[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/dma/ste_dma40.c b/src/kernel/linux/v4.14/drivers/dma/ste_dma40.c
new file mode 100644
index 0000000..90feb6a
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/dma/ste_dma40.c
@@ -0,0 +1,3702 @@
+/*
+ * Copyright (C) Ericsson AB 2007-2008
+ * Copyright (C) ST-Ericsson SA 2008-2010
+ * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
+ * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
+ * License terms: GNU General Public License (GPL) version 2
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <linux/dmaengine.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/log2.h>
+#include <linux/pm.h>
+#include <linux/pm_runtime.h>
+#include <linux/err.h>
+#include <linux/of.h>
+#include <linux/of_dma.h>
+#include <linux/amba/bus.h>
+#include <linux/regulator/consumer.h>
+#include <linux/platform_data/dma-ste-dma40.h>
+
+#include "dmaengine.h"
+#include "ste_dma40_ll.h"
+
+#define D40_NAME "dma40"
+
+#define D40_PHY_CHAN -1
+
+/* For masking out/in 2 bit channel positions */
+#define D40_CHAN_POS(chan)  (2 * (chan / 2))
+#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
+
+/* Maximum iterations taken before giving up suspending a channel */
+#define D40_SUSPEND_MAX_IT 500
+
+/* Milliseconds */
+#define DMA40_AUTOSUSPEND_DELAY	100
+
+/* Hardware requirement on LCLA alignment */
+#define LCLA_ALIGNMENT 0x40000
+
+/* Max number of links per event group */
+#define D40_LCLA_LINK_PER_EVENT_GRP 128
+#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
+
+/* Max number of logical channels per physical channel */
+#define D40_MAX_LOG_CHAN_PER_PHY 32
+
+/* Attempts before giving up to trying to get pages that are aligned */
+#define MAX_LCLA_ALLOC_ATTEMPTS 256
+
+/* Bit markings for allocation map */
+#define D40_ALLOC_FREE		BIT(31)
+#define D40_ALLOC_PHY		BIT(30)
+#define D40_ALLOC_LOG_FREE	0
+
+#define D40_MEMCPY_MAX_CHANS	8
+
+/* Reserved event lines for memcpy only. */
+#define DB8500_DMA_MEMCPY_EV_0	51
+#define DB8500_DMA_MEMCPY_EV_1	56
+#define DB8500_DMA_MEMCPY_EV_2	57
+#define DB8500_DMA_MEMCPY_EV_3	58
+#define DB8500_DMA_MEMCPY_EV_4	59
+#define DB8500_DMA_MEMCPY_EV_5	60
+
+static int dma40_memcpy_channels[] = {
+	DB8500_DMA_MEMCPY_EV_0,
+	DB8500_DMA_MEMCPY_EV_1,
+	DB8500_DMA_MEMCPY_EV_2,
+	DB8500_DMA_MEMCPY_EV_3,
+	DB8500_DMA_MEMCPY_EV_4,
+	DB8500_DMA_MEMCPY_EV_5,
+};
+
+/* Default configuration for physcial memcpy */
+static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
+	.mode = STEDMA40_MODE_PHYSICAL,
+	.dir = DMA_MEM_TO_MEM,
+
+	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+	.src_info.psize = STEDMA40_PSIZE_PHY_1,
+	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+
+	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
+	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+};
+
+/* Default configuration for logical memcpy */
+static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
+	.mode = STEDMA40_MODE_LOGICAL,
+	.dir = DMA_MEM_TO_MEM,
+
+	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+	.src_info.psize = STEDMA40_PSIZE_LOG_1,
+	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+
+	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
+	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
+	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
+};
+
+/**
+ * enum 40_command - The different commands and/or statuses.
+ *
+ * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
+ * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
+ * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
+ * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
+ */
+enum d40_command {
+	D40_DMA_STOP		= 0,
+	D40_DMA_RUN		= 1,
+	D40_DMA_SUSPEND_REQ	= 2,
+	D40_DMA_SUSPENDED	= 3
+};
+
+/*
+ * enum d40_events - The different Event Enables for the event lines.
+ *
+ * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
+ * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
+ * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
+ * @D40_ROUND_EVENTLINE: Status check for event line.
+ */
+
+enum d40_events {
+	D40_DEACTIVATE_EVENTLINE	= 0,
+	D40_ACTIVATE_EVENTLINE		= 1,
+	D40_SUSPEND_REQ_EVENTLINE	= 2,
+	D40_ROUND_EVENTLINE		= 3
+};
+
+/*
+ * These are the registers that has to be saved and later restored
+ * when the DMA hw is powered off.
+ * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
+ */
+static __maybe_unused u32 d40_backup_regs[] = {
+	D40_DREG_LCPA,
+	D40_DREG_LCLA,
+	D40_DREG_PRMSE,
+	D40_DREG_PRMSO,
+	D40_DREG_PRMOE,
+	D40_DREG_PRMOO,
+};
+
+#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
+
+/*
+ * since 9540 and 8540 has the same HW revision
+ * use v4a for 9540 or ealier
+ * use v4b for 8540 or later
+ * HW revision:
+ * DB8500ed has revision 0
+ * DB8500v1 has revision 2
+ * DB8500v2 has revision 3
+ * AP9540v1 has revision 4
+ * DB8540v1 has revision 4
+ * TODO: Check if all these registers have to be saved/restored on dma40 v4a
+ */
+static u32 d40_backup_regs_v4a[] = {
+	D40_DREG_PSEG1,
+	D40_DREG_PSEG2,
+	D40_DREG_PSEG3,
+	D40_DREG_PSEG4,
+	D40_DREG_PCEG1,
+	D40_DREG_PCEG2,
+	D40_DREG_PCEG3,
+	D40_DREG_PCEG4,
+	D40_DREG_RSEG1,
+	D40_DREG_RSEG2,
+	D40_DREG_RSEG3,
+	D40_DREG_RSEG4,
+	D40_DREG_RCEG1,
+	D40_DREG_RCEG2,
+	D40_DREG_RCEG3,
+	D40_DREG_RCEG4,
+};
+
+#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
+
+static u32 d40_backup_regs_v4b[] = {
+	D40_DREG_CPSEG1,
+	D40_DREG_CPSEG2,
+	D40_DREG_CPSEG3,
+	D40_DREG_CPSEG4,
+	D40_DREG_CPSEG5,
+	D40_DREG_CPCEG1,
+	D40_DREG_CPCEG2,
+	D40_DREG_CPCEG3,
+	D40_DREG_CPCEG4,
+	D40_DREG_CPCEG5,
+	D40_DREG_CRSEG1,
+	D40_DREG_CRSEG2,
+	D40_DREG_CRSEG3,
+	D40_DREG_CRSEG4,
+	D40_DREG_CRSEG5,
+	D40_DREG_CRCEG1,
+	D40_DREG_CRCEG2,
+	D40_DREG_CRCEG3,
+	D40_DREG_CRCEG4,
+	D40_DREG_CRCEG5,
+};
+
+#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
+
+static __maybe_unused u32 d40_backup_regs_chan[] = {
+	D40_CHAN_REG_SSCFG,
+	D40_CHAN_REG_SSELT,
+	D40_CHAN_REG_SSPTR,
+	D40_CHAN_REG_SSLNK,
+	D40_CHAN_REG_SDCFG,
+	D40_CHAN_REG_SDELT,
+	D40_CHAN_REG_SDPTR,
+	D40_CHAN_REG_SDLNK,
+};
+
+#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
+			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
+
+/**
+ * struct d40_interrupt_lookup - lookup table for interrupt handler
+ *
+ * @src: Interrupt mask register.
+ * @clr: Interrupt clear register.
+ * @is_error: true if this is an error interrupt.
+ * @offset: start delta in the lookup_log_chans in d40_base. If equals to
+ * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
+ */
+struct d40_interrupt_lookup {
+	u32 src;
+	u32 clr;
+	bool is_error;
+	int offset;
+};
+
+
+static struct d40_interrupt_lookup il_v4a[] = {
+	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
+	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
+	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
+	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
+	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
+	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
+	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
+	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
+	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
+	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
+};
+
+static struct d40_interrupt_lookup il_v4b[] = {
+	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
+	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
+	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
+	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
+	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
+	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
+	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
+	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
+	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
+	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
+	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
+	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
+};
+
+/**
+ * struct d40_reg_val - simple lookup struct
+ *
+ * @reg: The register.
+ * @val: The value that belongs to the register in reg.
+ */
+struct d40_reg_val {
+	unsigned int reg;
+	unsigned int val;
+};
+
+static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
+	/* Clock every part of the DMA block from start */
+	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
+
+	/* Interrupts on all logical channels */
+	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
+};
+static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
+	/* Clock every part of the DMA block from start */
+	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
+
+	/* Interrupts on all logical channels */
+	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
+	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
+};
+
+/**
+ * struct d40_lli_pool - Structure for keeping LLIs in memory
+ *
+ * @base: Pointer to memory area when the pre_alloc_lli's are not large
+ * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
+ * pre_alloc_lli is used.
+ * @dma_addr: DMA address, if mapped
+ * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
+ * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
+ * one buffer to one buffer.
+ */
+struct d40_lli_pool {
+	void	*base;
+	int	 size;
+	dma_addr_t	dma_addr;
+	/* Space for dst and src, plus an extra for padding */
+	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
+};
+
+/**
+ * struct d40_desc - A descriptor is one DMA job.
+ *
+ * @lli_phy: LLI settings for physical channel. Both src and dst=
+ * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
+ * lli_len equals one.
+ * @lli_log: Same as above but for logical channels.
+ * @lli_pool: The pool with two entries pre-allocated.
+ * @lli_len: Number of llis of current descriptor.
+ * @lli_current: Number of transferred llis.
+ * @lcla_alloc: Number of LCLA entries allocated.
+ * @txd: DMA engine struct. Used for among other things for communication
+ * during a transfer.
+ * @node: List entry.
+ * @is_in_client_list: true if the client owns this descriptor.
+ * @cyclic: true if this is a cyclic job
+ *
+ * This descriptor is used for both logical and physical transfers.
+ */
+struct d40_desc {
+	/* LLI physical */
+	struct d40_phy_lli_bidir	 lli_phy;
+	/* LLI logical */
+	struct d40_log_lli_bidir	 lli_log;
+
+	struct d40_lli_pool		 lli_pool;
+	int				 lli_len;
+	int				 lli_current;
+	int				 lcla_alloc;
+
+	struct dma_async_tx_descriptor	 txd;
+	struct list_head		 node;
+
+	bool				 is_in_client_list;
+	bool				 cyclic;
+};
+
+/**
+ * struct d40_lcla_pool - LCLA pool settings and data.
+ *
+ * @base: The virtual address of LCLA. 18 bit aligned.
+ * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
+ * This pointer is only there for clean-up on error.
+ * @pages: The number of pages needed for all physical channels.
+ * Only used later for clean-up on error
+ * @lock: Lock to protect the content in this struct.
+ * @alloc_map: big map over which LCLA entry is own by which job.
+ */
+struct d40_lcla_pool {
+	void		*base;
+	dma_addr_t	dma_addr;
+	void		*base_unaligned;
+	int		 pages;
+	spinlock_t	 lock;
+	struct d40_desc	**alloc_map;
+};
+
+/**
+ * struct d40_phy_res - struct for handling eventlines mapped to physical
+ * channels.
+ *
+ * @lock: A lock protection this entity.
+ * @reserved: True if used by secure world or otherwise.
+ * @num: The physical channel number of this entity.
+ * @allocated_src: Bit mapped to show which src event line's are mapped to
+ * this physical channel. Can also be free or physically allocated.
+ * @allocated_dst: Same as for src but is dst.
+ * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
+ * event line number.
+ * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
+ */
+struct d40_phy_res {
+	spinlock_t lock;
+	bool	   reserved;
+	int	   num;
+	u32	   allocated_src;
+	u32	   allocated_dst;
+	bool	   use_soft_lli;
+};
+
+struct d40_base;
+
+/**
+ * struct d40_chan - Struct that describes a channel.
+ *
+ * @lock: A spinlock to protect this struct.
+ * @log_num: The logical number, if any of this channel.
+ * @pending_tx: The number of pending transfers. Used between interrupt handler
+ * and tasklet.
+ * @busy: Set to true when transfer is ongoing on this channel.
+ * @phy_chan: Pointer to physical channel which this instance runs on. If this
+ * point is NULL, then the channel is not allocated.
+ * @chan: DMA engine handle.
+ * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
+ * transfer and call client callback.
+ * @client: Cliented owned descriptor list.
+ * @pending_queue: Submitted jobs, to be issued by issue_pending()
+ * @active: Active descriptor.
+ * @done: Completed jobs
+ * @queue: Queued jobs.
+ * @prepare_queue: Prepared jobs.
+ * @dma_cfg: The client configuration of this dma channel.
