[Feature]add MT2731_MP2_MR2_SVN388 baseline version

Change-Id: Ief04314834b31e27effab435d3ca8ba33b499059
diff --git a/src/kernel/linux/v4.14/drivers/edac/i5000_edac.c b/src/kernel/linux/v4.14/drivers/edac/i5000_edac.c
new file mode 100644
index 0000000..53f24b1
--- /dev/null
+++ b/src/kernel/linux/v4.14/drivers/edac/i5000_edac.c
@@ -0,0 +1,1593 @@
+/*
+ * Intel 5000(P/V/X) class Memory Controllers kernel module
+ *
+ * This file may be distributed under the terms of the
+ * GNU General Public License.
+ *
+ * Written by Douglas Thompson Linux Networx (http://lnxi.com)
+ *	norsk5@xmission.com
+ *
+ * This module is based on the following document:
+ *
+ * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
+ * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/slab.h>
+#include <linux/edac.h>
+#include <asm/mmzone.h>
+
+#include "edac_module.h"
+
+/*
+ * Alter this version for the I5000 module when modifications are made
+ */
+#define I5000_REVISION    " Ver: 2.0.12"
+#define EDAC_MOD_STR      "i5000_edac"
+
+#define i5000_printk(level, fmt, arg...) \
+        edac_printk(level, "i5000", fmt, ##arg)
+
+#define i5000_mc_printk(mci, level, fmt, arg...) \
+        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
+
+#ifndef PCI_DEVICE_ID_INTEL_FBD_0
+#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
+#endif
+#ifndef PCI_DEVICE_ID_INTEL_FBD_1
+#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
+#endif
+
+/* Device 16,
+ * Function 0: System Address
+ * Function 1: Memory Branch Map, Control, Errors Register
+ * Function 2: FSB Error Registers
+ *
+ * All 3 functions of Device 16 (0,1,2) share the SAME DID
+ */
+#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
+
+/* OFFSETS for Function 0 */
+
+/* OFFSETS for Function 1 */
+#define		AMBASE			0x48
+#define		MAXCH			0x56
+#define		MAXDIMMPERCH		0x57
+#define		TOLM			0x6C
+#define		REDMEMB			0x7C
+#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
+#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
+#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
+#define		MIR0			0x80
+#define		MIR1			0x84
+#define		MIR2			0x88
+#define		AMIR0			0x8C
+#define		AMIR1			0x90
+#define		AMIR2			0x94
+
+#define		FERR_FAT_FBD		0x98
+#define		NERR_FAT_FBD		0x9C
+#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
+#define			FERR_FAT_FBDCHAN 0x30000000
+#define			FERR_FAT_M3ERR	0x00000004
+#define			FERR_FAT_M2ERR	0x00000002
+#define			FERR_FAT_M1ERR	0x00000001
+#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
+						FERR_FAT_M2ERR | \
+						FERR_FAT_M3ERR)
+
+#define		FERR_NF_FBD		0xA0
+
+/* Thermal and SPD or BFD errors */
+#define			FERR_NF_M28ERR	0x01000000
+#define			FERR_NF_M27ERR	0x00800000
+#define			FERR_NF_M26ERR	0x00400000
+#define			FERR_NF_M25ERR	0x00200000
+#define			FERR_NF_M24ERR	0x00100000
+#define			FERR_NF_M23ERR	0x00080000
+#define			FERR_NF_M22ERR	0x00040000
+#define			FERR_NF_M21ERR	0x00020000
+
+/* Correctable errors */
+#define			FERR_NF_M20ERR	0x00010000
+#define			FERR_NF_M19ERR	0x00008000
+#define			FERR_NF_M18ERR	0x00004000
+#define			FERR_NF_M17ERR	0x00002000
+
+/* Non-Retry or redundant Retry errors */
+#define			FERR_NF_M16ERR	0x00001000
+#define			FERR_NF_M15ERR	0x00000800
+#define			FERR_NF_M14ERR	0x00000400
+#define			FERR_NF_M13ERR	0x00000200
+
+/* Uncorrectable errors */
+#define			FERR_NF_M12ERR	0x00000100
+#define			FERR_NF_M11ERR	0x00000080
+#define			FERR_NF_M10ERR	0x00000040
+#define			FERR_NF_M9ERR	0x00000020
+#define			FERR_NF_M8ERR	0x00000010
+#define			FERR_NF_M7ERR	0x00000008
+#define			FERR_NF_M6ERR	0x00000004
+#define			FERR_NF_M5ERR	0x00000002
+#define			FERR_NF_M4ERR	0x00000001
+
+#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
+							FERR_NF_M11ERR | \
+							FERR_NF_M10ERR | \
+							FERR_NF_M9ERR | \
+							FERR_NF_M8ERR | \
+							FERR_NF_M7ERR | \
+							FERR_NF_M6ERR | \
+							FERR_NF_M5ERR | \
+							FERR_NF_M4ERR)
+#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
+							FERR_NF_M19ERR | \
+							FERR_NF_M18ERR | \
+							FERR_NF_M17ERR)
+#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
+							FERR_NF_M28ERR)
+#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
+							FERR_NF_M25ERR | \
+							FERR_NF_M24ERR | \
+							FERR_NF_M23ERR)
+#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
+#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
+#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
+							FERR_NF_M14ERR | \
+							FERR_NF_M15ERR)
+
+#define		NERR_NF_FBD		0xA4
+#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
+							FERR_NF_CORRECTABLE | \
+							FERR_NF_DIMM_SPARE | \
+							FERR_NF_THERMAL | \
+							FERR_NF_SPD_PROTOCOL | \
+							FERR_NF_NORTH_CRC | \
+							FERR_NF_NON_RETRY)
+
+#define		EMASK_FBD		0xA8
+#define			EMASK_FBD_M28ERR	0x08000000
+#define			EMASK_FBD_M27ERR	0x04000000
+#define			EMASK_FBD_M26ERR	0x02000000
+#define			EMASK_FBD_M25ERR	0x01000000
+#define			EMASK_FBD_M24ERR	0x00800000
+#define			EMASK_FBD_M23ERR	0x00400000
+#define			EMASK_FBD_M22ERR	0x00200000
+#define			EMASK_FBD_M21ERR	0x00100000
+#define			EMASK_FBD_M20ERR	0x00080000
+#define			EMASK_FBD_M19ERR	0x00040000
+#define			EMASK_FBD_M18ERR	0x00020000
+#define			EMASK_FBD_M17ERR	0x00010000
+
