget) {
+		napi_complete(napi);
+		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
+	}
+
+	return cleaned;
+}
+
+void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
+{
+	if (IS_ERR_OR_NULL(drv_ctx))
+		return;
+
+	/* Remove request FQ */
+	if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
+		dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
+
+	dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
+			 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
+			 DMA_BIDIRECTIONAL);
+	kfree(drv_ctx);
+}
+EXPORT_SYMBOL(caam_drv_ctx_rel);
+
+int caam_qi_shutdown(struct device *qidev)
+{
+	int i, ret;
+	struct caam_qi_priv *priv = dev_get_drvdata(qidev);
+	const cpumask_t *cpus = qman_affine_cpus();
+	struct cpumask old_cpumask = current->cpus_allowed;
+
+	for_each_cpu(i, cpus) {
+		struct napi_struct *irqtask;
+
+		irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
+		napi_disable(irqtask);
+		netif_napi_del(irqtask);
+
+		if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
+			dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
+	}
+
+	/*
+	 * QMan driver requires CGRs to be deleted from same CPU from where they
+	 * were instantiated. Hence we get the module removal execute from the
+	 * same CPU from where it was originally inserted.
+	 */
+	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
+
+	ret = qman_delete_cgr(&priv->cgr);
+	if (ret)
+		dev_err(qidev, "Deletion of CGR failed: %d\n", ret);
+	else
+		qman_release_cgrid(priv->cgr.cgrid);
+
+	kmem_cache_destroy(qi_cache);
+
+	/* Now that we're done with the CGRs, restore the cpus allowed mask */
+	set_cpus_allowed_ptr(current, &old_cpumask);
+
+	platform_device_unregister(priv->qi_pdev);
+	return ret;
+}
+
+static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
+{
+	caam_congested = congested;
+
+	if (congested) {
+#ifdef CONFIG_DEBUG_FS
+		times_congested++;
+#endif
+		pr_debug_ratelimited("CAAM entered congestion\n");
+
+	} else {
+		pr_debug_ratelimited("CAAM exited congestion\n");
+	}
+}
+
+static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
+{
+	/*
+	 * In case of threaded ISR, for RT kernels in_irq() does not return
+	 * appropriate value, so use in_serving_softirq to distinguish between
+	 * softirq and irq contexts.
+	 */
+	if (unlikely(in_irq() || !in_serving_softirq())) {
+		/* Disable QMan IRQ source and invoke NAPI */
+		qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
+		np->p = p;
+		napi_schedule(&np->irqtask);
+		return 1;
+	}
+	return 0;
+}
+
+static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
+						    struct qman_fq *rsp_fq,
+						    const struct qm_dqrr_entry *dqrr)
+{
+	struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
+	struct caam_drv_req *drv_req;
+	const struct qm_fd *fd;
+	struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
+	u32 status;
+
+	if (caam_qi_napi_schedule(p, caam_napi))
+		return qman_cb_dqrr_stop;
+
+	fd = &dqrr->fd;
+	status = be32_to_cpu(fd->status);
+	if (unlikely(status))
+		dev_err(qidev, "Error: %#x in CAAM response FD\n", status);
+
+	if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
+		dev_err(qidev, "Non-compound FD from CAAM\n");
+		return qman_cb_dqrr_consume;
+	}
+
+	drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
+	if (unlikely(!drv_req)) {
+		dev_err(qidev,
+			"Can't find original request for caam response\n");
+		return qman_cb_dqrr_consume;
+	}
+
+	dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
+			 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
+
+	drv_req->cbk(drv_req, status);
+	return qman_cb_dqrr_consume;
+}
+
+static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
+{
+	struct qm_mcc_initfq opts;
+	struct qman_fq *fq;
+	int ret;
+
+	fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
+	if (!fq)
+		return -ENOMEM;
+
+	fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
+
+	ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
+			     QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
+	if (ret) {
+		dev_err(qidev, "Rsp FQ create failed\n");
+		kfree(fq);
+		return -ENODEV;
+	}
+
+	memset(&opts, 0, sizeof(opts));
+	opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
+				   QM_INITFQ_WE_CONTEXTB |
+				   QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
+	opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
+				       QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
+	qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
+	opts.fqd.cgid = qipriv.cgr.cgrid;
+	opts.fqd.context_a.stashing.exclusive =	QM_STASHING_EXCL_CTX |