+ * @configured: whether the dma_cfg configuration is valid
+ * @base: Pointer to the device instance struct.
+ * @src_def_cfg: Default cfg register setting for src.
+ * @dst_def_cfg: Default cfg register setting for dst.
+ * @log_def: Default logical channel settings.
+ * @lcpa: Pointer to dst and src lcpa settings.
+ * @runtime_addr: runtime configured address.
+ * @runtime_direction: runtime configured direction.
+ *
+ * This struct can either "be" a logical or a physical channel.
+ */
+struct d40_chan {
+	spinlock_t			 lock;
+	int				 log_num;
+	int				 pending_tx;
+	bool				 busy;
+	struct d40_phy_res		*phy_chan;
+	struct dma_chan			 chan;
+	struct tasklet_struct		 tasklet;
+	struct list_head		 client;
+	struct list_head		 pending_queue;
+	struct list_head		 active;
+	struct list_head		 done;
+	struct list_head		 queue;
+	struct list_head		 prepare_queue;
+	struct stedma40_chan_cfg	 dma_cfg;
+	bool				 configured;
+	struct d40_base			*base;
+	/* Default register configurations */
+	u32				 src_def_cfg;
+	u32				 dst_def_cfg;
+	struct d40_def_lcsp		 log_def;
+	struct d40_log_lli_full		*lcpa;
+	/* Runtime reconfiguration */
+	dma_addr_t			runtime_addr;
+	enum dma_transfer_direction	runtime_direction;
+};
+
+/**
+ * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
+ * controller
+ *
+ * @backup: the pointer to the registers address array for backup
+ * @backup_size: the size of the registers address array for backup
+ * @realtime_en: the realtime enable register
+ * @realtime_clear: the realtime clear register
+ * @high_prio_en: the high priority enable register
+ * @high_prio_clear: the high priority clear register
+ * @interrupt_en: the interrupt enable register
+ * @interrupt_clear: the interrupt clear register
+ * @il: the pointer to struct d40_interrupt_lookup
+ * @il_size: the size of d40_interrupt_lookup array
+ * @init_reg: the pointer to the struct d40_reg_val
+ * @init_reg_size: the size of d40_reg_val array
+ */
+struct d40_gen_dmac {
+	u32				*backup;
+	u32				 backup_size;
+	u32				 realtime_en;
+	u32				 realtime_clear;
+	u32				 high_prio_en;
+	u32				 high_prio_clear;
+	u32				 interrupt_en;
+	u32				 interrupt_clear;
+	struct d40_interrupt_lookup	*il;
+	u32				 il_size;
+	struct d40_reg_val		*init_reg;
+	u32				 init_reg_size;
+};
+
+/**
+ * struct d40_base - The big global struct, one for each probe'd instance.
+ *
+ * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
+ * @execmd_lock: Lock for execute command usage since several channels share
+ * the same physical register.
+ * @dev: The device structure.
+ * @virtbase: The virtual base address of the DMA's register.
+ * @rev: silicon revision detected.
+ * @clk: Pointer to the DMA clock structure.
+ * @phy_start: Physical memory start of the DMA registers.
+ * @phy_size: Size of the DMA register map.
+ * @irq: The IRQ number.
+ * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
+ * transfers).
+ * @num_phy_chans: The number of physical channels. Read from HW. This
+ * is the number of available channels for this driver, not counting "Secure
+ * mode" allocated physical channels.
+ * @num_log_chans: The number of logical channels. Calculated from
+ * num_phy_chans.
+ * @dma_both: dma_device channels that can do both memcpy and slave transfers.
+ * @dma_slave: dma_device channels that can do only do slave transfers.
+ * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
+ * @phy_chans: Room for all possible physical channels in system.
+ * @log_chans: Room for all possible logical channels in system.
+ * @lookup_log_chans: Used to map interrupt number to logical channel. Points
+ * to log_chans entries.
+ * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
+ * to phy_chans entries.
+ * @plat_data: Pointer to provided platform_data which is the driver
+ * configuration.
+ * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
+ * @phy_res: Vector containing all physical channels.
+ * @lcla_pool: lcla pool settings and data.
+ * @lcpa_base: The virtual mapped address of LCPA.
+ * @phy_lcpa: The physical address of the LCPA.
+ * @lcpa_size: The size of the LCPA area.
+ * @desc_slab: cache for descriptors.
+ * @reg_val_backup: Here the values of some hardware registers are stored
+ * before the DMA is powered off. They are restored when the power is back on.
+ * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
+ * later
+ * @reg_val_backup_chan: Backup data for standard channel parameter registers.
+ * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
+ * @gen_dmac: the struct for generic registers values to represent u8500/8540
+ * DMA controller
+ */
+struct d40_base {
+	spinlock_t			 interrupt_lock;
+	spinlock_t			 execmd_lock;
+	struct device			 *dev;
+	void __iomem			 *virtbase;
+	u8				  rev:4;
+	struct clk			 *clk;
+	phys_addr_t			  phy_start;
+	resource_size_t			  phy_size;
+	int				  irq;
+	int				  num_memcpy_chans;
+	int				  num_phy_chans;
+	int				  num_log_chans;
+	struct device_dma_parameters	  dma_parms;
+	struct dma_device		  dma_both;
+	struct dma_device		  dma_slave;
+	struct dma_device		  dma_memcpy;
+	struct d40_chan			 *phy_chans;
+	struct d40_chan			 *log_chans;
+	struct d40_chan			**lookup_log_chans;
+	struct d40_chan			**lookup_phy_chans;
+	struct stedma40_platform_data	 *plat_data;
+	struct regulator		 *lcpa_regulator;
+	/* Physical half channels */
+	struct d40_phy_res		 *phy_res;
+	struct d40_lcla_pool		  lcla_pool;
+	void				 *lcpa_base;
+	dma_addr_t			  phy_lcpa;
+	resource_size_t			  lcpa_size;
+	struct kmem_cache		 *desc_slab;
+	u32				  reg_val_backup[BACKUP_REGS_SZ];
+	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
+	u32				 *reg_val_backup_chan;
+	u16				  gcc_pwr_off_mask;
+	struct d40_gen_dmac		  gen_dmac;
+};
+
+static struct device *chan2dev(struct d40_chan *d40c)
+{
+	return &d40c->chan.dev->device;
+}
+
+static bool chan_is_physical(struct d40_chan *chan)
+{
+	return chan->log_num == D40_PHY_CHAN;
+}
+
+static bool chan_is_logical(struct d40_chan *chan)
+{
+	return !chan_is_physical(chan);
+}
+
+static void __iomem *chan_base(struct d40_chan *chan)
+{
+	return chan->base->virtbase + D40_DREG_PCBASE +
+	       chan->phy_chan->num * D40_DREG_PCDELTA;
+}
+
+#define d40_err(dev, format, arg...)		\
+	dev_err(dev, "[%s] " format, __func__, ## arg)
+
+#define chan_err(d40c, format, arg...)		\
+	d40_err(chan2dev(d40c), format, ## arg)
+
+static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
+			      int lli_len)
+{
+	bool is_log = chan_is_logical(d40c);
+	u32 align;
+	void *base;
+
+	if (is_log)
+		align = sizeof(struct d40_log_lli);
+	else
+		align = sizeof(struct d40_phy_lli);
+
+	if (lli_len == 1) {
+		base = d40d->lli_pool.pre_alloc_lli;
+		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
+		d40d->lli_pool.base = NULL;
+	} else {
+		d40d->lli_pool.size = lli_len * 2 * align;
+
+		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
+		d40d->lli_pool.base = base;
+
+		if (d40d->lli_pool.base == NULL)
+			return -ENOMEM;
+	}
+
+	if (is_log) {
+		d40d->lli_log.src = PTR_ALIGN(base, align);
+		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
+
+		d40d->lli_pool.dma_addr = 0;
+	} else {
+		d40d->lli_phy.src = PTR_ALIGN(base, align);
+		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
+
+		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
+							 d40d->lli_phy.src,
+							 d40d->lli_pool.size,
+							 DMA_TO_DEVICE);
+
+		if (dma_mapping_error(d40c->base->dev,
+				      d40d->lli_pool.dma_addr)) {
+			kfree(d40d->lli_pool.base);
+			d40d->lli_pool.base = NULL;
+			d40d->lli_pool.dma_addr = 0;
+			return -ENOMEM;
+		}
+	}
+
+	return 0;
+}
+
+static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+	if (d40d->lli_pool.dma_addr)
+		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
+				 d40d->lli_pool.size, DMA_TO_DEVICE);
+
+	kfree(d40d->lli_pool.base);
+	d40d->lli_pool.base = NULL;
+	d40d->lli_pool.size = 0;
+	d40d->lli_log.src = NULL;
+	d40d->lli_log.dst = NULL;
+	d40d->lli_phy.src = NULL;
+	d40d->lli_phy.dst = NULL;
+}
+
+static int d40_lcla_alloc_one(struct d40_chan *d40c,
+			      struct d40_desc *d40d)
+{
+	unsigned long flags;
+	int i;
+	int ret = -EINVAL;
+
+	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
+
+	/*
+	 * Allocate both src and dst at the same time, therefore the half
+	 * start on 1 since 0 can't be used since zero is used as end marker.
+	 */
+	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
+		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
+
+		if (!d40c->base->lcla_pool.alloc_map[idx]) {
+			d40c->base->lcla_pool.alloc_map[idx] = d40d;
+			d40d->lcla_alloc++;
+			ret = i;
+			break;
+		}
+	}
+
+	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
+
+	return ret;
+}
+
+static int d40_lcla_free_all(struct d40_chan *d40c,
+			     struct d40_desc *d40d)
+{
+	unsigned long flags;
+	int i;
+	int ret = -EINVAL;
+
+	if (chan_is_physical(d40c))
+		return 0;
+
+	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
+
+	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
+		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
+
+		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
+			d40c->base->lcla_pool.alloc_map[idx] = NULL;
+			d40d->lcla_alloc--;
+			if (d40d->lcla_alloc == 0) {
+				ret = 0;
+				break;
+			}
+		}
+	}
+
+	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
+
+	return ret;
+
+}
+
+static void d40_desc_remove(struct d40_desc *d40d)
+{
+	list_del(&d40d->node);
+}
+
+static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
+{
+	struct d40_desc *desc = NULL;
+
+	if (!list_empty(&d40c->client)) {
+		struct d40_desc *d;
+		struct d40_desc *_d;
+
+		list_for_each_entry_safe(d, _d, &d40c->client, node) {
+			if (async_tx_test_ack(&d->txd)) {
+				d40_desc_remove(d);
+				desc = d;
+				memset(desc, 0, sizeof(*desc));
+				break;
+			}
+		}
+	}
+
+	if (!desc)
+		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
+
+	if (desc)
+		INIT_LIST_HEAD(&desc->node);
+
+	return desc;
+}
+
+static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+
+	d40_pool_lli_free(d40c, d40d);
+	d40_lcla_free_all(d40c, d40d);
+	kmem_cache_free(d40c->base->desc_slab, d40d);
+}
+
+static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
+{
+	list_add_tail(&desc->node, &d40c->active);
+}
+
+static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
+{
+	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
+	struct d40_phy_lli *lli_src = desc->lli_phy.src;
+	void __iomem *base = chan_base(chan);
+
+	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
+	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
+	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
+	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
+
+	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
+	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
+	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
+	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
+}
+
+static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
+{
+	list_add_tail(&desc->node, &d40c->done);
+}
+
+static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
+{
+	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
+	struct d40_log_lli_bidir *lli = &desc->lli_log;
+	int lli_current = desc->lli_current;
+	int lli_len = desc->lli_len;
+	bool cyclic = desc->cyclic;
+	int curr_lcla = -EINVAL;
+	int first_lcla = 0;
+	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
+	bool linkback;
+
+	/*
+	 * We may have partially running cyclic transfers, in case we did't get
+	 * enough LCLA entries.
+	 */
+	linkback = cyclic && lli_current == 0;
+
+	/*
+	 * For linkback, we need one LCLA even with only one link, because we
+	 * can't link back to the one in LCPA space
+	 */
+	if (linkback || (lli_len - lli_current > 1)) {
+		/*
+		 * If the channel is expected to use only soft_lli don't
+		 * allocate a lcla. This is to avoid a HW issue that exists
+		 * in some controller during a peripheral to memory transfer
+		 * that uses linked lists.
+		 */
+		if (!(chan->phy_chan->use_soft_lli &&
+			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
+			curr_lcla = d40_lcla_alloc_one(chan, desc);
+
+		first_lcla = curr_lcla;
+	}
+
+	/*
+	 * For linkback, we normally load the LCPA in the loop since we need to
+	 * link it to the second LCLA and not the first.  However, if we
+	 * couldn't even get a first LCLA, then we have to run in LCPA and
+	 * reload manually.