+#define			EMASK_FBD_M15ERR	0x00004000
+#define			EMASK_FBD_M14ERR	0x00002000
+#define			EMASK_FBD_M13ERR	0x00001000
+#define			EMASK_FBD_M12ERR	0x00000800
+#define			EMASK_FBD_M11ERR	0x00000400
+#define			EMASK_FBD_M10ERR	0x00000200
+#define			EMASK_FBD_M9ERR		0x00000100
+#define			EMASK_FBD_M8ERR		0x00000080
+#define			EMASK_FBD_M7ERR		0x00000040
+#define			EMASK_FBD_M6ERR		0x00000020
+#define			EMASK_FBD_M5ERR		0x00000010
+#define			EMASK_FBD_M4ERR		0x00000008
+#define			EMASK_FBD_M3ERR		0x00000004
+#define			EMASK_FBD_M2ERR		0x00000002
+#define			EMASK_FBD_M1ERR		0x00000001
+
+#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
+							EMASK_FBD_M2ERR | \
+							EMASK_FBD_M3ERR)
+
+#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
+							EMASK_FBD_M5ERR | \
+							EMASK_FBD_M6ERR | \
+							EMASK_FBD_M7ERR | \
+							EMASK_FBD_M8ERR | \
+							EMASK_FBD_M9ERR | \
+							EMASK_FBD_M10ERR | \
+							EMASK_FBD_M11ERR | \
+							EMASK_FBD_M12ERR)
+#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
+							EMASK_FBD_M18ERR | \
+							EMASK_FBD_M19ERR | \
+							EMASK_FBD_M20ERR)
+#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
+							EMASK_FBD_M28ERR)
+#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
+							EMASK_FBD_M25ERR | \
+							EMASK_FBD_M24ERR | \
+							EMASK_FBD_M23ERR)
+#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
+#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
+#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
+							EMASK_FBD_M14ERR | \
+							EMASK_FBD_M13ERR)
+
+#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
+					ENABLE_EMASK_FBD_NORTH_CRC | \
+					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
+					ENABLE_EMASK_FBD_THERMALS | \
+					ENABLE_EMASK_FBD_DIMM_SPARE | \
+					ENABLE_EMASK_FBD_FATAL_ERRORS | \
+					ENABLE_EMASK_FBD_CORRECTABLE | \
+					ENABLE_EMASK_FBD_UNCORRECTABLE)
+
+#define		ERR0_FBD		0xAC
+#define		ERR1_FBD		0xB0
+#define		ERR2_FBD		0xB4
+#define		MCERR_FBD		0xB8
+#define		NRECMEMA		0xBE
+#define			NREC_BANK(x)		(((x)>>12) & 0x7)
+#define			NREC_RDWR(x)		(((x)>>11) & 1)
+#define			NREC_RANK(x)		(((x)>>8) & 0x7)
+#define		NRECMEMB		0xC0
+#define			NREC_CAS(x)		(((x)>>16) & 0xFFF)
+#define			NREC_RAS(x)		((x) & 0x7FFF)
+#define		NRECFGLOG		0xC4
+#define		NREEECFBDA		0xC8
+#define		NREEECFBDB		0xCC
+#define		NREEECFBDC		0xD0
+#define		NREEECFBDD		0xD4
+#define		NREEECFBDE		0xD8
+#define		REDMEMA			0xDC
+#define		RECMEMA			0xE2
+#define			REC_BANK(x)		(((x)>>12) & 0x7)
+#define			REC_RDWR(x)		(((x)>>11) & 1)
+#define			REC_RANK(x)		(((x)>>8) & 0x7)
+#define		RECMEMB			0xE4
+#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
+#define			REC_RAS(x)		((x) & 0x7FFF)
+#define		RECFGLOG		0xE8
+#define		RECFBDA			0xEC
+#define		RECFBDB			0xF0
+#define		RECFBDC			0xF4
+#define		RECFBDD			0xF8
+#define		RECFBDE			0xFC
+
+/* OFFSETS for Function 2 */
+
+/*
+ * Device 21,
+ * Function 0: Memory Map Branch 0
+ *
+ * Device 22,
+ * Function 0: Memory Map Branch 1
+ */
+#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
+#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
+
+#define AMB_PRESENT_0	0x64
+#define AMB_PRESENT_1	0x66
+#define MTR0		0x80
+#define MTR1		0x84
+#define MTR2		0x88
+#define MTR3		0x8C
+
+#define NUM_MTRS		4
+#define CHANNELS_PER_BRANCH	2
+#define MAX_BRANCHES		2
+
+/* Defines to extract the various fields from the
+ *	MTRx - Memory Technology Registers
+ */
+#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
+#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
+#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
+#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
+#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
+#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
+#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
+#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
+#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
+#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
+
+/* enables the report of miscellaneous messages as CE errors - default off */
+static int misc_messages;
+
+/* Enumeration of supported devices */
+enum i5000_chips {
+	I5000P = 0,
+	I5000V = 1,		/* future */
+	I5000X = 2		/* future */
+};
+
+/* Device name and register DID (Device ID) */
+struct i5000_dev_info {
+	const char *ctl_name;	/* name for this device */
+	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
+};
+
+/* Table of devices attributes supported by this driver */
+static const struct i5000_dev_info i5000_devs[] = {
+	[I5000P] = {
+		.ctl_name = "I5000",
+		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
+	},
+};
+
+struct i5000_dimm_info {
+	int megabytes;		/* size, 0 means not present  */
+	int dual_rank;
+};
+
+#define	MAX_CHANNELS	6	/* max possible channels */
+#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
+
+/* driver private data structure */
+struct i5000_pvt {
+	struct pci_dev *system_address;	/* 16.0 */
+	struct pci_dev *branchmap_werrors;	/* 16.1 */
+	struct pci_dev *fsb_error_regs;	/* 16.2 */
+	struct pci_dev *branch_0;	/* 21.0 */
+	struct pci_dev *branch_1;	/* 22.0 */
+
+	u16 tolm;		/* top of low memory */
+	union {
+		u64 ambase;		/* AMB BAR */
+		struct {
+			u32 ambase_bottom;
+			u32 ambase_top;