+						QM_STASHING_EXCL_DATA;
+	qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
+
+	ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
+	if (ret) {
+		dev_err(qidev, "Rsp FQ init failed\n");
+		kfree(fq);
+		return -ENODEV;
+	}
+
+	per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
+
+	dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
+	return 0;
+}
+
+static int init_cgr(struct device *qidev)
+{
+	int ret;
+	struct qm_mcc_initcgr opts;
+	const u64 cpus = *(u64 *)qman_affine_cpus();
+	const int num_cpus = hweight64(cpus);
+	const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU;
+
+	ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
+	if (ret) {
+		dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
+		return ret;
+	}
+
+	qipriv.cgr.cb = cgr_cb;
+	memset(&opts, 0, sizeof(opts));
+	opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
+				   QM_CGR_WE_MODE);
+	opts.cgr.cscn_en = QM_CGR_EN;
+	opts.cgr.mode = QMAN_CGR_MODE_FRAME;
+	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
+
+	ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
+	if (ret) {
+		dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
+			qipriv.cgr.cgrid);
+		return ret;
+	}
+
+	dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
+	return 0;
+}
+
+static int alloc_rsp_fqs(struct device *qidev)
+{
+	int ret, i;
+	const cpumask_t *cpus = qman_affine_cpus();
+
+	/*Now create response FQs*/
+	for_each_cpu(i, cpus) {
+		ret = alloc_rsp_fq_cpu(qidev, i);
+		if (ret) {
+			dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static void free_rsp_fqs(void)
+{
+	int i;
+	const cpumask_t *cpus = qman_affine_cpus();
+
+	for_each_cpu(i, cpus)
+		kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
+}
+
+int caam_qi_init(struct platform_device *caam_pdev)
+{
+	int err, i;
+	struct platform_device *qi_pdev;
+	struct device *ctrldev = &caam_pdev->dev, *qidev;
+	struct caam_drv_private *ctrlpriv;
+	const cpumask_t *cpus = qman_affine_cpus();
+	struct cpumask old_cpumask = current->cpus_allowed;
+	static struct platform_device_info qi_pdev_info = {
+		.name = "caam_qi",
+		.id = PLATFORM_DEVID_NONE
+	};
+
+	/*
+	 * QMAN requires CGRs to be removed from same CPU+portal from where it
+	 * was originally allocated. Hence we need to note down the
+	 * initialisation CPU and use the same CPU for module exit.
+	 * We select the first CPU to from the list of portal owning CPUs.
+	 * Then we pin module init to this CPU.
+	 */
+	mod_init_cpu = cpumask_first(cpus);
+	set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
+
+	qi_pdev_info.parent = ctrldev;
+	qi_pdev_info.dma_mask = dma_get_mask(ctrldev);
+	qi_pdev = platform_device_register_full(&qi_pdev_info);
+	if (IS_ERR(qi_pdev))
+		return PTR_ERR(qi_pdev);
+	set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev));
+
+	ctrlpriv = dev_get_drvdata(ctrldev);
+	qidev = &qi_pdev->dev;
+
+	qipriv.qi_pdev = qi_pdev;
+	dev_set_drvdata(qidev, &qipriv);
+
+	/* Initialize the congestion detection */
+	err = init_cgr(qidev);
+	if (err) {
+		dev_err(qidev, "CGR initialization failed: %d\n", err);
+		platform_device_unregister(qi_pdev);
+		return err;
+	}
+
+	/* Initialise response FQs */
+	err = alloc_rsp_fqs(qidev);
+	if (err) {
+		dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
+		free_rsp_fqs();
+		platform_device_unregister(qi_pdev);
+		return err;
+	}
+
+	/*
+	 * Enable the NAPI contexts on each of the core which has an affine
+	 * portal.
+	 */
+	for_each_cpu(i, cpus) {
+		struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
+		struct caam_napi *caam_napi = &priv->caam_napi;
+		struct napi_struct *irqtask = &caam_napi->irqtask;
+		struct net_device *net_dev = &priv->net_dev;
+
+		net_dev->dev = *qidev;
+		INIT_LIST_HEAD(&net_dev->napi_list);
+
+		netif_napi_add(net_dev, irqtask, caam_qi_poll,
+			       CAAM_NAPI_WEIGHT);
+
+		napi_enable(irqtask);
+	}
+
+	/* Hook up QI device to parent controlling caam device */
+	ctrlpriv->qidev = qidev;
+
+	qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
+				     SLAB_CACHE_DMA, NULL);
+	if (!qi_cache) {
+		dev_err(qidev, "Can't allocate CAAM cache\n");
+		free_rsp_fqs();
+		platform_device_unregister(qi_pdev);
+		return -ENOMEM;
+	}
+
+	/* Done with the CGRs; restore the cpus allowed mask */
+	set_cpus_allowed_ptr(current, &old_cpumask);
+#ifdef CONFIG_DEBUG_FS
+	debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
+			    &times_congested, &caam_fops_u64_ro);
+#endif
+	dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
+	return 0;
+}