+	 */
+	if (!linkback || curr_lcla == -EINVAL) {
+		unsigned int flags = 0;
+
+		if (curr_lcla == -EINVAL)
+			flags |= LLI_TERM_INT;
+
+		d40_log_lli_lcpa_write(chan->lcpa,
+				       &lli->dst[lli_current],
+				       &lli->src[lli_current],
+				       curr_lcla,
+				       flags);
+		lli_current++;
+	}
+
+	if (curr_lcla < 0)
+		goto set_current;
+
+	for (; lli_current < lli_len; lli_current++) {
+		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
+					   8 * curr_lcla * 2;
+		struct d40_log_lli *lcla = pool->base + lcla_offset;
+		unsigned int flags = 0;
+		int next_lcla;
+
+		if (lli_current + 1 < lli_len)
+			next_lcla = d40_lcla_alloc_one(chan, desc);
+		else
+			next_lcla = linkback ? first_lcla : -EINVAL;
+
+		if (cyclic || next_lcla == -EINVAL)
+			flags |= LLI_TERM_INT;
+
+		if (linkback && curr_lcla == first_lcla) {
+			/* First link goes in both LCPA and LCLA */
+			d40_log_lli_lcpa_write(chan->lcpa,
+					       &lli->dst[lli_current],
+					       &lli->src[lli_current],
+					       next_lcla, flags);
+		}
+
+		/*
+		 * One unused LCLA in the cyclic case if the very first
+		 * next_lcla fails...
+		 */
+		d40_log_lli_lcla_write(lcla,
+				       &lli->dst[lli_current],
+				       &lli->src[lli_current],
+				       next_lcla, flags);
+
+		/*
+		 * Cache maintenance is not needed if lcla is
+		 * mapped in esram
+		 */
+		if (!use_esram_lcla) {
+			dma_sync_single_range_for_device(chan->base->dev,
+						pool->dma_addr, lcla_offset,
+						2 * sizeof(struct d40_log_lli),
+						DMA_TO_DEVICE);
+		}
+		curr_lcla = next_lcla;
+
+		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
+			lli_current++;
+			break;
+		}
+	}
+ set_current:
+	desc->lli_current = lli_current;
+}
+
+static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
+{
+	if (chan_is_physical(d40c)) {
+		d40_phy_lli_load(d40c, d40d);
+		d40d->lli_current = d40d->lli_len;
+	} else
+		d40_log_lli_to_lcxa(d40c, d40d);
+}
+
+static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
+{
+	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
+}
+
+/* remove desc from current queue and add it to the pending_queue */
+static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
+{
+	d40_desc_remove(desc);
+	desc->is_in_client_list = false;
+	list_add_tail(&desc->node, &d40c->pending_queue);
+}
+
+static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
+{
+	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
+					node);
+}
+
+static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
+{
+	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
+}
+
+static struct d40_desc *d40_first_done(struct d40_chan *d40c)
+{
+	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
+}
+
+static int d40_psize_2_burst_size(bool is_log, int psize)
+{
+	if (is_log) {
+		if (psize == STEDMA40_PSIZE_LOG_1)
+			return 1;
+	} else {
+		if (psize == STEDMA40_PSIZE_PHY_1)
+			return 1;
+	}
+
+	return 2 << psize;
+}
+
+/*
+ * The dma only supports transmitting packages up to
+ * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
+ *
+ * Calculate the total number of dma elements required to send the entire sg list.
+ */
+static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
+{
+	int dmalen;
+	u32 max_w = max(data_width1, data_width2);
+	u32 min_w = min(data_width1, data_width2);
+	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
+
+	if (seg_max > STEDMA40_MAX_SEG_SIZE)
+		seg_max -= max_w;
+
+	if (!IS_ALIGNED(size, max_w))
+		return -EINVAL;
+
+	if (size <= seg_max)
+		dmalen = 1;
+	else {
+		dmalen = size / seg_max;
+		if (dmalen * seg_max < size)
+			dmalen++;
+	}
+	return dmalen;
+}
+
+static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
+			   u32 data_width1, u32 data_width2)
+{
+	struct scatterlist *sg;
+	int i;
+	int len = 0;
+	int ret;
+
+	for_each_sg(sgl, sg, sg_len, i) {
+		ret = d40_size_2_dmalen(sg_dma_len(sg),
+					data_width1, data_width2);
+		if (ret < 0)
+			return ret;
+		len += ret;
+	}
+	return len;
+}
+
+static int __d40_execute_command_phy(struct d40_chan *d40c,
+				     enum d40_command command)
+{
+	u32 status;
+	int i;
+	void __iomem *active_reg;
+	int ret = 0;
+	unsigned long flags;
+	u32 wmask;
+
+	if (command == D40_DMA_STOP) {
+		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
+		if (ret)
+			return ret;
+	}
+
+	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
+
+	if (d40c->phy_chan->num % 2 == 0)
+		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+	else
+		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+	if (command == D40_DMA_SUSPEND_REQ) {
+		status = (readl(active_reg) &
+			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+			D40_CHAN_POS(d40c->phy_chan->num);
+
+		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
+			goto unlock;
+	}
+
+	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
+	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
+	       active_reg);
+
+	if (command == D40_DMA_SUSPEND_REQ) {
+
+		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
+			status = (readl(active_reg) &
+				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+				D40_CHAN_POS(d40c->phy_chan->num);
+
+			cpu_relax();
+			/*
+			 * Reduce the number of bus accesses while
+			 * waiting for the DMA to suspend.
+			 */
+			udelay(3);
+
+			if (status == D40_DMA_STOP ||
+			    status == D40_DMA_SUSPENDED)
+				break;
+		}
+
+		if (i == D40_SUSPEND_MAX_IT) {
+			chan_err(d40c,
+				"unable to suspend the chl %d (log: %d) status %x\n",
+				d40c->phy_chan->num, d40c->log_num,
+				status);
+			dump_stack();
+			ret = -EBUSY;
+		}
+
+	}
+ unlock:
+	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
+	return ret;
+}
+
+static void d40_term_all(struct d40_chan *d40c)
+{
+	struct d40_desc *d40d;
+	struct d40_desc *_d;
+
+	/* Release completed descriptors */
+	while ((d40d = d40_first_done(d40c))) {
+		d40_desc_remove(d40d);
+		d40_desc_free(d40c, d40d);
+	}
+
+	/* Release active descriptors */
+	while ((d40d = d40_first_active_get(d40c))) {
+		d40_desc_remove(d40d);
+		d40_desc_free(d40c, d40d);
+	}
+
+	/* Release queued descriptors waiting for transfer */
+	while ((d40d = d40_first_queued(d40c))) {
+		d40_desc_remove(d40d);
+		d40_desc_free(d40c, d40d);
+	}
+
+	/* Release pending descriptors */
+	while ((d40d = d40_first_pending(d40c))) {
+		d40_desc_remove(d40d);
+		d40_desc_free(d40c, d40d);
+	}
+
+	/* Release client owned descriptors */
+	if (!list_empty(&d40c->client))
+		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
+			d40_desc_remove(d40d);
+			d40_desc_free(d40c, d40d);
+		}
+
+	/* Release descriptors in prepare queue */
+	if (!list_empty(&d40c->prepare_queue))
+		list_for_each_entry_safe(d40d, _d,
+					 &d40c->prepare_queue, node) {
+			d40_desc_remove(d40d);
+			d40_desc_free(d40c, d40d);
+		}
+
+	d40c->pending_tx = 0;
+}
+
+static void __d40_config_set_event(struct d40_chan *d40c,
+				   enum d40_events event_type, u32 event,
+				   int reg)
+{
+	void __iomem *addr = chan_base(d40c) + reg;
+	int tries;
+	u32 status;
+
+	switch (event_type) {
+
+	case D40_DEACTIVATE_EVENTLINE:
+
+		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
+		       | ~D40_EVENTLINE_MASK(event), addr);
+		break;
+
+	case D40_SUSPEND_REQ_EVENTLINE:
+		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
+			  D40_EVENTLINE_POS(event);
+
+		if (status == D40_DEACTIVATE_EVENTLINE ||
+		    status == D40_SUSPEND_REQ_EVENTLINE)
+			break;
+
+		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
+		       | ~D40_EVENTLINE_MASK(event), addr);
+
+		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
+
+			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
+				  D40_EVENTLINE_POS(event);
+
+			cpu_relax();
+			/*
+			 * Reduce the number of bus accesses while
+			 * waiting for the DMA to suspend.
+			 */
+			udelay(3);
+
+			if (status == D40_DEACTIVATE_EVENTLINE)
+				break;
+		}
+
+		if (tries == D40_SUSPEND_MAX_IT) {
+			chan_err(d40c,
+				"unable to stop the event_line chl %d (log: %d)"
+				"status %x\n", d40c->phy_chan->num,
+				 d40c->log_num, status);
+		}
+		break;
+
+	case D40_ACTIVATE_EVENTLINE:
+	/*
+	 * The hardware sometimes doesn't register the enable when src and dst
+	 * event lines are active on the same logical channel.  Retry to ensure
+	 * it does.  Usually only one retry is sufficient.