+		} u __packed;
+	};
+
+	u16 mir0, mir1, mir2;
+
+	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
+	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
+	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
+
+	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
+	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
+	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
+
+	/* DIMM information matrix, allocating architecture maximums */
+	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
+
+	/* Actual values for this controller */
+	int maxch;		/* Max channels */
+	int maxdimmperch;	/* Max DIMMs per channel */
+};
+
+/* I5000 MCH error information retrieved from Hardware */
+struct i5000_error_info {
+
+	/* These registers are always read from the MC */
+	u32 ferr_fat_fbd;	/* First Errors Fatal */
+	u32 nerr_fat_fbd;	/* Next Errors Fatal */
+	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
+	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
+
+	/* These registers are input ONLY if there was a Recoverable  Error */
+	u32 redmemb;		/* Recoverable Mem Data Error log B */
+	u16 recmema;		/* Recoverable Mem Error log A */
+	u32 recmemb;		/* Recoverable Mem Error log B */
+
+	/* These registers are input ONLY if there was a
+	 * Non-Recoverable Error */
+	u16 nrecmema;		/* Non-Recoverable Mem log A */
+	u32 nrecmemb;		/* Non-Recoverable Mem log B */
+
+};
+
+static struct edac_pci_ctl_info *i5000_pci;
+
+/*
+ *	i5000_get_error_info	Retrieve the hardware error information from
+ *				the hardware and cache it in the 'info'
+ *				structure
+ */
+static void i5000_get_error_info(struct mem_ctl_info *mci,
+				 struct i5000_error_info *info)
+{
+	struct i5000_pvt *pvt;
+	u32 value;
+
+	pvt = mci->pvt_info;
+
+	/* read in the 1st FATAL error register */
+	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
+
+	/* Mask only the bits that the doc says are valid
+	 */
+	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
+
+	/* If there is an error, then read in the */
+	/* NEXT FATAL error register and the Memory Error Log Register A */
+	if (value & FERR_FAT_MASK) {
+		info->ferr_fat_fbd = value;
+
+		/* harvest the various error data we need */
+		pci_read_config_dword(pvt->branchmap_werrors,
+				NERR_FAT_FBD, &info->nerr_fat_fbd);
+		pci_read_config_word(pvt->branchmap_werrors,
+				NRECMEMA, &info->nrecmema);
+		pci_read_config_dword(pvt->branchmap_werrors,
+				NRECMEMB, &info->nrecmemb);
+
+		/* Clear the error bits, by writing them back */
+		pci_write_config_dword(pvt->branchmap_werrors,
+				FERR_FAT_FBD, value);
+	} else {
+		info->ferr_fat_fbd = 0;
+		info->nerr_fat_fbd = 0;
+		info->nrecmema = 0;
+		info->nrecmemb = 0;
+	}
+
+	/* read in the 1st NON-FATAL error register */
+	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
+
+	/* If there is an error, then read in the 1st NON-FATAL error
+	 * register as well */
+	if (value & FERR_NF_MASK) {
+		info->ferr_nf_fbd = value;
+
+		/* harvest the various error data we need */
+		pci_read_config_dword(pvt->branchmap_werrors,
+				NERR_NF_FBD, &info->nerr_nf_fbd);
+		pci_read_config_word(pvt->branchmap_werrors,
+				RECMEMA, &info->recmema);
+		pci_read_config_dword(pvt->branchmap_werrors,
+				RECMEMB, &info->recmemb);
+		pci_read_config_dword(pvt->branchmap_werrors,
+				REDMEMB, &info->redmemb);
+
+		/* Clear the error bits, by writing them back */
+		pci_write_config_dword(pvt->branchmap_werrors,
+				FERR_NF_FBD, value);
+	} else {
+		info->ferr_nf_fbd = 0;
+		info->nerr_nf_fbd = 0;
+		info->recmema = 0;
+		info->recmemb = 0;
+		info->redmemb = 0;
+	}
+}
+
+/*
+ * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
+ * 					struct i5000_error_info *info,
+ * 					int handle_errors);
+ *
+ *	handle the Intel FATAL errors, if any
+ */
+static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
+					struct i5000_error_info *info,
+					int handle_errors)
+{
+	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
+	char *specific = NULL;
+	u32 allErrors;
+	int channel;
+	int bank;
+	int rank;
+	int rdwr;
+	int ras, cas;
+
+	/* mask off the Error bits that are possible */
+	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
+	if (!allErrors)
+		return;		/* if no error, return now */
+
+	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
+
+	/* Use the NON-Recoverable macros to extract data */
+	bank = NREC_BANK(info->nrecmema);
+	rank = NREC_RANK(info->nrecmema);
+	rdwr = NREC_RDWR(info->nrecmema);
+	ras = NREC_RAS(info->nrecmemb);
+	cas = NREC_CAS(info->nrecmemb);
+
+	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
+		 rank, channel, bank,
+		 rdwr ? "Write" : "Read", ras, cas);
+
+	/* Only 1 bit will be on */
+	switch (allErrors) {
+	case FERR_FAT_M1ERR:
+		specific = "Alert on non-redundant retry or fast "
+				"reset timeout";
+		break;
+	case FERR_FAT_M2ERR:
+		specific = "Northbound CRC error on non-redundant "
+				"retry";
+		break;
+	case FERR_FAT_M3ERR:
+		{
+		static int done;
+
+		/*
+		 * This error is generated to inform that the intelligent
+		 * throttling is disabled and the temperature passed the
+		 * specified middle point. Since this is something the BIOS
+		 * should take care of, we'll warn only once to avoid
+		 * worthlessly flooding the log.