+	 */
+		tries = 100;
+		while (--tries) {
+			writel((D40_ACTIVATE_EVENTLINE <<
+				D40_EVENTLINE_POS(event)) |
+				~D40_EVENTLINE_MASK(event), addr);
+
+			if (readl(addr) & D40_EVENTLINE_MASK(event))
+				break;
+		}
+
+		if (tries != 99)
+			dev_dbg(chan2dev(d40c),
+				"[%s] workaround enable S%cLNK (%d tries)\n",
+				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
+				100 - tries);
+
+		WARN_ON(!tries);
+		break;
+
+	case D40_ROUND_EVENTLINE:
+		BUG();
+		break;
+
+	}
+}
+
+static void d40_config_set_event(struct d40_chan *d40c,
+				 enum d40_events event_type)
+{
+	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
+
+	/* Enable event line connected to device (or memcpy) */
+	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
+	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
+		__d40_config_set_event(d40c, event_type, event,
+				       D40_CHAN_REG_SSLNK);
+
+	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
+		__d40_config_set_event(d40c, event_type, event,
+				       D40_CHAN_REG_SDLNK);
+}
+
+static u32 d40_chan_has_events(struct d40_chan *d40c)
+{
+	void __iomem *chanbase = chan_base(d40c);
+	u32 val;
+
+	val = readl(chanbase + D40_CHAN_REG_SSLNK);
+	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
+
+	return val;
+}
+
+static int
+__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
+{
+	unsigned long flags;
+	int ret = 0;
+	u32 active_status;
+	void __iomem *active_reg;
+
+	if (d40c->phy_chan->num % 2 == 0)
+		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+	else
+		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+
+	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
+
+	switch (command) {
+	case D40_DMA_STOP:
+	case D40_DMA_SUSPEND_REQ:
+
+		active_status = (readl(active_reg) &
+				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+				 D40_CHAN_POS(d40c->phy_chan->num);
+
+		if (active_status == D40_DMA_RUN)
+			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
+		else
+			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
+
+		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
+			ret = __d40_execute_command_phy(d40c, command);
+
+		break;
+
+	case D40_DMA_RUN:
+
+		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
+		ret = __d40_execute_command_phy(d40c, command);
+		break;
+
+	case D40_DMA_SUSPENDED:
+		BUG();
+		break;
+	}
+
+	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
+	return ret;
+}
+
+static int d40_channel_execute_command(struct d40_chan *d40c,
+				       enum d40_command command)
+{
+	if (chan_is_logical(d40c))
+		return __d40_execute_command_log(d40c, command);
+	else
+		return __d40_execute_command_phy(d40c, command);
+}
+
+static u32 d40_get_prmo(struct d40_chan *d40c)
+{
+	static const unsigned int phy_map[] = {
+		[STEDMA40_PCHAN_BASIC_MODE]
+			= D40_DREG_PRMO_PCHAN_BASIC,
+		[STEDMA40_PCHAN_MODULO_MODE]
+			= D40_DREG_PRMO_PCHAN_MODULO,
+		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
+			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
+	};
+	static const unsigned int log_map[] = {
+		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
+			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
+		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
+			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
+		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
+			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
+	};
+
+	if (chan_is_physical(d40c))
+		return phy_map[d40c->dma_cfg.mode_opt];
+	else
+		return log_map[d40c->dma_cfg.mode_opt];
+}
+
+static void d40_config_write(struct d40_chan *d40c)
+{
+	u32 addr_base;
+	u32 var;
+
+	/* Odd addresses are even addresses + 4 */
+	addr_base = (d40c->phy_chan->num % 2) * 4;
+	/* Setup channel mode to logical or physical */
+	var = ((u32)(chan_is_logical(d40c)) + 1) <<
+		D40_CHAN_POS(d40c->phy_chan->num);
+	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
+
+	/* Setup operational mode option register */
+	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
+
+	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
+
+	if (chan_is_logical(d40c)) {
+		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
+			   & D40_SREG_ELEM_LOG_LIDX_MASK;
+		void __iomem *chanbase = chan_base(d40c);
+
+		/* Set default config for CFG reg */
+		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
+		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
+
+		/* Set LIDX for lcla */
+		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
+		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
+
+		/* Clear LNK which will be used by d40_chan_has_events() */
+		writel(0, chanbase + D40_CHAN_REG_SSLNK);
+		writel(0, chanbase + D40_CHAN_REG_SDLNK);
+	}
+}
+
+static u32 d40_residue(struct d40_chan *d40c)
+{
+	u32 num_elt;
+
+	if (chan_is_logical(d40c))
+		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
+			>> D40_MEM_LCSP2_ECNT_POS;
+	else {
+		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
+		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
+			  >> D40_SREG_ELEM_PHY_ECNT_POS;
+	}
+
+	return num_elt * d40c->dma_cfg.dst_info.data_width;
+}
+
+static bool d40_tx_is_linked(struct d40_chan *d40c)
+{
+	bool is_link;
+
+	if (chan_is_logical(d40c))
+		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
+	else
+		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
+			  & D40_SREG_LNK_PHYS_LNK_MASK;
+
+	return is_link;
+}
+
+static int d40_pause(struct dma_chan *chan)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	int res = 0;
+	unsigned long flags;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Channel is not allocated!\n");
+		return -EINVAL;
+	}
+
+	if (!d40c->busy)
+		return 0;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+	pm_runtime_get_sync(d40c->base->dev);
+
+	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
+
+	pm_runtime_mark_last_busy(d40c->base->dev);
+	pm_runtime_put_autosuspend(d40c->base->dev);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return res;
+}
+
+static int d40_resume(struct dma_chan *chan)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	int res = 0;
+	unsigned long flags;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Channel is not allocated!\n");
+		return -EINVAL;
+	}
+
+	if (!d40c->busy)
+		return 0;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+	pm_runtime_get_sync(d40c->base->dev);
+
+	/* If bytes left to transfer or linked tx resume job */
+	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
+		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
+
+	pm_runtime_mark_last_busy(d40c->base->dev);
+	pm_runtime_put_autosuspend(d40c->base->dev);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return res;
+}
+
+static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+	struct d40_chan *d40c = container_of(tx->chan,
+					     struct d40_chan,
+					     chan);
+	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
+	unsigned long flags;
+	dma_cookie_t cookie;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+	cookie = dma_cookie_assign(tx);
+	d40_desc_queue(d40c, d40d);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+
+	return cookie;
+}
+
+static int d40_start(struct d40_chan *d40c)
+{
+	return d40_channel_execute_command(d40c, D40_DMA_RUN);
+}
+
+static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
+{
+	struct d40_desc *d40d;
+	int err;
+
+	/* Start queued jobs, if any */
+	d40d = d40_first_queued(d40c);
+
+	if (d40d != NULL) {
+		if (!d40c->busy) {
+			d40c->busy = true;
+			pm_runtime_get_sync(d40c->base->dev);
+		}
+
+		/* Remove from queue */
+		d40_desc_remove(d40d);
+
+		/* Add to active queue */
+		d40_desc_submit(d40c, d40d);
+
+		/* Initiate DMA job */
+		d40_desc_load(d40c, d40d);
+
+		/* Start dma job */
+		err = d40_start(d40c);
+
+		if (err)
+			return NULL;
+	}
+
+	return d40d;
+}
+
+/* called from interrupt context */
+static void dma_tc_handle(struct d40_chan *d40c)
+{
+	struct d40_desc *d40d;
+
+	/* Get first active entry from list */
+	d40d = d40_first_active_get(d40c);
+
+	if (d40d == NULL)
+		return;
+
+	if (d40d->cyclic) {
+		/*
+		 * If this was a paritially loaded list, we need to reloaded
+		 * it, and only when the list is completed.  We need to check
+		 * for done because the interrupt will hit for every link, and
+		 * not just the last one.
+		 */
+		if (d40d->lli_current < d40d->lli_len
+		    && !d40_tx_is_linked(d40c)
+		    && !d40_residue(d40c)) {
+			d40_lcla_free_all(d40c, d40d);
+			d40_desc_load(d40c, d40d);
+			(void) d40_start(d40c);
+
+			if (d40d->lli_current == d40d->lli_len)
+				d40d->lli_current = 0;
+		}
+	} else {
+		d40_lcla_free_all(d40c, d40d);
+
+		if (d40d->lli_current < d40d->lli_len) {
+			d40_desc_load(d40c, d40d);
+			/* Start dma job */
+			(void) d40_start(d40c);
+			return;
+		}
+
+		if (d40_queue_start(d40c) == NULL) {
+			d40c->busy = false;
+
+			pm_runtime_mark_last_busy(d40c->base->dev);
+			pm_runtime_put_autosuspend(d40c->base->dev);
+		}
+
+		d40_desc_remove(d40d);
+		d40_desc_done(d40c, d40d);
+	}
+
+	d40c->pending_tx++;
+	tasklet_schedule(&d40c->tasklet);
+
+}
+
+static void dma_tasklet(unsigned long data)
+{
+	struct d40_chan *d40c = (struct d40_chan *) data;
+	struct d40_desc *d40d;
+	unsigned long flags;
+	bool callback_active;
+	struct dmaengine_desc_callback cb;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	/* Get first entry from the done list */
+	d40d = d40_first_done(d40c);
+	if (d40d == NULL) {
+		/* Check if we have reached here for cyclic job */
+		d40d = d40_first_active_get(d40c);
+		if (d40d == NULL || !d40d->cyclic)
+			goto check_pending_tx;
+	}
+
+	if (!d40d->cyclic)
+		dma_cookie_complete(&d40d->txd);
+
+	/*
+	 * If terminating a channel pending_tx is set to zero.
+	 * This prevents any finished active jobs to return to the client.
+	 */
+	if (d40c->pending_tx == 0) {
+		spin_unlock_irqrestore(&d40c->lock, flags);
+		return;
+	}
+
+	/* Callback to client */
+	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
+	dmaengine_desc_get_callback(&d40d->txd, &cb);
+
+	if (!d40d->cyclic) {
+		if (async_tx_test_ack(&d40d->txd)) {
+			d40_desc_remove(d40d);
+			d40_desc_free(d40c, d40d);
+		} else if (!d40d->is_in_client_list) {
+			d40_desc_remove(d40d);
+			d40_lcla_free_all(d40c, d40d);
+			list_add_tail(&d40d->node, &d40c->client);
+			d40d->is_in_client_list = true;
+		}
+	}
+
+	d40c->pending_tx--;
+
+	if (d40c->pending_tx)
+		tasklet_schedule(&d40c->tasklet);
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+
+	if (callback_active)
+		dmaengine_desc_callback_invoke(&cb, NULL);
+
+	return;
+ check_pending_tx:
+	/* Rescue manouver if receiving double interrupts */
+	if (d40c->pending_tx > 0)
+		d40c->pending_tx--;
+	spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static irqreturn_t d40_handle_interrupt(int irq, void *data)
+{
+	int i;
+	u32 idx;
+	u32 row;
+	long chan = -1;
+	struct d40_chan *d40c;
+	unsigned long flags;
+	struct d40_base *base = data;
+	u32 regs[base->gen_dmac.il_size];
+	struct d40_interrupt_lookup *il = base->gen_dmac.il;
+	u32 il_size = base->gen_dmac.il_size;
+
+	spin_lock_irqsave(&base->interrupt_lock, flags);
+
+	/* Read interrupt status of both logical and physical channels */
+	for (i = 0; i < il_size; i++)
+		regs[i] = readl(base->virtbase + il[i].src);
+
+	for (;;) {
+
+		chan = find_next_bit((unsigned long *)regs,
+				     BITS_PER_LONG * il_size, chan + 1);
+
+		/* No more set bits found? */
+		if (chan == BITS_PER_LONG * il_size)
+			break;
+
+		row = chan / BITS_PER_LONG;
+		idx = chan & (BITS_PER_LONG - 1);
+
+		if (il[row].offset == D40_PHY_CHAN)
+			d40c = base->lookup_phy_chans[idx];
+		else
+			d40c = base->lookup_log_chans[il[row].offset + idx];
+
+		if (!d40c) {
+			/*
+			 * No error because this can happen if something else
+			 * in the system is using the channel.
+			 */
+			continue;
+		}
+
+		/* ACK interrupt */
+		writel(BIT(idx), base->virtbase + il[row].clr);
+
+		spin_lock(&d40c->lock);
+
+		if (!il[row].is_error)
+			dma_tc_handle(d40c);
+		else
+			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
+				chan, il[row].offset, idx);
+
+		spin_unlock(&d40c->lock);
+	}
+
+	spin_unlock_irqrestore(&base->interrupt_lock, flags);
+
+	return IRQ_HANDLED;
+}
+
+static int d40_validate_conf(struct d40_chan *d40c,
+			     struct stedma40_chan_cfg *conf)
+{
+	int res = 0;
+	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
+
+	if (!conf->dir) {
+		chan_err(d40c, "Invalid direction.\n");
+		res = -EINVAL;
+	}
+
+	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
+	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
+	    (conf->dev_type < 0)) {
+		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
+		res = -EINVAL;
+	}
+
+	if (conf->dir == DMA_DEV_TO_DEV) {
+		/*
+		 * DMAC HW supports it. Will be added to this driver,
+		 * in case any dma client requires it.
+		 */
+		chan_err(d40c, "periph to periph not supported\n");
+		res = -EINVAL;
+	}
+
+	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
+	    conf->src_info.data_width !=
+	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
+	    conf->dst_info.data_width) {
+		/*
+		 * The DMAC hardware only supports
+		 * src (burst x width) == dst (burst x width)
+		 */
+
+		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
+		res = -EINVAL;
+	}
+
+	return res;
+}
+
+static bool d40_alloc_mask_set(struct d40_phy_res *phy,
+			       bool is_src, int log_event_line, bool is_log,
+			       bool *first_user)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&phy->lock, flags);
+
+	*first_user = ((phy->allocated_src | phy->allocated_dst)
+			== D40_ALLOC_FREE);
+
+	if (!is_log) {
+		/* Physical interrupts are masked per physical full channel */
+		if (phy->allocated_src == D40_ALLOC_FREE &&
+		    phy->allocated_dst == D40_ALLOC_FREE) {
+			phy->allocated_dst = D40_ALLOC_PHY;
+			phy->allocated_src = D40_ALLOC_PHY;
+			goto found_unlock;
+		} else
+			goto not_found_unlock;
+	}
+
+	/* Logical channel */
+	if (is_src) {
+		if (phy->allocated_src == D40_ALLOC_PHY)
+			goto not_found_unlock;
+
+		if (phy->allocated_src == D40_ALLOC_FREE)
+			phy->allocated_src = D40_ALLOC_LOG_FREE;
+
+		if (!(phy->allocated_src & BIT(log_event_line))) {
+			phy->allocated_src |= BIT(log_event_line);
+			goto found_unlock;
+		} else
+			goto not_found_unlock;
+	} else {
+		if (phy->allocated_dst == D40_ALLOC_PHY)
+			goto not_found_unlock;
+
+		if (phy->allocated_dst == D40_ALLOC_FREE)
+			phy->allocated_dst = D40_ALLOC_LOG_FREE;
+
+		if (!(phy->allocated_dst & BIT(log_event_line))) {
+			phy->allocated_dst |= BIT(log_event_line);
+			goto found_unlock;
+		}
+	}
+ not_found_unlock:
+	spin_unlock_irqrestore(&phy->lock, flags);
+	return false;
+ found_unlock:
+	spin_unlock_irqrestore(&phy->lock, flags);
+	return true;
+}
+
+static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
+			       int log_event_line)
+{
+	unsigned long flags;
+	bool is_free = false;
+
+	spin_lock_irqsave(&phy->lock, flags);
+	if (!log_event_line) {
+		phy->allocated_dst = D40_ALLOC_FREE;
+		phy->allocated_src = D40_ALLOC_FREE;
+		is_free = true;
+		goto unlock;
+	}
+
+	/* Logical channel */
+	if (is_src) {
+		phy->allocated_src &= ~BIT(log_event_line);
+		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
+			phy->allocated_src = D40_ALLOC_FREE;
+	} else {
+		phy->allocated_dst &= ~BIT(log_event_line);
+		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
+			phy->allocated_dst = D40_ALLOC_FREE;
+	}
+
+	is_free = ((phy->allocated_src | phy->allocated_dst) ==
+		   D40_ALLOC_FREE);
+ unlock:
+	spin_unlock_irqrestore(&phy->lock, flags);
+
+	return is_free;
+}
+
+static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
+{
+	int dev_type = d40c->dma_cfg.dev_type;
+	int event_group;
+	int event_line;
+	struct d40_phy_res *phys;
+	int i;
+	int j;
+	int log_num;
+	int num_phy_chans;
+	bool is_src;
+	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
+
+	phys = d40c->base->phy_res;
+	num_phy_chans = d40c->base->num_phy_chans;
+
+	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
+		log_num = 2 * dev_type;
+		is_src = true;
+	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
+		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
+		/* dst event lines are used for logical memcpy */
+		log_num = 2 * dev_type + 1;
+		is_src = false;
+	} else
+		return -EINVAL;
+
+	event_group = D40_TYPE_TO_GROUP(dev_type);
+	event_line = D40_TYPE_TO_EVENT(dev_type);
+
+	if (!is_log) {
+		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
+			/* Find physical half channel */
+			if (d40c->dma_cfg.use_fixed_channel) {
+				i = d40c->dma_cfg.phy_channel;
+				if (d40_alloc_mask_set(&phys[i], is_src,
+						       0, is_log,
+						       first_phy_user))
+					goto found_phy;
+			} else {
+				for (i = 0; i < num_phy_chans; i++) {
+					if (d40_alloc_mask_set(&phys[i], is_src,
+						       0, is_log,
+						       first_phy_user))
+						goto found_phy;
+				}
+			}
+		} else
+			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+				int phy_num = j  + event_group * 2;
+				for (i = phy_num; i < phy_num + 2; i++) {
+					if (d40_alloc_mask_set(&phys[i],
+							       is_src,
+							       0,
+							       is_log,
+							       first_phy_user))
+						goto found_phy;
+				}
+			}
+		return -EINVAL;
+found_phy:
+		d40c->phy_chan = &phys[i];
+		d40c->log_num = D40_PHY_CHAN;
+		goto out;
+	}
+	if (dev_type == -1)
+		return -EINVAL;
+
+	/* Find logical channel */
+	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
+		int phy_num = j + event_group * 2;
+
+		if (d40c->dma_cfg.use_fixed_channel) {
+			i = d40c->dma_cfg.phy_channel;
+
+			if ((i != phy_num) && (i != phy_num + 1)) {
+				dev_err(chan2dev(d40c),
+					"invalid fixed phy channel %d\n", i);
+				return -EINVAL;
+			}
+
+			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
+					       is_log, first_phy_user))
+				goto found_log;
+
+			dev_err(chan2dev(d40c),
+				"could not allocate fixed phy channel %d\n", i);
+			return -EINVAL;
+		}
+
+		/*
+		 * Spread logical channels across all available physical rather
+		 * than pack every logical channel at the first available phy
+		 * channels.
+		 */
+		if (is_src) {
+			for (i = phy_num; i < phy_num + 2; i++) {
+				if (d40_alloc_mask_set(&phys[i], is_src,
+						       event_line, is_log,
+						       first_phy_user))
+					goto found_log;
+			}
+		} else {
+			for (i = phy_num + 1; i >= phy_num; i--) {
+				if (d40_alloc_mask_set(&phys[i], is_src,
+						       event_line, is_log,
+						       first_phy_user))
+					goto found_log;
+			}
+		}
+	}
+	return -EINVAL;
+
+found_log:
+	d40c->phy_chan = &phys[i];
+	d40c->log_num = log_num;
+out:
+
+	if (is_log)
+		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
+	else
+		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
+
+	return 0;
+
+}
+
+static int d40_config_memcpy(struct d40_chan *d40c)
+{
+	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
+
+	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
+		d40c->dma_cfg = dma40_memcpy_conf_log;
+		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
+
+		d40_log_cfg(&d40c->dma_cfg,
+			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
+
+	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
+		   dma_has_cap(DMA_SLAVE, cap)) {
+		d40c->dma_cfg = dma40_memcpy_conf_phy;
+
+		/* Generate interrrupt at end of transfer or relink. */
+		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
+
+		/* Generate interrupt on error. */
+		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
+		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
+
+	} else {
+		chan_err(d40c, "No memcpy\n");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int d40_free_dma(struct d40_chan *d40c)
+{
+
+	int res = 0;
+	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
+	struct d40_phy_res *phy = d40c->phy_chan;
+	bool is_src;
+
+	/* Terminate all queued and active transfers */
+	d40_term_all(d40c);
+
+	if (phy == NULL) {
+		chan_err(d40c, "phy == null\n");
+		return -EINVAL;
+	}
+
+	if (phy->allocated_src == D40_ALLOC_FREE &&
+	    phy->allocated_dst == D40_ALLOC_FREE) {
+		chan_err(d40c, "channel already free\n");
+		return -EINVAL;
+	}
+
+	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
+	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
+		is_src = false;
+	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
+		is_src = true;
+	else {
+		chan_err(d40c, "Unknown direction\n");
+		return -EINVAL;
+	}
+
+	pm_runtime_get_sync(d40c->base->dev);
+	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
+	if (res) {
+		chan_err(d40c, "stop failed\n");
+		goto mark_last_busy;
+	}
+
+	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
+
+	if (chan_is_logical(d40c))
+		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
+	else
+		d40c->base->lookup_phy_chans[phy->num] = NULL;
+
+	if (d40c->busy) {
+		pm_runtime_mark_last_busy(d40c->base->dev);
+		pm_runtime_put_autosuspend(d40c->base->dev);
+	}
+
+	d40c->busy = false;
+	d40c->phy_chan = NULL;
+	d40c->configured = false;
+ mark_last_busy:
+	pm_runtime_mark_last_busy(d40c->base->dev);
+	pm_runtime_put_autosuspend(d40c->base->dev);
+	return res;
+}
+
+static bool d40_is_paused(struct d40_chan *d40c)
+{
+	void __iomem *chanbase = chan_base(d40c);
+	bool is_paused = false;
+	unsigned long flags;
+	void __iomem *active_reg;
+	u32 status;
+	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	if (chan_is_physical(d40c)) {
+		if (d40c->phy_chan->num % 2 == 0)
+			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
+		else
+			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
+
+		status = (readl(active_reg) &
+			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
+			D40_CHAN_POS(d40c->phy_chan->num);
+		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
+			is_paused = true;
+		goto unlock;
+	}
+
+	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
+	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
+		status = readl(chanbase + D40_CHAN_REG_SDLNK);
+	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
+		status = readl(chanbase + D40_CHAN_REG_SSLNK);
+	} else {
+		chan_err(d40c, "Unknown direction\n");
+		goto unlock;
+	}
+
+	status = (status & D40_EVENTLINE_MASK(event)) >>
+		D40_EVENTLINE_POS(event);
+
+	if (status != D40_DMA_RUN)
+		is_paused = true;
+ unlock:
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return is_paused;
+
+}
+
+static u32 stedma40_residue(struct dma_chan *chan)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	u32 bytes_left;
+	unsigned long flags;
+
+	spin_lock_irqsave(&d40c->lock, flags);
+	bytes_left = d40_residue(d40c);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+
+	return bytes_left;
+}
+
+static int
+d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
+		struct scatterlist *sg_src, struct scatterlist *sg_dst,
+		unsigned int sg_len, dma_addr_t src_dev_addr,
+		dma_addr_t dst_dev_addr)
+{
+	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
+	struct stedma40_half_channel_info *src_info = &cfg->src_info;
+	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
+	int ret;
+
+	ret = d40_log_sg_to_lli(sg_src, sg_len,
+				src_dev_addr,
+				desc->lli_log.src,
+				chan->log_def.lcsp1,
+				src_info->data_width,
+				dst_info->data_width);
+
+	ret = d40_log_sg_to_lli(sg_dst, sg_len,
+				dst_dev_addr,
+				desc->lli_log.dst,
+				chan->log_def.lcsp3,
+				dst_info->data_width,
+				src_info->data_width);
+
+	return ret < 0 ? ret : 0;
+}
+
+static int
+d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
+		struct scatterlist *sg_src, struct scatterlist *sg_dst,
+		unsigned int sg_len, dma_addr_t src_dev_addr,
+		dma_addr_t dst_dev_addr)
+{
+	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
+	struct stedma40_half_channel_info *src_info = &cfg->src_info;
+	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
+	unsigned long flags = 0;
+	int ret;
+
+	if (desc->cyclic)
+		flags |= LLI_CYCLIC | LLI_TERM_INT;
+
+	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
+				desc->lli_phy.src,
+				virt_to_phys(desc->lli_phy.src),
+				chan->src_def_cfg,
+				src_info, dst_info, flags);
+
+	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
+				desc->lli_phy.dst,
+				virt_to_phys(desc->lli_phy.dst),
+				chan->dst_def_cfg,
+				dst_info, src_info, flags);
+
+	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
+				   desc->lli_pool.size, DMA_TO_DEVICE);
+
+	return ret < 0 ? ret : 0;
+}
+
+static struct d40_desc *
+d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
+	      unsigned int sg_len, unsigned long dma_flags)
+{
+	struct stedma40_chan_cfg *cfg;
+	struct d40_desc *desc;
+	int ret;
+
+	desc = d40_desc_get(chan);
+	if (!desc)
+		return NULL;
+
+	cfg = &chan->dma_cfg;
+	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
+					cfg->dst_info.data_width);
+	if (desc->lli_len < 0) {
+		chan_err(chan, "Unaligned size\n");
+		goto free_desc;
+	}
+
+	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
+	if (ret < 0) {
+		chan_err(chan, "Could not allocate lli\n");
+		goto free_desc;
+	}
+
+	desc->lli_current = 0;
+	desc->txd.flags = dma_flags;
+	desc->txd.tx_submit = d40_tx_submit;
+
+	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
+
+	return desc;
+ free_desc:
+	d40_desc_free(chan, desc);
+	return NULL;
+}
+
+static struct dma_async_tx_descriptor *
+d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
+	    struct scatterlist *sg_dst, unsigned int sg_len,
+	    enum dma_transfer_direction direction, unsigned long dma_flags)
+{
+	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
+	dma_addr_t src_dev_addr;
+	dma_addr_t dst_dev_addr;
+	struct d40_desc *desc;
+	unsigned long flags;
+	int ret;
+
+	if (!chan->phy_chan) {
+		chan_err(chan, "Cannot prepare unallocated channel\n");
+		return NULL;
+	}
+
+	spin_lock_irqsave(&chan->lock, flags);
+
+	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
+	if (desc == NULL)
+		goto unlock;
+
+	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
+		desc->cyclic = true;
+
+	src_dev_addr = 0;
+	dst_dev_addr = 0;
+	if (direction == DMA_DEV_TO_MEM)
+		src_dev_addr = chan->runtime_addr;
+	else if (direction == DMA_MEM_TO_DEV)
+		dst_dev_addr = chan->runtime_addr;
+
+	if (chan_is_logical(chan))
+		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
+				      sg_len, src_dev_addr, dst_dev_addr);
+	else
+		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
+				      sg_len, src_dev_addr, dst_dev_addr);
+
+	if (ret) {
+		chan_err(chan, "Failed to prepare %s sg job: %d\n",
+			 chan_is_logical(chan) ? "log" : "phy", ret);
+		goto free_desc;
+	}
+
+	/*
+	 * add descriptor to the prepare queue in order to be able
+	 * to free them later in terminate_all
+	 */
+	list_add_tail(&desc->node, &chan->prepare_queue);
+
+	spin_unlock_irqrestore(&chan->lock, flags);
+
+	return &desc->txd;
+ free_desc:
+	d40_desc_free(chan, desc);
+ unlock:
+	spin_unlock_irqrestore(&chan->lock, flags);
+	return NULL;
+}
+
+bool stedma40_filter(struct dma_chan *chan, void *data)
+{
+	struct stedma40_chan_cfg *info = data;
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	int err;
+
+	if (data) {
+		err = d40_validate_conf(d40c, info);
+		if (!err)
+			d40c->dma_cfg = *info;
+	} else
+		err = d40_config_memcpy(d40c);
+
+	if (!err)
+		d40c->configured = true;
+
+	return err == 0;
+}
+EXPORT_SYMBOL(stedma40_filter);
+
+static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
+{
+	bool realtime = d40c->dma_cfg.realtime;
+	bool highprio = d40c->dma_cfg.high_priority;
+	u32 rtreg;
+	u32 event = D40_TYPE_TO_EVENT(dev_type);
+	u32 group = D40_TYPE_TO_GROUP(dev_type);
+	u32 bit = BIT(event);
+	u32 prioreg;
+	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
+
+	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
+	/*
+	 * Due to a hardware bug, in some cases a logical channel triggered by
+	 * a high priority destination event line can generate extra packet
+	 * transactions.
+	 *
+	 * The workaround is to not set the high priority level for the
+	 * destination event lines that trigger logical channels.