+		 */
+		if (done)
+			return;
+		done++;
+
+		specific = ">Tmid Thermal event with intelligent "
+			   "throttling disabled";
+		}
+		break;
+	}
+
+	/* Form out message */
+	snprintf(msg, sizeof(msg),
+		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
+		 bank, ras, cas, allErrors, specific);
+
+	/* Call the helper to output message */
+	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
+			     channel >> 1, channel & 1, rank,
+			     rdwr ? "Write error" : "Read error",
+			     msg);
+}
+
+/*
+ * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
+ * 				struct i5000_error_info *info,
+ * 				int handle_errors);
+ *
+ *	handle the Intel NON-FATAL errors, if any
+ */
+static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
+					struct i5000_error_info *info,
+					int handle_errors)
+{
+	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
+	char *specific = NULL;
+	u32 allErrors;
+	u32 ue_errors;
+	u32 ce_errors;
+	u32 misc_errors;
+	int branch;
+	int channel;
+	int bank;
+	int rank;
+	int rdwr;
+	int ras, cas;
+
+	/* mask off the Error bits that are possible */
+	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
+	if (!allErrors)
+		return;		/* if no error, return now */
+
+	/* ONLY ONE of the possible error bits will be set, as per the docs */
+	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
+	if (ue_errors) {
+		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
+
+		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
+
+		/*
+		 * According with i5000 datasheet, bit 28 has no significance
+		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
+		 */
+		channel = branch & 2;
+
+		bank = NREC_BANK(info->nrecmema);
+		rank = NREC_RANK(info->nrecmema);
+		rdwr = NREC_RDWR(info->nrecmema);
+		ras = NREC_RAS(info->nrecmemb);
+		cas = NREC_CAS(info->nrecmemb);
+
+		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
+			 rank, channel, channel + 1, branch >> 1, bank,
+			 rdwr ? "Write" : "Read", ras, cas);
+
+		switch (ue_errors) {
+		case FERR_NF_M12ERR:
+			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
+			break;
+		case FERR_NF_M11ERR:
+			specific = "Non-Aliased Uncorrectable Spare-Copy "
+					"Data ECC";
+			break;
+		case FERR_NF_M10ERR:
+			specific = "Non-Aliased Uncorrectable Mirrored Demand "
+					"Data ECC";
+			break;
+		case FERR_NF_M9ERR:
+			specific = "Non-Aliased Uncorrectable Non-Mirrored "
+					"Demand Data ECC";
+			break;
+		case FERR_NF_M8ERR:
+			specific = "Aliased Uncorrectable Patrol Data ECC";
+			break;
+		case FERR_NF_M7ERR:
+			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
+			break;
+		case FERR_NF_M6ERR:
+			specific = "Aliased Uncorrectable Mirrored Demand "
+					"Data ECC";
+			break;
+		case FERR_NF_M5ERR:
+			specific = "Aliased Uncorrectable Non-Mirrored Demand "
+					"Data ECC";
+			break;
+		case FERR_NF_M4ERR:
+			specific = "Uncorrectable Data ECC on Replay";
+			break;
+		}
+
+		/* Form out message */
+		snprintf(msg, sizeof(msg),
+			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
+			 rank, bank, ras, cas, ue_errors, specific);
+
+		/* Call the helper to output message */
+		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
+				channel >> 1, -1, rank,
+				rdwr ? "Write error" : "Read error",
+				msg);
+	}
+
+	/* Check correctable errors */
+	ce_errors = allErrors & FERR_NF_CORRECTABLE;
+	if (ce_errors) {
+		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
+
+		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
+
+		channel = 0;
+		if (REC_ECC_LOCATOR_ODD(info->redmemb))
+			channel = 1;
+
+		/* Convert channel to be based from zero, instead of
+		 * from branch base of 0 */
+		channel += branch;
+
+		bank = REC_BANK(info->recmema);
+		rank = REC_RANK(info->recmema);
+		rdwr = REC_RDWR(info->recmema);
+		ras = REC_RAS(info->recmemb);
+		cas = REC_CAS(info->recmemb);
+
+		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
+			 rank, channel, branch >> 1, bank,
+			 rdwr ? "Write" : "Read", ras, cas);
+
+		switch (ce_errors) {
+		case FERR_NF_M17ERR:
+			specific = "Correctable Non-Mirrored Demand Data ECC";
+			break;
+		case FERR_NF_M18ERR:
+			specific = "Correctable Mirrored Demand Data ECC";
+			break;
+		case FERR_NF_M19ERR:
+			specific = "Correctable Spare-Copy Data ECC";
+			break;
+		case FERR_NF_M20ERR:
+			specific = "Correctable Patrol Data ECC";
+			break;
+		}
+
+		/* Form out message */
+		snprintf(msg, sizeof(msg),
+			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
+			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
+			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
+			 specific);
+
+		/* Call the helper to output message */
+		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
+				channel >> 1, channel % 2, rank,
+				rdwr ? "Write error" : "Read error",
+				msg);
+	}
+
+	if (!misc_messages)
+		return;
+
+	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
+				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
+	if (misc_errors) {
+		switch (misc_errors) {
+		case FERR_NF_M13ERR:
+			specific = "Non-Retry or Redundant Retry FBD Memory "
+					"Alert or Redundant Fast Reset Timeout";
+			break;
+		case FERR_NF_M14ERR:
+			specific = "Non-Retry or Redundant Retry FBD "
+					"Configuration Alert";
+			break;
+		case FERR_NF_M15ERR:
+			specific = "Non-Retry or Redundant Retry FBD "
+					"Northbound CRC error on read data";
+			break;
+		case FERR_NF_M21ERR:
+			specific = "FBD Northbound CRC error on "
+					"FBD Sync Status";
+			break;
+		case FERR_NF_M22ERR:
+			specific = "SPD protocol error";
+			break;
+		case FERR_NF_M27ERR:
+			specific = "DIMM-spare copy started";
+			break;
+		case FERR_NF_M28ERR:
+			specific = "DIMM-spare copy completed";
+			break;
+		}
+		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
+
+		/* Form out message */
+		snprintf(msg, sizeof(msg),
+			 "Err=%#x (%s)", misc_errors, specific);
+
+		/* Call the helper to output message */
+		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
+				branch >> 1, -1, -1,
+				"Misc error", msg);
+	}
+}
+
+/*
+ *	i5000_process_error_info	Process the error info that is
+ *	in the 'info' structure, previously retrieved from hardware
+ */
+static void i5000_process_error_info(struct mem_ctl_info *mci,
+				struct i5000_error_info *info,
+				int handle_errors)
+{
+	/* First handle any fatal errors that occurred */
+	i5000_process_fatal_error_info(mci, info, handle_errors);
+
+	/* now handle any non-fatal errors that occurred */
+	i5000_process_nonfatal_error_info(mci, info, handle_errors);
+}
+
+/*
+ *	i5000_clear_error	Retrieve any error from the hardware
+ *				but do NOT process that error.