+	 */
+	if (!src && chan_is_logical(d40c))
+		highprio = false;
+
+	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
+
+	/* Destination event lines are stored in the upper halfword */
+	if (!src)
+		bit <<= 16;
+
+	writel(bit, d40c->base->virtbase + prioreg + group * 4);
+	writel(bit, d40c->base->virtbase + rtreg + group * 4);
+}
+
+static void d40_set_prio_realtime(struct d40_chan *d40c)
+{
+	if (d40c->base->rev < 3)
+		return;
+
+	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
+	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
+		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
+
+	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
+	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
+		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
+}
+
+#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
+#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
+#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
+#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
+#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
+
+static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
+				  struct of_dma *ofdma)
+{
+	struct stedma40_chan_cfg cfg;
+	dma_cap_mask_t cap;
+	u32 flags;
+
+	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
+
+	dma_cap_zero(cap);
+	dma_cap_set(DMA_SLAVE, cap);
+
+	cfg.dev_type = dma_spec->args[0];
+	flags = dma_spec->args[2];
+
+	switch (D40_DT_FLAGS_MODE(flags)) {
+	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
+	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
+	}
+
+	switch (D40_DT_FLAGS_DIR(flags)) {
+	case 0:
+		cfg.dir = DMA_MEM_TO_DEV;
+		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
+		break;
+	case 1:
+		cfg.dir = DMA_DEV_TO_MEM;
+		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
+		break;
+	}
+
+	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
+		cfg.phy_channel = dma_spec->args[1];
+		cfg.use_fixed_channel = true;
+	}
+
+	if (D40_DT_FLAGS_HIGH_PRIO(flags))
+		cfg.high_priority = true;
+
+	return dma_request_channel(cap, stedma40_filter, &cfg);
+}
+
+/* DMA ENGINE functions */
+static int d40_alloc_chan_resources(struct dma_chan *chan)
+{
+	int err;
+	unsigned long flags;
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	bool is_free_phy;
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	dma_cookie_init(chan);
+
+	/* If no dma configuration is set use default configuration (memcpy) */
+	if (!d40c->configured) {
+		err = d40_config_memcpy(d40c);
+		if (err) {
+			chan_err(d40c, "Failed to configure memcpy channel\n");
+			goto mark_last_busy;
+		}
+	}
+
+	err = d40_allocate_channel(d40c, &is_free_phy);
+	if (err) {
+		chan_err(d40c, "Failed to allocate channel\n");
+		d40c->configured = false;
+		goto mark_last_busy;
+	}
+
+	pm_runtime_get_sync(d40c->base->dev);
+
+	d40_set_prio_realtime(d40c);
+
+	if (chan_is_logical(d40c)) {
+		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
+			d40c->lcpa = d40c->base->lcpa_base +
+				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
+		else
+			d40c->lcpa = d40c->base->lcpa_base +
+				d40c->dma_cfg.dev_type *
+				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
+
+		/* Unmask the Global Interrupt Mask. */
+		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
+		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
+	}
+
+	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
+		 chan_is_logical(d40c) ? "logical" : "physical",
+		 d40c->phy_chan->num,
+		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
+
+
+	/*
+	 * Only write channel configuration to the DMA if the physical
+	 * resource is free. In case of multiple logical channels
+	 * on the same physical resource, only the first write is necessary.
+	 */
+	if (is_free_phy)
+		d40_config_write(d40c);
+ mark_last_busy:
+	pm_runtime_mark_last_busy(d40c->base->dev);
+	pm_runtime_put_autosuspend(d40c->base->dev);
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return err;
+}
+
+static void d40_free_chan_resources(struct dma_chan *chan)
+{
+	struct d40_chan *d40c =
+		container_of(chan, struct d40_chan, chan);
+	int err;
+	unsigned long flags;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Cannot free unallocated channel\n");
+		return;
+	}
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	err = d40_free_dma(d40c);
+
+	if (err)
+		chan_err(d40c, "Failed to free channel\n");
+	spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
+						       dma_addr_t dst,
+						       dma_addr_t src,
+						       size_t size,
+						       unsigned long dma_flags)
+{
+	struct scatterlist dst_sg;
+	struct scatterlist src_sg;
+
+	sg_init_table(&dst_sg, 1);
+	sg_init_table(&src_sg, 1);
+
+	sg_dma_address(&dst_sg) = dst;
+	sg_dma_address(&src_sg) = src;
+
+	sg_dma_len(&dst_sg) = size;
+	sg_dma_len(&src_sg) = size;
+
+	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
+			   DMA_MEM_TO_MEM, dma_flags);
+}
+
+static struct dma_async_tx_descriptor *
+d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
+		  unsigned int sg_len, enum dma_transfer_direction direction,
+		  unsigned long dma_flags, void *context)
+{
+	if (!is_slave_direction(direction))
+		return NULL;
+
+	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
+}
+
+static struct dma_async_tx_descriptor *
+dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
+		     size_t buf_len, size_t period_len,
+		     enum dma_transfer_direction direction, unsigned long flags)
+{
+	unsigned int periods = buf_len / period_len;
+	struct dma_async_tx_descriptor *txd;
+	struct scatterlist *sg;
+	int i;
+
+	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
+	if (!sg)
+		return NULL;
+
+	for (i = 0; i < periods; i++) {
+		sg_dma_address(&sg[i]) = dma_addr;
+		sg_dma_len(&sg[i]) = period_len;
+		dma_addr += period_len;
+	}
+
+	sg_chain(sg, periods + 1, sg);
+
+	txd = d40_prep_sg(chan, sg, sg, periods, direction,
+			  DMA_PREP_INTERRUPT);
+
+	kfree(sg);
+
+	return txd;
+}
+
+static enum dma_status d40_tx_status(struct dma_chan *chan,
+				     dma_cookie_t cookie,
+				     struct dma_tx_state *txstate)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	enum dma_status ret;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Cannot read status of unallocated channel\n");
+		return -EINVAL;
+	}
+
+	ret = dma_cookie_status(chan, cookie, txstate);
+	if (ret != DMA_COMPLETE && txstate)
+		dma_set_residue(txstate, stedma40_residue(chan));
+
+	if (d40_is_paused(d40c))
+		ret = DMA_PAUSED;
+
+	return ret;
+}
+
+static void d40_issue_pending(struct dma_chan *chan)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	unsigned long flags;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Channel is not allocated!\n");
+		return;
+	}
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
+
+	/* Busy means that queued jobs are already being processed */
+	if (!d40c->busy)
+		(void) d40_queue_start(d40c);
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+}
+
+static int d40_terminate_all(struct dma_chan *chan)
+{
+	unsigned long flags;
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	int ret;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Channel is not allocated!\n");
+		return -EINVAL;
+	}
+
+	spin_lock_irqsave(&d40c->lock, flags);
+
+	pm_runtime_get_sync(d40c->base->dev);
+	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
+	if (ret)
+		chan_err(d40c, "Failed to stop channel\n");
+
+	d40_term_all(d40c);
+	pm_runtime_mark_last_busy(d40c->base->dev);
+	pm_runtime_put_autosuspend(d40c->base->dev);
+	if (d40c->busy) {
+		pm_runtime_mark_last_busy(d40c->base->dev);
+		pm_runtime_put_autosuspend(d40c->base->dev);
+	}
+	d40c->busy = false;
+
+	spin_unlock_irqrestore(&d40c->lock, flags);
+	return 0;
+}
+
+static int
+dma40_config_to_halfchannel(struct d40_chan *d40c,
+			    struct stedma40_half_channel_info *info,
+			    u32 maxburst)
+{
+	int psize;
+
+	if (chan_is_logical(d40c)) {
+		if (maxburst >= 16)
+			psize = STEDMA40_PSIZE_LOG_16;
+		else if (maxburst >= 8)
+			psize = STEDMA40_PSIZE_LOG_8;
+		else if (maxburst >= 4)
+			psize = STEDMA40_PSIZE_LOG_4;
+		else
+			psize = STEDMA40_PSIZE_LOG_1;
+	} else {
+		if (maxburst >= 16)
+			psize = STEDMA40_PSIZE_PHY_16;
+		else if (maxburst >= 8)
+			psize = STEDMA40_PSIZE_PHY_8;
+		else if (maxburst >= 4)
+			psize = STEDMA40_PSIZE_PHY_4;
+		else
+			psize = STEDMA40_PSIZE_PHY_1;
+	}
+
+	info->psize = psize;
+	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
+
+	return 0;
+}
+
+/* Runtime reconfiguration extension */
+static int d40_set_runtime_config(struct dma_chan *chan,
+				  struct dma_slave_config *config)
+{
+	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
+	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
+	enum dma_slave_buswidth src_addr_width, dst_addr_width;
+	dma_addr_t config_addr;
+	u32 src_maxburst, dst_maxburst;
+	int ret;
+
+	if (d40c->phy_chan == NULL) {
+		chan_err(d40c, "Channel is not allocated!\n");
+		return -EINVAL;
+	}
+
+	src_addr_width = config->src_addr_width;
+	src_maxburst = config->src_maxburst;
+	dst_addr_width = config->dst_addr_width;
+	dst_maxburst = config->dst_maxburst;
+
+	if (config->direction == DMA_DEV_TO_MEM) {
+		config_addr = config->src_addr;
+
+		if (cfg->dir != DMA_DEV_TO_MEM)
+			dev_dbg(d40c->base->dev,
+				"channel was not configured for peripheral "
+				"to memory transfer (%d) overriding\n",
+				cfg->dir);
+		cfg->dir = DMA_DEV_TO_MEM;
+
+		/* Configure the memory side */
+		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
+			dst_addr_width = src_addr_width;
+		if (dst_maxburst == 0)
+			dst_maxburst = src_maxburst;
+
+	} else if (config->direction == DMA_MEM_TO_DEV) {
+		config_addr = config->dst_addr;
+
+		if (cfg->dir != DMA_MEM_TO_DEV)
+			dev_dbg(d40c->base->dev,
+				"channel was not configured for memory "
+				"to peripheral transfer (%d) overriding\n",
+				cfg->dir);
+		cfg->dir = DMA_MEM_TO_DEV;
+
+		/* Configure the memory side */
+		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
+			src_addr_width = dst_addr_width;
+		if (src_maxburst == 0)
+			src_maxburst = dst_maxburst;
+	} else {
+		dev_err(d40c->base->dev,
+			"unrecognized channel direction %d\n",
+			config->direction);
+		return -EINVAL;
+	}
+
+	if (config_addr <= 0) {
+		dev_err(d40c->base->dev, "no address supplied\n");
+		return -EINVAL;
+	}
+
+	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
+		dev_err(d40c->base->dev,
+			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
+			src_maxburst,
+			src_addr_width,
+			dst_maxburst,
+			dst_addr_width);
+		return -EINVAL;
+	}
+
+	if (src_maxburst > 16) {
+		src_maxburst = 16;
+		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
+	} else if (dst_maxburst > 16) {
+		dst_maxburst = 16;
+		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
+	}
+
+	/* Only valid widths are; 1, 2, 4 and 8. */
+	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
+	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
+	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
+	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
+	    !is_power_of_2(src_addr_width) ||
+	    !is_power_of_2(dst_addr_width))
+		return -EINVAL;
+
+	cfg->src_info.data_width = src_addr_width;
+	cfg->dst_info.data_width = dst_addr_width;
+
+	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
+					  src_maxburst);
+	if (ret)
+		return ret;
+
+	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
+					  dst_maxburst);
+	if (ret)
+		return ret;
+
+	/* Fill in register values */
+	if (chan_is_logical(d40c))
+		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
+	else
+		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
+
+	/* These settings will take precedence later */
+	d40c->runtime_addr = config_addr;
+	d40c->runtime_direction = config->direction;
+	dev_dbg(d40c->base->dev,
+		"configured channel %s for %s, data width %d/%d, "
+		"maxburst %d/%d elements, LE, no flow control\n",
+		dma_chan_name(chan),
+		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
+		src_addr_width, dst_addr_width,
+		src_maxburst, dst_maxburst);
+
+	return 0;
+}
+
+/* Initialization functions */
+
+static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
+				 struct d40_chan *chans, int offset,
+				 int num_chans)
+{
+	int i = 0;
+	struct d40_chan *d40c;
+
+	INIT_LIST_HEAD(&dma->channels);
+
+	for (i = offset; i < offset + num_chans; i++) {
+		d40c = &chans[i];
+		d40c->base = base;
+		d40c->chan.device = dma;
+
+		spin_lock_init(&d40c->lock);
+
+		d40c->log_num = D40_PHY_CHAN;
+
+		INIT_LIST_HEAD(&d40c->done);
+		INIT_LIST_HEAD(&d40c->active);
+		INIT_LIST_HEAD(&d40c->queue);
+		INIT_LIST_HEAD(&d40c->pending_queue);
+		INIT_LIST_HEAD(&d40c->client);
+		INIT_LIST_HEAD(&d40c->prepare_queue);
+
+		tasklet_init(&d40c->tasklet, dma_tasklet,
+			     (unsigned long) d40c);
+
+		list_add_tail(&d40c->chan.device_node,
+			      &dma->channels);
+	}
+}
+
+static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
+{
+	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
+		dev->device_prep_slave_sg = d40_prep_slave_sg;
+		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
+	}
+
+	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
+		dev->device_prep_dma_memcpy = d40_prep_memcpy;
+		dev->directions = BIT(DMA_MEM_TO_MEM);
+		/*
+		 * This controller can only access address at even
+		 * 32bit boundaries, i.e. 2^2
+		 */
+		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
+	}
+
+	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
+		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
+
+	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
+	dev->device_free_chan_resources = d40_free_chan_resources;
+	dev->device_issue_pending = d40_issue_pending;
+	dev->device_tx_status = d40_tx_status;
+	dev->device_config = d40_set_runtime_config;
+	dev->device_pause = d40_pause;
+	dev->device_resume = d40_resume;
+	dev->device_terminate_all = d40_terminate_all;
+	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+	dev->dev = base->dev;
+}
+
+static int __init d40_dmaengine_init(struct d40_base *base,
+				     int num_reserved_chans)
+{
+	int err ;
+
+	d40_chan_init(base, &base->dma_slave, base->log_chans,
+		      0, base->num_log_chans);
+
+	dma_cap_zero(base->dma_slave.cap_mask);
+	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
+	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
+
+	d40_ops_init(base, &base->dma_slave);
+
+	err = dma_async_device_register(&base->dma_slave);
+
+	if (err) {
+		d40_err(base->dev, "Failed to register slave channels\n");
+		goto exit;
+	}
+