+ *				Used for 'clearing' out of previous errors
+ *				Called by the Core module.
+ */
+static void i5000_clear_error(struct mem_ctl_info *mci)
+{
+	struct i5000_error_info info;
+
+	i5000_get_error_info(mci, &info);
+}
+
+/*
+ *	i5000_check_error	Retrieve and process errors reported by the
+ *				hardware. Called by the Core module.
+ */
+static void i5000_check_error(struct mem_ctl_info *mci)
+{
+	struct i5000_error_info info;
+	edac_dbg(4, "MC%d\n", mci->mc_idx);
+	i5000_get_error_info(mci, &info);
+	i5000_process_error_info(mci, &info, 1);
+}
+
+/*
+ *	i5000_get_devices	Find and perform 'get' operation on the MCH's
+ *			device/functions we want to reference for this driver
+ *
+ *			Need to 'get' device 16 func 1 and func 2
+ */
+static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
+{
+	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
+	struct i5000_pvt *pvt;
+	struct pci_dev *pdev;
+
+	pvt = mci->pvt_info;
+
+	/* Attempt to 'get' the MCH register we want */
+	pdev = NULL;
+	while (1) {
+		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
+
+		/* End of list, leave */
+		if (pdev == NULL) {
+			i5000_printk(KERN_ERR,
+				"'system address,Process Bus' "
+				"device not found:"
+				"vendor 0x%x device 0x%x FUNC 1 "
+				"(broken BIOS?)\n",
+				PCI_VENDOR_ID_INTEL,
+				PCI_DEVICE_ID_INTEL_I5000_DEV16);
+
+			return 1;
+		}
+
+		/* Scan for device 16 func 1 */
+		if (PCI_FUNC(pdev->devfn) == 1)
+			break;
+	}
+
+	pvt->branchmap_werrors = pdev;
+
+	/* Attempt to 'get' the MCH register we want */
+	pdev = NULL;
+	while (1) {
+		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
+
+		if (pdev == NULL) {
+			i5000_printk(KERN_ERR,
+				"MC: 'branchmap,control,errors' "
+				"device not found:"
+				"vendor 0x%x device 0x%x Func 2 "
+				"(broken BIOS?)\n",
+				PCI_VENDOR_ID_INTEL,
+				PCI_DEVICE_ID_INTEL_I5000_DEV16);
+
+			pci_dev_put(pvt->branchmap_werrors);
+			return 1;
+		}
+
+		/* Scan for device 16 func 1 */
+		if (PCI_FUNC(pdev->devfn) == 2)
+			break;
+	}
+
+	pvt->fsb_error_regs = pdev;
+
+	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
+		 pci_name(pvt->system_address),
+		 pvt->system_address->vendor, pvt->system_address->device);
+	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
+		 pci_name(pvt->branchmap_werrors),
+		 pvt->branchmap_werrors->vendor,
+		 pvt->branchmap_werrors->device);
+	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
+		 pci_name(pvt->fsb_error_regs),
+		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
+
+	pdev = NULL;
+	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
+
+	if (pdev == NULL) {
+		i5000_printk(KERN_ERR,
+			"MC: 'BRANCH 0' device not found:"
+			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
+			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
+
+		pci_dev_put(pvt->branchmap_werrors);
+		pci_dev_put(pvt->fsb_error_regs);
+		return 1;
+	}
+
+	pvt->branch_0 = pdev;
+
+	/* If this device claims to have more than 2 channels then
+	 * fetch Branch 1's information
+	 */
+	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
+		pdev = NULL;
+		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
+				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
+
+		if (pdev == NULL) {
+			i5000_printk(KERN_ERR,
+				"MC: 'BRANCH 1' device not found:"
+				"vendor 0x%x device 0x%x Func 0 "
+				"(broken BIOS?)\n",
+				PCI_VENDOR_ID_INTEL,
+				PCI_DEVICE_ID_I5000_BRANCH_1);
+
+			pci_dev_put(pvt->branchmap_werrors);
+			pci_dev_put(pvt->fsb_error_regs);
+			pci_dev_put(pvt->branch_0);
+			return 1;
+		}
+
+		pvt->branch_1 = pdev;
+	}
+
+	return 0;
+}
+
+/*
+ *	i5000_put_devices	'put' all the devices that we have
+ *				reserved via 'get'
+ */
+static void i5000_put_devices(struct mem_ctl_info *mci)
+{
+	struct i5000_pvt *pvt;
+
+	pvt = mci->pvt_info;
+
+	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
+	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
+	pci_dev_put(pvt->branch_0);	/* DEV 21 */
+
+	/* Only if more than 2 channels do we release the second branch */
+	if (pvt->maxch >= CHANNELS_PER_BRANCH)
+		pci_dev_put(pvt->branch_1);	/* DEV 22 */
+}
+
+/*
+ *	determine_amb_resent
+ *
+ *		the information is contained in NUM_MTRS different registers
+ *		determineing which of the NUM_MTRS requires knowing
+ *		which channel is in question
+ *
+ *	2 branches, each with 2 channels
+ *		b0_ambpresent0 for channel '0'
+ *		b0_ambpresent1 for channel '1'
+ *		b1_ambpresent0 for channel '2'
+ *		b1_ambpresent1 for channel '3'
+ */
+static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
+{
+	int amb_present;
+
+	if (channel < CHANNELS_PER_BRANCH) {
+		if (channel & 0x1)
+			amb_present = pvt->b0_ambpresent1;
+		else
+			amb_present = pvt->b0_ambpresent0;
+	} else {
+		if (channel & 0x1)
+			amb_present = pvt->b1_ambpresent1;
+		else
+			amb_present = pvt->b1_ambpresent0;
+	}
+
+	return amb_present;
+}
+
+/*
+ * determine_mtr(pvt, csrow, channel)
+ *
+ *	return the proper MTR register as determine by the csrow and channel desired
+ */
+static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
+{
+	int mtr;
+
+	if (channel < CHANNELS_PER_BRANCH)
+		mtr = pvt->b0_mtr[slot];
+	else
+		mtr = pvt->b1_mtr[slot];
+
+	return mtr;
+}
+
+/*
+ */
+static void decode_mtr(int slot_row, u16 mtr)
+{
+	int ans;
+
+	ans = MTR_DIMMS_PRESENT(mtr);
+
+	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