+	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
+		      base->num_log_chans, base->num_memcpy_chans);
+
+	dma_cap_zero(base->dma_memcpy.cap_mask);
+	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
+
+	d40_ops_init(base, &base->dma_memcpy);
+
+	err = dma_async_device_register(&base->dma_memcpy);
+
+	if (err) {
+		d40_err(base->dev,
+			"Failed to register memcpy only channels\n");
+		goto unregister_slave;
+	}
+
+	d40_chan_init(base, &base->dma_both, base->phy_chans,
+		      0, num_reserved_chans);
+
+	dma_cap_zero(base->dma_both.cap_mask);
+	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
+	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
+	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
+
+	d40_ops_init(base, &base->dma_both);
+	err = dma_async_device_register(&base->dma_both);
+
+	if (err) {
+		d40_err(base->dev,
+			"Failed to register logical and physical capable channels\n");
+		goto unregister_memcpy;
+	}
+	return 0;
+ unregister_memcpy:
+	dma_async_device_unregister(&base->dma_memcpy);
+ unregister_slave:
+	dma_async_device_unregister(&base->dma_slave);
+ exit:
+	return err;
+}
+
+/* Suspend resume functionality */
+#ifdef CONFIG_PM_SLEEP
+static int dma40_suspend(struct device *dev)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct d40_base *base = platform_get_drvdata(pdev);
+	int ret;
+
+	ret = pm_runtime_force_suspend(dev);
+	if (ret)
+		return ret;
+
+	if (base->lcpa_regulator)
+		ret = regulator_disable(base->lcpa_regulator);
+	return ret;
+}
+
+static int dma40_resume(struct device *dev)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct d40_base *base = platform_get_drvdata(pdev);
+	int ret = 0;
+
+	if (base->lcpa_regulator) {
+		ret = regulator_enable(base->lcpa_regulator);
+		if (ret)
+			return ret;
+	}
+
+	return pm_runtime_force_resume(dev);
+}
+#endif
+
+#ifdef CONFIG_PM
+static void dma40_backup(void __iomem *baseaddr, u32 *backup,
+			 u32 *regaddr, int num, bool save)
+{
+	int i;
+
+	for (i = 0; i < num; i++) {
+		void __iomem *addr = baseaddr + regaddr[i];
+
+		if (save)
+			backup[i] = readl_relaxed(addr);
+		else
+			writel_relaxed(backup[i], addr);
+	}
+}
+
+static void d40_save_restore_registers(struct d40_base *base, bool save)
+{
+	int i;
+
+	/* Save/Restore channel specific registers */
+	for (i = 0; i < base->num_phy_chans; i++) {
+		void __iomem *addr;
+		int idx;
+
+		if (base->phy_res[i].reserved)
+			continue;
+
+		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
+		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
+
+		dma40_backup(addr, &base->reg_val_backup_chan[idx],
+			     d40_backup_regs_chan,
+			     ARRAY_SIZE(d40_backup_regs_chan),
+			     save);
+	}
+
+	/* Save/Restore global registers */
+	dma40_backup(base->virtbase, base->reg_val_backup,
+		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
+		     save);
+
+	/* Save/Restore registers only existing on dma40 v3 and later */
+	if (base->gen_dmac.backup)
+		dma40_backup(base->virtbase, base->reg_val_backup_v4,
+			     base->gen_dmac.backup,
+			base->gen_dmac.backup_size,
+			save);
+}
+
+static int dma40_runtime_suspend(struct device *dev)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct d40_base *base = platform_get_drvdata(pdev);
+
+	d40_save_restore_registers(base, true);
+
+	/* Don't disable/enable clocks for v1 due to HW bugs */
+	if (base->rev != 1)
+		writel_relaxed(base->gcc_pwr_off_mask,
+			       base->virtbase + D40_DREG_GCC);
+
+	return 0;
+}
+
+static int dma40_runtime_resume(struct device *dev)
+{
+	struct platform_device *pdev = to_platform_device(dev);
+	struct d40_base *base = platform_get_drvdata(pdev);
+
+	d40_save_restore_registers(base, false);
+
+	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
+		       base->virtbase + D40_DREG_GCC);
+	return 0;
+}
+#endif
+
+static const struct dev_pm_ops dma40_pm_ops = {
+	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
+	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
+				dma40_runtime_resume,
+				NULL)
+};
+
+/* Initialization functions. */
+
+static int __init d40_phy_res_init(struct d40_base *base)
+{
+	int i;
+	int num_phy_chans_avail = 0;
+	u32 val[2];
+	int odd_even_bit = -2;
+	int gcc = D40_DREG_GCC_ENA;
+
+	val[0] = readl(base->virtbase + D40_DREG_PRSME);
+	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
+
+	for (i = 0; i < base->num_phy_chans; i++) {
+		base->phy_res[i].num = i;
+		odd_even_bit += 2 * ((i % 2) == 0);
+		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
+			/* Mark security only channels as occupied */
+			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
+			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
+			base->phy_res[i].reserved = true;
+			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
+						       D40_DREG_GCC_SRC);
+			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
+						       D40_DREG_GCC_DST);
+
+
+		} else {
+			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
+			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
+			base->phy_res[i].reserved = false;
+			num_phy_chans_avail++;
+		}
+		spin_lock_init(&base->phy_res[i].lock);
+	}
+
+	/* Mark disabled channels as occupied */
+	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
+		int chan = base->plat_data->disabled_channels[i];
+
+		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
+		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
+		base->phy_res[chan].reserved = true;
+		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
+					       D40_DREG_GCC_SRC);
+		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
+					       D40_DREG_GCC_DST);
+		num_phy_chans_avail--;
+	}
+
+	/* Mark soft_lli channels */
+	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
+		int chan = base->plat_data->soft_lli_chans[i];
+
+		base->phy_res[chan].use_soft_lli = true;
+	}
+
+	dev_info(base->dev, "%d of %d physical DMA channels available\n",
+		 num_phy_chans_avail, base->num_phy_chans);
+
+	/* Verify settings extended vs standard */
+	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
+
+	for (i = 0; i < base->num_phy_chans; i++) {
+
+		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
+		    (val[0] & 0x3) != 1)
+			dev_info(base->dev,
+				 "[%s] INFO: channel %d is misconfigured (%d)\n",
+				 __func__, i, val[0] & 0x3);
+
+		val[0] = val[0] >> 2;
+	}
+
+	/*
+	 * To keep things simple, Enable all clocks initially.
+	 * The clocks will get managed later post channel allocation.
+	 * The clocks for the event lines on which reserved channels exists
+	 * are not managed here.
+	 */
+	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
+	base->gcc_pwr_off_mask = gcc;
+
+	return num_phy_chans_avail;
+}
+
+static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
+{
+	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
+	struct clk *clk;
+	void __iomem *virtbase;
+	struct resource *res;
+	struct d40_base *base;
+	int num_log_chans;
+	int num_phy_chans;
+	int num_memcpy_chans;
+	int clk_ret = -EINVAL;
+	int i;
+	u32 pid;
+	u32 cid;
+	u8 rev;
+
+	clk = clk_get(&pdev->dev, NULL);
+	if (IS_ERR(clk)) {
+		d40_err(&pdev->dev, "No matching clock found\n");
+		goto check_prepare_enabled;
+	}
+
+	clk_ret = clk_prepare_enable(clk);
+	if (clk_ret) {
+		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
+		goto disable_unprepare;
+	}
+
+	/* Get IO for DMAC base address */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
+	if (!res)
+		goto disable_unprepare;
+
+	if (request_mem_region(res->start, resource_size(res),
+			       D40_NAME " I/O base") == NULL)
+		goto release_region;
+
+	virtbase = ioremap(res->start, resource_size(res));
+	if (!virtbase)
+		goto release_region;
+
+	/* This is just a regular AMBA PrimeCell ID actually */
+	for (pid = 0, i = 0; i < 4; i++)
+		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
+			& 255) << (i * 8);
+	for (cid = 0, i = 0; i < 4; i++)
+		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
+			& 255) << (i * 8);
+
+	if (cid != AMBA_CID) {
+		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
+		goto unmap_io;
+	}
+	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
+		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
+			AMBA_MANF_BITS(pid),
+			AMBA_VENDOR_ST);
+		goto unmap_io;
+	}
+	/*
+	 * HW revision:
+	 * DB8500ed has revision 0
+	 * ? has revision 1
+	 * DB8500v1 has revision 2
+	 * DB8500v2 has revision 3
+	 * AP9540v1 has revision 4
+	 * DB8540v1 has revision 4
+	 */
+	rev = AMBA_REV_BITS(pid);
+	if (rev < 2) {
+		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
+		goto unmap_io;
+	}
+
+	/* The number of physical channels on this HW */
+	if (plat_data->num_of_phy_chans)
+		num_phy_chans = plat_data->num_of_phy_chans;
+	else
+		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
+
+	/* The number of channels used for memcpy */
+	if (plat_data->num_of_memcpy_chans)
+		num_memcpy_chans = plat_data->num_of_memcpy_chans;
+	else
+		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
+
+	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
+
+	dev_info(&pdev->dev,
+		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
+		 rev, &res->start, num_phy_chans, num_log_chans);
+
+	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
+		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
+		       sizeof(struct d40_chan), GFP_KERNEL);
+
+	if (base == NULL)
+		goto unmap_io;
+
+	base->rev = rev;
+	base->clk = clk;
+	base->num_memcpy_chans = num_memcpy_chans;
+	base->num_phy_chans = num_phy_chans;
+	base->num_log_chans = num_log_chans;
+	base->phy_start = res->start;
+	base->phy_size = resource_size(res);
+	base->virtbase = virtbase;
+	base->plat_data = plat_data;
+	base->dev = &pdev->dev;
+	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
+	base->log_chans = &base->phy_chans[num_phy_chans];
+
+	if (base->plat_data->num_of_phy_chans == 14) {
+		base->gen_dmac.backup = d40_backup_regs_v4b;
+		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
+		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
+		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
+		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
+		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
+		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
+		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
+		base->gen_dmac.il = il_v4b;
+		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
+		base->gen_dmac.init_reg = dma_init_reg_v4b;
+		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
+	} else {
+		if (base->rev >= 3) {
+			base->gen_dmac.backup = d40_backup_regs_v4a;
+			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
+		}
+		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
+		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
+		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
+		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
+		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
+		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
+		base->gen_dmac.il = il_v4a;
+		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
+		base->gen_dmac.init_reg = dma_init_reg_v4a;
+		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
+	}
+
+	base->phy_res = kcalloc(num_phy_chans,
+				sizeof(*base->phy_res),
+				GFP_KERNEL);
+	if (!base->phy_res)
+		goto free_base;
+
+	base->lookup_phy_chans = kcalloc(num_phy_chans,
+					 sizeof(*base->lookup_phy_chans),
+					 GFP_KERNEL);
+	if (!base->lookup_phy_chans)
+		goto free_phy_res;
+
+	base->lookup_log_chans = kcalloc(num_log_chans,
+					 sizeof(*base->lookup_log_chans),
+					 GFP_KERNEL);
+	if (!base->lookup_log_chans)
+		goto free_phy_chans;
+
+	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
+						  sizeof(d40_backup_regs_chan),
+						  GFP_KERNEL);
+	if (!base->reg_val_backup_chan)
+		goto free_log_chans;
+
+	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
+					    * D40_LCLA_LINK_PER_EVENT_GRP,
+					    sizeof(*base->lcla_pool.alloc_map),
+					    GFP_KERNEL);
+	if (!base->lcla_pool.alloc_map)
+		goto free_backup_chan;
+
+	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
+					    0, SLAB_HWCACHE_ALIGN,
+					    NULL);
+	if (base->desc_slab == NULL)
+		goto free_map;
+
+	return base;
+ free_map:
+	kfree(base->lcla_pool.alloc_map);
+ free_backup_chan:
+	kfree(base->reg_val_backup_chan);
+ free_log_chans:
+	kfree(base->lookup_log_chans);
+ free_phy_chans:
+	kfree(base->lookup_phy_chans);
+ free_phy_res:
+	kfree(base->phy_res);
+ free_base:
+	kfree(base);
+ unmap_io:
+	iounmap(virtbase);
+ release_region:
+	release_mem_region(res->start, resource_size(res));
+ check_prepare_enabled:
+	if (!clk_ret)
+ disable_unprepare:
+		clk_disable_unprepare(clk);
+	if (!IS_ERR(clk))
+		clk_put(clk);
+	return NULL;
+}
+
+static void __init d40_hw_init(struct d40_base *base)
+{
+
+	int i;
+	u32 prmseo[2] = {0, 0};
+	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
+	u32 pcmis = 0;
+	u32 pcicr = 0;
+	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
+	u32 reg_size = base->gen_dmac.init_reg_size;
+
+	for (i = 0; i < reg_size; i++)
+		writel(dma_init_reg[i].val,
+		       base->virtbase + dma_init_reg[i].reg);
+
+	/* Configure all our dma channels to default settings */
+	for (i = 0; i < base->num_phy_chans; i++) {
+
+		activeo[i % 2] = activeo[i % 2] << 2;
+
+		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
+		    == D40_ALLOC_PHY) {
+			activeo[i % 2] |= 3;
+			continue;
+		}
+
+		/* Enable interrupt # */
+		pcmis = (pcmis << 1) | 1;
+
+		/* Clear interrupt # */
+		pcicr = (pcicr << 1) | 1;
+
+		/* Set channel to physical mode */
+		prmseo[i % 2] = prmseo[i % 2] << 2;
+		prmseo[i % 2] |= 1;
+
+	}
+
+	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
+	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
+	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
+	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
+
+	/* Write which interrupt to enable */
+	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
+
+	/* Write which interrupt to clear */
+	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
+
+	/* These are __initdata and cannot be accessed after init */
+	base->gen_dmac.init_reg = NULL;
+	base->gen_dmac.init_reg_size = 0;
+}
+
+static int __init d40_lcla_allocate(struct d40_base *base)
+{
+	struct d40_lcla_pool *pool = &base->lcla_pool;
+	unsigned long *page_list;
+	int i, j;
+	int ret;
+
+	/*
+	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
+	 * To full fill this hardware requirement without wasting 256 kb
+	 * we allocate pages until we get an aligned one.