+		 slot_row, mtr, ans ? "" : "NOT ");
+	if (!ans)
+		return;
+
+	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
+	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
+	edac_dbg(2, "\t\tNUMRANK: %s\n",
+		 MTR_DIMM_RANK(mtr) ? "double" : "single");
+	edac_dbg(2, "\t\tNUMROW: %s\n",
+		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
+		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
+		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
+		 "reserved");
+	edac_dbg(2, "\t\tNUMCOL: %s\n",
+		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
+		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
+		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
+		 "reserved");
+}
+
+static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
+			struct i5000_dimm_info *dinfo)
+{
+	int mtr;
+	int amb_present_reg;
+	int addrBits;
+
+	mtr = determine_mtr(pvt, slot, channel);
+	if (MTR_DIMMS_PRESENT(mtr)) {
+		amb_present_reg = determine_amb_present_reg(pvt, channel);
+
+		/* Determine if there is a DIMM present in this DIMM slot */
+		if (amb_present_reg) {
+			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
+
+			/* Start with the number of bits for a Bank
+				* on the DRAM */
+			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
+			/* Add the number of ROW bits */
+			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
+			/* add the number of COLUMN bits */
+			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
+
+			/* Dual-rank memories have twice the size */
+			if (dinfo->dual_rank)
+				addrBits++;
+
+			addrBits += 6;	/* add 64 bits per DIMM */
+			addrBits -= 20;	/* divide by 2^^20 */
+			addrBits -= 3;	/* 8 bits per bytes */
+
+			dinfo->megabytes = 1 << addrBits;
+		}
+	}
+}
+
+/*
+ *	calculate_dimm_size
+ *
+ *	also will output a DIMM matrix map, if debug is enabled, for viewing
+ *	how the DIMMs are populated
+ */
+static void calculate_dimm_size(struct i5000_pvt *pvt)
+{
+	struct i5000_dimm_info *dinfo;
+	int slot, channel, branch;
+	char *p, *mem_buffer;
+	int space, n;
+
+	/* ================= Generate some debug output ================= */
+	space = PAGE_SIZE;
+	mem_buffer = p = kmalloc(space, GFP_KERNEL);
+	if (p == NULL) {
+		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
+			__FILE__, __func__);
+		return;
+	}
+
+	/* Scan all the actual slots
+	 * and calculate the information for each DIMM
+	 * Start with the highest slot first, to display it first
+	 * and work toward the 0th slot
+	 */
+	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
+
+		/* on an odd slot, first output a 'boundary' marker,
+		 * then reset the message buffer  */
+		if (slot & 0x1) {
+			n = snprintf(p, space, "--------------------------"
+				"--------------------------------");
+			p += n;
+			space -= n;
+			edac_dbg(2, "%s\n", mem_buffer);
+			p = mem_buffer;
+			space = PAGE_SIZE;
+		}
+		n = snprintf(p, space, "slot %2d    ", slot);
+		p += n;
+		space -= n;
+
+		for (channel = 0; channel < pvt->maxch; channel++) {
+			dinfo = &pvt->dimm_info[slot][channel];
+			handle_channel(pvt, slot, channel, dinfo);
+			if (dinfo->megabytes)
+				n = snprintf(p, space, "%4d MB %dR| ",
+					     dinfo->megabytes, dinfo->dual_rank + 1);
+			else
+				n = snprintf(p, space, "%4d MB   | ", 0);
+			p += n;
+			space -= n;
+		}
+		p += n;
+		space -= n;
+		edac_dbg(2, "%s\n", mem_buffer);
+		p = mem_buffer;
+		space = PAGE_SIZE;
+	}
+
+	/* Output the last bottom 'boundary' marker */
+	n = snprintf(p, space, "--------------------------"
+		"--------------------------------");
+	p += n;
+	space -= n;
+	edac_dbg(2, "%s\n", mem_buffer);
+	p = mem_buffer;
+	space = PAGE_SIZE;
+
+	/* now output the 'channel' labels */
+	n = snprintf(p, space, "           ");
+	p += n;
+	space -= n;
+	for (channel = 0; channel < pvt->maxch; channel++) {
+		n = snprintf(p, space, "channel %d | ", channel);
+		p += n;
+		space -= n;
+	}
+	edac_dbg(2, "%s\n", mem_buffer);
+	p = mem_buffer;
+	space = PAGE_SIZE;
+
+	n = snprintf(p, space, "           ");
+	p += n;
+	for (branch = 0; branch < MAX_BRANCHES; branch++) {
+		n = snprintf(p, space, "       branch %d       | ", branch);
+		p += n;
+		space -= n;
+	}
+
+	/* output the last message and free buffer */
+	edac_dbg(2, "%s\n", mem_buffer);
+	kfree(mem_buffer);
+}
+
+/*
+ *	i5000_get_mc_regs	read in the necessary registers and
+ *				cache locally
+ *
+ *			Fills in the private data members
+ */
+static void i5000_get_mc_regs(struct mem_ctl_info *mci)
+{
+	struct i5000_pvt *pvt;
+	u32 actual_tolm;
+	u16 limit;
+	int slot_row;
+	int maxch;
+	int maxdimmperch;
+	int way0, way1;
+
+	pvt = mci->pvt_info;
+
+	pci_read_config_dword(pvt->system_address, AMBASE,
+			&pvt->u.ambase_bottom);
+	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
+			&pvt->u.ambase_top);
+
+	maxdimmperch = pvt->maxdimmperch;
+	maxch = pvt->maxch;
+
+	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
+		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
+
+	/* Get the Branch Map regs */
+	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
+	pvt->tolm >>= 12;
+	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
+		 pvt->tolm, pvt->tolm);
+
+	actual_tolm = pvt->tolm << 28;
+	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
+		 actual_tolm, actual_tolm);
+
+	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
+	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