+	 */
+	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
+				  sizeof(*page_list),
+				  GFP_KERNEL);
+	if (!page_list)
+		return -ENOMEM;
+
+	/* Calculating how many pages that are required */
+	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
+
+	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
+		page_list[i] = __get_free_pages(GFP_KERNEL,
+						base->lcla_pool.pages);
+		if (!page_list[i]) {
+
+			d40_err(base->dev, "Failed to allocate %d pages.\n",
+				base->lcla_pool.pages);
+			ret = -ENOMEM;
+
+			for (j = 0; j < i; j++)
+				free_pages(page_list[j], base->lcla_pool.pages);
+			goto free_page_list;
+		}
+
+		if ((virt_to_phys((void *)page_list[i]) &
+		     (LCLA_ALIGNMENT - 1)) == 0)
+			break;
+	}
+
+	for (j = 0; j < i; j++)
+		free_pages(page_list[j], base->lcla_pool.pages);
+
+	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
+		base->lcla_pool.base = (void *)page_list[i];
+	} else {
+		/*
+		 * After many attempts and no succees with finding the correct
+		 * alignment, try with allocating a big buffer.
+		 */
+		dev_warn(base->dev,
+			 "[%s] Failed to get %d pages @ 18 bit align.\n",
+			 __func__, base->lcla_pool.pages);
+		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
+							 base->num_phy_chans +
+							 LCLA_ALIGNMENT,
+							 GFP_KERNEL);
+		if (!base->lcla_pool.base_unaligned) {
+			ret = -ENOMEM;
+			goto free_page_list;
+		}
+
+		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
+						 LCLA_ALIGNMENT);
+	}
+
+	pool->dma_addr = dma_map_single(base->dev, pool->base,
+					SZ_1K * base->num_phy_chans,
+					DMA_TO_DEVICE);
+	if (dma_mapping_error(base->dev, pool->dma_addr)) {
+		pool->dma_addr = 0;
+		ret = -ENOMEM;
+		goto free_page_list;
+	}
+
+	writel(virt_to_phys(base->lcla_pool.base),
+	       base->virtbase + D40_DREG_LCLA);
+	ret = 0;
+ free_page_list:
+	kfree(page_list);
+	return ret;
+}
+
+static int __init d40_of_probe(struct platform_device *pdev,
+			       struct device_node *np)
+{
+	struct stedma40_platform_data *pdata;
+	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
+	const __be32 *list;
+
+	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+	if (!pdata)
+		return -ENOMEM;
+
+	/* If absent this value will be obtained from h/w. */
+	of_property_read_u32(np, "dma-channels", &num_phy);
+	if (num_phy > 0)
+		pdata->num_of_phy_chans = num_phy;
+
+	list = of_get_property(np, "memcpy-channels", &num_memcpy);
+	num_memcpy /= sizeof(*list);
+
+	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
+		d40_err(&pdev->dev,
+			"Invalid number of memcpy channels specified (%d)\n",
+			num_memcpy);
+		return -EINVAL;
+	}
+	pdata->num_of_memcpy_chans = num_memcpy;
+
+	of_property_read_u32_array(np, "memcpy-channels",
+				   dma40_memcpy_channels,
+				   num_memcpy);
+
+	list = of_get_property(np, "disabled-channels", &num_disabled);
+	num_disabled /= sizeof(*list);
+
+	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
+		d40_err(&pdev->dev,
+			"Invalid number of disabled channels specified (%d)\n",
+			num_disabled);
+		return -EINVAL;
+	}
+
+	of_property_read_u32_array(np, "disabled-channels",
+				   pdata->disabled_channels,
+				   num_disabled);
+	pdata->disabled_channels[num_disabled] = -1;
+
+	pdev->dev.platform_data = pdata;
+
+	return 0;
+}
+
+static int __init d40_probe(struct platform_device *pdev)
+{
+	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
+	struct device_node *np = pdev->dev.of_node;
+	int ret = -ENOENT;
+	struct d40_base *base;
+	struct resource *res;
+	int num_reserved_chans;
+	u32 val;
+
+	if (!plat_data) {
+		if (np) {
+			if (d40_of_probe(pdev, np)) {
+				ret = -ENOMEM;
+				goto report_failure;
+			}
+		} else {
+			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
+			goto report_failure;
+		}
+	}
+
+	base = d40_hw_detect_init(pdev);
+	if (!base)
+		goto report_failure;
+
+	num_reserved_chans = d40_phy_res_init(base);
+
+	platform_set_drvdata(pdev, base);
+
+	spin_lock_init(&base->interrupt_lock);
+	spin_lock_init(&base->execmd_lock);
+
+	/* Get IO for logical channel parameter address */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
+	if (!res) {
+		ret = -ENOENT;
+		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
+		goto destroy_cache;
+	}
+	base->lcpa_size = resource_size(res);
+	base->phy_lcpa = res->start;
+
+	if (request_mem_region(res->start, resource_size(res),
+			       D40_NAME " I/O lcpa") == NULL) {
+		ret = -EBUSY;
+		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
+		goto destroy_cache;
+	}
+
+	/* We make use of ESRAM memory for this. */
+	val = readl(base->virtbase + D40_DREG_LCPA);
+	if (res->start != val && val != 0) {
+		dev_warn(&pdev->dev,
+			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
+			 __func__, val, &res->start);
+	} else
+		writel(res->start, base->virtbase + D40_DREG_LCPA);
+
+	base->lcpa_base = ioremap(res->start, resource_size(res));
+	if (!base->lcpa_base) {
+		ret = -ENOMEM;
+		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
+		goto destroy_cache;
+	}
+	/* If lcla has to be located in ESRAM we don't need to allocate */
+	if (base->plat_data->use_esram_lcla) {
+		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+							"lcla_esram");
+		if (!res) {
+			ret = -ENOENT;
+			d40_err(&pdev->dev,
+				"No \"lcla_esram\" memory resource\n");
+			goto destroy_cache;
+		}
+		base->lcla_pool.base = ioremap(res->start,
+						resource_size(res));
+		if (!base->lcla_pool.base) {
+			ret = -ENOMEM;
+			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
+			goto destroy_cache;
+		}
+		writel(res->start, base->virtbase + D40_DREG_LCLA);
+
+	} else {
+		ret = d40_lcla_allocate(base);
+		if (ret) {
+			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
+			goto destroy_cache;
+		}
+	}
+
+	spin_lock_init(&base->lcla_pool.lock);
+
+	base->irq = platform_get_irq(pdev, 0);
+
+	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
+	if (ret) {
+		d40_err(&pdev->dev, "No IRQ defined\n");
+		goto destroy_cache;
+	}
+
+	if (base->plat_data->use_esram_lcla) {
+
+		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
+		if (IS_ERR(base->lcpa_regulator)) {
+			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
+			ret = PTR_ERR(base->lcpa_regulator);
+			base->lcpa_regulator = NULL;
+			goto destroy_cache;
+		}
+
+		ret = regulator_enable(base->lcpa_regulator);
+		if (ret) {
+			d40_err(&pdev->dev,
+				"Failed to enable lcpa_regulator\n");
+			regulator_put(base->lcpa_regulator);
+			base->lcpa_regulator = NULL;
+			goto destroy_cache;
+		}
+	}
+
+	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
+
+	pm_runtime_irq_safe(base->dev);
+	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
+	pm_runtime_use_autosuspend(base->dev);
+	pm_runtime_mark_last_busy(base->dev);
+	pm_runtime_set_active(base->dev);
+	pm_runtime_enable(base->dev);
+
+	ret = d40_dmaengine_init(base, num_reserved_chans);
+	if (ret)
+		goto destroy_cache;
+
+	base->dev->dma_parms = &base->dma_parms;
+	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
+	if (ret) {
+		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
+		goto destroy_cache;
+	}
+
+	d40_hw_init(base);
+
+	if (np) {
+		ret = of_dma_controller_register(np, d40_xlate, NULL);
+		if (ret)
+			dev_err(&pdev->dev,
+				"could not register of_dma_controller\n");
+	}
+
+	dev_info(base->dev, "initialized\n");
+	return 0;
+ destroy_cache:
+	kmem_cache_destroy(base->desc_slab);
+	if (base->virtbase)
+		iounmap(base->virtbase);
+
+	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
+		iounmap(base->lcla_pool.base);
+		base->lcla_pool.base = NULL;
+	}
+
+	if (base->lcla_pool.dma_addr)
+		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
+				 SZ_1K * base->num_phy_chans,
+				 DMA_TO_DEVICE);
+
+	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
+		free_pages((unsigned long)base->lcla_pool.base,
+			   base->lcla_pool.pages);
+
+	kfree(base->lcla_pool.base_unaligned);
+
+	if (base->phy_lcpa)
+		release_mem_region(base->phy_lcpa,
+				   base->lcpa_size);
+	if (base->phy_start)
+		release_mem_region(base->phy_start,
+				   base->phy_size);
+	if (base->clk) {
+		clk_disable_unprepare(base->clk);
+		clk_put(base->clk);
+	}
+
+	if (base->lcpa_regulator) {
+		regulator_disable(base->lcpa_regulator);
+		regulator_put(base->lcpa_regulator);
+	}
+
+	kfree(base->lcla_pool.alloc_map);
+	kfree(base->lookup_log_chans);
+	kfree(base->lookup_phy_chans);
+	kfree(base->phy_res);
+	kfree(base);
+ report_failure:
+	d40_err(&pdev->dev, "probe failed\n");
+	return ret;
+}
+
+static const struct of_device_id d40_match[] = {
+        { .compatible = "stericsson,dma40", },
+        {}
+};
+
+static struct platform_driver d40_driver = {
+	.driver = {
+		.name  = D40_NAME,
+		.pm = &dma40_pm_ops,
+		.of_match_table = d40_match,
+	},
+};
+
+static int __init stedma40_init(void)
+{
+	return platform_driver_probe(&d40_driver, d40_probe);
+}
+subsys_initcall(stedma40_init);