+	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
+
+	/* Get the MIR[0-2] regs */
+	limit = (pvt->mir0 >> 4) & 0x0FFF;
+	way0 = pvt->mir0 & 0x1;
+	way1 = pvt->mir0 & 0x2;
+	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
+		 limit, way1, way0);
+	limit = (pvt->mir1 >> 4) & 0x0FFF;
+	way0 = pvt->mir1 & 0x1;
+	way1 = pvt->mir1 & 0x2;
+	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
+		 limit, way1, way0);
+	limit = (pvt->mir2 >> 4) & 0x0FFF;
+	way0 = pvt->mir2 & 0x1;
+	way1 = pvt->mir2 & 0x2;
+	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
+		 limit, way1, way0);
+
+	/* Get the MTR[0-3] regs */
+	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
+		int where = MTR0 + (slot_row * sizeof(u32));
+
+		pci_read_config_word(pvt->branch_0, where,
+				&pvt->b0_mtr[slot_row]);
+
+		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
+			 slot_row, where, pvt->b0_mtr[slot_row]);
+
+		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
+			pci_read_config_word(pvt->branch_1, where,
+					&pvt->b1_mtr[slot_row]);
+			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
+				 slot_row, where, pvt->b1_mtr[slot_row]);
+		} else {
+			pvt->b1_mtr[slot_row] = 0;
+		}
+	}
+
+	/* Read and dump branch 0's MTRs */
+	edac_dbg(2, "Memory Technology Registers:\n");
+	edac_dbg(2, "   Branch 0:\n");
+	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
+		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
+	}
+	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
+			&pvt->b0_ambpresent0);
+	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
+	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
+			&pvt->b0_ambpresent1);
+	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
+
+	/* Only if we have 2 branchs (4 channels) */
+	if (pvt->maxch < CHANNELS_PER_BRANCH) {
+		pvt->b1_ambpresent0 = 0;
+		pvt->b1_ambpresent1 = 0;
+	} else {
+		/* Read and dump  branch 1's MTRs */
+		edac_dbg(2, "   Branch 1:\n");
+		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
+			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
+		}
+		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
+				&pvt->b1_ambpresent0);
+		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
+			 pvt->b1_ambpresent0);
+		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
+				&pvt->b1_ambpresent1);
+		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
+			 pvt->b1_ambpresent1);
+	}
+
+	/* Go and determine the size of each DIMM and place in an
+	 * orderly matrix */
+	calculate_dimm_size(pvt);
+}
+
+/*
+ *	i5000_init_csrows	Initialize the 'csrows' table within
+ *				the mci control	structure with the
+ *				addressing of memory.
+ *
+ *	return:
+ *		0	success
+ *		1	no actual memory found on this MC
+ */
+static int i5000_init_csrows(struct mem_ctl_info *mci)
+{
+	struct i5000_pvt *pvt;
+	struct dimm_info *dimm;
+	int empty, channel_count;
+	int max_csrows;
+	int mtr;
+	int csrow_megs;
+	int channel;
+	int slot;
+
+	pvt = mci->pvt_info;
+
+	channel_count = pvt->maxch;
+	max_csrows = pvt->maxdimmperch * 2;
+
+	empty = 1;		/* Assume NO memory */
+
+	/*
+	 * FIXME: The memory layout used to map slot/channel into the
+	 * real memory architecture is weird: branch+slot are "csrows"
+	 * and channel is channel. That required an extra array (dimm_info)
+	 * to map the dimms. A good cleanup would be to remove this array,
+	 * and do a loop here with branch, channel, slot
+	 */
+	for (slot = 0; slot < max_csrows; slot++) {
+		for (channel = 0; channel < pvt->maxch; channel++) {
+
+			mtr = determine_mtr(pvt, slot, channel);
+
+			if (!MTR_DIMMS_PRESENT(mtr))
+				continue;
+
+			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
+				       channel / MAX_BRANCHES,
+				       channel % MAX_BRANCHES, slot);
+
+			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
+			dimm->grain = 8;
+
+			/* Assume DDR2 for now */
+			dimm->mtype = MEM_FB_DDR2;
+
+			/* ask what device type on this row */
+			if (MTR_DRAM_WIDTH(mtr) == 8)
+				dimm->dtype = DEV_X8;
+			else
+				dimm->dtype = DEV_X4;
+
+			dimm->edac_mode = EDAC_S8ECD8ED;
+			dimm->nr_pages = csrow_megs << 8;
+		}
+
+		empty = 0;
+	}
+
+	return empty;
+}
+
+/*
+ *	i5000_enable_error_reporting
+ *			Turn on the memory reporting features of the hardware
+ */
+static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
+{
+	struct i5000_pvt *pvt;
+	u32 fbd_error_mask;
+
+	pvt = mci->pvt_info;
+
+	/* Read the FBD Error Mask Register */
+	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
+			&fbd_error_mask);
+
+	/* Enable with a '0' */
+	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
+
+	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
+			fbd_error_mask);
+}
+
+/*
+ * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
+ *
+ *	ask the device how many channels are present and how many CSROWS
+ *	 as well
+ */
+static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
+					int *num_dimms_per_channel,
+					int *num_channels)
+{
+	u8 value;
+
+	/* Need to retrieve just how many channels and dimms per channel are
+	 * supported on this memory controller
+	 */
+	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
+	*num_dimms_per_channel = (int)value;
+
+	pci_read_config_byte(pdev, MAXCH, &value);
+	*num_channels = (int)value;
+}
+
+/*
+ *	i5000_probe1	Probe for ONE instance of device to see if it is
+ *			present.
+ *	return:
+ *		0 for FOUND a device
+ *		< 0 for error code
+ */
+static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
+{
+	struct mem_ctl_info *mci;
+	struct edac_mc_layer layers[3];
+	struct i5000_pvt *pvt;
+	int num_channels;
+	int num_dimms_per_channel;
+
+	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
+		 pdev->bus->number,
+		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
+
+	/* We only are looking for func 0 of the set */
+	if (PCI_FUNC(pdev->devfn) != 0)
+		return -ENODEV;
+
+	/* Ask the devices for the number of CSROWS and CHANNELS so
+	 * that we can calculate the memory resources, etc
+	 *
+	 * The Chipset will report what it can handle which will be greater
+	 * or equal to what the motherboard manufacturer will implement.
+	 *
+	 * As we don't have a motherboard identification routine to determine
+	 * actual number of slots/dimms per channel, we thus utilize the
+	 * resource as specified by the chipset. Thus, we might have
+	 * have more DIMMs per channel than actually on the mobo, but this
+	 * allows the driver to support up to the chipset max, without
+	 * some fancy mobo determination.
+	 */
+	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
+					&num_channels);
+
+	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
+		 num_channels, num_dimms_per_channel);
+
+	/* allocate a new MC control structure */
+
+	layers[0].type = EDAC_MC_LAYER_BRANCH;
+	layers[0].size = MAX_BRANCHES;
+	layers[0].is_virt_csrow = false;
+	layers[1].type = EDAC_MC_LAYER_CHANNEL;
+	layers[1].size = num_channels / MAX_BRANCHES;
+	layers[1].is_virt_csrow = false;
+	layers[2].type = EDAC_MC_LAYER_SLOT;
+	layers[2].size = num_dimms_per_channel;
+	layers[2].is_virt_csrow = true;
+	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
+	if (mci == NULL)
+		return -ENOMEM;
+
+	edac_dbg(0, "MC: mci = %p\n", mci);
+
+	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
+
+	pvt = mci->pvt_info;
+	pvt->system_address = pdev;	/* Record this device in our private */
+	pvt->maxch = num_channels;
+	pvt->maxdimmperch = num_dimms_per_channel;
+
+	/* 'get' the pci devices we want to reserve for our use */
+	if (i5000_get_devices(mci, dev_idx))
+		goto fail0;
+
+	/* Time to get serious */
+	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
+
+	mci->mc_idx = 0;
+	mci->mtype_cap = MEM_FLAG_FB_DDR2;
+	mci->edac_ctl_cap = EDAC_FLAG_NONE;
+	mci->edac_cap = EDAC_FLAG_NONE;
+	mci->mod_name = "i5000_edac.c";
+	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
+	mci->dev_name = pci_name(pdev);
+	mci->ctl_page_to_phys = NULL;
+
+	/* Set the function pointer to an actual operation function */
+	mci->edac_check = i5000_check_error;
+
+	/* initialize the MC control structure 'csrows' table
+	 * with the mapping and control information */
+	if (i5000_init_csrows(mci)) {
+		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
+		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
+	} else {
+		edac_dbg(1, "MC: Enable error reporting now\n");
+		i5000_enable_error_reporting(mci);
+	}
+
+	/* add this new MC control structure to EDAC's list of MCs */
+	if (edac_mc_add_mc(mci)) {
+		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
+		/* FIXME: perhaps some code should go here that disables error
+		 * reporting if we just enabled it
+		 */
+		goto fail1;
+	}
+
+	i5000_clear_error(mci);
+
+	/* allocating generic PCI control info */
+	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
+	if (!i5000_pci) {
+		printk(KERN_WARNING
+			"%s(): Unable to create PCI control\n",
+			__func__);
+		printk(KERN_WARNING
+			"%s(): PCI error report via EDAC not setup\n",
+			__func__);
+	}
+
+	return 0;
+
+	/* Error exit unwinding stack */
+fail1:
+
+	i5000_put_devices(mci);
+
+fail0:
+	edac_mc_free(mci);
+	return -ENODEV;
+}
+
+/*
+ *	i5000_init_one	constructor for one instance of device
+ *
+ * 	returns:
+ *		negative on error
+ *		count (>= 0)
+ */
+static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+	int rc;
+
+	edac_dbg(0, "MC:\n");
+
+	/* wake up device */
+	rc = pci_enable_device(pdev);
+	if (rc)
+		return rc;
+
+	/* now probe and enable the device */
+	return i5000_probe1(pdev, id->driver_data);
+}
+
+/*
+ *	i5000_remove_one	destructor for one instance of device
+ *
+ */
+static void i5000_remove_one(struct pci_dev *pdev)
+{
+	struct mem_ctl_info *mci;
+
+	edac_dbg(0, "\n");
+
+	if (i5000_pci)
+		edac_pci_release_generic_ctl(i5000_pci);
+
+	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
+		return;
+
+	/* retrieve references to resources, and free those resources */
+	i5000_put_devices(mci);
+	edac_mc_free(mci);
+}
+
+/*
+ *	pci_device_id	table for which devices we are looking for
+ *
+ *	The "E500P" device is the first device supported.
+ */
+static const struct pci_device_id i5000_pci_tbl[] = {
+	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
+	 .driver_data = I5000P},
+
+	{0,}			/* 0 terminated list. */
+};
+
+MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
+
+/*
+ *	i5000_driver	pci_driver structure for this module
+ *
+ */
+static struct pci_driver i5000_driver = {
+	.name = KBUILD_BASENAME,
+	.probe = i5000_init_one,
+	.remove = i5000_remove_one,
+	.id_table = i5000_pci_tbl,
+};
+
+/*
+ *	i5000_init		Module entry function
+ *			Try to initialize this module for its devices
+ */
+static int __init i5000_init(void)
+{
+	int pci_rc;
+
+	edac_dbg(2, "MC:\n");
+
+       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
+       opstate_init();
+
+	pci_rc = pci_register_driver(&i5000_driver);
+
+	return (pci_rc < 0) ? pci_rc : 0;
+}
+
+/*
+ *	i5000_exit()	Module exit function
+ *			Unregister the driver
+ */
+static void __exit i5000_exit(void)
+{
+	edac_dbg(2, "MC:\n");
+	pci_unregister_driver(&i5000_driver);
+}
+
+module_init(i5000_init);
+module_exit(i5000_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR
+    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
+MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
+		I5000_REVISION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
+module_param(misc_messages, int, 0444);
+MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
+